
Application Report
SPRA703 – December 2000

1

H.263 Decoder: TMS320C6000 Implementation
Hiroshi Miyazawa Digital Signal Processing Solutions

ABSTRACT

This application report describes the implementation of the International Telecommunications
Union (ITU)-T H.263 decoder on the TMS320C6000 DSP. The H.263 decoder does not, at the
time of print, meet all of the baseline requirements to be eXpressDSP Algorithm Standard
compliant; future revisions, however, will be fully eXpressDSP compliant. The following
document describes the basics of the standard, and proceeds to more technical aspects of the
software.

TMS320C6000 and eXpressDSP are trademarks of Texas Instruments.

Contents
1 Introduction 3
2 Decoder Implementation.. 5

2.1 Directory Structure.. 5
2.2 H.263 Decoder Objects... 6
2.3 APIs and Example Code... 9
2.4 H.263 Decoder Structures .. 10

2.4.1 Parent Object – H263PDEC_TI_Obj... 10
2.4.2 Child Object – H263DEC_TI_Obj ... 12
2.4.3 Decoder Parameters – H263DecParam ... 12
2.4.4 Decoder Status – IH263DEC_Status.. 15
2.4.5 Decoder Return Values.. 15
2.4.6 Reference Offsets (offsetY and offsetC) ... 16
2.4.7 Motion Vectors (mv[24]) ... 17
2.4.8 Reconstructed MB Buffer (recMB).. 19
2.4.9 Motion Compensation Kernels (mcFn_t mcFn[8]) ... 19
2.4.10 DMA/EDMA ID’s (dmaID[3]) ... 20

2.5 Memory Requirements.. 20
2.5.1 Memory Maps.. 22

2.6 H.263 Decoder Functions ... 23
2.7 Code Flow .. 25

2.7.1 Main Decoder Function (h263Decode) ... 25
2.7.2 Deconding MB (h263DecMB)... 26
2.7.3 Motion Compensation (h263DecMC).. 29

2.8 Data Flow ... 31
2.8.1 Frame Buffer.. 31
2.8.2 Reading Reference MB (rdRefMB)... 32
2.8.3 IDCT (idctBuff) ... 33
2.8.4 Packing INTRA MB (packmb)... 34
2.8.5 Motion Compensation (h263DecMC).. 36
2.8.6 Writing Reconstructed MB (wrRecMB) ... 37

SPRA703

2 H.263 Decoder: TMS320C6000 Implementation

2.8.7 Copying Non-coded MB (cpMB) ...38
3 Building H.263 Decoder 40

3.1 Target Device (REQUIRED) ... 40
3.2 Data Transfer Methods (Optional)... 41
3.3 Other Flags (Optional) .. 41
3.4 Building... 42

4 Assumptions and Requirements... 42
Appendix A. Performance 44
Appendix B. Data Transfer Methods.. ... 46
Appendix C. Profiling H.263 Decoder 47
Appendix D. Real-time Transport Protocol (RTP) .. 50
Appendix E. Testing H.263 Decoder 51
Appendix F. Decoding Custom Resolutions .. 53

Figures
Figure 1. Decoder Directory Structure 5
Figure 2. Using Parent and Child Instances ... 7
Figure 3. Using Only Child Instances.. 8
Figure 4. Parent Object – H263PDEC_TI_Obj ... 11
Figure 5. Child Object – H263DEC_TI_Obj ... 12
Figure 6. Decoder Parameters – H263DecParam (little endian) ... 13
Figure 7. Decoder Status – IH263DEC_Status .. 15
Figure 8. Example of Using offsetY and offsetC ... 16
Figure 9. Motion Vector Candidates 17
Figure 10. Example of how decoder sets mv[24] ... 17
Figure 11. Example showing how mv[24] is used.. 18
Figure 12. TMS320C6201 EVM & TMS320C6211 DSK Memory Maps... 23
Figure 13. Code Flow – h263Decode ... 26
Figure 14. Code Flow – h263DecMB ... 27
Figure 15. Bit Fields of Value Returned by deccbp .. 27
Figure 16. Bit Fields of Value Returned by decmvd .. 28
Figure 17. Bit Fields of Value Returned by dectcoef .. 28
Figure 18. Example of Motion Compensation ... 31
Figure 19. Frame Buffer for CIF and QCIF ... 32
Figure 20. Reading Reference MB... . 33
Figure 21. Examples of Using idctBuff (TMS320C62x).. 34
Figure 22. Examples of Using idctBuff (TMS320C64x).. 34
Figure 23. Processing One 8x8 Block (TMS320C62x)... 35
Figure 24. Processing One MB (TMS320C62x).. 35
Figure 25. Processing One 8x8 Block (TMS320C64x)... 36
Figure 26. Motion Compensation (CBP=0x3F) ... 36
Figure 27. Motion Compensation (CBP=0x29) ... 37
Figure 28. Writing Reconstructed MB.. 3 8
Figure 29. Copying MB from Reference to Output (DMA)... 39
Figure 30. Copying MB from Reference to Output (EDMA) .. 40
Figure 31. Loading PSC in both endian modes.. 43

SPRA703

H.263 Decoder: TMS320C6000 Implementation 3

Figure 32. Decoder Statistics – H263DecStats .. 47
Figure 33. RTP Parameters – H263RTPParam (little endian)... 50
Figure 34. Test Setup on TMS320C6201 EVM.. 51
Figure 35. Test Setup on TMS320C6211 DSK.. 52

Tables
Table 1. Parent Object – H263PDEC_TI_Obj ... 11
Table 2. Decoder object – H263DEC_TI_Obj ... 12
Table 3. Decoder Parameters – H263DecParam .. 13
Table 4. Decoder status – IH263DEC_Status .. 15
Table 5. Decoder Return Values.. ... 16
Table 6. H.263 Decoder Code Sizes (Bytes) .. 21
Table 7. Internal Memory Requirements (TMS320C62x)... 21
Table 8. Internal Memory Requirements (TMS320C64x)... 21
Table 9. External Memory Requirements... 22
Table 10. H.263 Decoder Functions (Device Independent)... 24
Table 11. H.263 Decoder Functions (TMS320C62x) .. 24
Table 12. H.263 Shared Functions (TMS320C62x) .. 24
Table 13. H.263 Decoder Functions (TMS320C64x) .. 25
Table 14. H.263 Shared Functions (TMS320C64x) .. 25
Table 15. Data Transfer Methods 41
Table 16. Kernels Performance (TMS320C62x) ... 44
Table 17. H.263 Decoder Performance... 44
Table 18. Decoder Statistics – H263DecStats ... 47
Table 19. RTP Parameters – H263RTPParam... 50

1 Introduction
The TMS320C6000 implementation of H.263 decoder has the following features.

• It satisfies the minimal requirement defined in the ITU-T H.263 specification. None of the
annexes have been implemented.

• It is partially compliant, at the time of print, with the eXpressDSP Algorithm Standard Refer
to appropriate documentation for more information.

• The code has been tested extensively on TMS320C6201 EVM and TMS320C6211/C6711 DSK.

• Every VLD function is equipped with error detection capabilities. Once an error in a bitstream has
been detected, the decoder will exit with an appropriate error code to indicate where the error has
been detected. Throughout the development stage, this feature has been used to verify all the
changes that have been made to the codes, thereby testing the error detection capabilities as well.

• The decoder has very little device specific code; executing the decoder on any of the
TMS320C6000 family of devices can be achieved simply by defining the device type at build time.

• Hooks to allow the use of RTP are partially in place. A structure to store necessary
information is defined, and can be allocated with appropriate flags at build time, but no code
has been implemented to either parse an RTP bitstream, or to process any information
extracted from the bitstream.

SPRA703

4 H.263 Decoder: TMS320C6000 Implementation

• The decoder is structured to provide as much flexibility as possible, so that it can run under
different system configurations. See the appendices for more information on changes that
the users can make to suit their systems.

Although “TMS320C64x” is mentioned throughout this application note, this does not by any
means imply that any source codes and/or object files are included in the release that the users
will receive. Whether or not the TMS320C64x specific codes are released depends on the
availability and the specifics of the agreement the user has signed. Refer to the sales
representatives for more information.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 5

2 Decoder Implementation

2.1 Directory Structure

decoder

h263dec.h

inc

h263dec.h62

h263dec.i

h263dec_ti.h

h263pdec_ti.h

ih263dec.h

h263

obj6201
*.asm

*.obj

dectabs.asm

src

h263dec.c

h263dec_ti.c

h263dec_ti_vtab.c

h263decode.c

h263pdec_ti.c

ih263dec.c

deccbp.sa

src6200

decmvd.sa

dectcoef.asm

decutil_sa.sa

decutil6201.c

decutil6211.c

obj6400
*.asm

*.obj

deccbp.sa

src6400

decmvd.sa

dectcoef.asm

decutil_sa.sa

decutil6400.c

share

inc
h263.h

h263.h62

idct.asm

src6200

mc.asm

util_sa.sa

obj6201
*.asm

*.obj

idct.asm

src6400

mc.asm

obj6400
*.asm

*.obj

mak
*.mak

obj6211
*.asm

*.obj

obj6211
*.asm

*.obj

bin
*.map

*.out

src_xdais

Figure 1. Decoder Directory Structure

SPRA703

6 H.263 Decoder: TMS320C6000 Implementation

h263 : H.263 root directory

 bin : Decoder COFF and map files

 decoder : Decoder root directory

inc : Include files used by the decoder source codes

obj6201 : Intermediate assembly and object files for TMS320C6201

obj6211 : Intermediate assembly and object files for TMS320C6211

obj6400 : Intermediate assembly and object files for TMS320C64x

src : Decoder source files (device independent)

src_xdais : DSP Algorithm Standard specific source files (device independent)

src6200 : Source files specifically designed for TMS320C62x

src6400 : Source files specifically designed for TMS320C64x

 mak: Makefiles.

 share : Root directory for shared files

inc : Include files

obj6201 : Intermediate assembly and object files for TMS320C6201

obj6211 : Intermediate assembly and object files for TMS320C6211

obj6400 : Intermediate assembly and object files for TMS320C64x

src : Shared source files

src6200 : Source files specifically designed for TMS320C62x

src6400 : Source files specifically designed for TMS320C64x

Although the default location for intermediate ASM and OBJ files for TS320C6201 is obj6201 ,
the user may choose to create and assign a different directory.

Note that depending on the specifics of the agreement, directories obj6400 and src6400 may
not be included in the release. Refer to the sales representative for more information.

2.2 H.263 Decoder Objects

The current implementation of the H.263 decoder defines a parent object H263PDEC_TI_Obj
(defined in h263pdec_ti.h) that is used to hold a single copy of the decoder tables (look-up
tables, VLD tables, etc.), since they are common to all H.263 decoder child instances. Each
child instance, once created, stores pointers to appropriate sections of the tables. By using a
parent instance to hold these tables, child instances do not have to retain their own copies of the
tables, thereby reducing the amount of memory required by each child instance. This
arrangement is shown in the diagram below.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 7

Parent instance
(H263PDEC_TI_Obj)

Decoder tables

Pointers to tables
Child instance 0

(H263DEC_TI_Obj)

Child instance 1
(H263DEC_TI_Obj) Pointers to tables

Child instance N
(H263DEC_TI_Obj)

Memory

Pointers to tables

Figure 2. Using Parent and Child Instances

While the aforementioned configuration is probably the most desirable, this may not be practical
in some systems. For example, if a particular system is designed to execute several different
algorithms that all require their own tables, there may not be sufficient internal memory to hold
every single parent instance for each algorithm. One solution for this scenario is to swap in and
out the parent instances as needed. Alternatively, the system can swap in and out whichever
child instance that has to execute. This is more suited for systems equipped with large external
memories, since each child instance is allowed to keep its own copy of the tables. The H.263
decoder is designed so as to allow the user to select which configuration is more suitable. This
arrangement is illustrated in the figure below.

SPRA703

8 H.263 Decoder: TMS320C6000 Implementation

Decoder tables

Pointers to tables
Child instance 0

(H263DEC_TI_Obj)

Memory

Memory space
allocated for child
instance 0

Decoder tables

Pointers to tables
Child instance 1

(H263DEC_TI_Obj)

Memory space
allocated for child
instance 1

Decoder tables

Pointers to tables
Child instance N

(H263DEC_TI_Obj)

Memory space
allocated for child
instance N

Figure 3. Using Only Child Instances

See Section 3, Building H.263 Decoder for more information on how to use this configuration.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 9

2.3 APIs and Example Code

Shown below is how the IALG functions structure IH263DEC_Fxns (defined in ih263dec.h)
looks like.

typedef struct IH263DEC_Fxns

{

 IALG_Fxns ialg;

 void (*control)(IH263DEC_Handle handle,

 IH263DEC_Cmd cmd,

 IH263DEC_Status *status);

 int (*decode) (IH263DEC_Handle handle,

 uint *in,

 uchar *out[3]);

} IH263DEC_Fxns;

ialg : This is the default IALG functions. Refer to appropriate TMS320 DSP Algorithm Standard
documents for more information.

control : This function is used to obtain updated status from the decoder.

decode : Executes the H.263 decoder.

Shown below is an example code, in which one parent instance and one child instance are
created. Note that since the decoder extracts whatever information it needs from the bitstream,
parameters are not required at creation time.

SPRA703

10 H.263 Decoder: TMS320C6000 Implementation

Refer to eXpressDSP Algorithm Standard Rules and Guidelines for more information on specific
function APIs.

void main()
{

 H263PDEC_TI_Obj *decParent; /* decoder parent handle */

 IH263DEC_Handle decHandle; /* decoder child handle */
 IH263DEC_Status decStatus; /* decoder status */

 unsigned int *in; /* input bitstream */

 unsigned char *out[3]; /* output frame (Y, Cb, Cr) */

 /* Create parent instance of H.263 decoder */
 decParent = (H263PDEC_TI_Obj *)ALG_create((IALG_Fxns *)&H263PDEC_TI_IALG,

 NULL,

 (IALG_Params *)NULL);

 /* Create child instance of H.263 decoder */
 decHandle = (IH263DEC_Handle)ALG_create((IALG_Fxns *)&H263DEC_TI_IH263DEC,

 decParent,

 (IALG_Params *)NULL);

 while (1)

 {
 /* get pointer to input bitstream -> in */

 /* get pointer to output frame buffer -> out */

 /* execute H.263 decoder */

 H263DEC_TI_IH263DEC.decode((IH263DEC_Handle)decHandle,

 in,
 out);

 /* Get updated status of the decoder */

 H263DEC_TI_IH263DEC.control((IH263DEC_Handle)decHandle,

 IH263DEC_GET_STATUS,
 &decStatus);

 }

}

2.4 H.263 Decoder Structures

2.4.1 Parent Object – H263PDEC_TI_Obj

The parent object H263PDEC_TI_Obj (defined in h263pdec_ti.h) is used to store tables
(defined in dectabs.asm) that are common to all decoder child instances. Figure 4 shows how
they are structured.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 11

alg

H263PDEC_TI_Obj Decoder Tables

decTables / decMcbpcTabI
(38 bytes)

decMcbpcTabP
(70 bytes)

decCbpyTab
(46 bytes)

decMvdTab
(444 bytes)

decZzIndex
(64 bytes)

tcoefLen
(92 bytes)

tcoefTab
(608 bytes)

(padding - 6 bytes)

32 bits

mcbpcTabI

decTablesEnd (4 bytes)

1368
bytes

mcbpcTabP

cbpyTab

mvdTab

zzIndex

tcoefLen

tcoefTab

Figure 4. Parent Object – H263PDEC_TI_Obj

Table 1. Parent Object – H263PDEC_TI_Obj

Table name Description

alg Default IALG object

mcbpcTabI VLD table for MCBPC (MB type and CBP for chroma for INTRA MB)

mcbpcTabP VLD table for MCBPC (MB type and CBP for chroma for INTER MB)

cbpyTab VLD table for CBPY (CBP for luma)

mvdTab VLD table for MVD (Motion Vector Difference)

zzIndex Zigzag index table

tcoefLen TCOEF length table

tcoefTab VLD table for TCOEF

SPRA703

12 H.263 Decoder: TMS320C6000 Implementation

2.4.2 Child Object – H263DEC_TI_Obj

The H263DEC_TI_Obj structure (defined in h263dec_ti.c) is used to store information
specific to each instance of the decoder. Its organisation and descriptions are shown below.

The shaded field (rtpParam) is optional.

alg

decParam

rtpParam

32 bits

retVal

base[4/5]

Figure 5. Child Object – H263DEC_TI_Obj

Table 2. Decoder object – H263DEC_TI_Obj

Name Description
alg Default IALG object

decParam Pointer to decoder parameter structure H263DecParam (see below)

rtpParam RTP parameter structure (H263RTPParam). This is valid only when RTP flag is used at
build time. See Appendix D, Real-time Transport Protocol (RTP) for more information.

retVal Return value from the decoder

base[4/5] Base addresses for all memory spaces allocated for a particular child instance; 4 when
used with a parent instance, and 5 without.

2.4.3 Decoder Parameters – H263DecParam

The H263DecParam structure (defined in h263decode.h) is the main structure that the
decoder uses to store important information about the current frame that it is reconstructing.
The following lists and describes each field in the structure.

The structure fields between tr and qp , inclusive, are information extracted from the bitstream.
Refer to the H.263 specification for more detail.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 13

32 bits

bufPtr

bitPtr

picFrzRel docCam splitScrn tr

noGOBhead quant picType srcFormat

qp mbtype GFID GN

redMBIdx rtp nMB nGOB

recMB[2]

refMB

idctBuff

height width

outY

outCb

outCr

refY

refCb

refCr

offsetC offsetY predModeC predModeY

mv[24]

mcbpcTabI

mcbpcTabP

cbpyTab

mvdTab

zzIndex

tcoefLen

tcoefTab

frame

mcFn[8]

nBits

dmaID[3]

gCntRldY

gCntRldC

gIndexY

gIndexC

Figure 6. Decoder Parameters – H263DecParam (little endian)

Table 3. Decoder Parameters – H263DecParam

Name Description

bufPtr Points to the current 32-bit word of the input H.263 bitstream

bitPtr Bit position, or number of remaining bits in the current 32-bit word; MSB=32; LSB=1.

tr Temporal reference

splitScrn Split screen indicator

docCam Document camera indicator

picFrzRel Full picture freeze release

srcFormat Source format

picType Picture coding type

quant Picture quant

SPRA703

14 H.263 Decoder: TMS320C6000 Implementation

Name Description
noGOBhead "No GOB header" indicator

GN Group number

GFID GOB frame ID

mbtype MB type

qp Quantiser information

nGOB Number of GOB per frame

nMB Number of MB per GOB

rtp '1' for RTP mode; '0' for non-RTP

recMBIdx Index into recMB array. It is used to point to the current reconstructed MB buffer. See
Section 2.4.8, Reconstructed MB Buffer (recMB) for more information.

recMB[2] Pointers to reconstructed MB buffers. See Section 2.4.8, Reconstructed MB Buffer
(recMB) for more information.

refMB Points to reference MB buffer

idctBuff Points to IDCT buffer

width Width of image

height Height of image

outY

outCb

outCr

Pointers to output frame buffer (luma, Cb, and Cr, respectively)

refY

refCb

refCr

Pointers to reference frame buffer (luma, Cb, and Cr, respectively)

predModeY
predModeC

Half-pel modes for luma and chroma, respectively

offsetY

offsetC

Offsets inside reference MB for luma and chroma, respectively. See Section 2.4.6,
Reference Offsets (offsetY and offsetC) for more information.

mv[24] Motion vectors. See Section 2.4.7, Motion Vectors (mv[24]) for more information.

mcbpcTabI

mcbpcTabP

cbpyTab

mvdTab

zzIndex

tcoefLen

tcoefTab

Pointers to VLD tables for MCBPC (I-frame), MCBPC (P-frame), CBPY, MVD, and
tables used to decode TCOEF.

frame Number of frames decoded

mcFn[8] Array of function pointers for MC kernels. See Section 2.4.9, Motion Compensation
Kernels (mcFn_t mcFn[8]) for more information.

nBits Number of bits used by decoded frame

dmaID[3] DMA/EDMA IDs. See Section 2.4.10, DMA/EDMA ID’s (dmaID[3]) for more
information.

gCndRldY Handle to a global count reload register used by luma transfers. This is valid only when
CHIP_6201 and CSLDMA flags are specified at build time.

gCndRldC Handle to a global count reload register used by chroma transfers. This is valid only
when CHIP_6201 and CSLDMA flags are specified at build time.

gIndexY Handle to a global index register used by luma transfers. This is valid only when
CHIP_6201 and CSLDMA flags are specified at build time.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 15

Name Description
gIndexC Handle to a global index register used by chroma transfers. This is valid only when

CHIP_6201 and CSLDMA flags are specified at build time.

2.4.4 Decoder Status – IH263DEC_Status

Shown below is how the H.263 decoder status structure IH263DEC_Status (defined in
ih263dec.h) is organised.

size

32 bits

frame

width

height

picType

y

u

v

retVal

nBits

Figure 7. Decoder Status – IH263DEC_Status

Table 4. Decoder status – IH263DEC_Status

Name Description
size Size of the structure (required)

frame Number of frames decoded

width Width of decoded frame

height Height of decoded frame

picType Picture type of decoded frame

y Address of decoded frame (luma)

u Address of decoded frame (Cb)

v Address of decoded frame (Cr)

retVal Error value returned by the decoder

nBits Number of bits used by the last decoded frame

2.4.5 Decoder Return Values

Table 5 below describes all the possible return values (defined in h263decode.h) used by the
decoder.

SPRA703

16 H.263 Decoder: TMS320C6000 Implementation

Table 5. Decoder Return Values

retVal

Label Value
Description

H263D_ERR_NOERROR 0 No errors detected – normal completion

H263D_ERR_PSC 1 Invalid PSC

H263D_ERR_ZEROBIT 2 Bit 2 of PTYPE was not “0”

H263D_ERR_RSVDBITS 3 Reserved bits were not “0000 ”

H263D_ERR_SRCFORMAT 4 Invalid source format

H263D_ERR_PQUANT 5 Invalid PQUANT

H263D_ERR_CBP 6 Invalid MCBPC or CBPY

H263D_ERR_MVD 7 Invalid MVD

H263D_ERR_TCOEF 8 Invalid TCOEF

2.4.6 Reference Offsets (offsetY and offsetC)

Half-pel motion compensation requires one 17x17 luma block and two 9x9 chroma blocks from
the reference frame buffer. To ensure best performance, all data transfers are done in 32-bit
words, i.e. every element count must be a multiple of four bytes. This means that one 20x17
luma block and two 12x9 chroma blocks have to be read from the reference frame buffer.

offsetY refers to the number of bytes from the left edge of the 20x17 block, where the required
reference MB exists. Similarly, offsetC refers to the number of bytes from the left edge of
12x9 block, where the required block exists.

Figure below illustrates this concept.

Required 17x17
reference luma17

20

Required
9x9

reference
chroma

9

12

offsetY =2

offsetC =2

Figure 8. Example of Using offsetY and offsetC

SPRA703

H.263 Decoder: TMS320C6000 Implementation 17

2.4.7 Motion Vectors (mv[24])

Motion vector for the current MB depends on three previously decoded vectors: one to the left
(mv1), above (mv2), and above right (mv3). As shown below, some or all of these are set to
zero, depending on which MB is currently being decoded.

(0,0) (0,0)

(0,0) mv

mv2 mv3

(0,0) mv

mv1 mv1

mv1 mv

mv2 (0,0)

mv1 mv

Image boundary

mv2 mv3

mv1 mv

mv2 (0,0)

mv1 mv

mv2 mv3

(0,0) mv

mv2 (0,0)

mv1 mv

mv2 mv3

mv1 mv

Figure 9. Motion Vector Candidates

To avoid having nested “if ” statements, two extra bytes are allocated in the motion vector
array. As soon as the decoder determines the source format, it sets the left-most and right-most
array elements to zero for the edge conditions. The code now becomes a simple “if first
GOB;else ” Figure below illustrates examples for CIF and QCIF.

CIF 0 X X 0

[0] [1] [22] [23]

Image boundary

0 X

[0] [1] [22] [23]

X 0

[11] [12]

QCIF

Figure 10. Example of how decoder sets mv[24]

Conceptually, mv[0] is outside the image boundary to the left; similarly mv[23] and mv[12]
are outside the image boundary to the right for CIF and QCIF, respectively. “X” denotes the
actual motion vectors that are set and read by the decoder; the shaded area for QCIF is ignored.
Shown below is a section of the code (h263decode.c) that is responsible for selecting the
three motion vector candidates.

SPRA703

18 H.263 Decoder: TMS320C6000 Implementation

mv1 = decParam->mv[j]; /* MV for previous MB */

if ((i==0) || (!decParam->noGOBhead)) /* if 1 st GOB or no header, mv2=mv3=mv1 */

{

 mv2 = mv1;

 mv3 = mv1;

}

/* else mv2 is MV for corresponding MB in previous GOB & mv3 is the one after it */

else

{

 mv2 = decParam->mv[j+1];

 mv3 = decParam->mv[j+2];

}

 :

/* decode MVD */

 :

/* store new MV */

decParam->mv[j+1] = mv;

In the code above, variable j identifies the current MB, and ranges from 0 to 21 for CIF, or 0 to
10 for QCIF. However, since there is an extra byte at the beginning (and end) of the array,
mv[j] actually contains motion vector for the previous MB; mv[j+1] and mv[j+2] contain
motion vectors for the above and above right, respectively.

The figure below shows an example of how the array mv[24] is used to store motion vectors for
the current GOB.

mv1 mv3mv2

mv1 mv3mv

MBn - Before

MBn - After

mv2mv1MBn+1 mv3

mv1 0mv2MBN-1

mv3MB0 0 mv2

Figure 11. Example showing how mv[24] is used

SPRA703

H.263 Decoder: TMS320C6000 Implementation 19

Before decoding the MVD, three motion vector candidates mv1, mv2, and mv3 are selected.
mv1 is the motion vector for the previous MB; mv2 is the motion vector for the MB just above the
current MB; mv3 is the motion vector for the MB that is next to the one for mv2.

Since mv2 is no longer required for processing remaining MBs in the current GOB, it is
overwritten by the latest vector, which may be assigned to mv1 for the next MB.

2.4.8 Reconstructed MB Buffer (recMB)

The CPU may be required to wait for the previously reconstructed MB to be written to the output
frame buffer, before it can proceed with the reconstruction of the current MB. To minimise the
time that the CPU may have to wait, two buffers are allocated for reconstructed MBs (recMB[0]
and recMB[1]) to facilitate double-buffering. If the decoder has just issued a data transfer
request out of recMB[0] for the first MB, then the CPU does not have to wait for that request to
complete until it is ready to reconstruct the third MB. This is provided that the decoder has
already reconstructed the second MB in recMB[1] and issued a request to write out its
contents out to the output frame buffer.

At any given time, recMBIdx points to either one to indicate the current buffer that the CPU can
use for reconstruction. The switch occurs at the end of decoding and reconstructing every MB.

2.4.9 Motion Compensation Kernels (mcFn_t mcFn[8])

In motion compensation, there are four half-pel modes, with and without IDCT coefficients,
requiring eight separate functions. Due to the complexity involved in determining which
functions to use, an array of function pointers mcFn is used to store addresses for all eight
motion compensation kernels. The use of this array eliminates the need for nested if-then-
else and switch-case statements, thereby improving both the performance and overall code
size.

All eight functions have the following API (defined in h263.h).

typedef void (*mcFn_t)(uchar *src, /* source address w/o offset */

 uchar *dst, /* destination address */

 uchar offset, /* offset within 20x17 and 12x9 blocks */

 int sWidth, /* source pitch (default=20 & 12) */

 int dWidth, /* destination pitch (default=16 & 8) */

 int rc, /* rounding control; ignored by mcA & mcAi */

 short *idct); /* IDCT coefs; ignored by mcA, mcB, mcC & mcD */

During the initialisation stage (H263DEC_TI_initObj defined in h263dec_ti.c), the array is
setup as shown below. Note that the structure dp is of the type H263DecParam .

SPRA703

20 H.263 Decoder: TMS320C6000 Implementation

dp->mcFn[0] = mcA;

dp->mcFn[1] = mcB;

dp->mcFn[2] = mcC;

dp->mcFn[3] = mcD;

dp->mcFn[4] = mcAi;

dp->mcFn[5] = mcBi;

dp->mcFn[6] = mcCi;

dp->mcFn[7] = mcDi;

See Section 2.7.3, Motion Compensation (h263DecMC) for more information on how the motion
compensation is applied to a MB.

2.4.10 DMA/EDMA ID’s (dmaID[3])

In the default configuration, all data transfers are initiated via the DAT module in the Chip
Support Library (CSL), except when DIRDMA flag or CSLDMA flag is used to build the decoder.
See Section 3, Building H.263 Decoder and Appendix B, Data Transfer Methods for more
information.

For every MB, the decoder needs to keep track of three sets of data transfers into and out of
refMB , recMB[0] , and recMB[1] (reference MB and reconstructed MB buffers); furthermore,
each transfer requires three separate requests (one luma and two chroma blocks). However,
since all transfer requests are serviced sequentially, the decoder only has to wait for the last of
these three requests to complete before proceeding. In short, the decoder only keeps track of
last transfer request for each buffer.

When a request is issued via the DAT module, a unique request ID that is associated with that
particular request is returned. The dmaID array is used to store separate ID’s for each buffer.

• dmaID[0] is the request ID associated with recMB[0] .

• dmaID[1] is the request ID associated with recMB[1] .

• dmaID[2] is the request ID associated with refMB .

Refer to TMS320C6000 Chip Support Library API Reference Guide for more information on the
DAT module.

2.5 Memory Requirements

The memory requirements for the H.263 decoder are shown below.

The code sizes shown are based on compiling with “-mtx –mh256 –o3 ” with the appropriate
“Target Device”.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 21

Table 6. H.263 Decoder Code Sizes (Bytes)

TMS320C6201 TMS320C6211 TMS320C6400
Core decoder code 10,176 9,952 10,944
Shared code 8,384 8,384 2,188
Total 18,560 18,336 13,132

The term “shared code” refers to a set of functions that the decoder shares with the encoder.

The code size for TMS320C6201 is slightly larger than that of TMS320C6211, due to the
additional control code required for issuing DMA requests. See Section 2.8.7, Copying Non-
coded MB (cpMB) and Appendix B, Data Transfer Methods for more information.

Note that the decoder code size may change depending on which compilation flags are used
and which release of the code generation tools are used to build the source codes.

Table 7. Internal Memory Requirements (TMS320C62x)

Parent Child
Reconstructed MB buffer (recMB[0]) 0 384 16 bytes (0x10)
Reconstructed MB buffer (recMB[1]) 0 384 16 bytes (0x10)
Reference MB Buffer (refMB) 0 556 16 bytes (0x10)
IDCT buffer 0 896 16 bytes (0x10)
Decoder parent object (H263PDEC_TI_Obj) 1,368 0 16 bytes (0x10)
Decoder child object (H263DEC_TI_Obj) 0 224 16 bytes (0x10)
Stack 0 336 N/A
Total 1,368 2,780 -

Size (Bytes) Alignment

Table 8. Internal Memory Requirements (TMS320C64x)

Parent Child
Reconstructed MB buffer (recMB[0]) 0 384 16 bytes (0x10)
Reconstructed MB buffer (recMB[1]) 0 384 16 bytes (0x10)
Reference MB Buffer (refMB) 0 556 16 bytes (0x10)
IDCT buffer 0 768 16 bytes (0x10)
Decoder parent object (H263PDEC_TI_Obj) 1,368 0 16 bytes (0x10)
Decoder child object (H263DEC_TI_Obj) 0 224 16 bytes (0x10)
Stack 0 336 N/A
Total 1,368 2,652 -

AlignmentSize (Bytes)

SPRA703

22 H.263 Decoder: TMS320C6000 Implementation

Table 9. External Memory Requirements

Size (Bytes) Ali gnment
Decoder tables (o 1,368 16 bytes (0x10)
Frame buffer 0 152,064 16 bytes (0x10)
Frame buffer 1 152,064 16 bytes (0x10)
Total 305,496 -

Note that the encoder neither imposes nor assumes the placement of these buffers. However,
for optimal performance, it is recommended that the buffers be placed as indicated above. One
should not encounter any cache coherency problems when running the decoder on
TMS320C6211/TMS320C6711/TMS320C64x.

The IDCT code for TMS320C62x requires its input buffer to have extra 128 bytes (or 64 shorts)
to be used as scratch memory, hence 896 bytes, rather than 768 bytes. The code for
TMS320C64x, however processes its input data completely in place, and needs no extra space.

In the default configuration, the original decoder tables are located in external memory, and
during initialisation, the tables are copied to internal memory for optimal performance. This is
done by the parent instance only once, and all child instances are then set up to access the
same copy. The exception is when the user decides not to use the parent instance, in which
case each child instance copies its own copy of the tables into its memory space.

The decoder requires at least two frame buffers to correctly reconstruct the frames: one for
reference, and the other for current (being reconstructed), which becomes the reference frame
for the next frame.

2.5.1 Memory Maps

The figure below shows the memory map used for TMS320C6201 EVM and TMS320C6211
DSK. Refer to TMS320C6000 Peripherals Reference Guide for more information on how to
configure L2 memory for TMS320C6211. The size of the external memory on TMS320C6211
DSK may differ; Refer to the documentation provided with the board for more information.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 23

0x80000000

0x00400000

0x00420000

0x00440000

0x02000000

0x03000000

0x04000000

0x80010000

0x00000000

0x00004000

0x00008000

0x0000C000

0x00010000

0x80400000

Internal Program RAM
(64KB Cache)

0xFFFFFFFF

External Program RAM (CE0)
(128K Bytes SBSRAM)

External Data RAM (CE0)
(128K Bytes SBSRAM)

External Data RAM (CE2)
(4M Bytes SDRAM)

External Data RAM (CE3)
(4M Bytes SDRAM)

Internal Data RAM
(64K Bytes)

External Memory
(4M Bytes SDRAM)

16K Bytes SRAM

48K Bytes 3-way Cache

Figure 12. TMS320C6201 EVM & TMS320C6211 DSK Memory Maps

2.6 H.263 Decoder Functions

The table below shows the decoder functions, what they return, and where they are defined.
Refer to individual source code for more information on APIs.

SPRA703

24 H.263 Decoder: TMS320C6000 Implementation

Table 10. H.263 Decoder Functions (Device Independent)

Function Description Returns Source File
h263DecGOB Decodes one GOB int h263decode.c

h263DecMB Decodes one MB int h263decode.c

h263DecMC Applies half-pel motion compensation to a MB void h263decode.c

h263Decode Decodes one frame int h263decode.c

Table 11. H.263 Decoder Functions (TMS320C62x)

Function Description Returns Source File

cpMB Copies MB from reference to output void
decutil6201.c

decutil6211.c

deccbp Decodes MCBPC and CBPY int deccbp.sa

decmvd Decodes MVD ushort decmvd.sa

dectcoef Decodes TCOEF int dectcoef.asm

getbits Extracts required number of bits from the bitstream uint decutil_sa.sa

rdRefMB Reads reference MB void
decutil6201.c

decutil6211.c

prezero Pre-zeros required number of blocks void util_sa.sa

wrRecMB Writes reconstructed MB to output void
decutil6201.c

decutil6211.c

† “uint ” and “ushort ” are “unsigned int ” and “unsigned short ”, respectively.

Table 12. H.263 Shared Functions (TMS320C62x)

Function Description Returns Source File
idctI Applies IDCT for INTRA MB void idct.asm

idctP Applies IDCT for INTER MB void idct.asm

mcA

mcAi

mcB

mcBi

mcC

mcCi

mcD

mcDi

Applies motion compensation mode A, B, C, and D,
with and without IDCT output

void mc.asm

packmb Packs output from IDCT void util_sa.sa

SPRA703

H.263 Decoder: TMS320C6000 Implementation 25

Table 13. H.263 Decoder Functions (TMS320C64x)

Function Description Returns Source File
cpMB Copies MB from reference to output void decutil6400.c

deccbp Decodes MCBPC and CBPY int deccbp.sa

decmvd Decodes MVD ushort decmvd.sa

dectcoef Decodes TCOEF int dectcoef.asm

getbits Extracts required number of bits from the bitstream uint decutil_sa.sa

rdRefMB Reads reference MB void decutil6400.c

prezero Pre-zeros required number of blocks void h263dec_ti.h

wrRecMB Writes reconstructed MB to output void decutil6400.c

Table 14. H.263 Shared Functions (TMS320C64x)

Function Description Returns Source File
idctIP Applies IDCT for INTRA & INTER MB void idct.asm

mcA

mcAi

mcB

mcBi

mcC

mcCi

mcD

mcDi

Applies motion compensation mode A, B, C, and D,
with and without IDCT output

void mc.asm

packmb Packs output from IDCT void util_sa.sa

Note that although functions cpMB, rdRefMB , and wrRecMB are defined in files
decutil6201.c , decutil6211.c , and decutil6400.c , appropriate versions for the device
will be selected, depending on the device designation flag used at build time.

2.7 Code Flow

The following sections describe the order in which the decoder processes a bitstream.

2.7.1 Main Decoder Function (h263Decode)

The figure below shows the high-level code flow.

SPRA703

26 H.263 Decoder: TMS320C6000 Implementation

h263Decode

Decode GOB layer

h263DecMB

Last
MB?

Y

N

h263DecGOB

Last
GOB?

Y

N

Return

Decode picture layer

Wait for all data transfers to complete

Figure 13. Code Flow – h263Decode

For each frame, the decoder is provided with input H.263 bitstream. The h263Decode function
starts parsing the bitstream and extracts information pertaining to the entire frame (the picture
layer). Based on the information, it then sets up several variables in the main parameter
structure (H263DecParam), including frame buffer pointers, dimension of the image, etc. The
function calls h263DecGOB the appropriate number of times.

The h263DecGOB function extracts GOB layer specific information from the bitstream and calls
h263DecMB the appropriate number of times.

The final step involves simply making sure that all the data transfer requests have completed.

2.7.2 Decoding MB (h263DecMB)

The first thing the function needs to know is if the current MB has been coded or not. If it has
not been coded, then the corresponding MB in the reference frame buffer must be copied to the
output frame buffer, so that the decoder can properly reconstruct the next frame. This is done
by calling the cpMB function.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 27

Coded?h263DecMB

Y

N

SA Decode MCBPC & CBPY (deccbp)

INTER?SA Decode MVD (decmvd)

C ldRefMB

SA Pre-zero block(s) (prezero)

ASM Decode IDCT coefficients (dectcoef)

ASM IDCT (idctI/idctP)

CBP?

INTRA?

SA packmb

))

Motion Compensation (h263DecMC)

C wrRecMB

Y

Y

N

N

C cpMB

Return

Wait for dmaID[2] to completeWait for dmaID[0/1] to complete

Y

N

Figure 14. Code Flow – h263DecMB

If, however, the MB has been coded, then further processing is required, starting with MCBPC
and CBPY (MB type, CBP for chroma, and CBP for luma). The VLD tables for these are set up
so that the return value of the deccbp function is as shown in the figure below.

Cr Cb Y3 Y2 Y1 Y0

CBPY

034781112151631

of coded blocks MB type CBPC0 0

56

034781112151631

of coded blocks MB type 0 0

56 12

ERROR

ERROR

Figure 15. Bit Fields of Value Returned by deccbp

A value of 0xFFFF in the upper 16 bits (bits [31:16]) indicates that the function has detected an
error in the bitstream. If the MB type is INTER, then the motion vectors for luma and chroma are
decoded by calling the decmvd function. Its return value is shown below.

SPRA703

28 H.263 Decoder: TMS320C6000 Implementation

078151631

MVX MVY

9 1

Figure 16. Bit Fields of Value Returned by decmvd

Bits [8] and [0] determine the half-pel modes for horizontal and vertical components of luma
block; for chroma, the half-pel modes depend on bits [9:8] and [1:0]. A value of 0x80 in bits
[15:8] or bits [7:0] indicates that the function has detected an error in the bitstream. The
decoded motion vectors are then used to bring the predicted MB from the reference frame buffer
by calling the rdRefMB function.

If at least one of the six CBP bits is set, then the decoder must decode the IDCT coefficients by
calling the dectcoef function and apply IDCT. The dectcoef function returns the following
value.

0231

V Z

1

Figure 17. Bit Fields of Value Returned by dectcoef

A return value of zero denotes normal completion; if the Z bit is set, it means that the zigzag
array has over-run; if the V bit is set, it means that it has encountered an invalid VLC symbol.

IDCT kernels for TMS320C62x and TMS320C64x have been designed specifically for these
families of devices to fully exploit their architectures. For this reason, two separate versions
exist; they are not bit-exact, but are IEEE-1180 compliant.

The TMS320C62x version of the IDCT, because of its highly optimised nature, has two flavours:
one for INTRA MB (idctI) and another for INTER MB (idctP). The only difference between
these two is the final precision setting. The idctI function outputs unsigned 8-bit values as
signed 16-bit values, with an offset of 128, so the decoder must call the packmb function to pack
and adjust the offsets of the IDCT output.

The TMS320C64x version, however, outputs the results in the identical manner for both INTRA
and INTER MB. Unlike the TMS320C62x version, a final saturation stage is required for INTRA
MB, before packing the results.

For the INTER MB, the motion compensation function (h263DecMC) is called to add IDCT output
and the reference MB to reconstruct the current MB.

Note that although the CPU has to wait for the transfer out of recMB to complete (i.e., wait on
dmaID[0] or dmaID[1] to complete) before entering the packmb function, it only has to wait
for the transfer into refMB to complete (i.e., wait for dmaID[2] to complete) prior to applying
motion compensation. This is because the requests are serviced in the order in which they are
issued, so if dmaID[2] has completed, it means that any previous requests associated with
recMB have also completed, and hence it is safe to start reconstructing the current MB.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 29

The final stage of h263DecMB involves simply writing out the reconstructed MB to the output
frame buffer by calling the wrRecMB function. Note that because of the double buffering
(recMB[0] and recMB[1]), the completion of a particular request is not checked until two
(coded) MBs after the current one.

2.7.3 Motion Compensation (h263DecMC)

The code responsible for applying half-pel motion compensation is shown below.

void h263DecMC(H263DecParam *dp, int rc, int c)

{

 int predModeY, predModeC;

 uchar offsetY, offsetC;

 mcFn_t mcfY0, mcfY1, mcfY2, mcfY3, mcfCb, mcfCr;

 uchar *s0, *s1, *s2, *s3, *s4, *s5;

 uchar *d0, *d1, *d2, *d3, *d4, *d5;

 short *idct0,*idct1,*idct2,*idct3,*idct4,*idct5,*idct;

 idct = dp->idctBuff;

 predModeY = dp->predModeY;

 predModeC = dp->predModeC;

 offsetY = dp->offsetY;

 offsetC = dp->offsetC;

 /* Set source addresses for Y0, Y1, Y2, Y3, Cb & Cr */

 s0 = dp->refMB;

 s1 = s0 + 8;

 s2 = s0 + (20* 8);

 s3 = s2 + 8;

 s4 = s0 + (20*17);

 s5 = s4 + (12* 9);

 /* Set destination addresses for Y0, Y1, Y2, Y3, Cb & Cr */

 d0 = dp->recMB;

 d1 = d0 + 8;

 d2 = d0 + (16* 8);

 d3 = d2 + 8;

 d4 = d0 + (16*16);

 d5 = d4 + (8* 8);

 /* for each block MB:- */

SPRA703

30 H.263 Decoder: TMS320C6000 Implementation

 /* - select appropriate MC kernel, depending on pred mode and CBP. */

 /* - set address of IDCT coefficients. */

 /* - if CBP bit is set, update idct to point to next set */

 mcfY0=dp->mcFn[predModeY+((c&1)<<2)]; idct0=idct; idct+=((c&1)<<6); c>>=1;

 mcfY1=dp->mcFn[predModeY+((c&1)<<2)]; idct1=idct; idct+=((c&1)<<6); c>>=1;

 mcfY2=dp->mcFn[predModeY+((c&1)<<2)]; idct2=idct; idct+=((c&1)<<6); c>>=1;

 mcfY3=dp->mcFn[predModeY+((c&1)<<2)]; idct3=idct; idct+=((c&1)<<6); c>>=1;

 mcfCb=dp->mcFn[predModeC+((c&1)<<2)]; idct4=idct; idct+=((c&1)<<6); c>>=1;

 mcfCr=dp->mcFn[predModeC+((c&1)<<2)]; idct5=idct; idct+=((c&1)<<6); c>>=1;

 /* apply MC */

 mcfY0(s0, d0, offsetY, 20, 16, rc, idct0);

 mcfY1(s1, d1, offsetY, 20, 16, rc, idct1);

 mcfY2(s2, d2, offsetY, 20, 16, rc, idct2);

 mcfY3(s3, d3, offsetY, 20, 16, rc, idct3);

 mcfCb(s4, d4, offsetC, 12, 8, rc, idct4);

 mcfCr(s5, d5, offsetC, 12, 8, rc, idct5);

}

For each block, the required motion compensation kernel is selected based on its prediction
mode and the CBP bit. The function array dp->mcFn is set up so that the first four entries point
to kernels that do not require IDCT coefficients, and the last four point to the ones that do.

If CBP for the current block is not set, then the prediction mode determines which one of the first
four kernels is required for this block; otherwise, the prediction mode determines which one of
the last four kernels is required for this block.

Once the appropriate kernels are selected, the code simply calls these kernels. Since all the
kernels have the same API, and any excess arguments are ignored accordingly, they can be
called in an identical manner.

Consider the following example.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 31

Cb

Cr

Y0 Y1

Y2 Y3

20

17

9

9

12

Y0 Y1

Y2 Y3

Cb

Cr

16

16

8

8

refMB recMB

8

Figure 18. Example of Motion Compensation

The source address of Y0 is equal to refMB ; Y1 is eight pixels to the right; Y2 is eight lines of 20
pixels after Y0; Y3 is eight pixels after Y2; Cb is 17 lines of 20 pixels after Y0; Cr is nine lines of
12 pixels after Cb. The offset (equal to two in this example) is passed to and dealt with by each
kernel.

Similarly, the destination address of Y0 is equal to recMB (recMB[0] or recMB[1]); Y1 is eight
pixels to the right; Y2 is eight lines of 16 pixels after Y0; Y3 is eight pixels after Y2; Cb is 16 lines
of 16 pixels after Y0; Cr is eight lines of eight pixels after Cb.

2.8 Data Flow

The following sections describe how the decoder moves and processes data.

2.8.1 Frame Buffer

The following figure shows how a frame buffer looks for CIF and QCIF, respectively. The pixels
are stored contiguously, so for QCIF, they occupy the first 38,016 bytes of the buffer.

SPRA703

32 H.263 Decoder: TMS320C6000 Implementation

Y
(352x288)

Cb
(176x144)

Cr
(176x144)

Y
(176x144)

Cb (88x72)
Cr (88x72)

Figure 19. Frame Buffer for CIF and QCIF

2.8.2 Reading Reference MB (rdRefMB)

The rdRefMB function transfers the required data from the reference frame buffer to refMB .

SPRA703

H.263 Decoder: TMS320C6000 Implementation 33

refCr

refCb

refY

refMB

Y
(20x17)

Cb
(12x9)

Cr
(12x9)

Figure 20. Reading Reference MB

2.8.3 IDCT (idctBuff)

The figures below show how idctBuff looks when IDCT coefficients for all six blocks in a MB
are coded, and when coefficients for only three blocks are coded, for both TMS320C62x and
TMS320C64x.

SPRA703

34 H.263 Decoder: TMS320C6000 Implementation

CBP = 0x3F (111111) CBP = 0x29 (101001)

Y0

Y1

Y2

Y3

Cb

Cr

Scratch

Y0

Y3

Cr

Scratch 896 bytes

Figure 21. Examples of Using idctBuff (TMS320C62x)

CBP = 0x3F (111111) CBP = 0x29 (101001)

Y0

Y1

Y2

Y3

Cb

Cr

Y0

Y3

Cr

768 bytes

Figure 22. Examples of Using idctBuff (TMS320C64x)

2.8.4 Packing INTRA MB (packmb)

The decoder uses a highly optimised IDCT kernel, which produces signed 16-bit results. For an
intra MB, however, it produces signed 8-bit results (with an offset of 128) as signed 16-bit
values, which must be packed into unsigned 8-bit values. The packmb function takes signed
16-bit numbers, extracts the lower 8-bits, and applies XOR with 0x80 to produce the correct
results.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 35

The first figure shows how each block is processed. The second figure shows how an entire MB
is processed. The outer-most loop goes around three times, processing two blocks each time.

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

16-bit

8-bit
XOR 0x80

Figure 23. Processing One 8x8 Block (TMS320C62x)

idctBuff

recMB[0]
recMB[1]

Y0

Y1

Y2

Y3

Cb

Cr

Y0 Y1

Y2 Y3

Cb

Cr

Figure 24. Processing One MB (TMS320C62x)

For optimal performance, different IDCT specifically designed for TMS320C64x is used. Unlike
the TMS320C62x version, this kernel outputs results for INTRA MB in the correct manner, that
is, simple saturation and packing is all that is required.

The figure below shows how each block is processed.

SPRA703

36 H.263 Decoder: TMS320C6000 Implementation

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

16-bit

8-bit
SPACKU4

Figure 25. Processing One 8x8 Block (TMS320C64x)

Due to the larger register files, the TMS320C64x version of packmb is able to process all six
MBs in parallel.

2.8.5 Motion Compensation (h263DecMC)

The figures below show two examples of how motion compensation is applied to a MB.

refMB

recMB[0]
recMB[1]

Y0

Y1

Y2

Y0 Y1

Y2 Y3

Cb

Cr

Y0 Y1

Y2 Y3

Cb

Cr

Y3

Cb

Cr

idctBuff

Figure 26. Motion Compensation (CBP=0x3F)

SPRA703

H.263 Decoder: TMS320C6000 Implementation 37

refMB

recMB[0]
recMB[1]

Y0

Y3

Cr

Y0 Y1

Y2 Y3

Cb

Cr

Y0 Y1

Y2 Y3

Cb

Cr

idctBuff

Figure 27. Motion Compensation (CBP=0x29)

2.8.6 Writing Reconstructed MB (wrRecMB)

The wrRecMB function writes the reconstructed MB to the output frame buffer.

SPRA703

38 H.263 Decoder: TMS320C6000 Implementation

outCr

outCb

outY

recMB[0]
recMB[1]

Y
(16x16)

Cb
(8x8)

Cr
(8x8)

Figure 28. Writing Reconstructed MB

2.8.7 Copying Non-coded MB (cpMB)

When a MB is not coded, it is necessary to copy it from the reference frame buffer to the output
frame buffer, so that the decoder may use it to reconstruct the next frame.

Due to the nature of the TMS320C6201 DMA, the MB is moved from external reference frame
buffer to internal memory (recMB), and then to external output frame buffer.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 39

refCr

refCb

refY

recMB[0]
recMB[1]

Y
(16x16)

Cb
(8x8)

Cr
(8x8)

outCr

outCb

outY

Figure 29. Copying MB from Reference to Output (DMA)

The EDMA (TMS320C6211 and TMS320C64x) processes external-to-external data transfers
efficiently, so the code simply issues three external-to-external transfer requests, as shown in
the figure below.

SPRA703

40 H.263 Decoder: TMS320C6000 Implementation

refCr

refCb

refY

outCr

outCb

outY

Figure 30. Copying MB from Reference to Output (EDMA)

3 Building H.263 Decoder

Sample makefiles h263d6201.mak and h263d6211.mak (for TMS320C6201 and
TMS320C6211/TMS320C6711, respectively) are provided in the mak directory for reference.
Note that this makefile is not complete and may not be used to build the complete decoder
COFF file. The remainder of this section describes how one can configure the project makefile
to one’s own system.

3.1 Target Device (REQUIRED)

The user must first select the target device.

CHIP_6201 : Target device is TMS320C6201/C6202/C6203/C6204/C6205.

CHIP_6211 : Target device is TMS320C6211/C6711.

CHIP_6400 : Target device is TMS320C64x.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 41

3.2 Data Transfer Methods (Optional)

When no flag is specified, CSL’s DAT module is used for data transfers; this is the default
setting. The user may select alternative data transfer methods, depending the way the rest of
the system is configured. The available options are described below.

CSLDMA: Use CSL modules DMA or EDMA (QDMA) for data transfers; the former is selected if
CHIP_6201 is specified, or the latter if CHIP_6211 or CHIP_6400 is specified.

DIRDMA: Bypass CSL. With CHIP_6201 flag, the decoder programmes the DMA registers
directly to issue data transfer requests. The decoder currently uses DMA channel 1 for luma,
and 0 for chroma (both Cb and Cr). The user may change these by setting the defined variables
DMA_CHANNEL_Y and DMA_CHANNEL_C (for luma and chroma, respectively) in h263decode.h
as needed. With CHIP_6211 and CHIP_6400 flags, the decoder writes to the appropriate
memory mapped registers to issue QDMA requests. Note that using this option means that the
decoder is no longer eXpressDSP compliant.

The table below summarises which method is used to issue data transfer requests, depending
on the flags specified.

Table 15. Data Transfer Methods

CHIP_6201 CHIP_6211 CHIP_6400

None CSL’s DAT module CSL’s DAT module CSL’s DAT module

CSLDMA CSL’s DMA module CSL’s EDMA module CSL’s EDMA module

DIRDMA Directly program DMA Directly program QDMA Directly program QDMA

See Appendix B, Data Transfer Methods for more information.

3.3 Other Flags (Optional)

NOPARENT: Do not create parent instance to store decoder tables – allow each child instance to
keep its own copy of the tables. Note that only h263dec_ti.c has to be compiled with this
flag.

RTP: Allocate structure for RTP parameters. See Appendix D, Real-time Transport Protocol for
more information.

DSTATS: Profile the overall decoder performance. See Appendix C, Profiling H.263 Decoder for
more information.

DSTATS_: Profile individual decoder functions. See Appendix C, Profiling H.263 Decoder for
more information.

DEBUG: When this flag is used, the decoder spins upon detecting an error in the bitstream.
Without this flag, the decoder simply exits all the way to the calling application with an
appropriate error code, indicating the type of the error detected.

For files h263dec_ti.c and h263pdec_ti.c , an additional “-ml0 ” flag is required, since it
accesses labels that are defined to be of type far .

SPRA703

42 H.263 Decoder: TMS320C6000 Implementation

The decoder is also provided with a set of sample linker command files, which include the
MEMORY and SECTIONS directives to help with setting up the user’s own linker command file.
The files are named so as to identify the target device. For example, a sample linker command
file for TMS320C6211 is named h263d6211.cmd .

3.4 Building

To build the H.263 decoder, one requires a properly installed Code Composer Studio v1.20
(CCS) or above.

• Open CCS, and open the appropriate project file, or open an existing project and add the
necessary files in the src and src6200 or src6400 directories inside both the decoder
and share directories.

• Include the decoder’s inc directory as part of the “Include Search Path”, so that the
application knows about the decoder’s IALG APIs.

• Select a target device and add the symbol to the “Define Symbols”.

• Select a preferred data transfer method and add the symbol to “Define Symbols”, if
necessary.

• Add the “-ml0 ” flag to h263dec_ti.c and h263pdec_ti.c , if using a makefile other than
the sample provided with the release.

• Add the linker command file for the target device, or edit an existing linker command file by
adding the required parts from the sample linker command file.

• Make other changes to the options, including the final COFF file name, map file name, any
external libraries such as an RTS library, etc., and build.

• The default location for the COFF file and the map file is the bin directory.

Refer to TMS320C6000 Optimizing C Compiler User’s Guide for more information regarding the
different compiler and linker options.

4 Assumptions and Requirements

The following lists assumptions and requirements for the decoder.

• Baseline H.263 decoder implemented.

• No big endian support for assembly (ASM) and serial assembly (SA) codes. Refer to the
individual source file for more information.

• The decoder requires the input bitstream to contain a full frame per call.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 43

• The input buffer that contains the bitstream must be aligned on a 32-bit boundary, but the
bitstream itself does not have to satisfy the same criteria.

• The first word in the bitstream buffer must contain at least the first byte of PSC, as shown
below. The decoder attempts to find a PSC inside the first word, before processing the
current bitstream; if it does not find one, it will return with H263D_ERR_PSC.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
31 10 9 0 03123 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
31 7 2 0 03123 15 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 7 0 03123 15

1 0 0 0 0 0
26 25

0 0 0 0 0 0 0 0
31 7 0 03123 15 23 18

0 0 0 0 0 0 0 0 1 0 0 0 0 0
17

• The input bitstream must match the device’s endian mode within a word, as shown below.
If the byte ordering is incorrect, the data must be swapped prior to calling the decoder.

0 1 2 3
3 2 1 0

Big endian
Little endian

80 020000

Figure 31. Loading PSC in both endian modes

Other assumptions and/or requirements may apply. Refer to individual source file for more
information.

References

1. ITU-T H.263 Video Coding for Low Bit Rate Communication, January 1998.

2. eXpressDSP Algorithm Standard Rules and Guidelines (SPRU352), September 1999

3. Code Composer Studio User’s Guide (SPRU328), 1999

4. TMS320C62x/C67x CPU and Instruction Set Reference Guide (SPRU189), 1998

5. TMS320C6000 Peripherals Reference Guide (SPRU190), 1999

6. TMS320C6000 Chip Support Library API Reference Guide, 2000

7. TMS320C6000 Optimizing C Compiler User’s Guide (SPRU187), 1999

SPRA703

44 H.263 Decoder: TMS320C6000 Implementation

Appendix A. Performance

The tables below show the performances of all the kernels, followed by the overall decoder
performance on TMS320C6201 and TMS320C6211. Note that the performance numbers for the
SA codes may change depending on which release of the compiler (and which options) is used
to build them. The numbers were obtained by compiling the codes with release 4.00 of the code
generation tools, using the following options: “-mtx –mh256 -o3 ”.

Table 16. Kernels Performance (TMS320C62x)

Function SA/ASM No. of Cycles Per
deccbp SA 69 MB

decmvd SA 68 MB

dectcoef ASM 12 Symbol

getbits SA 14 Call

idctI ASM 168 Block

idctP ASM 168 Block

mcA ASM 28 Block

mcAi ASM 109 Block

mcB ASM 88 Block

mcBi ASM 165 Block

mcC ASM 90 Block

mcCi ASM 171 Block

mcD ASM 133 Block

mcDi ASM 183 Block

packmb SA 192 MB

prezero SA 8 Block

Table 17. H.263 Decoder Performance

% % % Cycles/ Frame C ycles/ Frame
INTRA INTER Coded Frame Rate Frame Rate

News QCIF 1.41 39.04 59.55 246,388 812 177,532 845
News QCIF 0.92 36.75 62.33 236,648 845 168,648 889
Foreman QCIF 4.02 88.07 7.91 346,264 578 290,084 517
Coast guard QCIF 1.09 92.47 6.43 341,892 585 286,860 523
Coast guard QCIF 0.36 82.81 16.83 305,952 654 252,536 594
Foreman CIF 6.74 82.08 11.18 1,324,240 151 1,089,296 138
Silent CIF 0.58 31.27 68.15 890,972 224 616,624 243
Silent CIF 1.56 35.24 63.20 943,480 212 668,564 224

Bitstream Format

200 150Frequenc y (MHz)
TMS320C6201 TMS320C6211

SPRA703

H.263 Decoder: TMS320C6000 Implementation 45

For every test bitstream, the TMS320C6211 showed superior performance over the
TMS320C6201. This is due largely to the EDMA and its ability to execute external-to-external
transfers without having to break it up into two separate requests (which forces the CPU to wait
for the first request to complete). Note that the average number of cycles used by the CPU to
decode one frame (“Cycles/Frame”) includes the core decoder codes, control codes, as well as
any overhead associated with calling and exiting the entire decoder instance. For the
TMS320C6211, the numbers also include stalls incurred by any cache misses (L1-I, L1-D, and
L2). Note also that for bitstreams with high percentage of MBs not coded (News and Silent), the
TMS320C6211 is able to provide a higher overall frame rate despite a lower clock frequency.

No specific numbers are available for TMS320C64x at the time of publication.

SPRA703

46 H.263 Decoder: TMS320C6000 Implementation

Appendix B. Data Transfer Methods

The decoder can be configured to use one of three data transfer methods, depending on which
flag is used at build time. Within each type, the code required to setup and issue transfer
requests is almost identical for the two devices. In cpMB, however, the TMS320C6201 version
first moves the whole MB to recMB , waits for all three requests (one for luma and two for
chroma) to complete, and then writes it out to the output frame buffer (total of six requests). The
TMS320C6211 and TMS320C64x versions simply issue three requests per MB.

Using CSL’s DAT module

This option requires virtually no user intervention, and is the default method. Channel selection,
priority, queue management, etc. are handled by CSL.

Using CSL’s DMA and EDMA modules

Using the DMA (for TMS320C6201) and EDMA (for TMS320C6211/TMS320C6711 and
TMS320C64x) modules gives the user more control over how each transfer request is issued,
while remaining eXpressDSP compliant.

For TMS320C6201, the decoder uses DMA channel 0 for chroma and DMA channel 1 for luma.
DMA_CHANNEL_Y and DMA_CHANNEL_C (defined in h263.h) can be modified to use different
DMA channels, if necessary.

For TMS320C6211/TMS320C6711 and TMS320C64x, QDMA is used to request transfers by
passing a specific handle (EDMA_HQDMA) to the EDMA_ConfigB function. All the requests made
by rdRefMB and wrRecMB are issued as high priority requests, whereas those made by cpMB
are issued as low priority requests, since the completion of these requests do not affect the
decoding process until it is ready to exit.

Directly Programming DMA/EDMA

This option provides maximum overall performance, but the decoder ceases to be eXpressDSP
compliant, and is best suited to a standalone system.

For TMS320C6201, the behaviour is similar to using CSL’s DMA module.

For TMS320C6211/TMS320C6711 and TMS320C64x, QDMA is used by directly writing to its
memory mapped registers. Refer to TMS320C6000 Peripherals Reference Guide for more
information.

Refer to TMS320C6000 Chip Support Library API Reference Guide for more information
regarding CSL’s DAT, DMA, and EDMA modules.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 47

Appendix C. Profiling H.263 Decoder

The H.263 decoder is equipped with a simple profiling capability that uses the device’s timer via
the CSL TIMER module. To enable this function, specify DSTATS or DSTATS_ flag at build time.
Shown below is the structure that the decoder uses to store profiling information (defined in
h263decode.h).

32 bits

frame

nBits

avgBPF

decoder

dma

avgFPS

maxCPF

minCPF

avgCPF

cpMB

ldMB

wrMB

avgDMA

intra

inter

notCoded

deccbp

decmvd

dectcoef

getbits

idct

mc

packmb

prezero

decFrame

hTimer

Figure 32. Decoder Statistics – H263DecStats

The shaded fields are used only when DSTATS_ flag is specified at build time. When this flag is
used, other information (decoder , maxCPF, minCPF, avgCPF, and avgFPS) will not be
collected.

Table 18. Decoder Statistics – H263DecStats

Name Description
frame Number of frames decoded. (Valid with DSTATS and DSTATS_)

nBits Total number of bits processed

avgBPF Average number of bits per frame

decoder Total number of TIMER cycles used by the decoder

dma Total number of TIMER cycles used to setup and issue data transfer requests; this is equal to
the sum of cpMB, rdMB, and wrMB

avgFPS Average frames per second (equals to CPU clock frequency divided by avgCPF)

maxCPF Maximum number of cycles per frame

SPRA703

48 H.263 Decoder: TMS320C6000 Implementation

Name Description
minCPF Minimum number of cycles per frame

avgCPF Average number of cycles per frame

rdMB Total number of TIMER cycles used by rdRefMB

cpMB Total number of TIMERcycles used by cpMB

wrMB Total number of TIMER cycles used by wrRecMB

avgDMA Average number of cycles per frame used by DMA/EDMA

intra Total number of INTRA MB

inter Total number of INTER MB

notCoded Total number of MB that was not coded

deccbp Total number of TIMER cycles used by deccbp

decmvd Total number of TIMER cycles used by decmvd

dectcoef Total number of TIMER cycles used by dectcoef

getbits Total number of TIMER cycles used by getbits

idct Total number of TIMER cycles used by idctI and idctP , or idctIP

mc Total number of TIMER cycles used by h263DecMC, including all the kernels in mc_asm.asm

packmb Total number of TIMER cycles used by packmb

prezero Total number of TIMER cycles used by prezero

decFrame Number of cycles used by decoder per frame; this is set to 0 before every call

hTimer Handle to the allocated timer through the CSL’s TIMER module

The term “TIMER cycles” refers to the value stored in the device’s timer register, as opposed to
the actual CPU cycles. When an internal timer source is selected, every timer tick is equal to
four CPU cycles. This enables the use of the timer for four times as many cycles, before an
overflow can occur. Refer to TMS320C6000 Peripherals Reference Guide and TMS320C6000
CSL Support Library API Reference Guide for more information on how to configure and use the
timer.

Note that although it is possible to specify both DSTATS and DSTATS_, and while the numbers
for individual kernels will be accurate, the numbers specific to DSTATS will be much larger than
they would be if DSTATS was specified alone. This is due to the fact that by specifying
DSTATS_, the overall decoder performance number includes the time taken to record the kernel
performance figures as well. When used separately, however, the overhead associated with the
recording is minimal.

Shown below is an example pseudo code on how to use this feature.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 49

#include <timer.h>
#include <h263decode.h>

far int cpuClock; /* system clock frequency (MHz) */

/* function prototypes for decoder statistics */
#if ((DSTATS) || (DSTATS_))
extern H263DecStats dstats; /* defined in h263decode.c */
void decStatsInit(TIMER_HANDLE hTimer);
void decStatsUpdate(H263DecParam *dp, uint *in);
#endif

void main()
{
 TIMER_HANDLE hTimer1; /* timer handle */
 uint timerCtl; /* timer control word */
 H263DecParam *dp; /* decoder parameters */
 uint *stream; /* pointer to bitstream buffer */

 hTimer1 = TIMER_Open(TIMER_DEV1,NULL);
 timerCtl = TIMER_MK_CTL(TIMER_CTL_FUNC_GPIO,
 TIMER_CTL_INVOUT_NO,
 TIMER_CTL_DATOUT_0,
 TIMER_CTL_PWID_ONE,
 TIMER_CTL_GO_NO,
 TIMER_CTL_HLD_NO,
 TIMER_CTL_CP_PULSE,
 TIMER_CTL_CLKSRC_CPUOVR4,
 TIMER_CTL_INVINP_NO);

/* configure timer */
 TIMER_ConfigB(hTimer1, timerCtl, 0xFFFFFFFF, 0);

 /* start timer */
 TIMER_Start(hTimer1);

 /* create decoder instance */

 dp = (H263DecParam *)((int)decHandle0+sizeof(IALG_Obj));

 while (1)
 {
 /* execute decoder */

#if ((DSTATS) || (DSTATS_))
 /* update decoder statistics */
 decStatsUpdate(dp, stream);
#endif
 }
}

SPRA703

50 H.263 Decoder: TMS320C6000 Implementation

Appendix D. Real-time Transport Protocol (RTP)

The decoder has a set of hooks for RTP support, which are partially in place, including a
structure H263RTPParam (defined in h263.h) that is used to store RTP specific information.

rtpSRC

rtpA

rtpTR

rtpEBIT

rtpS

rtpTRB

rtpMBA

rtpVMV2 rtpHMV2

rtpSBIT

rtpU

rtpDBQ

rtpGOBN

rtpVMV1

rtpMode

rtpI

rtpR

rtpQUANT

rtpHMV1

rtpRR

32 bits

Figure 33. RTP Parameters – H263RTPParam (little endian)

Table 19. RTP Parameters – H263RTPParam

Name Description
rtpMode RTP mode (A, B, or C)

rtpSBIT Starting bit position

rtpEBIT Ending bit position

rtpSRC Source format

rtpI Picture coding type

rtpU Unrestricted motion vector option

rtpS Syntax-based arithmetic coding opiton

rtpA Advanced prediction option

rtpR Reserved (must be set to zero)

rtpDBQ Differential quantisation parameter

rtpTRB Temporal reference for the B-frame

rtpTR Temporal reference for the P-frame

rtpQUANT Quantisation value for the first MB in the packet

rtpGOBN GOB number in effect at the start of the packet

rtpMBA MB address within the GOB of the first MB in the packet

rtpHMV1

rtpVMV1

Horizontal and vertical motion vector predictors for the first MB in
the packet

rtpHMV2

rtpVMV2

Horizontal and vertical motion vector predictors for block number
3 in the first MB in the packet

rtpRR Reserved (must be set to zero)

Refer to the RTP specification for more information on the different fields.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 51

Appendix E. Testing H.263 Decoder

The decoder has been tested extensively on both TMS320C6201 EVM and TMS320C6211
DSK. The following sections describe how the testing was carried out on both platforms.

The figure below shows the setup used to test the decoder on TMS320C6201 EVM.

PCIDisplay Window (PC)

Host
Application

HD

Display
Buffer

TMS320C6201 EVM

External
Memory

C6201Bit
Stream

Decoded
Frame

Code Composer
Studio Decoder

(COFF)

JTAG

Figure 34. Test Setup on TMS320C6201 EVM

• A Windows host application running on PC sends an entire H.263 bitstream to the EVM
through a PCI bus.

• The DSP parses the bitstream, decodes each frame and sends the decoded frames back to
the host application through the PCI bus.

• The host application then converts the YUV data to RGB and displays the decoded video in
a window on the monitor.

The figure below shows the setup used to test the decoder on TMS320C6211 DSK.

SPRA703

52 H.263 Decoder: TMS320C6000 Implementation

Parallel
port

Image Window (CCS)

Code Composer
Studio

HD

Image
Tool

TMS320C6211 DSK

External
Memory

C6211Decoder
w/bitstream

Decoded
Frame

Figure 35. Test Setup on TMS320C6211 DSK

Since TMS320C6211 DSK is not equipped with a PCI interface, the testing is done in a different
way. A bitstream is first converted to an ASM file, assembled and linked with the rest of the
code. The whole COFF file is then loaded onto the DSK through a parallel port. The rest of the
processing done on the DSP is identical, except that the decoded sequence cannot be viewed
real-time. The decoded frames are checked using the image tool inside the Code Composer
Studio. Refer to Code Composer Studio User’s Guide for more information.

SPRA703

H.263 Decoder: TMS320C6000 Implementation 53

Appendix F. Decoding Custom Resolutions

In the default case, the decoder extracts the source format from the bitstream and sets the width
and height of the image, as well as the number of GOBs and MBs (nGOB and nMB, respectively)
that are present. For each frame, h263Decode calls h263DecGOB nGOB times; h263DecGOB,
in turn, calls h263DecMB nMB times. This enables customising the code to decode non-
standard resolutions with great ease.

For example, if the decoder is only going to decode 320x240 frames, one simply needs to make
the following changes to the portion of the code in h263Decode (defined in h263decode.c).
The decoder will take care of the rest.

Before

if (decParam->srcFormat == H263_SRCFMT_SQCIF)

{

 nGOB = 6;

 nMB = 8;

}

else

{

 nGOB = 9 << (decParam->srcFormat-2);

 nMB = 11 << (decParam->srcFormat-2);

}

After

nGOB = 15; /* 320/16 = 15 GOBs/frame */

nMB = 20; /* 240/16 = 20 MBs/GOB */

Note that the width and height of a frame must be multiples of 16 pixels (the size of one MB) in
order for the encoder to work properly, and it is the user’s responsibility to ensure that they are.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  2000, Texas Instruments Incorporated

