
Application Report
SPRA707 - October 2000

1

TMS320C6000 Integer Division
Yao-Ting Cheng C6000 Applications

ABSTRACT

This application report gives an explanation on the implementation of division in the
TMS320C6x DSP. The scheme is slightly different from the TMS320C5x and
TMS320C54x DSPs. That is because C6x provides some unique instructions that the
user can take advantage of to implement division more efficiently. This application report also
lists the fully optimized assembly subroutine that can be found in TI’s public web site.

Contents

1 Design Problem 1.

2 Solution 1.

List of Examples

Example 1. Unsigned Division Subroutine 6.
Example 2. Signed Division Subroutine 8.

1 Design Problem

How to implement division in C6x?

2 Solution

This application report gives an explanation on the implementation of division in C6x. The scheme is
slightly different from the C5x and C54x . That is because C6x provides some unique instructions
that the user can take advantage of to implement division more efficiently. This application report
also lists the fully optimized assembly subroutine that can be found in TI’s public web site.

Since division is a rare function in DSP, the C6x does not provide a single cycle divide
instruction. In fact, the hardware to implement division is expensive. Similar to the other Texas
Instruments DSP family, C6x does have a single cycle 1-bit divide instruction: conditional
subtraction or SUBC. Let’s review how it works in C5x/C54x first. The syntax is “SUBC src”
and the action taken by SUBC in C5x/C54x is

IF ((ACC–(src<<15))>= 0)
 ((ACC–(src<<15)))<<1+1 → ACC
ELSE ACC<<1 → ACC

The 16-bit numerator is stored in the accumulator low byte (ACCL) and the accumulator high
byte (ACCH) is zero-filled. The denominator (src) is in data memory. The SUBC instruction is
executed 16 times for 16-bit division. After completion of the last SUBC instruction, the quotient
of the division is in the ACCL and the remainder is in the ACCH. The SUBC instruction assumes
that the denominator and the numerator are both positive. The denominator is not sign
extended. The numerator, in the ACCL, must initially be positive and must remain positive
following the ACC shift, which occur in the first portion of the SUBC execution.

SPRA707

2 TMS320C6000 Integer Division

TMS320C6x, TMS320C5x, TMS320C54x, C6x, C5x, and C54x are trademarks of Texas Instruments.

As an example, assume a 4-bits machine is used. The numerator is decimal 11 (1011b), which is
in the 8-bit ACC. The denominator is 3 (0011b) in the memory. Apparently, four SUBC need to
be calculated since it shift denominator left 3 bits at the very beginning.

1. 1st SUBC:

 0
0001 1000 0000 1011

0000 0000
0000 1011

src<<3 0001 1000

Since ACC < (src<<3)

So ACC<<1 → ACC 0001 0110

2. 2nd SUBC:

 00
0001 1000 000 1 011 0

0000 0000
0001 011 0

src<<3 0001 1000

Since ACC < (src<<3)

So ACC<<1 → ACC 00 10 11 00

3. 3rd SUBC:

 001
0001 1000 00 10 11 00

0001 1000
0001 01 00

src<<3 0001 1000

Since ACC > (src<<3)

So (ACC–(src1<<3))<<1+1 → ACC 0 010 1 001

4. 4th SUBC:

 0011
0001 1000 0 010 1 001

0001 1000
0001 0 001

src<<3 0001 1000

Since ACC > (src<<3)

So (ACC–(src1<<3))<<1+1 → ACC 0010 0011

For each left shift by SUBC, the quotient is recorded in the LSB of ACC. The remainder is
calculated at the last subtraction. The number illustrated in red color above shows the numerator
is conditional subtracted by the pre-shifted denominator and then the result is shifted left.
Therefore the quotient is 3 (0011b) and the remainder is 2 (0010b) after the final shift is
performed.

SPRA707

3 TMS320C6000 Integer Division

This is how to do it by hand:

 011 ← Quotient
11 1011

00 ← 1 st SUBC
101
 11 ← 2 nd SUBC
 101
 11 ← 3 rd SUBC
 10

Denominator 11 is not to 10 for the first SUBC, so a conditional subtraction is performed. That is
to shift denominator right one bit and do the SUBC again. This time 11 is to 101 so that a
subtraction is taken and the result becomes the new nominator. Then shift the denominator right
one bit again to do the third SUBC to get the final result. Can you tell the difference between the
two divisions? In the case of SUBC in C5x/C54x, you need to execute SUBC exactly 4 times. In
the case of hand division, you need only SUBC 3 times. You also need to shift denominator right
totally two times during the process to complete the division. But, why? That is because
denominator is shifted left two bits instead of three bits in C5x/C54x and therefore aligned to
numerator. SUB needs to be done “shift” plus one times. How does SUBC work in C6x? Similar
to C5x/C54x, instead of right shift denominator for subtraction during the division, numerator is
shifted left. The syntax of SUBC in C6x is “SUBC (.unit) src1, src2, dst” and its action is

IF (cond) {
 IF (src1 >= src2)
 ((src1–src2)<<1)+1 → dst
 ELSE src1<<1 → dst
}
ELSE nop

Look at the previous example again to see how SUBC works in C6x. Assume numerator is in
src1 and denominator is aligned to numerator and it is put in src2. Also let dst be src1.

1. 1st SUBC

 0
1100 1011

0000
1011

Since src1<src2

So src1<<1 → dst

src1 = (1011)<<1 = 10110

SPRA707

4 TMS320C6000 Integer Division

2. 2nd SUBC

 01
1100 10110

 1100
 1010

Since src1 >= src2

So (src1–src2)<<1)+1 → dst

src1 = (1010)<<1+1 = 10101

3. 3rd SUBC

 011
1100 10101

 1100
 1001

Since src1 >= src2

So (src1–src2)<<1)+1 → dst

src1 = (1001)<<1+1 = 10011

Notice that the quotient is preserved in the last three bits of dst. The remainder is calculated at
the last subtraction in red number, which is the same as hand division. The above simplified
derivation shows SUBC in C6x works more efficiently based the assumption of denominator
aligned. Then, how many bits of left shift is needed in order to align denominator? Actually, C6x
provides a very useful instruction “LMBD” to test it. Simply use C intrinsic _LMBD as

Shift = _LMBD(1,denominator) – _LMBD(1,numerator) .

The syntax of assembly LMBD is “LMBD (.unit) src1,src2,dst” . The LSB of the src1
operand determines whether to search for a leftmost 1 or 0 in src2. The number of bits to the left
of the first 1 or 0 when searching for a 1 or 0, respectively, is placed in dst. Finally, with testing
some special cases such as divide by zero, here is the unsigned division algorithm in C.

unsigned int udiv(unsigned int num, unsigned int den)
{
 int i, shift;

 if (den > num) return (0);
 if (num == 0) return (0);
 if (den == 0) return (–1);

 shift = _lmbd(1, den) – _lmbd(1, num);
 den <<= shift; /* align denominator */

 for (i=0; i<=shift; i++)
 num = _subc(num, den);

 return (num << (32–(shift+1))) >> (32–(shift+1));
 /* extract quotient */
}

SPRA707

5 TMS320C6000 Integer Division

If a remainder is required, simply shift “num” right (shift+1) bits to get the result. Now, how to
implement a signed division. Actually, there are lots of ways to do it. Compare the signs of the
input operands. If they are alike, plan a positive quotient, otherwise plan to negate the quotient.
We can strip the signs of the numerator and denominator just by shifting their MSB bit right to
the position of LSB. Then XOR them to get the sign for quotient. Perform the unsigned division
and attach the proper sign based on the comparison of the inputs to the quotient. A signed
division C subroutine for C6x is listed as below.

int sdiv(int num, int den)
{
 int i, shift, sign;
 sign = (num>>31) ^ (den>>31); /* test the sign of inputs */

 num = _abs(num);
 den = _abs(den);

 if (den > num) return (0);
 if (num == 0) return (0);
 if (den == 0) return (–1);

 shift = _lmbd(1, den) – _lmbd(1, num);
 den <<= shift; /* align denominator */

 for (i=0; i<=shift; i++)
 num = _subc(num, den);

 num = _extu(num, (32–(shift+1)), ((32–(shift+1)));
 /* unsigned extraction */
 if (sign) return (–num); /* attach sign back to quotient */
 else return (num);
}

Finally, the fully hand-optimized codes for both signed and unsigned divisions are listed below.
They also can be found in the web site from Texas Instruments. For a 32-bit unsigned division,
the cycle time C6x takes is around 18~42 depending on how many bits the denominator needs
to be aligned. For a 32-bit signed division, C6x takes 16~41 cycles that is less than unsigned
division. It is because the sign bit is exclusive in the process of the bit alignment for sign division.
Actually, the division function _divi or _divu and remainder function _remi are automatically
called from C6x C library when the user uses the operator “/” and “%” respectively. The cycles
will be a little bit more than that of the following hand-optimized subroutines. Also notice that the
division and remainder are two separate operations for C6x C compiler. The subroutine listed
below returns the quotient and remainder in a structure and can be called by a C main program.

SPRA707

6 TMS320C6000 Integer Division

Example 1. Unsigned Division Subroutine

*==
*
* TEXAS INSTRUMENTS, INC.
* DIVMODU32 (32 bits unsigned division and modulo)
* Revision Date: 07/15/97
*
* USAGE
* This routine is C Callable and can be called as:
*
* struct divmodu divmodu32(unsigned int a, unsigned int b);
*
* a ––– unsigned numerator
* b ––– unsigned denominator
*
* If routine is not to be used as a C callable function then
* you need to initialize values for all of the values passed
* as these are assumed to be in registers as defined by the
* calling convention of the compiler, (refer to the C compiler
* reference guide).
*
* C CODE
* This is the C equivalent of the assembly code. Note that
* the assembly code is hand optimized and restrictions may
* apply.
*
*
* struct divmodu {
* unsigned int div;
* unsigned int mod;
* };
*
*
* struct divmodu divmodu32(unsigned int a, unsigned int b)
* {
* struct divmodu tmp;
*
* tmp.div = a / b;
* tmp.mod = a % b;
*
* return tmp;
* }
*
* DESCRIPTION
* This routine divides two unsigned 32 bit values and returns
* their quotient and remainder. The inputs are unsigned 32–bit
* numbers, and the result is a unsigned 32–bit number.
*
* TECHNIQUE
* The loop is executed at least 6 times. In the loop, the
* conditional subtract divide step (SUBC) is block from doing
* extraneous executions. In short, the SUBC instruction
* is conditional and will not necessarily be executed.
*
* MEMORY NOTE
* No memory bank hits under any conditions.
*
* CYCLES
* Minimum execution time –> 18 cycles
* Maximum execution time –> 42 cycles
*
*==

SPRA707

7 TMS320C6000 Integer Division

 .global _divmodu32
 .text

_divmodu32:

*** BEGIN Benchmark Timing ***
B_START:
 LMBD .L2X 1, A4, B1 ; mag_num = lmbd(1, num)
|| LMBD .L1X 1, B4, A1 ; mag_den = lmbd(1, den)
|| MVK .S1 32, A0 ; const 32
|| ZERO .D1 A8 ; first_div = 1
 CMPGTU .L1X B4, A4, A1 ; zero = (den > num)
|| SUB .L2X A1, B1, B0 ; i = mag_den – mag_num
|| MV .D1 A4, A5 ; save num
||[!B1] MVK .S1 1, A8 ; if (num32) first_div = 1
 SHL .S2 B4, B0, B4 ; den <<= i
||[B1] ADD .D2 B0, 1, B0 ; if (!num32) i++
|| MV B0, A6
 CMPGTU .L2X B4, A4, B2 ; gt = den > num
|| SUB .L1X A0, B0, A0 ; qs = 32 – i
|| SHL .S1 A8, A6, A8 ; first_div <<= i
|| B .S2 LOOP ;
||[B1] MPY .M2 B2, 0, B2 ; num32 && gt
 ADD .L1X 0, B0, A2
||[B2] MV .D2 B2, B1 ; !(num32 && !gt)
||[B2] SHRU .S1 A8, 1, A8 ; first_div >>= 1
|| B .S2 LOOP ;
 [B2] SHRU .S2 B4, 1, B4 ; if (num32 && gt) den >> 1
||[!B1] SUB .L1X A4, B4, A4 ; if (num32 && !gt) num –= den
||[B0] SUB .D2 B0, 1, B0 ; i––
|| B .S1 LOOP ;
 [!B1] SHRU .S2 B4, 1, B4 ; if (num32 && !gt) den >> 1
||[B2] SUB .L1X A4, B4, A4 ; if (num32 && gt) num –= den
|| CMPLT .L2 B0, 6, B2 ; check for neg. loop counter
|| SUB .D2 B0, 6, B1 ; generate loop counter
|| B .S1 LOOP ;
 [B2] ZERO .L2 B1 ; zero negative loop counter
||[A2] SUBC .L1X A4, B4, A4 ; num = subc(num, den)
|| B .S2 LOOP ;
LOOP:
 [B0] SUBC .L1X A4, B4, A4 ; num = subc(num, den)
||[B0] SUB .L2 B0, 1, B0 ; i––
||[B1] SUB .D2 B1, 1, B1 ; i––
||[B1] B .S1 LOOP ; for
;end of LOOP
 ADD .L2 A3, 4, B7 ; address for mod result
||[!A1] SHL .S1 A4, A0, A6 ; q = num << qs
||[A1] MPY .M1 0, A6, A6 ; if (zero) q = zero
|| B .S2 B3
 [!A1] SHRU .S1 A6, A0, A6 ; q = num >> qs
||[A1] MV .L1 A5, A2 ; if (zero) mod = num
|| MV A8, B5 ;
 ADD .L2X A6, B5, B8 ;
||[!A1] SHRU .S1 A4, A2, A2 ; mod = n >> ms
 STW .D1 B8, *A3++ ; c[2 * i] = q
|| STW .D2 A2, *B7++ ; c[2 * i + 1] = mod
B_END:
*** END Benchmark Timing ***

 NOP 2

SPRA707

8 TMS320C6000 Integer Division

Example 2. Signed Division Subroutine

*==
*
* TEXAS INSTRUMENTS, INC.
* DIVMOD32 (signed division)
* Revision Date: 07/09/97
*
* USAGE
* This routine is C Callable and can be called as:
*
* struct divmod divmod32(int a, int b);
*
* a ––– numerator
* b ––– denominator
*
* If routine is not to be used as a C callable function then
* you need to initialize values for all of the values passed
* as these are assumed to be in registers as defined by the
* calling convention of the compiler, (refer to the C compiler
* reference guide).
*
* C CODE
* This is the C equivalent of the assembly code. Note that
* the assembly code is hand optimized and restrictions may
* apply.
*
* struct divmod {
* int div;
* int mod;
* };
*
* struct divmod divmod32(int a, int b)
* {
* struct divmod tmp;
*
* tmp.div = a / b;
* tmp.mod = a % b;
*
* return tmp;
* }
*
* DESCRIPTION
* This routine divides two 32 bit values and returns their
* quotient and remainder. The inputs are 32–bit numbers, and
* the result is a 32–bit number.
*
* TECHNIQUE
* The loop is executed at least 6 times. In the loop, the
* conditional subtract divide step (SUBC) is block from doing
* extraneous executions. In short, the SUBC instruction
* is conditional and will not necessarily be executed.
*
*
* MEMORY NOTE
* No memory bank hits under any conditions.
*
* CYCLES
* Minimum execution time –> 16 cycles
* Maximum execution time –> 41 cycles
*
*==

SPRA707

9 TMS320C6000 Integer Division

 .global _divmod32
 .text

_divmod32:

*** BEGIN Benchmark Timing ***
B_START:
 SHRU .S1 A4, 31, A1 ; neg_num = num < 0
|| CMPLT .L2 B4, 0, B1 ; neg_den = den < 0
|| MV .D1 A4, A5 ; copy num
 [A1] NEG .L1 A4, A4 ; abs_num = abs(num)
||[B1] NEG .S2 B4, B4 ; abs_den = abs(den)
|| MPY .M1 –1, A1, A6 ; copy neg_num
|| MPY .M2 –1, B1, B9 ; copy neg_den
|| B .S1 LOOP ;

 NORM .L1 A4, A2 ; mag_num = norm(abs_num)
|| NORM .L2 B4, B2 ; mag_den = norm(abs_den)
|| B .S1 LOOP ;
|| ADD .S2X A3, 4, B8 ; address for mod result
 CMPGTU .L1X B4, A4, A1 ; zero = (abs_den > abs_num)
|| SUB .L2X B2, A2, B0 ; i = mag_den – mag_num
|| MVK .S1 31, A0 ;
|| B .S2 LOOP ;
 SHL .S2 B4, B0, B4 ; abs_den <<= i
|| CMPLT .L2 B0, 6, B2 ; check for neg. loop counter
|| SUB .D2 B0, 6, B1 ; generate loop counter
|| SUB .L1X A0, B0, A0 ; qs = 31 – i
|| B .S1 LOOP ;
 [B2] ZERO .L2 B1 ; zero negative loop counter
|| SUBC .L1X A4, B4, A4 ; abs_num=subc(abs_num, abs_den)
|| ADD .D2 1, B0, B2 ; ms = i + 1
|| B .S2 LOOP ;
LOOP:
 [B0] SUBC .L1X A4, B4, A4 ; abs_num=subc(abs_num, abs_den)
||[B0] SUB .L2 B0, 1, B0 ; i––
||[B1] SUB .D2 B1, 1, B1 ; i––
||[B1] B .S1 LOOP ; for
;end of LOOP
 [!A1] SHRU .S2X A4, B2, B1 ; mod = n >> ms
||[!A1] SHL .S1 A4, A0, A4 ; q = abs_num << qs
||[A1] MPY .M1 0, A4, A4 ; if (zero) q = zero
|| XOR .L1X A6, B9, A2 ; neg_q = neg_num ^ neg_den
 [!A1] SHRU .S1 A4, A0, A4 ; q = abs_num >> qs
||[A1] MV .L2X A5, B1 ; if (zero) mod = num
||[!A1] MV .L1 A6, A1 ; \ neg_mod = !zero && neg_num
||[A1] ZERO .D1 A1 ; /
 [A2] NEG .L1 A4, A4 ; if (neg_q) q = –q
||[A1] NEG .L2 B1, B1 ; if (neg_mod) mod = –mod
|| B .S2 B3 ; return
 STW .D1 A4, *A3++ ; c[2 * i] = c_tmp.div
|| STW .D2 B1, *B8++ ; c[2 * i + 1] = c_tmp.mod
B_END:
*** END Benchmark Timing ***

 NOP 4

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  2000, Texas Instruments Incorporated

