{? TEXAS Application Report
INSTRUMENTS SPRA721 - December 2000

H.263 Encoder: TMS320C6000 Implementation

Hiroshi Miyazawa Digital Signal Processing Solutions

ABSTRACT

This application report describes the implementation of the International Telecommunications
Union (ITU)-T H.263 decoder on the TMS320C60000 DSP. The H.263 encoder does not, at the
time of print, meet all of the baseline requirements to be TMS3200 DSP Algorithm Standard
compliant; future revisions, however, will be fully eXpressDSPL compliant. The following
document describes the basics of the standard, and proceeds to more technical aspects of the

software.

TMS320C6000, TMS320, and eXpressDSP are trademarks of Texas Instruments.

Contents
1 INtrOdUCHION e e e e e e e e 3
2 Encoder Implementation 4
2.1 DIreCtory STUCIUIE oottt et et e e e e e e e e e e e 4
2.2 H.263 ENCOOEr ODJeCTSot 5
2.3 Encoder Default Parameters 7
2.4 APIsand Example Code i 8
2.5 H.263 ENCOUEr SIIUCIUIES . . o\ttt e ettt e e e e e e e e 10
2.5.1 Number of MBs to Process (NMB2ProC) . ..ot 18
2.5.2 Reference Offsets (offsetY and offsetC) 19
2.5.3 Motion Compensation Kernels (mcFn_tmcFn[4]) 20
2.5.4 DMA/EDMA IDS (dmalD[5]) ..t 20
2.6 Memory REeqUITEMENTSttt e e e e e e e e 21
2.6.1 MemMOry Maps ... 22
2.7 H.263 ENCOder FUNCLIONSttt e e e e e e e e 23
2.8 C0de FlOW . ..o 25
2.8.1 Main Encoder Function (h263Encode)o 25
2.8.2 Enconding MB (h263ENCMB) i e e e 26
2.8.3 Motion Compensation (h263ENCMC) i 28
2.9 Data Flow 30
2.9.1 Frame Buffer 30
2.9.2 Reading Current Data (rdCurBuff) 31
2.9.3 Reading Reference Luma (rdRefY) i i e 32
2.9.4 Reading Reference Chroma (rdRefC) i 33
2.9.5 Unpacking Current MB (unpackmb) 34
2.9.6 IDCT (idCtBUfT)ot e 35
2.9.7 Packing INTRAMB (packmb) 36
2.9.8 Writing Reconstructed Data (wrRecBuUff) i 37
3 Building H.263 ENCOTEIr ... e e e e e e 38

{'? TEXAS

SPRA721 INSTRUMENTS
3.1 Target Device (REQUIRED)co it e e e e e 38
3.2 Other Flags (Optional)ot e e e e 38
3.3 BUIIdING ... 39
4 Assumptions and ReqUIrEmMENtS 39
Appendix A PerfOrmManCe 41
Appendix B Profiling H.263 Encoder 42
Appendix C Real-time Transport Protocol (RTP) ... e 45
Appendix D Testing H.263 Encoder i e A0
Appendix E Encoding Custom ResOIUtioNS e 48
List of Figures
Figure 1. Encoder DireCtory StrUCIUIE ittt e e e e et 4
Figure 2. Using Parent and Child INStANCESt e 6
Figure 3. Using Only Child INStANCES o e e 7
Figure 4. Encoder Creation Parameters — IH263ENC_Params (Little Endian) 8
Figure 5. Parent Object — H263PENC_TI_ODbj e 10
Figure 6. Child Object — H263ENC_TI_Obj (Little Endian) i, 11
Figure 7. Encoder Parameters — H263EncParam (Little Endian) 13
Figure 8. Motion Estimation Parameter — MEParam (Little Endian) 16
Figure 9. Rate Control Parameter — RCParam (Little Endian) 17
Figure 10. Encoder Status — IH263ENC _Statust e e e e e 18
Figure 11. How nMB2proc is Used to Allocate SliceBuff o i 19
Figure 12. Example of Using offsetY and offsetC i i i 19
Figure 13. TMS320C6201 EVM & TMS320C6211 DSK Memory Mapsoovuniiunnneenn.. 23
Figure 14. Code Flow —h263ENCOde i e e e e 25
Figure 15. Code Flow —h263ENCMB 27
Figure 16. Bit Fields of Value Returned by tqziq e 27
Figure 17. Example of Motion Compensation it 30
Figure 18. Frame Buffer for CIF and QCIF e 31
Figure 19. Reading Current Data (NBM2ProC = 6)ttt et et e e e 32
Figure 20. Reading Reference Luma i e e e 33
Figure 21. Reading Reference Chroma i e e e e e e e 34
Figure 22. Processing one 8x8 DIOCK i 34
Figure 23. Processing One MB i e 35
Figure 24. Examples of Using idctBuff (TMS320C6200)ttt e 35
Figure 25. Examples of Using idctBuff (TMS320C64X)ttt et 36
Figure 26. Processing One 8x8 block (TMS320C6200)ttt iieiaeen 36
Figure 27. Processing One MB (TMS320C6200)ttt et et e 37
Figure 28. Processing One 8x8 block (TMS320C64X)\ttt 37
Figure 29. Writing Reconstructed Dataoiiiiiii e et 38
Figure B—-1. Encoder Statistics — H263ENCStatst e 42
Figure C-1. RTP Parameters — H263RTPParam (Little Endian), 45
Figure D-1. Test Setup on TMS320C6201 EVM i e 46
Figure D-2. Test Setup on TMS320C6211 DSKttt e e 47

2 H.263 Encoder: TMS320C6000 Implementation

{9 TEXAS
INSTRUMENTS SPRA721

List of Tables

Table 1. Encoder Creation Parameters — IH263ENC _Paramsc i, 8
Table 2. Parent Object —H263PENC _TI Obj i e e e 11
Table 3. Encoder Object —H263ENC _TI_ODbj ... e e 12
Table 4. Encoder Parameters — H263ENcParam i 14
Table 5. Motion Estimation Parameter — MEParam i 16
Table 6. Rate Control Parameter — RCParam e 17
Table 7. Encoder Status — IH263ENC _Statusot e et e 18
Table 8. H.263 Encoder Code Sizes (BYIES)ttt e 21
Table 9. Internal Memory Requirements (TMS320C6200)ttt 21
Table 10. External Memory REQUITEMENTS ottt e e e 22
Table 11. H.263 Encoder FUNCLONS o ettt 24
Table A-1. Kernels Performance (TMS320C6200)ciiiiiiii ittt ettt 41
Table B—1. Encoder Statistics — H263ENCStatsot e 43
Table C-1. RTP Parameters — H263RTPParamttt e ettt et e 45

1 Introduction
The TMS320C6000 implementation of H.263 encoder has the following features.

* |t satisfies the minimal requirement defined in the ITU-T H.263 specification. None of the
annexes have been implemented.

* ltis fully compliant, at the time of printing, with the TMS320 DSP Algorithm Standard. Please
refer to appropriate documentation for more information.

* The code has been tested extensively on TMS320C6201 EVM and TMS320C6211/C6711
DSK.

* The encoder has very little device specific code; executing the encoder on any of the
TMS320C6000 devices can be achieved simply by defining the device type at build time.

* Hooks to allow the use of RTP are partially in place. A structure to store necessary
information is defined, and can be allocated with appropriate flags at build time, but no code
has been implemented.

* The encoder is structured to provide as much flexibility as possible, so that it can run under
different system configurations. Please see the appendices for more information on changes
that the users can make to suit their systems.

Although “TMS320C64x” is mentioned throughout this application note, this does not by any
means imply that any source codes and/or object files are included in the release that the users
will receive. Whether or not the TMS320C64x specific codes are released depends on the
availability and the specifics of the agreement the user has signed. Please refer to the sales
representatives for more information.

H.263 Encoder: TMS320C6000 Implementation 3

{'f TEXAS
SPRA721 INSTRUMENTS

2 Encoder Implementation

2.1 Directory Structure

h263

k=

(3 obj6211

i xasm

*.0bj

src
enctabs.asm

—D encutil sa.sa
—D h263encode.c
—D me.c
—D ratectrl.c
—D tqzig.c
src_xdais
h263enc.c
—D h263enc ti.c
—D h263enc ti_vtab.c
—D h263penc ti.c
—D ih263enc.c
src6200

[) enccbp.sa
[) encmvd.sa

[) encutil sa.sa
[) encvic.sa

[) fdctasm

() me_sa.sa

obj6211
{""h*asm
] obj

' util_sa.sa

src6400

[) enccbp.sa

[) encmvd.sa
() encutil sa.sa
' enc_vic.sa
[) fdctasm

' me_sa.sa

%objmoo

' util_sa.sa

Figure 1. Encoder Directory Structure

H.263 Encoder: TMS320C6000 Implementation

{9 TEXAS
INSTRUMENTS SPRA721

2.2

h263: H.263 root directory.
bin : Encoder COFF and map files.

encoder : Encoder root directory.

inc . Include files used by the encoder source codes.

0bj6201 . Intermediate assembly and object files for TMS320C6201.

obj6211 . Intermediate assembly and object files for TMS320C6211.

0bj6400 . Intermediate assembly and object files for TMS320C64x.

src : Encoder source files (device independent)

src_xdais : TMS320 DSP Algorithm Standard specific source files (device independent)

src6200 : Source files specifically designed for TMS320C6200.
src6400 : Source files specifically designed for TMS320C64x.

mak: Makefiles.

share : Root directory for shared files.
inc > Include files shared by H.263 encoder and decoder source codes.
0bj6201 . Intermediate assembly and object files for TMS320C6201.
0bj6211 . Intermediate assembly and object files for TMS320C6211.
0bj6400 . Intermediate assembly and object files for TMS320C64x.
src : Shared source files.
src6200 . Source files specifically designed for TMS320C6200.
src6400 : Source files specifically designed for TMS320C64x.

Although the default location for intermediate ASM and OBJ files for TS320C6201 is 0bj6201
the user may choose to create and assign a different directory.

Please note that depending on the specifics of the agreement, directories obj6400 and
src6400 may not be included in the release. Please refer to the sales representative for more
information.

H.263 Encoder Objects

The current implementation of the H.263 encoder defines a parent object H263PENC_TI_Obj
(defined in h263penc_ti.h) that is used to hold a single copy of the encoder tables (look-up
tables, VLC tables, etc.), since they are common to all H.263 encoder child instances. Each
child instance, once created, stores pointers to appropriate sections of the tables. By using a
parent instance to hold these tables, child instances do not have to retain their own copies of the
tables, thereby reducing the amount of memory required by each child instance. This
arrangement is shown in the diagram below.

H.263 Encoder: TMS320C6000 Implementation 5

{'.f TEXAS

SPRA721 INSTRUMENTS

6

Memory

Parent instance
(H263 P ENC_TI_Obj)

Encodertables

Child instance 0 .
(H263ENC TI Obj) Pointers to tables
Child instance 1 .
(H263ENC_TI_Obj) Pointers to tables
Child instance N)
(H263ENC_TI_Obj) Pointers to tables | &

Figure 2. Using Parent and Child Instances

While the aforementioned configuration is probably the most desirable, this may not be practical
in some systems. For example, if a particular system is designed to execute several different
algorithms that all require their own tables, there may not be sufficient internal memory to hold
every single parent instance for each algorithm. One solution for this scenario is to swap in and
out the parent instances as needed. Alternatively, the system can swap in and out whichever
child instance that has to execute. This is more suited for systems equipped with large external
memories, since each child instance is allowed to keep its own copy of the tables. The H.263
encoder is designed so as to allow the user to select which configuration is more suitable. This
arrangement is illustrated in the figure below.

H.263 Encoder: TMS320C6000 Implementation

{9 TEXAS
INSTRUMENTS

SPRA721

2.3

Memory

Child instance 0 _
(H263ENC_TI_Obj) Pointes to tables

Encodertables

Memory space
> allocated for child
instance O

Child instancel)
(H263ENC_TI_Ohj) Pointers to tables

Encodertables

Memory space
> allocated for child
instance 1

Child instance N)
(H263ENC_TI_Obj) Pointers to tables

Encodertables

Memory space
> allocated for child
instanceN

Figure 3. Using Only Child Instances

Please see section 3, Building H.263 Encoder for more information on how to use this

configuration.

Encoder Default Parameters

The encoder by default uses a set of creation parameters such as target bitrate, target frame
rate, source format, etc. to allocate required memory space and initialise rate control

parameters. The IH263ENC_Params structure (defined in ihn263enc.h

in Figure 4.

) is organised as shown

H.263 Encoder: TMS320C6000 Implementation 7

{'f TEXAS
SPRA721 INSTRUMENTS

32 hits,
size

A

Y

intfraRate frameRate bitRate

nMB2proc srcFormat Qp

Figure 4. Encoder Creation Parameters — IH263ENC_Params (Little Endian)

The table below describes the fields in detail.

Table 1. Encoder Creation Parameters — |H263ENC_Params
Name Description
size Size of IH263ENC_Params
bitRate Target bitrate in kbps (default = 512)
frameRate Target frame rate (default = 30)
intraRate Rate of I-frame update (default = 30)
Qi Initial Q value for I-frames (default = 10)
Qp Initial Q value for P-frames (default = 10)
srcFormat Source format (default = H263_SRCFMT_QCIf
nMB2proc Number of MBs to process per call to h263EncMB (default = 1)

One can change the default values shown in the table above by editing the structure
IH263ENC_PARAMSIefined in ih263enc.c

2.4 APIs and Example Code

Shown below is how the IALG functions structure IH263ENC_Fxns (defined in ih263enc.h)
looks like.

typedef struct IH263ENC_Fxns

{
IALG_Fxns ialg; /*IH263DEC extends IALG */

void (*control)(IH263ENC_Handle handle,
IH263ENC_Cmd cmd,
void *input);

void (*encode) (IH263ENC_Handle handle,
uchar *Iin[3],
uint *out);
} IH263ENC_Fxns;

8 H.263 Encoder: TMS320C6000 Implementation

{9 TEXAS
INSTRUMENTS SPRA721

ialg: This is the default IALG functions. Please refer to appropriate TMS320 Algorithm
Standard documents for more information.

control: This function is used to obtain updated status from the encoder.
encode: Executes the H.263 encoder.

Shown below is an example code, in which one parent instance and one child instance are
created.

Please refer to TMS320 DSP Algorithm Standard Rules and Guidelines for more information on
TMS320 Algorithm Standard specific function APIs.

void main()

{
H263PENC_TI_Obj *encParent; /* encoder parent handle */
IH263ENC_Handle encHandle; /* encoder child handle */

IH263ENC_Status encStatus; /* encoder status */
unsigned char *in[3]; /* input frame (Y, Cb, Cr) */
unsigned int *out; /* output bitstream */

/* create encoder parent instance */
encParent = (H263PENC_TI_Obj *)ALG_create((IALG_Fxns *)&H263PENC_TI_IALG,
NULL,
(IALG_Params *)NULL);
[* create encoder child instance */
encHandle = (H263ENC_TI_Obj *)ALG_create((IALG_Fxns *)&H263ENC_TI_IH263ENC,
encParent,
(IALG_Params *)NULL);
/* clear encoder status structure */
H263ENC_TI_IH263ENC.control((IH263ENC_Handle)encHandle,
IH263ENC_CLR_STATUS,
&encStatus);
while(1)
{
/* get pointer to input video frame —> in */
[* get pointer to output bitstream buffer —> out */
/* execute H.263 encoder */
H263ENC_TI_IH263ENC.encode((IH263ENC_Handle)encHandle,
(uchar **)&in,
out);
/* get encoder status */
H263ENC_TI_IH263ENC.control((IH263ENC_Handle)encHandle,
IH263ENC_GET_STATUS,
&encStatus);

H.263 Encoder: TMS320C6000 Implementation 9

{'f TEXAS
SPRA721 INSTRUMENTS

2.5 H.263 Encoder Structures

The figure below shows how the parent object H263PENC_TI_Obj (defined in
h263penc_ti.h) and the encoder tables (defined in enctabs.asm) are structured.

H263PENC_TI_Obj Encoder Tables
& 32 bits N,
Y 7
alg encTables EncMcbpcTabl
mcbpcTabl (18 bytes)
mcbpcTabP encMcbpcTabP
(42 bytes)
cbpyTab
encCbpyTab
mvdTab (32 bytes)
dctTab)
encMvdTab
[evelMax (132 bytes)
indexOffset
LOT
dctTab
Qi1 (412 bytes)
zzIndex
levelMax 1532
(128 bytes) bytes
indexOffset
(128 bytes)
LUT

(512 bytes)

Q11
(64 bytes)

encZzlndex
(64 bytes)
(padding — 6 bytes)
encTablesEnd (4 bytes)

Figure 5. Parent Object — H263PENC_TI_Obj

10 H.263 Encoder: TMS320C6000 Implementation

{9 TEXAS
INSTRUMENTS SPRA721

Table 2. Parent Object — H263PENC_TI_Obj

Table Name Description

alg Default IALG object

mcbpcTabl VLC table for MCBPC (MB type and CBP for chroma for INTRA MB)
mcbpcTabP VLC table for MCBPC (MB type and CBP for chroma for INTER MB)
cbpyTab VLC table for CBPY (CBP for luma)

mvdTab VLC table for MVD (Motion Vector Difference)

dctTab

levelMax

indexOffset

LUT Loop-up table used by Motion Estimation to avoid division

Q11 Look-up table used for quantisation to avoid division

zzIndex Zigzag index table

The figure below shows how H263ENC_TI_Obj (defined in h263enc_ti.c) is structured.
The shaded field (rtpParam) is optional.
32 bits

alg
decParam

Y

<
Y

meParam

rcParam

ripParam

base[5/6]

Figure 6. Child Object— H263ENC_TI_Obj (Little Endian)

H.263 Encoder: TMS320C6000 Implementation 11

SPRA721

{'f TEXAS
INSTRUMENTS

Table 3 describes the fields in detail.

Table 3. Encoder Object— H263ENC_TI_Obj

Name Description

alg Default IALG object

encParam Pointer to encoder parameter structure H263EncParam (see below)

meParam Pointer to motion estimation parameter structure H263MEParam (see below)

rcParam Pointer to rate control structure H263RCParam (see below)

rtpParam RTP parameter structure (H263RTPParam). This is valid only when RTP flag is used at build
time. Please see Appendix D, Real-time Transport Protocol (RTP) for more information.

base[5/6] Base addresses for all memory spaces allocated for a particular child instance; 5 when used

with a parent instance, and 6 without.

The H263EncParam structure (defined in h263encode.h) is the main structure that the encoder
uses to store important information about the current frame that it is reconstructing. The following
lists and describes each field in the structure. The structure fields between tr and gp, inclusive,
are information extracted from the bitstream. Please refer to H.263 specification for more detail.

12 H.263 Encoder: TMS320C6000 Implementation

*ﬂ.’ TEXAS

INSTRUMENTS

SPRA721

32 bits,

A

\ 4

bufPtr

bitPtr

nBits

bitBuff

nWords

bitStream

picFrzRel

docCam

splitScrn

tr

noGOBhead

quant

picType

srcFormat

ap

GFID

mbtype

GN

rtp

nMB2proc

nMB

nGOB

recMB

refMB

dctBuff

idctBuff

tcoefBuff

sliceBuff

height

width

curY

curChb

curCr

outY

outChb

outCr

refy

refCb

refCr

posRefY

offsetC |

offsetY | predModeC |

predModeY

mcbpcTabl

mcbpcTabP

cbpyTab

mvdTab

dctTab

levelMax

indexOffset

LUT

Q11

zzIndex

frame

mcFn[4]

dmalD[5]

gCNtRIAY

gCntRIdC

glndexY

Figure 7. Encoder Parameters —

glndexC

H263EncParam (Little Endian)

H.263 Encoder: TMS320C6000 Implementation 13

{'? TEXAS

SPRA721 INSTRUMENTS
Table 4. Encoder Parameters — H263EncParam

Name Description

bufPtr Points to the current 32-bit word of the H.263 bitstream

bitPtr Bit position, or number of remaining bits in the current 32-bit word; MSB=32; LSB=1.
nBits Number of bits produced for current frame

bitBuff Points to temporary storage for bitstream

nWords Number of words produced for entire sequence

bitStream Points to memory space allocated by application to store bitstream for entire frame
tr Temporal reference

splitScrn Split screen indicator

docCam Document camera indicator

picFrzRel Full picture freeze release

srcFormat Source format

picType Picture coding type

quant Picture quant

noGOBhead “No GOB header” indicator

GN Group number

GFID GOB frame ID

mbtype MB type

ap Quantiser information

nGOB Number of GOB per frame

nMB Number of MB per GOB

nMB2proc Number of MBs to process per call to the h263EncMB function. Please see section 2.5.1,

Number of MBs to Process (nMBZ2proc)

rtp "1’ for RTP mode; '0’ for non-RTP

recMB Points to reconstructed MB buffer

refMB Points to reference MB buffer

dctBuff Points to DCT buffer

idctBuff Points to IDCT buffer

tcoefBuff Points to TCOEF buffer used by the tgziq function

sliceBuff Points to buffer used to hold portions of both input and output frames. Please see section 2.5.1,

Number of MBs to Process (nMBZ2proc)
width Width of image
height Height of image

14 H.263 Encoder: TMS320C6000 Implementation

{f’ TEXAS

INSTRUMENTS SPRA721

Name Description

curY Pointers to current frame buffer (luma, Cb, and Cr, respectively)

curCh

curCr

outY Pointers to output frame buffer (luma, Cb, and Cr, respectively)

outCh

outCr

refy Pointers to reference frame buffer (luma, Cb, and Cr, respectively)

refCb

refCr

posRefY Position of reference luma inside refMB

predModeY Half-pel modes for luma and chroma, respectively

predModeC

offsetY Offsets inside reference MB for luma and chroma, respectively. Please see section 2.5.2,

offsetC Reference Offsets (offsetY and offsetC) for more information.

mcbpcTabl Pointers to VLC tables for MCBPC (I-frame), MCBPC (P-frame), CBPY, MVD, and tables used to

mcbpcTabP encode TCOEF.

cbpyTab

mvdTab

dctTab

levelMax

indexOffset

LUT

Q11

zzIndex

frame Number of frames encoded

mcFn[4] Array of function pointers for MC kernels. Please see section 2.5.3, Motion Compensation
Kernels (mcFn_t mcFn[4]) for more information.

dmalD[5] DMA/EDMA ID’s. Please see section2.5.4, DMA/EDMA ID’s (dmalD[5]) for more information.

gCndRIdY Handle to a global count reload register used by luma transfers. This is valid only when
CHIP_6201 and CSLDMA flags are specified at build time.

gCndRIdC Handle to a global count reload register used by chroma transfers. This is valid only when
CHIP_6201 and CSLDMA flags are specified at build time.

glndexY Handle to a global index register used by luma transfers. This is valid only when CHIP_6201 and
CSLDMA flags are specified at build time.

glndexC Handle to a global index register used by chroma transfers. This is valid only when CHIP_6201
and CSLDMA flags are specified at build time.

The H263MEParamstructure (defined in h263encode.h) is the structure used to store
information returned by the motion estimation routine. The following lists and describes each
field in the structure.

H.263 Encoder: TMS320C6000 Implementation 15

SPRA721

{'P TEXAS
INSTRUMENTS

32 bits

\4

A

sad

mv

highbd_x | lowbd y lowbd_x

meFn[4]

mvGOB[24]

Figure 8. Motion Estimation Parameter —

mvFrame[18][22]

Table 5. Motion Estimation Parameter — MEParam

MEParam(Little Endian)

Name

Description

sad

SAD returned by Motion Estimation

mv

Motion vector for current MB

lowbd_x
lowbd_y

Low bounds for motion search

highbd_x
highbd_y

High bounds for motion search

meFn

Function pointers for SAD functions

mvGOB

Motion vectors for previous/current GOB

mvFrame

Motion vectors for previous/current frame

The H263RCParamstructure (defined in h263encode.h) is used by the rate control routine.
The following lists and describes each field in the structure.

16 H.263 Encoder: TMS320C6000 Implementation

{f’ TEXAS

INSTRUMENTS SPRA721
< 32 bits, >
intraRate frameRate bitRate
frameSkip frameCoded Qp Qi
Qsum nMB
Np NI
Figure 9. Rate Control Parameter — RCParam(Little Endian)

Table 6. Rate Control Parameter — RCParam
Name Description
bitRate Target bitrate
frameRate Target frame rate
intraRate Rate of I-frame update
Qi Initial Q values for I-frames and P-frames
Qp
frameCoded Number of coded frames
frameSkip Number of skipped frames
nMB Number of MBs in a frame
Qsum Sum of Q values used
Ni Number of I-frames and P-frames
Np
Xi Picture complexities for I-frames and P-frames
Xp
doi Virtual bitstream buffer fullness for I-frames and P-frames
dop
d
Rp Reaction parameter
T Target number of bits for a frame and a group of pictures
Tgop

Shown below is how the H.263 encoder status structure IH263ENC_Status (defined in

ih263enc.h) is organised.

H.263 Encoder: TMS320C6000 Implementation 17

{'.f TEXAS

SPRA721 INSTRUMENTS

2.5.1

18

32 hits

\4

A

Size

frame

width
height
picType

y
u

\Y

Figure 10. Encoder Status — IH263ENC_Status

Table 7. Encoder Status — IH263ENC _Status

Name Description

size Default

frame Number of frames encoded

width Width of encoded frame

height Height of encoded frame

picType Picture type of encoded frame

y Address of encoded frame (luma)

u Address of encoded frame (Cb)

\Y Address of encoded frame (Cr)

nBits Number of bits produced by current frame
nWords Number of words produced by entire sequence

Number of MBs to Process (nMBZ2proc)

On TMS320C620x, the internal data memory is equal to, or greater than, 64KB, which is
sufficiently large to hold an entire CIF GOB for the encoder to process. On TMS320C6211 (and
TMS320C6711), however, both the program and data must share 64KB of L2 memory. In most
cases, the recommended use of L2 memory is 16KB SRAM and 48KB 3-way cache for optimal
performance. Since the amount of on-chip memory is no longer large enough to allocate a whole
GOB, the encoder must process each GOB in pieces. The current implementation of the H.263
encoder allows the user to tell the encoder how many MBs it can process at any one time; for
the recommended use of L2 memory, this will be one.

This feature can also be used in TMS320C620x as well, in case the system is not able to
allocate the required memory to process the whole GOB.

The diagram below illustrates how the encoder uses nMB2proc to allocate sliceBuff

H.263 Encoder: TMS320C6000 Implementation

{9 TEXAS
INSTRUMENTS SPRA721

nMB2proct16

A
Y

sliceBuff
Y

Cb

Cr

«———nMB2proc8 —

Figure 11. How nMB2proc is Used to Allocate SliceBuff

Please note that if one assigns an invalid number to nMB2proc (a number less than one, or
larger than the number of MBs per GOB in a specified format), the encoder will limit this value to
the valid range [1, number of MBs/GOB].

252 Reference Offsets (offsetY and offsetC)

Half-pel motion compensation requires one 17x17 luma block and two 9x9 chroma blocks from
the reference frame buffer. To ensure best performance, all data transfers are done in 32-bit
words, i.e. every element count must be a multiple of four bytes. This means that one 20x17
luma block and two 12x9 chroma blocks have to be read from the reference frame buffer.

offsetY refers to the number of bytes from the left edge of the 20x17 block, where the required
reference MB exists. Similarly, offsetC refers to the number of bytes from the left edge of 12x9
block, where the required block exists.

Figure below illustrates this concept.

< 20 > — 12—
i Required
| 9 9x9
: reference
17 |i| Required 17x17 chroma
i referenceluma
: —> [
i offsetC =2
v |
—> [
offsety =2

Figure 12. Example of Using offsetY and offsetC

H.263 Encoder: TMS320C6000 Implementation 19

{'.f TEXAS

SPRA721 INSTRUMENTS

2.5.3

Motion Compensation Kernels (mcFn_t mcFn[4])

In the encoder motion compensation, there are four half-pel modes, requiring four separate
functions. Due to the complexity involved in determining which functions to use, an array of
function pointers mcFnis used to store addresses for all four motion compensation kernels. The
use of this array eliminates the need for nested if-then-else and switch-case statements,
thereby improving both the performance and overall code size.

All four functions have the following API (defined in h263.h).

typedef void (*mcFn_t)(uchar *src, [* source address w/o offset */
uchar *dst, /* destination address */
uchar offset, /* offset within 20x17 and 12x9 blocks */
int sWidth, /* source pitch (default=20 & 12) */
int dwidth, /* destination pitch (default=16 & 8) */
int rc, /* rounding control; ignored by mcA & mcAi */
short *idct); /* IDCT coefs; ignored by mcA, mcB, mcC & meD */

During the initialization stage (H263ENC_TI_initObj defined in h263enc_ti.c), the array is
set up as shown below. Note that the structure ep is of the type H263EncParam.

ep—>mcFn[0] = mcA;
ep—>mcFn[1] = mcB;
ep—>mcFn[2] = mcC;
ep—>mcFn[3] = mcD;

2.5.4

20

Please see section 2.8.3, Motion Compensation (h263EncMC) for more information on how the
motion compensation is applied to a MB.

DMA/EDMA IDs (dmalD[5])

The current implementation of the encoder only supports the use of the DAT module in the Chip
Support Library (CSL).

The encoder needs to keep track of five sets of data transfers into and out of sliceBuff (in
and out), refMB (luma and chroma), and bitBuff . When a request is issued via the DAT
module, a unique request ID that is associated with that particular request is returned. The
dmalD array is used to store separate ID’s for each buffer.

e dmalD[0] is the request ID associated with sliceBuff (input).
e dmalD[1] is the request ID associated with refMB (luma).

e dmalD[2] is the request ID associated with refMB (chroma).

e dmalD[3] is the request ID associated with sliceBuff (output).
e dmalD[4] is the request ID associated with bitBuff

Please refer to TMS320C6000 Chip Support Library API Reference Guide for more information
on the DAT module.

H.263 Encoder: TMS320C6000 Implementation

{9 TEXAS
INSTRUMENTS

SPRA721

2.6 Memory Requirements

The memory requirements for the H.263 encoder are shown below.

Table 8. H.263 Encoder Code Sizes (Bytes)

TMS320C6201 TMS320C6211
Core encoder code 29,408 28,928
Shared code 8,384 8,384
Total 37,792 37,312

The term “shared code” refers to a set of functions that the encoder shares with the decoder.

The difference in code size between TMS320C6201 and TMS320C62111 is due mostly to the
scheduler and its ability to take advantage of the different architectures.

Please note that the encoder code size may change depending on which compilation flags are

used and which release of the code generation tools are used to build the source codes.

The following tables show the memory requirement for both internal and external memory
spaces. The tables for internal memory requirements assume the use of the parent instance to
hold encoder tables. If one decides not to use the parent instance, but instead to allow each
child instance to keep its own copy of the tables, the internal memory requirement for each child
instance will equal to the two totals at the bottom of the table.

Table 9. Internal Memory Requirements (TMS320C6200)

Size (Bytes)

Parent Child Aligrrmet
FDCT buffer (dctBuff) 0 768 16 bytes (0x10)
IDCT buffer 0 896 16 bytes (0x10)
Reconstructed MB buffer (recMB) 0 384 16 bytes (0x10)
Reference MB Buffer (refMB) 0 2520 16 bytes (0x10)
TCOEF buffer (tcoefBuff) 0 768 16 bytes (0x10)
Slice buffer (sliceBuff) 0 384 x N 16 bytes (0x10)
Bitstream buffer (bitBuff) 0| 1064 x N 16 bytes (0x10)
Encoder parent object (H26ENC_TI_Obj) 1536 0 16 bytes (0x10)
Encoder child object (H263ENC_TI_Obj) 0 1132 16 bytes (0x10)
Stack 0 456 N/A
0 6468
Total
1536 1448xN —

H.263 Encoder: TMS320C6000 Implementation 21

{i’ TEXAS

SPRA721 INSTRUMENTS

2.6.1

22

N = nMB2proc

Table 10. External Memory Requirements

Size (Bytes) Alignment
Encoder tables (original) 1,532 16 bytes (0x10)
Frame buffer 0 152,096 16 bytes (0x10)
Frame buffer 1 152,096 16 bytes (0x10)
Total 305,724 -

Please note that the encoder neither imposes nor assumes the placement of these buffers.
However, for optimal performance, it is recommended that the buffers be placed as indicated
above. One should not encounter any cache coherency problems when running the encoder on
TMS320C6211/TMS320C6711/TMS320C64x.

The IDCT code for TMS320C6200 requires its input buffer to have extra 128 bytes (or 64 shorts)
to be used as scratch memory, hence 896 bytes, rather than 768 bytes. The code for
TMS320C64x, however processes its input data completely in place, and needs no extra space.

In the default configuration, the original encoder tables are located in external memory, and
during initialisation, the tables are copied to internal memory for optimal performance. This is
done by the parent instance only once, and all child instances are then set up to access the
same copy. The exception is when the user decides not to use the parent instance, in which
case each child instance copies its own copy of the tables into its memory space.

The encoder requires at least two frame buffers to correctly reconstruct the frames: one for
reference, and the other for current (being reconstructed), which becomes the reference frame
for the next frame. A single CIF frame occupies 152,064 bytes, but the encoder requires 32
additional bytes due to the way a 48x48 reference block is transferred into refMB . Each data
transfer reads in 48 pixels wide, for optimal DMA performance. If this reference frame buffer is
somehow placed at the edge of a memory space, the first two, or the last two, transfers will not
read the data properly — the DMA/EDMA will attempt to access invalid memory space. The extra
padding (16 bytes on either end of the frame buffer) ensures that the transfers occur correctly no
matter where the buffer is located.

Memory Maps

The figure below shows the memory map used for TMS320C6201 EVM and TMS320C6211

DSK. Please refer to TMS320C6000 Peripherals Reference Guide for more information on how
to configure L2 memory for TMS320C6211. The size of the external memory on TMS320C6211
DSK may differ; please refer to the documentation provided with the board for more information.

H.263 Encoder: TMS320C6000 Implementation

{f’ TEXAS

INSTRUMENTS SPRA721
0x00000000
Internal Program RAM 0x00008000
(64KB Cache) 0x0000C000 48K Bytes 3—way Cache
0x00010000
0x00400000
External Program RAM (CEO)
(128K Bytes SBSRAM)
0x00420000
External Data RAM (CEO)
(128K Bytes SBSRAM)
0x00440000
0x02000000
External Data RAM (CE2)
(4M Bytes SDRAM)
0x03000000
External Data RAM (CE3)
(4M Bytes SDRAM)
0x04000000
0x80000000
Internal Data RAM
(64K Bytes)
External Memory
080010000 (4M Bytes SDRAM)
0x80400000
OXFFFFFFFF

Figure 13. TMS320C6201 EVM & TMS320C6211 DSK Memory Maps
2.7 H.263 Encoder Functions

The table below shows the encoder functions, what they return, and where they are defined.
Please refer to individual source code for more information on APlIs etc.

H.263 Encoder: TMS320C6000 Implementation 23

{'? TEXAS

SPRA721 INSTRUMENTS
Table 11. H.263 Encoder Functions

Function Description Returns Source File
bytealign Byte aligns the bitstream void encutil_sa.sa
calcDFD Calculates SAD of a MB inside refMB int me.c

diffMB Calculates the difference between current MB and motion void encutil_sa.sa

compensated MB

encchp Encodes MCBPC and CBPY void encchp.sa
encmvd Encodes MVD void encmvd.sa
encvicl Encodes VLC for INTRA and INTER MB void encvlc.sa
encvicP

fdct Applies forward DCT void fdct.asm
gradVec Refines best motion vector with half-pel accuracy void me.c
h263EncMB Encodes nMB2proc MBs void h263encode.c
h263EncMC Applies half-pel motion compensation to a MB void h263encode.c
h263Encode Encodes one frame void h263encode.c
mesad_a Calculates SAD of a MB inside refMB in half-pel modes int me_sa.sa
mesad_b A ,B,C,and D

mesad_c

mesad_d

mesadavg Calculates SAD of MB and its average pixel values int me_sa.sa
putbits Merges new bits with the rest of the hitstream void encutil_sa.sa
rcAllocBits Bit allocation void ratectrl.c
rcCalcQuant Calculates new quant value int ratectrl.c
rcinit Initialises rate control structure H263RCParam void ratectrl.c
rcUpdateFrame Update rate control information at end of a frame void ratectrl.c
rcUpdateGOP Update rate control information at end of a GOP void ratectrl.c
rcUpdateMB Update rate control information at end of a MB void ratectrl.c
rdCurBuff Reads current frame void encutil.c
rdRefC R eads reference MB (chroma) void encutil.c
rdRefY Reads reference MB (luma) void encutil.c

tgziq Quantise, zigzag scan, and inverse quantise; returns int tqzig.c

number of symbols and CBP
unpackmb Unpacks 8-bit values to 16-bit values void encutil_sa.sa
wrBits Writes encoded bitstream in bitBuff ~ to bitStream void encutil.c
wrRecMB Writes reconstructed MB(s) to output void encutil.c
NOTE: *“uint " and “ushort " are “unsignedint " and “unsigned short ", respectively.

24 H.263 Encoder: TMS320C6000 Implementation

{9 TEXAS
INSTRUMENTS SPRA721

2.8 Code Flow

The following sections describe the order in which the encoder processes a captured frame.

281 Main Encoder Function (h263Encode)

The figure below shows the high-level code flow.

[h263Encode C';\‘g"’)"? rcUpdateGOP

N

i
Y

rcAllocBits
I
Encode picture layer
I
Encode GOB layer [«
I
h263EncMB <
I
Write reconstructed MB wr(RecBuff)
I
Write encoded Bits wr(Bits)

Last MB N
set?

Y

Byte-align bits (bytealign)

N

Last GOB~

Y

Write last set of bits wr(Bits)
|

rcUpdateFrame
|

Wait for all data transfers to complete —)[Return]

Figure 14. Code Flow — h263Encode

For each frame, the encoder is provided with pointers to the three colour planes and the output
bitstream buffer, into which it will copy the encoded bits. The function h263Encode starts by
allocating bits for entire group of pictures (GOP), and for the current frame, by calling the
rcUpdateGOP and rcAllocBits , respectively. After the bit allocation, the encoder codes the
picture layer.

For each GOB, the encoder may or may not encode GOB layer header, depending on whether it
is the first GOB or not.

H.263 Encoder: TMS320C6000 Implementation 25

{'? TEXAS

SPRA721 INSTRUMENTS

2.8.2

26

During the creation stage, the encoder is set up to encode one or more MBs per call to the
h263EncMB function. The loop is set up to correctly execute this function as often as it needs to
for the entire GOB. For example, if the source format is QCIF, and nMB2proc is set to three,
then for each GOB, the function h263EncMB will be called four times to process 3, 3, 3, and 2
MBs each time.

After every call to the h263EncMB function, the reconstructed MB(s) is/are written to the output
frame by calling the wrRecBuff function, followed by a call to the wrBits function to write out
the bitstream. Once the encoder has processed all the MBs in a GOB, the bytealign function
is used so that the next GBSC is aligned on a byte boundary.

When all of the GOBs in the current frame has been encoded, the last remaining bits are written
to the bitstream buffer, followed by a call to the rcUpdateFrame function to update the
information in the rate control.

The final step involves simply making sure that all the data transfer requests have completed.

Enconding MB (h263EncMB)

The first thing the function needs to know is if the current frame is an I-frame or P-frame. In the
case of an I-frame, each MB is unpacked using the unpackmb function, forward DCT is applied,
followed by quantisation, zigzag scan, and inverse quantisation.

H.263 Encoder: TMS320C6000 Implementation

b TEXAS
INSTRUMENTS

SPRA721

h263EncMB

RepeatnMB2proctimes

| SA | Unpack MP (unpackmb) |(—
[
Forward DCT (fdct) |
[N
| C | Quantize and Zigzagcan (tqziq) |
))

|ASM|

| SA | Encode MCBPC and CBPY (enccbp)|

rdRefC

" Motion Compensation (263EncMC) "

SA|

MB difference (diffmb)

Unpack MB (unpackmb)

|ASM|

Forward DCT (fdct)

TV

| c

| Quantize and Zigzagcan (tqzic) |

))

N

Y

| SA | Encode MCBPC and CBPY (enccbp) |

N
| SA | Encode MVD (encmvd) INTRA?
| Y
<
<
NG
| SA| Encode VLC (encvicl) | @W SA| Encode VLC (encvicl/encvicP) |
[N [
|ASM| Inverse DCT (idctl) | (—|ASM| Inverse DCT (idctl/idctP) |
)]))
| SA | Pack MB (packmb) | | SA | Pack MB (packmb)

Copy MB to output |

|ASM| Add IDCT output (mcAi) |
)
€
Ll
N C | rcUpdateMB |

1

)]

Y

Return

Figure 15. Code Flow — h263EncMB

The figure below shows the bit fields of a value returned by the tqziq function.
31 16 15 8 7 6 5 2 10
Number of symbols 0|0 CBPY CBPC .

31 16 15 8 7

Figure 16. Bit Fields of Value Returned by tgziq

H.263 Encoder: TMS320C6000 Implementation 27

{'? TEXAS

SPRA721 INSTRUMENTS

2.8.3

28

The output from the tqziq function, including CBP and quantised data are passed to the
enccbp and encvicl functions to produce the bitstream; the IDCT is applied to the inverse
quantised data, followed by the packmb function to reconstruct the MB.

Encoding a P-frame involves additional steps, most of which are part of motion estimation. The
particular type of motion estimation currently implemented in the encoder uses a hybrid
matching gradient technique [8].

IDCT kernels for TMS320C6200 and TMS3206400 have been designed specifically for these
families of devices to fully exploit their architectures. For this reason, two separate versions
exist; they are not bit-exact, but are IEEE-1180 compliant.

The TMS320C6200 version of the IDCT, because of its highly optimised nature, has two
flavours: one for INTRA MB (idctl) and another for INTER MB (idctP). The only difference
between these two is the final precision setting. The idctl function outputs unsigned 8-bit
values as signed 16-bit values, with an offset of 128, so the encoder must call the packmb
function to pack and adjust the offsets of the IDCT output.

The TMS320C64x version, however, outputs the results in the identical manner for both INTRA
and INTER MB. Unlike the TMS320C6200 version, a final saturation stage is required for INTRA
MB, before packing the results.

Motion Compensation (h263EncMC)

The code responsible for applying half-pel motion compensation is shown below.

H.263 Encoder: TMS320C6000 Implementation

{9 TEXAS
INSTRUMENTS SPRA721

void h263EncMC(H263EncParam *ep, uchar *d[6])

{
int posRefY, predModeY, predModeC;
uchar offsetY, offsetC, *refMBY, *refMBCb, *refMBCr;
mcFn_t mcfYO, mcfYl, mcfY2, mefY3, mcfCb, mcfCr;

uchar *s0, *sl, *s2, *s3, *s4, *sb;

posRefY = ep—>posRefY;

predModeY = ep—>predModeY; predModeC = ep—>predModeC;
offsetY =ep—>offsetY; offsetC = ep—>offsetC;

refMBY = ep—>refMB;

refMBCb = ep—>refMB+(48*48);

refMBCr = ep—>refMB+(48*48)+(12*9);

mcfY0 = ep—>mcFn[predModeY]; sO = refMBY + posRefY + O0;
mcfY1l = ep—>mcFn[predModeY]; sl =refMBY + posRefY + 8;
mcfY2 = ep—>mcFn[predModeY]; s2 =refMBY + posRefY + 384;
mcfY3 = ep—>mcFn[predModeY]; s3 =refMBY + posRefY + 392;
mcfCb = ep—>mcFn[predModeC]; s4 = refMBCb;

mcfCr = ep—>mcFn[predModeC]; s5 = refMBCr;

mcfY0(s0, d[0], offsetY, 48, 8, 0, NULL);
mcfY1(sl, d[1], offsetY, 48, 8, 0, NULL);
mcfY2(s2, d[2], offsetY, 48, 8, 0, NULL);
mcfY3(s3, d[3], offsetY, 48, 8, 0, NULL);
mcfCb(s4, d[4], offsetC, 12, 8, 0, NULL);
mcfCr(s5, d[5], offsetC, 12, 8, 0, NULL);

For each block, the required motion compensation kernel is selected based on its prediction
mode. Once the appropriate kernels are selected, the code simply calls these kernels. Since all
the kernels have the same API, and any excess arguments are ignored accordingly, they can be
called in an identical manner.

Consider the following example.

H.263 Encoder: TMS320C6000 Implementation 29

SPRA721

{'P TEXAS
INSTRUMENTS

2.9

2.9.1

30

refMB recMB
48 >l

Motion Vector

YO Y1

Y2 Y3

Figure 17. Example of Motion Compensation

The source addresses of YO, Y1, Y2, and Y3 are based on the motion vector determined by the
h263EncME function; the chroma blocks are read in by the rdRefC function, based, also on the
motion vector, and are calculated accordingly.

The motion compensated blocks are stored contiguously, as shown above.

Data Flow

The following sections describe how the encoder moves and processes data.

Frame Buffer

The following figure shows how a frame buffer looks for CIF and QCIF, respectively. 16 bytes of
padding space is allocated at the beginning of the buffer, as well as at the end, to ensure that
DMA/EDMA requests issued by the rdRefY function occur properly, regardless of where the
buffer is placed inside valid memory space. The pixels are stored contiguously, so for QCIF, the
pixels occupy the first 38,016 bytes of the buffer, after the 16-byte padding.

H.263 Encoder: TMS320C6000 Implementation

*ﬁ’ TEXAS
INSTRUMENTS

SPRA721
Padding (16 bytes) Padding (16 bytes)
Y
(176x144)
Cb (88x72)
Cr (88x72)
Y
(352x288)
Cb
(176x144)
Cr
(176x144)
Padding (16 bytes) Padding (16 bytes)

Figure 18. Frame Buffer for CIF and QCIF

2.9.2 Reading Current Data (rdCurBuff)

As mention previously, the h263EncMB function is capable of processing multiple MBs per GOB.
The diagram below illustrates an example of encoding a CIF frame, with nMB2proc equal to six,

and the h263Encode function is bringing in the second set of MBs in the second GOB, prior to
calling the h263EncMB function.

H.263 Encoder: TMS320C6000 Implementation 31

{'f TEXAS
SPRA721 INSTRUMENTS

curY

sliceBuff

Y.

96

A

Y

curCh Ch
Cr

48

e
Y

curCr

Figure 19. Reading Current Data (nBM2proc = 6)

2.9.3 Reading Reference Luma (rdRefY)

The rdRefY function transfers the 48x48 luma data required by the motion estimation from the
reference frame buffer to refMB .

32 H.263 Encoder: TMS320C6000 Implementation

*f’ TEXAS

INSTRUMENTS SPRA721
refY
) refMB
(48x48)
refCbh -
refCr

Figure 20. Reading Reference Luma

2.94 Reading Reference Chroma (rdRefC)

The rdRefC function transfers the chroma data (whose locations are determined from motion
vector return by the motion estimation) from the reference frame buffer to refMB+(48x48)

H.263 Encoder: TMS320C6000 Implementation 33

{'P TEXAS
SPRA721 INSTRUMENTS

refY

Y
(48x48)

refCb

refCr

Figure 21. Reading Reference Chroma

2.9.5 Unpacking Current MB (unpackmb)

The FDCT requires its input data to be unsigned 16-bit values. The unpackmb function simply
expands the byte data into halfwords and stores them contiguously, while at the same time
rearranging the MBs as shown below.

Figure 22. Processing one 8x8 block

34 H.263 Encoder: TMS320C6000 Implementation

*f’ TEXAS

INSTRUMENTS SPRA721
sliceBuff dctBuff
YO Y1 YO
Y2 Y3 Y1l
Cb Y2
Cr Y3
Cb
Cr

Figure 23. Processing One MB

2.9.6 IDCT (idctBuff)

The figures below show how idctBuff ~ looks when IDCT coefficients for all six blocks in a MB
are coded, and when coefficients for only three blocks are coded, for both TMS320C6200 and

TMS320C64x.
CBP = 0x3F (111111) CBP = 0x29 (101001)

YO YO

Y1 Y3

Y2 Cr

Y3 Scratch > 896 bytes
Cb

Cr

Scratch

Figure 24. Examples of Using idctBuff (TMS320C6200)

H.263 Encoder: TMS320C6000 Implementation 35

{"P TEXAS

SPRA721 INSTRUMENTS
CBP = 0x3F (111111) CBP = 0x29 (101001)
YO YO
Y1 Y3
Y2 Cr
768 bytes

Y3

Chb

Cr

J

Figure 25. Examples of Using idctBuff (TMS320C64x)

2.9.7 Packing INTRA MB (packmb)

The encoder uses a highly optimised IDCT kernel that produces signed 16-bit results. For an
INTRA MB, however, it produces signed 8-bit results (with an offset of 128) as signed 16-bit
values that must be packed into unsigned 8-bit values. The packmb function takes signed 16-bit
numbers, extracts the lower 8-bits, and applies XORwith 0x80, which adjusts the offset of 128, to
produce the correct results.

The first figure shows how each block is processed. The second figure shows how an entire MB
is processed. The outer-most loop goes around three times, processing two blocks each time.

16-bit

Figure 26. Processing One 8x8 block (TMS320C6200)

36 H.263 Encoder: TMS320C6000 Implementation

{9 TEXAS
INSTRUMENTS

SPRA721

idctBuff

YO

Y1

Y2

Y3

Cb

Cr

sliceBuff

YO Y1
Y2 Y3
Cb
Cr

Figure 27. Processing One MB (TMS320C6200)

For optimal performance, different IDCT specifically designed for TMS320C64x is used. Unlike

the TMS320C6200 version, this kernel outputs results for INTRA MB without a DC bias,

therefore, simple saturation and packing is all that is required.

The figure below shows how each block is processed.

Figure 28. Processing One 8x8 block (TMS320C64x)

Due to the larger register files, the TMS320C64x version of the packmb function is able to

process all six MBs in parallel.

2.9.8 Writing Reconstructed Data (wrRecBuff)

The wrRecMB function writes the reconstructed MB to the output frame buffer. The diagram
below illustrates an example of encoding a CIF frame, with nMB2proc equal to six, and the
h263Encode function has just completed reconstructing the second set of MBs in the second

GOB.

H.263 Encoder: TMS320C6000 Implementation 37

{"P TEXAS

SPRA721 INSTRUMENTS
outY
sliceBuff
< 96 >
Y
Cb outChb
Cr
< 48 >
outCr

Figure 29. Writing Reconstructed Data

3 Building H.263 Encoder

Sample makefiles h263e6201.mak and h263e6211.mak (for TMS320C6201 and
TMS320C6211/TMS320C6711, respectively) are provided in the mak directory for reference.
Please note that this makefile is not complete and may not be used to build the complete
encoder COFF file. The remainder of this section describes how one can configure the project
makefile to one’s own system.

3.1 Target Device (REQUIRED)
The user must first select the target device.
CHIP_6201: Target device is TMS320C6201/C6202/C6203/C6204/C6205.
CHIP_6211: Target device is TMS320C6211/C6711.

CHIP_6400: Target device is TMS320C64x.

3.2 Other Flags (Optional)

NOPARENT: Do not create parent instance to store encoder tables — allow each child instance
to keep its own copy of the tables. Only h263enc_ti.c has to be compiled with this flag.

RTP: Allocate structure for RTP parameters. Please see Appendix C, Real-time Transport
Protocol for more information.

38 H.263 Encoder: TMS320C6000 Implementation

{9 TEXAS
INSTRUMENTS SPRA721

3.3

ESTATS: Profile the overall encoder performance. Please see Appendix B, Profiling H.263
Encoder for more information.

ESTATS_: Profile individual encoder functions. Please see Appendix B, Profiling H.263 Encoder
for more information.

For files h263enc_ti.c and h263penc_ti.c , an additional “—ml0 ” flag is required, since it
accesses labels that are defined to be of type far .

The encoder is also provided with a set of sample linker command files, which include the
MEMOR#nd SECTIONSdirectives to help with setting up the user’s own linker command file.
The files are named so as to identify the target device. For example, a sample linker command
file for TMS320C6211 is named h263e6211.cmd .

Building

To build the H.263 encoder, one requires a properly installed Code Composer Studio v1.20
(CCS) or above.

* Open CCS, and open the appropriate project file, or open an existing project and add the
necessary files in the src and src6200 or src6400 directories inside both the encoder
and share directories.

* Include the encoder’s inc directory as part of the “Include Search Path”, so that the
application knows about the encoder’s IALG APIs.

* Select a target device and add the symbol to the “Define Symbols”.

e Select a preferred data transfer method and add the symbol to “Define Symbols”, if
necessary.

* Add the “—ml0” flag to h263enc_ti.c and h263penc_ti.c , if using a makefile other than
the sample provided with the release.

* Add the linker command file for the target device, or edit an existing linker command file by
adding the required parts from the sample linker command file.

* Make other changes to the options, including the final COFF file name, map file name, any
external libraries such as an RTS library, etc., and build.

e The default location for the COFF file and the map file is the bin directory.

Please refer to TMS320C6000 Optimizing C Compiler User’s Guide for more information
regarding the different compiler and linker options.

Assumptions and Requirements
The following lists assumptions and requirements for the encoder.

e Baseline H.263 encoder implemented.

* No big endian support for assembly (ASM) and serial assembly (SA) codes. Please refer to
individual source file for more information.

H.263 Encoder: TMS320C6000 Implementation 39

{'f TEXAS
SPRA721 INSTRUMENTS

* The output buffer that is passed to the encoder to store the bitstream must be aligned on a
32-bit boundary.

Other assumptions and/or requirements may apply. Please refer to individual source file for
more information.

References

ITU-T H.263 Video Coding for Low Bit Rate Communication, January 1998.
eXpressDSPU Algorithm Standard Rules and Guidelines (SPRU352), September 1999
Code Composer Studio User’s Guide (SPRU328), 1999

TMS320C62x/C67x CPU and Instruction Set Reference Guide (SPRU189), 1998
TMS320C6000 Peripherals Reference Guide (SPRU190), 1999

TMS320C6000 Chip Support Library API Reference Guide, 2000

TMS320C6000 Optimizing C Compiler User’s Guide (SPRU187), 1999

© N S O A W N R

Zhou, M., Implementation of Hybrid Matching Gradient Motion Estimation for H.263
Real-Time Video Encoding on TI TMS320C6X, 1999

40 H.263 Encoder: TMS320C6000 Implementation

{9 TEXAS
INSTRUMENTS SPRA721

Appendix A Performance

Table A—1 shows the performances of all the kernels used by the encoder. Please note that the
performance numbers for the SA codes may change depending on which release of the
compiler (and which options) is used to build them. The numbers were obtained by compiling the
codes with release 4.00 of the code generation tools, using the following options: “—mtx

—mh256 —03 .
Table A-1. Kernels Performance (TMS320C6200)
Function SA/ASM No. of Cycles Per
bytealign SA 15 Call
diffmb SA 336 MB
encchp SA 25 MB
encmvd SA 39 MB
encvicl SA 10 Symbol
encvicl SA 9 Symbol
fdct ASM 160 Block
idctl ASM 168 Block
idctP ASM 168 Block
mcA ASM 28 Block
mcAi ASM 109 Block
mcB ASM 88 Block
mcC ASM 90 Block
mcD ASM 133 Block
mesad_a SA 256 MB
mesad_b SA 352 MB
mesad_c SA 352 MB
mesad_d SA 384 MB
mesadavg SA 272 MB
packmb SA 192 MB
putbits SA 15 Call
unpackmb SA 192 MB

No specific numbers are available for TMS320C6400 at the time of print.

G.263 Encoder: TMS320C6000 Implementation 41

SPRA721

{'f TEXAS
INSTRUMENTS

Appendix B Profiling H.263 Encoder

The H.263 encoder is equipped with a simple profiling capability that uses the device’s timer via

the CSL TIMER module. To enable this function, specify ESTATSor ESTATS_flag at build time.

Figure B—1 is the structure that the encoder uses to store profiling information (defined in
h263encode.h).

42

<
Y

32 hits

\4

frame

nBits

avgBPF

encoder

dma

avgFPS

maxCPF

minCPF

avgCPF

rdMB

wrMB

avgDMA

Intra

Inter

notCoded

nSymbols

diffmb

enccbp

encmvd

encvic

fdct

idct

mc

me

packmb

tqziq

unpackmb

enckrame

hTimer

Figure B-1.

H.263 Encoder: TMS320C6000 Implementation

Encoder Statistics —

H263EncStats

{f’ TEXAS

INSTRUMENTS SPRA721
Table B-1. Encoder Statistics — H263EncStats
Name Description
frame Number of frames encoded. (Valid with ESTATSand ESTATS)
nBits Total number of bits processed
avgBPF Average number of bits per frame
encoder Total number of TIMER cycles used by the encoder
dma Total number of TIMER cycles used to setup and issue data transfer requests
avgFPS Average frames per second (equals to CPU clock frequency divided by avgCPF)
maxCPF Maximum number of cycles per frame
minCPF Minimum number of cycles per frame
avgCPF Average number of cycles per frame
rdMB Total number of TIMER cycles used by rdRefY and rdRefC
wrMB Total number of TIMER cycles used by wrRecBuff
avgDMA Average number of cycles per frame used by DMA/EDMA
intra Total number of INTRA MB
inter Total number of INTER MB
notCoded Total number of MB that was not coded
nSymbols Total number of symbols coded
diffmb Total number of TIMER cycles used by diffmb
encchp Total number of TIMER cycles used by enccbp
encmvd Total number of TIMER cycles used by encmvd
encvlc Total number of TIMER cycles used by encvicl and encvicP
fdct Total number of TIMER cycles used by fdct
idct Total number of TIMER cycles used by idctl and idctP , or idctIP
mc Total number of TIMER cycles used by h263DecMC, including all the kernels in mc_asm.asm
me Total number of TIMER cycles used by h263DecME
packmb Total number of TIMER cycles used by packmb
tgziq Total number of TIMER cycles used by tgziq
unpackmb Total number of TIMER cycles used by unpackmb
encFrame Number of cycles used by encoder per frame; this is set to 0 before every call
hTimer Handle to the allocated timer through the CSL's TIMER module

The term “TIMER cycles” refers to the value stored in the device’s timer register, as opposed to
the actual CPU cycles. When an internal timer source is selected, every timer tick is equal to
four CPU cycles. This enables the use of the timer for four times as many cycles, before an
overflow can occur. Please refer to TMS320C6000 Peripherals Reference Guide and
TMS320C6000 CSL Support Library APl Reference Guide for more information on how to
configure and use the timer.

H.263 Encoder: TMS320C6000 Implementation 43

{'.f TEXAS

SPRA721 INSTRUMENTS

Please note that although it is possible to specify both ESTATSand ESTATS , and while the
numbers for individual kernels will be accurate, the numbers specific to ESTATSwill be much
larger than they would be if ESTATSwas specified alone. This is due to the fact that by
specifying ESTATS , the overall encoder performance number includes the time taken to record
the kernel performance figures as well. When used separately, however, the overhead
associated with the recording is minimal.

Shown below is an example pseudo code on how to use this feature.

#include <timer.h>
#include <h263encode.h>
far int cpuClock; /* system clock frequency (MHz) */
[* function prototypes for encoder statistics */
#if ((ESTATS) || (ESTATS.))
extern H263EncStats estats; /* defined in h263encode.c */
void encStatsInit(TIMER_HANDLE hTimer);
void encStatsUpdate(H263EncParam *ep);
#endif
void main()
{
TIMER_HANDLE hTimerl; /* timer handle */
uint timerCtl; /* timer control word */
H263EncParam *ep; [* encoder parameters */
uint *stream; /* pointer to bitstream buffer */
hTimerl = TIMER_Open(TIMER_DEV1,NULL);
timerCtl = TIMER_MK_CTL(TIMER_CTL_FUNC_GPIO,
TIMER_CTL_INVOUT_NO,
TIMER_CTL_DATOUT 0,
TIMER_CTL_PWID_ONE,
TIMER_CTL_GO_NO,
TIMER_CTL_HLD_NO,
TIMER_CTL_CP_PULSE,
TIMER_CTL_CLKSRC_CPUOVR4,
TIMER_CTL_INVINP_NO);
[* configure timer */
TIMER_ConfigB(hTimerl, timerCtl, OXFFFFFFFF, 0);
[* start timer */
TIMER_Start(hTimerl);
[* create encoder and decoder instances */
ep = (H263EncParam *)((int)encHandleO+sizeof(IALG_Obj));
while (1)
{
/* execute encoder and decoder */
#if ((ESTATS) || (ESTATS))
/* update encoder statistics */
encStatsUpdate(ep);
#endif

}
}

44

H.263 Encoder: TMS320C6000 Implementation

{f’ TEXAS

INSTRUMENTS

SPRA721r

Figure C-1.

Appendix C Real-time Transport Protocol (RTP)

RTP Parameters — H263RTPParam (Little Endian)

The current implementation of the encoder does not support RTP, although the H263RTPParam
structure (defined in h263.h) exists for future expansion.

< 32 bits >
rtpSRC rtpEBIT rtpSBIT rtpMode
rtpA rtpS rtpyU rtpl
rnpTR rnpTRB rtpDBQ rpR
rtpMBA rpGOBN | rtpQUANT
rtpVMVv2 | rtpHMV2 rtpVMV1 rtpHMVIV1
rtpRR

Table C-1. RTP Parameters — H263RTPParam

Name Description

rtpMode RTP mode (A, B, or C)

rtpSBIT Starting bit position

rtpEBIT Ending bit position

rtpSRC Source format

rtpl Picture coding type

rtpU Unrestricted motion vector option

rtpS Syntax—based arithmetic coding opiton

rtpA Advanced prediction option

rtpR Reserved (must be set to zero)

rtpDBQ Differential quantisation parameter

rtpTRB Temporal reference for the B—frame

rtpTR Temporal reference for the P—frame

rtpQUANT Quantisation value for the first MB in the packet
rtpGOBN GOB number in effect at the start of the packet

rtpMBA MB address within the GOB of the first MB in the packet
rtpHMV1 Horizontal and vertical motion vector predictors for the first MB in the packet
rtpvVmMv1i

rtpHMV2 Horizontal and vertical motion vector predictors for block number 3 in the first MB in the packet
rtpvVMv2

rtpRR Reserved (must be set to zero)

Please refer to the RTP specification for more information.

H.263 Encoder: TMS320C6000 Implementation 45

{'P TEXAS
SPRA721 INSTRUMENTS

Appendix D Testing H.263 Encoder

The encoder has been tested on both TMS320C6201 EVM and TMS320C6211/TMS320C6711
DSK. The following sections describe how the testing was carried out on both platforms.

Figure D—1 shows the setup used to test the encoder on TMS320C6201 EVM.

Display Window (PC) PCI
Host :: TMS320C6201 EVM
Application 1
1]
S——
Input C6201
HD Frames
~] T/
:: External
i Memory
A 1]
Decoder Encoded
(PC) Bitstream
\] T
1]
n

Code Composer
Studio Encoder
(COFF)

Figure D-1. Test Setup on TMS320C6201 EVM

Figure D-2 shows the setup used to test the encoder on TMS320C6211 DSK.

46 H.263 Encoder: TMS320C6000 Implementation

{5’ TEXAS

INSTRUMENTS SPRA721
- n
Video Tl TMS320C6211 DSK
Capture/Display ::
Camera ::
Video Input C6211
Capture Frames
[] " / External
/] n Memory
|]
\(ideo Decoded
Display Frames
NI
n

Code Composer
Studio Encoder
(COFF)

Figure D-2. Test Setup on TMS320C6211 DSK

H.263 Encoder: TMS320C6000 Implementation 47

{'? TEXAS

SPRA721 INSTRUMENTS

48

Appendix E Encoding Custom Resolutions

In the default case, the encoder processes the input frames in the format specified at creation
time. One may initialise a particular encoder to process CIF, or one may even choose to tell the
encoder to switch to one’s own format. This can be achieved simply by modifying the
H263ENC_TI_control function (defined in h263enc_ti.c).

For example, if one decides to encode 320x240 frames, one simply needs to add the following
lines of code to the appropriate portion of the function. The encoder will take care of the rest.
Please note, however, that the decoder must be aware of this change, and modified accordingly
to ensure proper decoding of the bitstream.

case H263_SRCFMT_320x240: nGOB = 15;

nMB = 20;

width = 320;
height = 240;
break;

Please note that the width and height of a frame must be multiples of 16 pixels (the size of one
MB) in order for the encoder to work properly, and it is the user’s responsibility to ensure that
they are.

H.263 Encoder: TMS320C6000 Implementation

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

Tl warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI's publication of information regarding any third
party’s products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright [0 2000, Texas Instruments Incorporated

