
Application Report
SPRA726 - April 2001

1

TMS320C55x Self-check Program: Version 1.0
Caroline L. Rhodes Technical Staff – DSP Applications

ABSTRACT

The TMS320C55x (C55x) self-check program verifies the operation of DSP devices in the
C55x generation by checking for proper operation of the CPU core and internal RAM. On-chip
peripherals are not tested since doing so would be target system dependent. It is important
to note that this program only provides a confidence check. It is not as comprehensive as the
tests done at production, which thoroughly check the device’s logic, performance, and
electrical parameters. While every attempt has been made to provide a compact self-check
program that will exercise as much of the device as possible, this program is not capable of
detecting all potential faults. This application report describes the self-check program and the
methodology used to check C55x instructions.

Contents

1 Introduction 2.
1.1 Scope of the Self-check 2.
1.2 System Requirements 2.

2 Program Files 3.
2.1 How to Call the Self-check Program 3.
2.2 Assembling and Linking the Code 3.
2.3 How to Allocate Memory for the Linker 5.

3 Operations Tested by the Self-check Program 5.
3.1 How the Self-check Program Works 6.
3.2 Preserved Registers 7.
3.3 How the Program is Structured 7.
3.4 Program Options 12.

3.4.1 Calling Routine Lockout Option 13.
3.4.2 Memory Test Options 13.
3.4.3 Test Disable Options 13.

4 Interpreting Error Codes 14.
4.1 The All Tests Passed Code 14.

5 Miscellaneous Program Information 15.

6 Technical Support 16.

TMS320C55x and C55x are trademarks of Texas Instruments.

SPRA726

2 TMS320C55x Self-check Program: Version 1.0

List of Figures

Figure 1. Program Flowchart 8.

List of Tables

Table 1. Opcode Functional Testing by Module 9.
Table 2. List of Test Disable Options 13.
Table 3. Error Codes 14.

1 Introduction

The TMS320C55x (C55x) self-check program verifies the operation of DSP devices in the C55x
generation by checking for proper operation of the CPU core and internal RAM. On-chip
peripherals are not tested since doing so would be target system dependent. It is important to
note that this program only provides a confidence check. It is not as comprehensive as the tests
done at production, which thoroughly check the device’s logic, performance, and electrical
parameters. While every attempt has been made to provide a compact self-check program that
will exercise as much of the device as possible, this program is not capable of detecting all
potential faults. This application report describes the self-check program and the methodology
used to check C55x instructions. The instructions can be arranged into five major categories:

• Arithmetic
• Logical
• Data Management
• Bit Management
• Program Control

1.1 Scope of the Self-check

The C-callable program verifies the operation of most C55x instructions. Several modules are
included to test features of the DSP such as addressing modes, arithmetic operators, bit
manipulation, and register utilization. All data paths and functional units are tested at least once,
but not with every instruction mode. Several bits of the CPU status registers ST0, ST1, ST2, and
ST3 are tested including TC1, TC2, SXMD, RDM, and SATA. System control registers ICR and
ISTR are not tested. Memory block tests are included and can be configured for a particular
system.

1.2 System Requirements

To use the code for the self-check program, you will need the following tools:

• TMS320C55x target board
• Debugger (e.g. Code Composer Studio v1.20 or later)
• Emulator (e.g. XDS510)
• Code Generation Tools for C55x

The code has been tested using C5000 PC Code Composer Studio Code Generation Tools,
version 1.70.

SPRA726

3 TMS320C55x Self-check Program: Version 1.0

2 Program Files
The following files are included in the self-check program:

ALU.ASM Arithmetic operations module
BASIC.ASM Basic operations module including load and store instructions
BIT.ASM Bit manipulation module
CHK55x.ASM Main program control shell
CIRC.ASM Circular addressing module
COND.ASM Branch and basic conditional instructions module
CONTROL.ASM CPU control register manipulation module
FUNC.ASM Module for complex instructions that utilize parallelism
LOGIC.ASM Multi-bit operations module
MEM.ASM Memory check module
MULT.ASM Multiplier operations module
VECTORS.ASM Interrupt Vector Table
USER.C Sample C program that calls the self-check program
CHK55x.CMD Sample linker command file for use with USER.C sample program
CHK55xCCS.CMD Sample Code Composer Studio linker command file
OPTIONS.H Include file containing user selectable options
MAKE.BAT DOS batch file to assemble and link the code from a command prompt

2.1 How to Call the Self-check Program

The self-check program is designed to be callable from C or assembly. The files USER.C and
CHK55x.CMD (or CHK55xCCS.CMD) provide an example of calling the self-check from a
C program. If the self-check passes, it will use register T0 to return a pass code to the calling
routine. If the self-check fails, it will either use register T0 to return an error code to the calling
routine or lock out the calling routine (refer to section 3.4). The C compiler uses register T0 by
convention for return values.

If calling the self-check from C code, use a statement of the form
errorcode = chk55x();

where errorcode has been declared as an unsigned integer. The C language function prototype
for the self-check routine is:
extern unsigned int chk55x();

If calling the self-check routine from assembly code, use the following instruction:
B _chk55x

The leading underbar in _chk55x must be included. This is a standard C-language naming
convention that is required to allow the routine to be called from C code.

2.2 Assembling and Linking the Code

The file MAKE.BAT is a DOS batch file that will assemble, compile, and link the various program
modules using the TMS320C55x Code Generation Tools. It assumes that the self-check
program is being called from the C program USER.C, and uses the linker command file
CHK55X.CMD. The batch file requires that all program files be in the current directory. The
TMS320C55x Code Generation Tools must also be in the current directory or listed in the DOS
path. The MAKE.BAT batch file is as follows:

SPRA726

4 TMS320C55x Self-check Program: Version 1.0

cl55 –gs –als vectors.asm

cl55 –gs –als chk55x.asm

cl55 –gs –als basic.asm

cl55 –gs –als control.asm

cl55 –gs –als logic.asm

cl55 –gs –als alu.asm

cl55 –gs –als mult.asm

cl55 –gs –als func.asm

cl55 –gs –als bit.asm

cl55 –gs –als cond.asm

cl55 –gs –als circ.asm

cl55 –gs –als mem.asm

cl55 –gs –als user.c

cl55 –z chk55x.cmd

The cl55 command invokes the assembler, compiler, or the linker. Files with the .ASM extension
are processed by the assembler to create COFF objects. Files with the .C extension are run
through the compiler to create assembly code. The following options were used in the batch file
for compiling and assembling source code:
–g Enables src-level debugging

Assembler only option:
–als Creates assembler listing file and retains asm symbols for debugging

Compiler only option:
–s Interlist C and assembly source code

To run the linker, the cl55 command must be accompanied by the –z option and a linker
command file with the .CMD extension. The command file specifies the linker objects and
memory mapping at a minimum. Contents of the linker command file are described below:
xxxxx.obj Object filenames to be linked

–o chk55x.out Specifies the output filename

–m chk55x.map Specifies the map filename

–c Indicates that variables will be autoinitialized at runtime

–stack 1000 Specifies stack size

–sysstack 1000 Specifies system stack size

–l C:\ti\c5500\cgtools\lib\rts55.lib Links in the appropriate run-time support
library included with the C compiler utility

MEMORY{ } Sets up the memory map

SECTIONS{ } Defines section locations

The USER.C and CHK55X.CMD files should be replaced or modified for your specific
application. If you change the filenames, you will need to update the batch file MAKE.BAT, or
create a new batch file similar to the one shown above. When calling the self-check from
assembly, you will need to remove the options in the linker command file for initializing the
C environment.

SPRA726

5 TMS320C55x Self-check Program: Version 1.0

You can also build the self-check program in Code Composer Studio. The first step is to create a
new project and add the C, assembly, and header files described in section 2. Then include the
linker command file CHK55xCCS.CMD and the run time support library rts55.lib.
CHK55xCCS.CMD only specifies the MEMORY{ } and SECTIONS{ } definitions, so you must
select linker options using the appropriate Code Composer Studio menus. Compiler and
assembler options are selected in the same manner. Code Composer Studio will save the
project in a file with the MAK extension. When you are finished creating your project, you can
build and download the output file to your target board. See Code Composer Studio User’s
Guide for more details. Again, the USER.C and CHK55xCCS.CMD files can be modified or
replaced.

2.3 How to Allocate Memory for the Linker

The self-check program destructively overwrites all RAM locations that it either tests or uses.
These include on-chip memory blocks and all optionally tested memory. Programs should not be
loaded, nor any data sections initialized in tested RAM locations prior to running the self-check.
All data loaded in the tested sections will be lost. Here are several suggestions for allocating and
running the self-check:

• Link and run all code from external RAM (or ROM), and do not exercise the RAM tests on
the used sections of memory.

• Link and run all code from internal RAM, and disable the RAM tests on the used sections of
memory.

• If running the self-check as auxiliary support for some other primary application program,
one option is to run the self-check using one of the two linker methods mentioned above
before bootloading your code and initializing your data. This will require you to modify your
bootloader.

3 Operations Tested by the Self-check Program

The self-check is used to demonstrate proper operation of most TMS320C55x instructions and
operating modes. The following types of instructions and modes are tested:

• Arithmetic operations, including complex instructions such as LMS and FIRSADD

• Bit manipulation operations

• Extended auxiliary register operations

• Logical operations

• Move operations, including CPU register and stack manipulations

• Program control operations

• Linear and circular addressing

• Memory-mapped register access, using the mmap qualifier

SPRA726

6 TMS320C55x Self-check Program: Version 1.0

Several instructions are tested under multiple conditions by varying the number and type of
operands. This is intended to rigorously test the memory interface, instruction buffer, program
flow, address-data flow, and data computation units of the CPU. In addition, internal and external
RAM can optionally be tested. Since memory sizes and locations can vary amongst the different
TMS320C55x devices, these parameters can be changed prior to running the self-check.

Exceptions to the self-check include testing peripherals, 40-bit operations, coprocessor
hardware invocations, forms of parallelism not explicitly identified in the instruction set, and IDLE
and NOP conditions. If peripheral testing is desired, a module could be created similar to those
included in the self-check program. This module must be specific to a particular device since the
on-chip peripherals vary for each member of the C55x generation. Also, no interrupts are tested
nor will any maskable interrupts be serviced during self-check execution (interrupts are
disabled). Finally, although the C55x device supports the TMS320C54x instruction set, the
self-check will only test those instructions specific to the C55x.

3.1 How the Self-check Program Works

The self-check program tests the CPU by exercising several functional units and then verifying
the correct result. When an incorrect result occurs, the program loads an unsigned error code
into register T0, and then returns to the assembly calling routine, _chk55x. Once in this routine,
the program can either return the error code to the calling C program (USER.C) or lock itself out
from further execution (as specified in OPTIONS.H).

Internal and external data RAM is tested using a checkerboard pattern. The test first sets every
other bit in each memory location, and then reads the data back to determine if an error
occurred. If no errors are detected, then every bit in memory is inverted from a 0 to a 1 or vice
versa. Again, the same check is performed to determine if the bits can be set or cleared. The
memory tests can be configured to specify starting addresses and block sizes. See section 3.4
for more details on changing these parameters and enabling or disabling memory tests.

CHK55x.ASM functions as the main control shell for the program and calls each test module
passing it a pointer to a table of known values. In most cases, the table arguments are used as
input operands to the instructions. Since the arguments are known, expected results can be
determined and compared with the actual results. Immediate values are also used for some
tests, rather than the table. Again, the arguments are known, so the results can be checked for
errors. Refer to the following section of code for an example of how a specific instruction is
tested:

TMS320C54x is a trademark of Texas Instruments.

SPRA726

7 TMS320C55x Self-check Program: Version 1.0

;***

;* Arguments passed to routine *

;* *

;* AR2 –> temp_0 *

;* temp_0(0) = AAAAh *

;* temp_0(1) = 5452h *

;* temp_0(2) = 5200h *

;* temp_0(3) = 5555h *

;* temp_0(4) = 3333h *

;* temp_0(5) = 2222h *

;***

; test load to auxiliary register using indirect addressing

MOV *AR2,AR5 ; AR5 = temp_0(0) = AAAAh

SUB *AR2,AR5,AC0 ; AC0 = *AR2 – AR5

BCC ERR1, AC0!=#0 ; ERROR, if AC0 != 0

B end_basic

ERR1:

MOV #11h,T0 ; LOAD FAIL CODE

B end_basic ; Accumulator, Auxiliary, or Temporary

; Register Load

end_basic: RET

This example tests the MOV instruction for loading a value into an auxiliary register. In the first
instruction, the test value is loaded into AR5 using indirect addressing. Since AR2 is pointing to
the first value in the table temp_0, AAAAh is loaded into AR5. To be sure that the correct value
was loaded, AAAAh is subtracted from AR5 and the result is stored in AC0. If AC0 is not 0, then
the test failed and an error code is placed in T0. When the test is complete, the module returns
to the main control shell.

3.2 Preserved Registers

Since the self-check is C-callable, it must save the context of certain registers upon entry and
restore them before returning to the main calling routine. The registers that are preserved on the
stack are AR5, AR6, AR7, T2, and T3. Several other status registers are never modified by the
self-check and, therefore, can be considered preserved. These registers include DBIER0–1,
IER0–1, IFR0–1, IVPD, IVPH, ICR, and ISTR.

3.3 How the Program is Structured

The self-check code is organized into ten modules each containing test routines for similar
functional instructions. For example, ALU.ASM includes tests for both the addition (ADD) and
subtraction (SUB) instructions. Each module is called in a specific order by the main control shell
found in CHK55x.ASM. If an error is found in a particular module, the program will return to the
main control shell with an error code. At that point, the program returns to the calling routine with
an error code loaded in T0 or locks itself out from further execution. If all tests pass, the next
module is called. Figure 1 below illustrates the program flow in a C environment.

SPRA726

8 TMS320C55x Self-check Program: Version 1.0

Branch to _c_int00 as
specified in

VECTORS.ASM

C environment calls
user’s program

[main()]

main() calls main control
shell for self-check routine

[_chk55x]

_chk55x calls each module
and returns to main() with a

pass or fail code loaded in T0

T0 = PASS/FAIL CODE

Figure 1. Program Flowchart

In most cases, an instruction is tested before it is used (hence the significance of the module
calling order in CHK55x.ASM). It is not possible to employ this method for all instructions since
some are required for basic operation. Instructions that are frequently used throughout the
self-check routine such as move (MOV) and conditional branch (BCC) are tested in the first
module, BASIC.ASM. The following list indicates the order in which the modules are called:

• BASIC.ASM
• CONTROL.ASM
• LOGIC.ASM
• ALU.ASM
• MULT.ASM
• FUNC.ASM
• BIT.ASM
• COND.ASM
• CIRC.ASM
• MEM.ASM

Table 1 identifies which instructions are tested by the self-check routine and where their
associated test routines can be found.

SPRA726

9 TMS320C55x Self-check Program: Version 1.0

Table 1. Opcode Functional Testing by Module

Opcode/Module
Name Basic Control Logic ALU Mult Func Bit Cond Circ Mem

Not
Tested

AADD �

ABDST �

ABS �

ADD �

ADD::MOV �

ADDSUB �

ADDSUB2CC �

ADDSUBCC �

ADDV �

AMAR �

AMAR::MAC �

AMAR::MAS �

AMAR::MPY �

AMOV �

AND �

ASUB �

B �

BAND �

BCC �

BCLR �

BCNT �

BFXPA �

BFXTR �

BNOT �

BSET �

BTST �

BTSTCLR �

BTSTNOT �

BTSTP �

BTSTSET �

SPRA726

10 TMS320C55x Self-check Program: Version 1.0

Table 1. Opcode Functional Testing by Module (Continued)

Opcode/Module
Name

Not
TestedMemCircCondBitFuncMultALULogicControlBasic

CALL �

CALLCC �

CMP �

CMPAND �

CMPOR �

DELAY �

DMAXDIFF �

DMINDIFF �

EXP �

FIRSADD �

FIRSSUB �

IDLE �

INTR �

LMS �

MAC �

MAC::MAC �

MAC::MPY �

MACK �

MACM �

MACM::MOV �

MACMK �

MANT::NEXP �

MAS �

MAS::MAC �

MAS::MAS �

MAS::MPY �

MASM �

MASM::MOV �

MAX �

MAXDIFF �

SPRA726

11 TMS320C55x Self-check Program: Version 1.0

Table 1. Opcode Functional Testing by Module (Continued)

Opcode/Module
Name

Not
TestedMemCircCondBitFuncMultALULogicControlBasic

MIN �

MINDIFF �

MOV � �

MOV::MOV �

MPY �

MPY::MPY �

MPYK �

MPYM �

MPYM::MOV �

MPYMK �

NEG �

NOP �

NOT �

OR �

POP �

POPBOTH �

PSH �

PSHBOTH �

RESET �

RET �

RETCC �

RETI �

ROL �

ROR �

ROUND �

RPT �

RPTADD �

RPTB �

RPTBLOCAL �

RPTCC �

SPRA726

12 TMS320C55x Self-check Program: Version 1.0

Table 1. Opcode Functional Testing by Module (Continued)

Opcode/Module
Name

Not
TestedMemCircCondBitFuncMultALULogicControlBasic

RPTSUB �

SAT �

SFTCC �

SFTL �

SFTS �

SFTSC �

SQA �

SQAM �

SQDST �

SQR �

SQRM �

SQS �

SQSM �

SUB �

SUB::MOV �

SUBADD �

SUBC �

SWAP �

SWAP4 �

SWAPP �

TRAP �

XCC �

XCCPART �

XOR �

3.4 Program Options

The OPTIONS.H file allows you to select the modules you would like to test and specify several
other program features. All changes to these variables must be made prior to compiling and
linking the program. The following sections describe the program options and corresponding
variables.

SPRA726

13 TMS320C55x Self-check Program: Version 1.0

3.4.1 Calling Routine Lockout Option

If the self-check fails, the program will return an error code to the calling routine or enter an
endless loop as specified by the lockout option. When the lockout option is turned on,
LOCKOUT = 1, only a system reset or a non-maskable interrupt will regain control over a failed
device. If the self-check passes, the program will always return to the calling routine regardless
of the value of LOCKOUT. The default value for LOCKOUT is 0, or disabled.

3.4.2 Memory Test Options

The MEM module can be configured to test specific blocks of internal and external memory.
Nine memory tests have been included, and can be expanded if desired. Each test has an
enable flag and variables to specify the starting address and block length. To enable the
individual tests, set their associated flag, MEMBLKx (x refers to the specific test block), to 1.
Setting the flag to 0 will disable the test. The user must also provide valid starting addresses
(RAMSTx) and block lengths (RAMLNx) for the memory blocks tested. Failure to do so will
produce erroneous results.

CAUTION:
Be aware that the test is destructive and will overwrite all program code and data in the
memory sections you specify. The default options disable all memory tests.

3.4.3 Test Disable Options

Any of the ten test modules can be disabled by setting the appropriate flag in the OPTIONS.H
file prior to compiling and linking the program. Table 2 describes the flag variables used for this
feature. Each flag is checked in the CHK55X.ASM module before running the associated test. If
a test is disabled, the self-check skips it and moves on to the next test.

Table 2. List of Test Disable Options

Option Function

TEST_BA To disable BASIC test, set equal to 0.

TEST_CT To disable CONTROL test, set equal to 0.

TEST_LO To disable LOGIC test, set equal to 0.

TEST_AL To disable ALU test, set equal to 0.

TEST_MU To disable MULT test, set equal to 0.

TEST_FN To disable FUNC test, set equal to 0.

TEST_BI To disable BIT test, set equal to 0.

TEST_CO To disable COND test, set equal to 0.

TEST_CI To disable CIRC test, set equal to 0.

TEST_ME To enable MEM test, set equal to 1.

SPRA726

14 TMS320C55x Self-check Program: Version 1.0

4 Interpreting Error Codes
Table 3 lists all possible error codes that the self-check can return. It also gives the name of the
module that generates the error code. It is important to note that the code descriptions identify
only potential causes of the error. They should not be taken as absolute. Any number of actual
malfunctions could generate a particular error code. For example, a bad memory location would
cause every test using it to fail.

A tradeoff exists between code length and the number of possible error codes. A large number
of codes provides more detailed error information to the user, but increases the length of the
code. In this program the number of error codes has been kept moderate. In addition, the
self-check program aborts execution at the first such error code that is generated. This program
design is based on the belief that any self-check error brings into question the reliability of the
device. Therefore, use of the failed C55x device will be discontinued regardless of the type of
error (or number of errors) that may be present.

4.1 The All Tests Passed Code

If no errors are found in any of the modules, the self-check returns a pass code of 0FFh in
register T0. This register is loaded after all tests have been completed, and just before returning
to the calling program. See module CHK55X.ASM for more details.

Note: Failure to obtain the pass code, 0FFh, upon completion of the self-check indicates that an
error is present.

Table 3. Error Codes

Code Description Module

11h Load error [MOV Smem/K16 to Accumulator, Auxiliary, or Temporary Register] or
Conditional branch error [BCC Lx, cond]

BASIC

12h Move between registers error [MOV src, dst] BASIC

13h Swap register content error [SWAP Accumulator, Auxiliary, or Temporary Registers] BASIC

14h Store error [MOV Accumulator, Auxiliary, or Temporary Register to Smem] BASIC

15h Memory to Memory Move/Initialization error [MOV Smem/K Smem] BASIC

21h Specific CPU register load or store error CONTROL

22h Push to top of stack/Pop from top of stack error [PSH src, POP src] CONTROL

31h Logical instructions error [OR, XOR, AND, etc.] LOGIC

32h Shift instructions error LOGIC

41h Saturation or Round instruction error [SAT or ROUND] ALU

42h Negate or Absolute Value instruction error [NEG or ABS] ALU

43h Addition instruction error [ADD] ALU

44h Subtraction instruction error [SUB] ALU

45h Conditional Addition/Subtraction instruction error [ADDSUBCC] ALU

46h Register Comparison instruction error [CMP, CMPAND, CMPOR] ALU

SPRA726

15 TMS320C55x Self-check Program: Version 1.0

Table 3. Error Codes (Continued)

Code ModuleDescription

51h Multiply instruction error [MPY, SQR] MULT

52h Multiply and Accumulate instruction error [MAC, SQA, etc.] MULT

53h Multiply and Subtract instruction error [MAS, SQS, etc.] MULT

54h Dual Multiply and Accumulate/Subtract instruction error MULT

55h Implied Parallel instruction error [MPYM || MOV, MACM || MOV, MASM || MOV] MULT

61h Absolute Distance, Maximum/Minimum instruction error [ABDST, MAX, MIN, etc.] FUNC

62h Normalization instruction error [MANT || NEXP, EXP] FUNC

63h Square Distance, LMS, and FIRS instruction error FUNC

71h Bit Compare, Extract, and Expand instruction error [BAND, BFXTR, BFXPA] BIT

72h Memory Bit Test/Set/Clear/Not instruction error [BTST, BSET, BCLR, etc.] BIT

73h Register Bit Test/Set/Clear/Not instruction error BIT

74h Status Bit Set/Clear instruction error BIT

81h Conditional Branch, Call, or Execute instruction error [BCC, CALLCC, XCC] COND

82h Repeat Single instruction error [RPT] COND

83h Repeat Block instruction error [RPTBLOCAL] COND

91h Circular Addressing error CIRC

A1h Memory error for MEMBLK1 MEM

A2h Memory error for MEMBLK2, MEMBLK3, MEMBLK4, and MEMBLK5 MEM

A3h Memory error for MEMBLK6, MEMBLK7, MEMBLK8, and MEMBLK9 MEM

5 Miscellaneous Program Information

• The program may be single-stepped through, if desired.

• Verify the memory map of your TMS320C55x target system before loading the program.
Changes to the memory map can be made in the linker command file.

• The ARMS mode bit (bit 15 of ST2) is cleared to 0 by the self-check program. This bit affects
indirect addressing functionality.

• When using the memory check found in module MEM, be sure to configure each test for the
appropriate starting address and block length. All parameters are set in the OPTIONS.H file
prior to compiling and linking the program.

• Although maskable interrupts are disabled, interrupt flag register bits will still be set if an
interrupt occurs. Any pending interrupts will be serviced once the self-check returns to the
calling program and the INTM bit is cleared.

SPRA726

16 TMS320C55x Self-check Program: Version 1.0

6 Technical Support

Technical support may be obtained from the Texas Instruments DSP Hotline:

Telephone: (972) 644-5580

Email: dsph@msg.ti.com

World Wide Web Page: http://www.ti.com

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products
or services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service,
is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2001, Texas Instruments Incorporated

