
Application Report
SPRA778 - September 2001

1

DSP/BIOS Timing Benchmarks on the TMS320C6000/
TMS320C54x DSPs for Code Composer Studio 2.0

Shawn Dirksen Software Development Systems

ABSTRACT

This document describes each of the DSP/BIOS performance benchmarks and the
accompanying results, followed by a technique used for calculating overall system
performance or overhead. To help designers better analyze their system performance, the
methodology used has been detailed for obtaining each of the benchmarks, along with the
number of CPU cycles to execute each of the DSP/BIOS functions. The designers can then
compute the sum of these components and the frequency of occurrence to determine the
total system performance for their application.

Contents

1 DSP/BIOS Timing Benchmarks 2.
1.1 LOG – Log Benchmarks 2.
1.2 STS – Statistics Benchmarks 2.
1.3 TSK – Task Yield Benchmarks 2.
1.4 SEM – Semaphore Benchmarks 3.
1.5 SWI – Software Interrupt Benchmarks 3.
1.6 HWI – Hardware Interrupt Benchmarks 4.
1.7 MBX – Mailbox Benchmarks 5.
1.8 PIP – Pipe Benchmarks 6.

2 DSP/BIOS Timings 6.
2.1 TMS320C6000 DSP Benchmark Results 6.
2.2 TMS320C54x DSP Benchmark Results 8.

3 Calculating System Performance 9.

4 References 10.

List of Figures

Figure 1. Task Yield Benchmarks 2.
Figure 2. Semaphore Benchmarks 3.
Figure 3. Post of Semaphore Task Switch 3.
Figure 4. Software Interrupt Benchmarks 3.
Figure 5. Post of Software Context Switch 4.
Figure 6. Hardware Interrupt to Blocked Task 4.

DSP/BIOS is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

SPRA778

2 DSP/BIOS Timing Benchmarks on the TMS320C6000/

Figure 7. Hardware Interrupt to Software Interrupt 5.

Figure 8. Mailbox Benchmarks 5.

Figure 9. Post of a Mailbox With Context Switch 5.

List of Tables

Table 1. Benchmark Results 6.

Table 2. Benchmark Results 8.

1 DSP/BIOS Timing Benchmarks

DSP/BIOS functions have been described along with the approach taken to measure each
performance benchmark.

1.1 LOG – Log Benchmarks

LOG_event. This is the execution time of a LOG_event function call, which is used to append an
unformatted message to an event log.

LOG_printf. This is the execution time of a LOG_printf function call, which is used to append a
formatted message to an event log. The execution time of the function is not dependent on the
number of arguments specified in the function call.

1.2 STS – Statistics Benchmarks

STS_add. This is the execution time of a STS_add function call, which is used to update the
total, count, and max fields of a statistics object.

STS_delta. This is the execution time of a STS_delta function call, which is used to update a
statistics object, using the difference between a provided value and a previous set point value.

STS_set. This is the execution time of a STS_set function call, which is used to set the previous
value for a statistics object.

1.3 TSK – Task Yield Benchmarks

TSK_yield. This is a measurement of the elapsed time between a function call to TSK_yield
(which causes preemption of the current thread yielding control of the processor), and the
execution of the next instruction in a currently blocked task of equal priority, as shown in Figure 1.

Task 1 executing Task 2 executingTSK_yield TSK Context Switch

Task yieldTime

Figure 1. Task Yield Benchmarks

SPRA778

3 DSP/BIOS Timing Benchmarks on the TMS320C6000/

1.4 SEM – Semaphore Benchmarks

The semaphore benchmarks measure the time interval between the issuance of a post
(SEM_post) or pend (SEM_pend) function call and the resumption of task execution, both with
and without a context switch. The results are independent of task priority, an inherent
characteristic of the DSP/BIOS kernel that makes it ideal for signal-processing applications that
require predictable, consistent real-time response.

Post of a Semaphore, no context switch. This is a measurement of a SEM_post function call,
when the posted task is not higher-priority than the currently running TSK, and no preemption
occurs, as shown in Figure 2.

Task 1 executing Task 1 executingSEM_post

Time
Post Semaphore

Figure 2. Semaphore Benchmarks

Post of a Semaphore, with context switch. This is a measurement of the elapsed time between a
function call to SEM_post (which causes preemption of the current task), and the execution of
the first instruction in the higher-priority task, as shown in Figure 3.

Task 1 executing Task 2 executingSEM_post TSK Context Switch

Time Post Semaphore, Task Switch

Figure 3. Post of Semaphore Task Switch

Pend of a Semaphore, no context switch. This is a measurement of a SEM_pend function call
without a context switch.

Pend of a Semaphore, with context switch. This is a measurement of the elapsed time between
a function call to SEM_pend (which causes preemption of the current task), and the execution of
the higher-priority task.

1.5 SWI – Software Interrupt Benchmarks

Post of Software Interrupt, no context switch. This is a measurement of a SWI_post function call,
when the posted software interrupt is not higher priority than the currently running SWI, and no
preemption occurs. See Figure 4.

SWI 1 executing SWI 1 executingSWI_post

Time

Software Interrupt Post

Figure 4. Software Interrupt Benchmarks

SPRA778

4 DSP/BIOS Timing Benchmarks on the TMS320C6000/

Post of Software Interrupt, with context switch. This is a measurement of the elapsed time
between a function call to SWI_post (which causes preemption of the current thread), and the
execution of the first instruction in the higher-priority software interrupt, as shown in Figure 5.
The context switch for SWI 2 is performed within the SWI executive, and this time is included
within the measurement.

SWI 1 executing SWI 2 executingSWI_post SWI Context Switch

Time

Post Software Interrupt, Context Switch

Figure 5. Post of Software Context Switch

1.6 HWI – Hardware Interrupt Benchmarks
These benchmarks exhibit the interrupt latency typical of most interrupt processing applications
independent of a kernel being used. The interrupt latency provides a useful measure of worst-case
interrupt response, but does not reflect the scheduling capability of the DSP/BIOS kernel (launching
threads to perform background processing for the ISR). This is further demonstrated in the
Hardware Interrupt to Software Interrupt and the Hardware Interrupt to Blocked Task benchmarks.

Interrupt prolog. This is a measurement of the execution time of an HWI_enter macro call.
HWI_enter must be called in an ISR prior to any DSP/BIOS API calls that can post or affect a
software interrupt (SWI). The execution time of the HWI_enter macro depends upon the list of
registers to be saved for the ISR, as defined in masks specified by the user. This benchmark
shows the minimum execution time for the prolog, with no registers saved.

Interrupt prolog for calling C function. This measurement is similar to the previous (interrupt
prolog), but in this case the time shown in the data sheet corresponds to all C caller-preserved
registers being saved, so that a C function can be called from the assembly stub.

Interrupt epilog. This is a measurement of the execution time of an HWI_exit macro call.
HWI_exit must be the last statement of any ISR that calls HWI_enter. The execution time of
HWI_exit depends upon the list of registers the user specifies to be restored. This benchmark
shows the minimum execution time for the epilog, with no registers restored, and no
higher-priority SWIs posted in the ISR (i.e., following the ISR, execution resumes with the thread
that was preempted by the hardware interrupt).

Interrupt epilog following C function call. This measurement is similar to the previous (Interrupt
epilog), but in this case the time shown in the data sheet corresponds to all C caller-preserved
registers being restored, with no higher-priority SWIs posted in the ISR.

Hardware Interrupt to Blocked Task. This is a measurement of the elapsed time from the start of
an ISR that posts a semaphore, to the execution of the blocked task, as shown in Figure 6.

TSK Context SwitchTask 1 executing HWI_enter SEM_ipost HWI_exit Task 2 executing

Interrupt asserted

Interrupt to Block TaskTime

Figure 6. Hardware Interrupt to Blocked Task

SPRA778

5 DSP/BIOS Timing Benchmarks on the TMS320C6000/

Hardware Interrupt to Software Interrupt. This is a measurement of the elapsed time from the
start of an ISR that posts a software interrupt, to the execution of the first instruction in the
posted software interrupt, as shown in Figure 7.

SWI 2 executing HWI_enter SWI_post HWI_exit SWI 3 executing

Time

SWI Context Switch

Interrupt
asserted

Interrupt to Software Interrupt

Figure 7. Hardware Interrupt to Software Interrupt

In Figure 7, SWI 3 has a higher priority than SWI 2, so SWI 2 is preempted. The context switch for
SWI 3 is performed within the SWI executive, and this time is included within the measurement. In
this case, the registers saved/restored by HWI_enter/HWI_exit are only those modified by the
SWI_post assembly macro.

Interrupt Latency. This is the maximum latency time during which the DSP/BIOS kernel disables
maskable interrupts.

1.7 MBX – Mailbox Benchmarks

Post of a mailbox, no context switch. This is a measurement of a MBX_post function call when
the posted mailbox copies a message into the unfilled mailbox, and no higher-priority task is
pending on the mailbox. See Figure 8.

Task 1 executing Task 1 executingMBX_post

Time
Post Mailbox

Figure 8. Mailbox Benchmarks

Post of a mailbox, with context switch. This is a measurement of the elapsed time between a
function call to MBX_post (which causes preemption of the current task), and a context switch to
a higher-priority task pending on the mailbox. See Figure 9.

TSK Context SwitchTask 1 executing Task 2 executing

Time

MBX_post

Post Mailbox, Task Switch

Figure 9. Post of a Mailbox With Context Switch

Pend of a mailbox, no context switch. This is a measurement of a MBX_pend function call when
the unfulfilled pending mailbox copies a message, and no higher-priority task is pending on the
mailbox.

Pend of a mailbox, with context switch. This is a measurement of the elapsed time between a
function call to MBX_pend (which causes preemption of the current task) if the mailbox is empty
or a higher-priority task is blocked on a MBX_post.

SPRA778

6 DSP/BIOS Timing Benchmarks on the TMS320C6000/

1.8 PIP – Pipe Benchmarks

NOTE: Each of the following pipe benchmarks includes the execution time of a minimal
notifyWriter (or notifyReader) C function call, i.e., a function that just does a return, but is
considered to have modified all C caller-preserved registers.

PIP_alloc. This is the execution time of a PIP_alloc function call, which is used to allocate an
empty frame from a pipe.

PIP_free. This is the execution time of a PIP_free function call, which is used to recycle a frame
back into a pipe.

PIP_get. This is the execution time of a PIP_get function call, which is used to get a full frame
from a pipe.

PIP_put. This is the execution time of a PIP_put function call, which is used to put a full frame
into a pipe.

2 DSP/BIOS Timings

2.1 TMS320C6000 DSP Benchmark Results

This data contains timing information of the DSP/BIOS kernel for TMS320C6000 digital signal
processors. These timings apply to the floating-point processor as well.

Environment Testing Platform: TMS320C6201 EVM, using internal memory for both code and data.

Software: DSP/BIOS version 4.51, built with TI Code Generation Tools, version 4.10.

Table 1. Benchmark Results for C6000 DSPs

Non-Instrumented
CPU Cycles

Non-Instrumented†

Time (usec)
at 100 MHz‡

Instrumented
CPU Cycles

Instrumented
Time (usec)
at 100 MHz‡

LOG Operations

LOG_event 30 0.150 30 0.150

LOG_printf 36 0.18 36 0.180

Statistics Operations

STS_set 12 0.060 12 0.060

STS_add 15 0.075 15 0.075

STS_delta 21 0.105 21 0.105

† These timings were performed using the non-instrumental and instrumental kernel. Refer to DSP/BIOS Sizing Guidelines in Code Composer
Studio 2.0 (SPRA772) for details regarding scaling and code size of DSP/BIOS.

‡ For a 200 MHz C6201 processor, the CPU cycle period is 5 nanoseconds.
§ These measurements relate to the DSP/BIOS assembly language API, not the C language API.

TMS320C6000 is a trademark of Texas Instruments.

SPRA778

7 DSP/BIOS Timing Benchmarks on the TMS320C6000/

Table 1. Benchmark Results for C6000 DSPs (Continued)

Instrumented
Time (usec)
at 100 MHz‡

Instrumented
CPU Cycles

Non-Instrumented†

Time (usec)
at 100 MHz‡

Non-Instrumented
CPU Cycles

Task Yield

TSK_yield 232 1.160 336 1.680

Semaphores

Post semaphore, no task switch 173 0.865 259 1.295

Post semaphore, task switch 279 1.395 429 2.145

Pend semaphore, no task switch 149 0.745 200 1.000

Pend semaphore, task switch 267 1.335 382 1.910

Software Interrupts (SWIs)

Post of software interrupt,
no context switch

120 0.600 120 0.600

Post of software interrupt,
with context switch

243 1.215 249 1.245

Hardware Interrupts (HWIs)§

Interrupt prolog (minimum) 33 0.165 33 0.165

Interrupt prolog for calling C function 41 0.205 41 0.205

Interrupt epilog (minimum) 37 0.185 37 0.185

Interrupt epilog following C function call 49 0.245 49 0.245

Hardware interrupt to blocked task 731 3.655 871 4.355

Hardware interrupt to software interrupt 288 1.44 294 1.470

Interrupt latency 88 0.44 92 0.460

Mailboxes

Post mailbox, no task switch 421 2.105 558 2.790

Post mailbox, task switch 780 3.900 1066 5.330

Pend mailbox, no task switch 424 2.120 560 2.800

Pend mailbox, task switch 276 1.380 391 1.955

Pipe Operations

PIP alloc 96 0.480 96 0.480

PIP free 93 0.465 93 0.465

PIP get 96 0.48 96 0.480

PIP put 95 0.475 95 0.475

† These timings were performed using the non-instrumental and instrumental kernel. Refer to DSP/BIOS Sizing Guidelines in Code Composer
Studio 2.0 (SPRA772) for details regarding scaling and code size of DSP/BIOS.

‡ For a 200 MHz C6201 processor, the CPU cycle period is 5 nanoseconds.
§ These measurements relate to the DSP/BIOS assembly language API, not the C language API.

SPRA778

8 DSP/BIOS Timing Benchmarks on the TMS320C6000/

2.2 TMS320C54x DSP Benchmark Results

This data contains timing information of the DSP/BIOS kernel for TMS320C54x digital signal
processors.

Environment Testing Platform: TMS320C5410 EVM, using internal memory for both code and data.

Software: DSP/BIOS version 4.51, built with TI Code Generation Tools, version 3.70.

Table 2. Benchmark Results for C54x DSPs

Non-Instrumented
CPU Cycles

Non-Instrumented†

Time (usec)
at 100 MHz‡

Instrumented
CPU Cycles

Instrumented
Time (usec)
at 100 MHz‡

LOG Operations

LOG_event 61 0.61 61 0.61

LOG_printf 61 0.61 61 0.61

Statistics Operations

STS_set 20 0.20 20 0.20

STS_add 43 0.43 43 0.43

STS_delta 49 0.49 49 0.49

Task Yield

TSK_yield 281 2.81 365 3.65

Semaphores

Post semaphore, no task switch 180 1.80 244 2.44

Post semaphore, task switch 360 3.60 482 4.82

Pend semaphore, no task switch 176 1.76 218 2.18

Pend semaphore, task switch 371 3.71 454 4.54

Software Interrupts (SWIs)

Post of software interrupt,
no context switch

98 0.98 98 0.98

Post of software interrupt,
with context switch

246 2.46 246 2.46

† These timings were performed using the non-instrumental and instrumental kernel. Refer to DSP/BIOS Sizing Guidelines in Code Composer
Studio 2.0 (SPRA772) for details regarding scaling and code size of DSP/BIOS.

‡ For a 100 MHz C5402 processor, the CPU cycle period is 10 nanoseconds.
§ These measurements relate to the DSP/BIOS assembly language API, not the C language API.

TMS320C54x is a trademark of Texas Instruments.

SPRA778

9 DSP/BIOS Timing Benchmarks on the TMS320C6000/

Table 2. Benchmark Results for C54x DSPs (Continued)

Instrumented
Time (usec)
at 100 MHz‡

Instrumented
CPU Cycles

Non-Instrumented†

Time (usec)
at 100 MHz‡

Non-Instrumented
CPU Cycles

Hardware Interrupts (HWIs)§

Interrupt prolog (minimum) 82 0.82 82 0.82

Interrupt prolog for calling C function 96 0.96 96 0.96

Interrupt epilog (minimum) 88 0.88 88 0.88

Interrupt epilog following C function call 102 1.02 102 1.02

Hardware interrupt to blocked task 928 9.28 1025 10.25

Hardware interrupt to software interrupt 323 3.23 323 3.23

Interrupt latency 100 1.00 100 1.00

Mailboxes

Post mailbox, no task switch 491 4.91 597 5.97

Post mailbox, task switch 961 9.61 1189 11.89

Pend mailbox, no task switch 492 4.92 598 5.98

Pend mailbox, task switch 386 3.86 469 4.69

Pipe Operations

PIP alloc 104 1.04 104 1.04

PIP free 121 1.21 121 1.21

PIP get 104 1.04 104 1.04

PIP put 123 1.23 123 1.23

† These timings were performed using the non-instrumental and instrumental kernel. Refer to DSP/BIOS Sizing Guidelines in Code Composer
Studio 2.0 (SPRA772) for details regarding scaling and code size of DSP/BIOS.

‡ For a 100 MHz C5402 processor, the CPU cycle period is 10 nanoseconds.
§ These measurements relate to the DSP/BIOS assembly language API, not the C language API.

3 Calculating System Performance

We can estimate the amount of DSP/BIOS overhead in terms of CPU load in any application.
This is possible since all DSP/BIOS operations are visible to the developer. That is, the
developer specifies which DSP/BIOS components and function calls to include into the
application, either in the Configuration Tool, or explicitly in the code. The developer needs only
to compute the sum of the components and frequency of occurrence to determine the overhead
analytically. By using the RTA tools in CCS, developers may also directly measure the overhead
on their specific hardware platform.

To estimate the overhead in DSP/BIOS applications, the developer must first identify all the
DSP/BIOS components and API calls within the application. In the sample application audio
I/O example, the DSP/BIOS components are:

SPRA778

10 DSP/BIOS Timing Benchmarks on the TMS320C6000/

• One HWI object mapped to the Audio;
• One SWI object to do the processing (copy) operation; and
• Two data pipes; one for input, and one for output.

The component overhead in instruction cycles may be taken from the DSP/BIOS timings as
listed in Table 1. To process a single buffer of audio data requires the total overhead of
1106 cycles on a C6000. The processing period is 4 ms, so the frequency of occurrence is
250 times per second. Therefore, the total number of cycles in one second, attributed to
DSP/BIOS overhead running the audio thread on a C6000 DSP is 276,500 or 0.276500 MIPS.
On a 200 MHz C6000 DSP, this equates to a 0.14% CPU load. Further explanation of this
calculation is demonstrated in the DSP/BIOS Kernel Technical Overview (SPRA780).

To calculate the amount of memory consumed by the DSP/BIOS kernel, the developer again
needs to identify the DSP/BIOS components and API calls in the program. By summing the
components, the developer can estimate the memory usage, both data and program. By using
the memory map from the application, the exact amount can be determined.

In a similar fashion, developers can analytically determine the overhead attributed to the
DSP/BIOS kernel. However, since it is the nature of software to change over time, analytical
calculation can be tedious. The real-time analysis tool provided by the DSP/BIOS kernel allows
developers to measure the overhead directly. Finally, since developers can choose the amount
of the DSP/BIOS kernel to use and include in their applications, they have full control over the
overhead.

4 References
1. DSP/BIOS Sizing Guidelines in Code Composer Studio 2.0 (SPRA772).

2. DSP/BIOS Kernel Technical Overview (SPRA780).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2003, Texas Instruments Incorporated

