{? TEXAS
INSTRUMENTS

Application Report
SPRA779 - November 2002

MP3/AAC Player Implementation in RF3

Tsutomu Furuse

6
7

DCES Imaging Software Development

ABSTRACT

This application report introduces and describes an MP3T/AAC? audio player for use with the
TMS320C54x0 digital signal processor (DSP) devices. This audio player is based on Refer-
ence Framework Level 3 (RF3). Reference Framework for eXpressDSPU Software is a start-
ware for developing applications that use DSP/BIOS and the TMS3200 DSP Algorithm

Standard.

The main challenge of this application is to use LIO-based drivers for bitstream input and
pulse code modulation (PCM) output. There is a large variety of input/output (I1/0O) devices.
This approach provides great code reusability. As aresult, developers can adapt this applica-
tion for their own systems with minimum efforts.

This document also describes a number of DSP/BIOS techniques for decompression

applications.

T MP3: ISO-MPEG Audio Layer-3 standard (ISO/IEC 11172-3, 13818-3)
* AAC: ISO-MPEG2 Advanced Audio Coding standard (ISO/IEC 13818-7)

Contents
ML OdUCTION L. 3
1.1 ApPlication OVEIVIEWottt e e e e e e e e 3
1.2 Application FEatUrS i e 4
Data Path ... 4
Adapting RF3 to the MP3/AAC Player Application 4
3.1 Application Structure OVEIVIEWttt e e e e ettt e 4
3.2 Thread Synchronization With Data Pipe e 5
3.3 Disabling Pipe Notification 7
3.4 Notification LAteNCYo 7
3.5 Resetting SWIMailboX 8
APPlICAtION StTUCTUIE . e e e e e e e e e e e 9
4.1 Software ModUIES e e 9
4.2 Application Execution FIOW 10
4.3 Application State Model 13
Performance and FOOtPrint e et e e e e 13
5.1 Performance CharaCteristiCst e e 13
5.2 Memory FOO PIINt . ..ot 14
CONCIUSION L e e e 14
REf BN CES ... e 14

TMS320C54x, eXpressDSP, DSP/BIOS, and TMS320 are trademarks of Texas Instruments Incorporated.
Trademarks are the property of their respective owners.

{'.f TEXAS

SPRAT779 INSTRUMENTS
Appendix A Command DescCription i 15
Al HOSt COMMANAS ..ottt e e e e e e e e e e e 15
A2 DS REPIY .ottt 16
A.3 DSP COMMAaNd ...ttt e 16
Appendix B Sample LIO DriVerS e e e e 17
B.1 DSC Image Buffer DMA DriVEr e e 17
B.2 DSC25 AIC23 DIIVEI . vttt ettt et e e et e e e e e e e e 18

List of Figures

Figure 1. TMS320DSC25 Functional Block Diagramt 3
Figure 2. Data Path i 4
Figure 3. Basic Application Structure in RF 5
Figure 4. Pipe’s NOtify FUNCLION e e e e e 5
Figure 5. Data Process FIOW e e e e e e e e e 6
Figure 6. Notification Enable Flag i e 7
Figure 7. Notification LatenCy i e e e e e e e 7
FIgure 8. Start SEOUENCEttt e e e e 11
Figure 9. PausSe/RESUME SEOUENCEttt ittt ettt et e ettt ettt 12
Figure 10. Player State Model e e 13

Table 1. CPU Usage StatiStiCSottt e e e e e ettt 13
Table 2. Memory FOO PNt i e e e e e e e e e 14
Table A—1. HOSt COmMMANdSo e e e e e e e e 15
Table A—2. DSP RePIY .. .o 16
Table A—3. HOSt Command 16
Table B-1. DSC Image Buffer DMA Driver OVEIVIEWttt ens 17
Table B-2. Hardware Interrupts Plugged i e e e e ettt 17
Table B-3. Mandatory Configuration Parameters it 17
Table B—4. CTRL API DeSCIPLONt e e e e e et 17
Table B-5. Memory OVerheadt i e e e e e e e e e e e 18
Table B—6. DSC25 AIC23 Driver OVEIVIEWottt et ettt e e e e ettt e e 18
Table B—7. Hardware Interrupts Plugged i i e e e e ettt 18
Table B—-8. Mandatory Configuration Parameterso ot 18
Table B—9. CTRL API DeSCIPtiON e e et et e e 19
Table B—10. Memory Overheadt i i e e e e e e e e e 19

2 MP3/AAC Player Implementation in RF3

{9 TEXAS
INSTRUMENTS SPRA779

1

11

Introduction

Application Overview

This application is originally designed for TI's C54xU-based TMS320DSC25, a low-power,
programmable DSP imaging platforms. This processor has an ARM7TDMI core, imaging
accelerator, and a wide variety of peripherals in addition to the TMS320C5409 DSP core.
However, this application does not depend on those special modules. Therefore, it can be ported
to other TI DSP easily.

This application was tested with TI TLV320AIC23 stereo audio codec device connected with the
McBSP serial port interface of TMS320DSC25. The TLV320AIC23 includes high-performance
analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) with highly
integrated analog functionality for portable digital audio applications. Of course, flexibility of
Reference Framework enables you to use other audio codec devices with minimum efforts. See
Figure 1.

This application controls the following TI's XDAIS modules to play MP3/AAC bitstream:
* MP3 decoder (IDECODE)

* AAC decoder (IDECODE)

e Sample rate converter (ISRC)

* Volume controller (IVOL)

e (MP3) spectrum analyzer (ISPECAN) (optional)

* Equalizer (IEQ) (optional)

SDRAM
Flash ROM
Compact
SFlash
mart
C%gﬁxgs CCD Memory Media
Video IVldfeo — CTraff||(|: v
nterface review ontroller ideo R .
Decoder [~ Engine [Encoder > TV Monitor
i UsB
Qg/leoA DSP ARM7 1 I 1o > SDIMS
Block Card
Memory Memory
| Image Buffers |
Image VLC
Accelerator VLD

Figure 1. TMS320DSC25 Functional Block Diagram

Cb4x is a trademark of Texas Instruments Incorporated.

MP3/AAC Player Implementation in RF3 3

SPRA779

{'f TEXAS
INSTRUMENTS

1.2

Application Features

This application provides the following commands:

Data Path

Fast-Forward
Fast-Rewind

Resume(from Pause)
Resume(from FF/FR)

Figure 2 describes the data path in this application. The input from the host processor and
output to the multichannel buffered serial port (McBSP) should be abstracted because there is a
large variety of I/O devices.

The decoder input buffer in the figure is a bitstream object, which is the standard input for the
IDECODE interface implemented decoders.

Memory

on host

processor
DSP Decoder SRC
On-Chip | Input - Decoder | Input
Memory Buffer Buffer
SRC Sample
M((::SB4§(P 1 Output & Rate
Buffer Converter

DSP

Figure 2. Data Path

DIA
(TLV320AIC23)

Adapting RF3 to the MP3/AAC Player Application

Application Structure Overview

The Reference Framework Level 3 must be most appropriate level for this application. However,
you need to change the RF3 code to adapt it to an MP3/AAC player. Figure 3 describes the
modified application structure. As an RF3 mechanism, DSP/BIOS software interrupt (SWI)
threads process bitstream, and the bitstream is driven by DSP/BIOS data pipes. To spread the
central processing unit (CPU) load over processing time, you have two software interface (SWI)
threads for the data processing.

MP3/AAC Player Implementation in RF3

{9 TEXAS
INSTRUMENTS SPRA779

3.2

The swiDecode thread decodes compressed bitstream in the pipRx pipe to PCM bitstream.
Correctly, swiDecode extracts one MP3 frame (variable-length) from a pipe frame, then decodes
to 1152 (Left:576 + Right:576) 16-bit PCM samples for MP3, For AAC, it decodes one
AAC-frame (variable length) to 2048 (Left: 1024 + Right:1024) 16-bit PCM samples. While the
pipe frame size of the pipDec is equal to the decoded size of a MP3/AAC-frame (1152 words
and 2048 words, respectively), the pipe frame size of the pipRx pipe is larger than the size of
MP3/AAC-frame. Therefore, the swiDecode thread may not finish up an input pipe frame for a
run, but it finishes up a output pipe frame every run.

The swiPcmproc thread executes sample rate conversion, volume control, and filtering of the
decoded 16-bit PCM data. The thread outputs 128 (Left: 64 + Right: 64) 16-bit PCM samples for
a run. Like swiDecode, swiPcmproc may not finish up an input pipe frame for a run, but it
finishes up a output pipe frame every run. Note that the sample rate conversion changes the
number of samples. Naturally, the priority of swiPcomproc is higher than the one of swiDecode.

As mentioned above, the consumption rate is different from the production rate for the pipRx and
pipDec pipe. See Figure 3.

D—b@—b swiDecode % swiPcmproc W

plioRx pipRx pipDec pipTx plioTx

Figure 3. Basic Application Structure in RF

Thread Synchronization With Data Pipe

RF3 uses DSP/BIOS data pipe’s notify functions to schedule threads. In RF3, notify functions do
not post a software interrupt directly. Instead, they clear the specified bit from the SWI's mailbox,
and the SWI is called by the DSP/BIOS kernel when all bits are cleared. See Figure 4.

notifyReader

notifyWriter
Mailboxi
Pipe Pipe

Figure 4. Pipe’s Notify Function

For applications which do not change data size between the input and output or the change is
fixed size, the above mechanism works fine. However, decoding compressed bitstream and
sample rate conversion change data size between the input and output, and the size difference
varies for each process.

For instance, the MP3 decoder captures a MP3 frame (variable-length) and decodes to a
1152-word PCM data. The decoder thread swiDecode locks an input frame until the decoder
cannot find an entire MP3 frame. Only the decoder knows about MP3 frame, therefore you have
a big enough sized input pipe for the decoder. The decoder generates multiple output pipe
frames for an input pipe frame.

MP3/AAC Player Implementation in RF3 5

SPRA779

{'f TEXAS
INSTRUMENTS

6

To support this situation, the decoder thread will lock an input pipe frame until all data in the pipe
frame is processed. While a pipe frame is locked, the decoder thread needs to clear the
notifyReader bit in the mailbox by itself. Figure 5 describes the process flow of the thread. The
swiPcmproc thread also is designed with this style.

NOTE: Supposed that the notifyReader bit and notifyWriter bit are the bit 0 (LSB) and bit 1 respectively.

PIP_get(pipIn)

PIP_alloc(pipOut)

v

Process chunk
in input
pipe frame

v

PIP_put(pipOut)

More
datain

Yes

input
?

PIP_free(pipln)

PIP_

getReaderNum

Frames(pipIn)
>0

Yes

SWI_andn(SWI_self(), 0x1)

End

Figure 5. Data Process Flow

MP3/AAC Player Implementation in RF3

{9 TEXAS
INSTRUMENTS SPRA779

3.3

3.4

Disabling Pipe Notification

To support the stop and pause functions, you need to have a gate for notifyReader as illustrated
in Figure 6. You can stop the bitstream processing by disabling the notification. This gate is
implemented as an adapter function of SWI_andn. Note that this gate does not suppress the
bitstream, but the notification. You can get a new pipe frame with PIP_get if an available pipe
frame is in the pipe.

Enable —;: notifyReader

Mailbox LI
SWI Thread @—»

Pipe Pipe

notifyWriter

Figure 6. Notification Enable Flag

Notification Latency

Prior to start or resume play, you need to clear garbage data in the input data pipe. Use PIP_get
function to clear the garbage. However, PIP_get function causes a spurious notifyReader call in
this clear process because, if full frames are available after PIP_get gets a frame, PIP_get runs
the function specified by the notifyReader property of the PIP object. For this reason, you need a
mechanism for the notification prime latency. See Figure 7.

Enable _\ notifyReader
| | J

Counter
Mailbox ZI
SWI Thread %

Pipe Pipe

notifyWriter

Figure 7. Notification Latency

The following code clears garbage in a pipe.

MP3/AAC Player Implementation in RF3 7

{'.f TEXAS

SPRA779 INSTRUMENTS

/**

* (Cears a pipe.
*/
I nt appPi peC ear (Pl P_Handl e pi p, PIPNTFY_Handl e pi pNotifier)

I nt readerFranes, i;
reader Frames = Pl P_get Reader Nuntr anes(pi p) ;

/* latency = readerFranes — 1 */
Pl PNTFY_set Pri neLat ency(pi pNotifier, readerFrames — 1);

for(i = 0;i < readerFranes;i++) {

Pl P_get (pi p);
Pl P_free(pip);

}

return (readerFranes);

The disabling pipe notification and notification latency are implemented with the following stub
function. This stub function is configured as the notifyReader functions for the pipRx and
pipDec pipes.

/**
* Primes a notification
* This is the notifier body.
*/
Voi d PI PNTFY_pri me(Pl PNTFY_Handl e handl e)
{
i f (handl e—>i sEnabl ed == TRUE) {
i f(handl e—>pri nmeLatency > 0) {
handl e->pri nmeLat ency—;
}
el se {
SW _andn(handl e->swi , handl e->mask) ;
}
}
}

3.5

Resetting SWI Mailbox

For the application’s thread-scheduling mechanism, the notifyWriter bit of swiDecode’s mailbox
may remain a 1 when the play stops by the stop command. To ensure the mailbox will be reset
for the next play, the swiDecode main function has an argument for the dummy call. The
application will issue the dummy call at end of the stop process. The call does not process
bitstream, but DSP/BIOS will reset the mailbox.

MP3/AAC Player Implementation in RF3

{9 TEXAS
INSTRUMENTS SPRA779

4 Application Structure

4.1 Software Modules
* Application threads

— Decode thread
The decode thread, swiDecode, decodes compressed bitstream to PCM data.

— Pcmproc thread

The PCM processing thread, swiPcmproc, executes sample-rate conversion, volume
control, and filtering.

— Control thread

The control thread, swiControl, handles commands from the host processor and
interprets them to the Decode and Pcmproc threads.

— Evtmgr thread

The event manager thread, swiEvtmgr, handles various events while MP3/AAC plays,
monitors the system state, and replies the status to the host processor.

e XDAIS
— MP3 decoder (IDECODE)
— AC decoder (IDECODE)
— Sample rate converter (ISRC)
— Volume controller (IVOL)
— (MP3) spectrum analyzer (ISPECAN) (optional)
— Equalizer (IEQ) (optional)
e LIO drivers
— Input driver

— Output driver

e PLIO
Pipe adapter for the LIO module. The upper layer of the device driver.
 LIO
Low-level I/O device driver interface
e CSL
Chip Support Library
 DSPBIOS

MP3/AAC Player Implementation in RF3 9

{'? TEXAS

SPRA779 INSTRUMENTS

4.2

10

Application Execution Flow

Figure 8 and Figure 9 describes the execution sequences at the start command and
pause/resume commands, respectively. These figures are based on the sequence diagram
notation of OMG UML. The activation box (vertical bars on each process’s axes) of SWI threads
means the period of the thread running, and the activation box of LIO drivers means the period
of the ISR running.

Suppose that the number of pipRx frames and pipDec frames are 1 and 2, respectively.

In the beginning of a play, the Control thread clears garbage data in pipes. In Figure 8, you can
see clearing one frame of the input pipe and two frames of the decode pipe. The number of
decode pipe clears varies from the previous state. You can see a reader notification is blocked
for the notification latency function described in section 3.4.

The pause function is implemented with the stub function described in section 3.3. Disabling the
reader notification blocks the Pcmproc thread priming. Then MP3/AAC play will be paused. To
resume the play, the Control thread calls SWI_andn to clear the reader bit in the mailbox.

The number of swiPcmproc runs per swiDecode run varies from codecs (MP3 or AAC) or
sample rates.

MP3/AAC Player Implementation in RF3

*ﬂ.’ TEXAS

INSTRUMENTS SPRA779
. ipRx) ipDec)
ProI—(I:oesétsor swiControl DSKZ/rEIe?S Irﬂ%t eader swiDecode geader 5wWiPcmprog O‘ﬂ}g‘“
Stub Stub
T T T T T T T
| START PIP_get(&QipRx) | o] | | [o]1]
| PIP_free(&pipRx) | | | i
Mailbox
Clear garbage notifyWriter, | | |
streaming PIP_get(&pipDec) | | Reader bit
notifyReade[| Writer bit
I

PIP_get(&pipDec)

|

|
PIP free(gﬁ)ipDec) | \

|

|

|

|

PIP free(&LlpipDec)

[

I

I

I

I

|
notinyritera!
I

|

PIP_allgc(&pipRx

PIP_;?“I(&QIQRX)

notifyWriter
»

|
|
notifyReadgr|

[PIP_get(&pipRx)

I;PIP alloc(&plipDec)

|
SWI_andn(SWI_s

-]]

elf(),0x1)

L.PIP_put(&pipDec)
L I

™

Blocked to prevent
from spurious
notification

notifyReader

L
" PIP_get(&pipDec)

"PIP_alloc(&pipTx)
|

-

~| [o
o] [o

niotifyRead er

. PIP_get(&pipTx)

LPIP free(&pi!pTx)

|
[
L |
r | |
I | SWI_andn(SWI_self(),0x1)
[PIP_put(&pipTx) | |
| | | notifyReader
| PIP_get(&pipTx) X [
LPIP_ free(&pipTx) ! | |
h | ' | | notifyWrite :
I - |
" PIP_alloc(&pipTx) | | 0|0
S i s e e 1 R
SW	_andn(SWI_self(),0x1)	
PIP_put(&pipTx)	l i u	
T

notifyWriter |

=]

| |
LPIP alloc(&pipTx)
e

|

L PIP_put(&pipTx)

"pip free(&pilp Dec)

=

notifyReader

notinyriter_i
N [0]0
\

|
[PIP_get(&pipTx)
PIP

free(&pipTx)
I

I
1/

notifyWriter =|

I
PIP alloc(&pipDec)

PIP_ put(&pipDec)

SWI_andn(SWI_self(),0x1) C

1o}

otifyReader

ILPIP_get(&pipDec)

LPIP_alloc(&pipTx)

PIP_put(&pipTx)
T

Figure 8. Start Sequence

A1l e _

MP3/AAC Player Implementation in RF3 11

TEXA

SPRAT779 INSTRUMENTS
ipRx ipDec
p,.o'-::%ztsor swiControl Di’;ﬁgs I?_%t I%gdl;er swiDecode Béepadéer swiPcmproc OEE(%Ut
tu tu

L PIP_free(&pipTx) | | |
| | _notifyWriter_ |
”

SWI_andn(SWI_self(),0x1) C
|

| PIP_aloc(&pipTx)
X I

. PIP_put(&pipTx)
L I

~1[e
Bl

notifyReader

T
I I

I I

I I

I I

I I

I I

: : II<PIP get(&pipTx)
| | L, PIP free(&pllpTx)
I I

I I

I I

I I

I I

I I

I I

otifyWriter

|
|
|
n
"

|

|

|

I

|

PIP_aloc(&pipTx) |
I |

~1[e
Bl

SWI_andn(SWI_self(),0x1) C
|

PIP_put(&pipTx)
I

notifyReader

|

| |
|<PIP get(&pipTx) | | |
LPIP_free(&pipTx) | X | [

PAUSE | I | ! | I I
| | | | | | disable J | I
| | | | | | notifyWriter _ | I
| | FPIP anc(&pllpTx) I |£|£| :
| | | |
| | |_P|P put(&pipl_rx) | SV}/I_andn(SWI_slelf(),Oxl) C n :
| | I | notifyReader _ |
I I [PIP_get(&pipTx) [
| | I:PIP free(&pipTx) | | | |
| | | | | notifyWriter _ | [

aloc(&pipTx |
| | | PIP_aloc(&pipTx) | I olo I
| | | | ! !
| | ’|<PIP put(&pipTx) | ! l
| | LPIP_free(&pipDec) | : |
~ | T . . |
| | notifyWriter ¢ | |
: : i | i ':\\ 0]0 | notlfyReader |—|—| |
_PIP_get(&pipTx)) |
| | "PIP free(&pipTx) I] |
: : I I] | notifyWriter [
! ! | i | |
| | | PIP_aloc(&pipDec) | |—|—|
|
	I		
		SWI_andn(swi_self(,0x1) (] 1]o] :	
	PP put(&pipDec)	Blocked	
	! : I notlfyReader_./		
RESUME			
			enable J
!	SWI_andn(&swiPcmproc, 0 l)I		
_ PIP_get(&pipDec) I I olo			

I I
I I
SWI_andn(SWI_self(),0x1) 1[0
|
|
|
I

PIP_alloc(&pipTx)
I

I I
|, PIP_put(&pipTx)
| |
LPIP_get(&pipTx)
LPIP_free(&pipTx)
¢ T

notifyReader

Figure 9. Pause/Resume Sequence

12 MP3/AAC Player Implementation in RF3

{9 TEXAS
INSTRUMENTS

SPRA779

4.3

5.1

Application State Model

Figure 10 describes the state transitions when the application takes the commands. This
diagram is compliant with the state diagram notation of OMG UML.

A small circle containing an ‘H’ is a history-state indicator. If a transition to the history indicator

fires, it indicates that the object resumes the state it last had within the composite region.

(Playing

Fast Forward
Fast
Stop Resume Forward
\
\4
Start/Fading in J Normal Fast East
idle |, play Rewind Forward
) Stop/Fading in
4
Resume (
] - Fast
Decoding completed Fast Rewind | Rewind

Pause/
Fading out

Stop/Fading out

. ©

~

/

Resume/
Fading in

v

‘ Paused \

Figure 10. Player State Model

Performance and Footprint

Performance Characteristics

The MP3 performance characteristics of the application are shown in Table 1. The
measurements are made under the following conditions:

* Platform: TMS320DSC25 (C5409 core) EVM running at 99 MHz

* Sample bitstream: Fraunhofer IIS MPEG Layer Il Sample Bitstream

Table 1. CPU Usage Statistics

Title Fs Bitrate (total) CPU Load (peak)
funky.mp3 44.1 kHz 96 kbit/s 46.20%
spotl.mp3 44.1 kHz 96 kbit/s 46.35%
spot2.mp3 44.1 kHz 96 kbit/s 46.20%
spot3.mp3 44.1 kHz 96 kbit/s 46.10%
classicl.mp3 22.05 kHz 56 kbit/s 39.88%
classic2.mp3 22.05 kHz 48 kbit/s 39.32%

Idle - - 2.07%

MP3/AAC Player Implementation in RF3

13

{'f TEXAS
SPRA779 INSTRUMENTS

The CPU load percentages were measured with the CPU Load graph of Code Composer
Studioll.

5.2 Memory Footprint

The memory footprints of the modified RF3 are shown in Table 2. XDAIS algorithms,
algorithm-specific data buffers, LIO drivers, and DSP/BIOS are not included in these numbers.

Table 2. Memory Footprint

Footprint Footprint
Modification (Program) (Data)
Modified RF3 for MP3 2278 words 286 words
Modified RF3 for AAC 2390 words 292 words

6 Conclusion

Reference Framework enables you to develop well-organized DSP applications rapidly. It is also
true for compressed audio decoding applications. However, you need some DSP/BIOS
techniques described in this application report for such applications. The MP3/AAC player
application described in this application report shows that LIO-based drivers worked fine with the
application.

7 References

1. Reference Framework for eXpressDSP Software: RF3, A Flexible, Multi-Channel,
Multi-Algorithm, Static System (SPRA793).

Reference Framework for eXpressDSP Software: API Reference (SPRA147).
Writing DSP/BIOS Device Drivers for Block 1/0 (SPRA802).
TMS320 DSP/BIOS User’s Guide (SPRU423).

TMS320C5000 DSP/BIOS Application Programming Interface (API) Reference Guide
(SPRU404).

TMS320C54x DSP CPU and Peripherals Reference Set Volume 1 (SPRU131).
OMG Unified Modeling Language Specification Version 1.4.

a bk wn

N o

Code Composer Studio is a trademark of Texas Instruments Incorporated.

14 MP3/AAC Player Implementation in RF3

{9 TEXAS
INSTRUMENTS SPRA779

Appendix A Command Description

A.1 Host Commands

The host commands of this application are shown in Table A—1. A host processor issues these
command to the DSP. The offset in the table is an offset address in the linker section, .cmdInBuf.

Table A-1. Host Commands

Fast- Fast-

Offset Start Stop Resume Forward Pause Volume Rewind Mute
0x00 Command ID 0x0510 (MP3) / 0x0530 (AAC)
0x01 Reserved
0x02 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008 0x0009
0x03 Reserved - - - - - - -
0x04 Data address (MSW) - - - - Volume - -
0x05 Data address (LSW) - - - - - - -
0x06 Buffer size (MSW) - - = = = - -
0x07 Buffer size (LSW) - - - - - - -
0x08 Fade-in cycles Fade-out Fade-in - Fade-out - - -

cycles cycles cycles
0x09 Volume - - Volume - - Volume -
O0x0A Data length (MSW) - - = = - - —
0x0B Data length (LSW) - - - - - - —
0x0C Buffer offset (MSW) - - = = - - -
0x0D Buffer offset (LSW) - - - - - - -
Ox0E Reserved - - = = - - -
OxOF
Reserved
Ox1F

MP3/AAC Player Implementation in RF3 15

{'? TEXAS

SPRA779 INSTRUMENTS

A.2 DSP Reply

The DSP reply of this application is shown in Table A—2. The DSP issues this reply to a host
processor. The offset in the table is an offset address in the linker section .cmdIinBuf.

Table A—2. DSP Reply

Offset Description
0x20 Reply code
0x21 Reserved
0x22 Stop status
0x23

. Reserved
Ox3F

A.3 DSP Command

16

The DSP command of this application is shown in Table A—3. The DSP issues this command to
a host processor to inform the processing status. The offset in the table is an offset address in
the linker section, .cmdOutBuf.

Table A-3. Host Command

Offset Description
0x00 Command ID 0x200 (MP3) / 0x300 (AAC)
0x01 Reserved
0x02 Status ID
0x03 Left channel peak level in the frame
0x04 Right channel peak level in the frame
0x05 Elapsed time [x100ms]
0x06 Decoded data size (MSW)
0x07 Decoded data size (LSW)
0x08
Reserved
0x09

MP3/AAC Player Implementation in RF3

{9 TEXAS
INSTRUMENTS SPRA779

Appendix B Sample LIO Drivers

The specifications of the DSC25 image buffer DMA LIO driver and the DSC25 AIC23 LIO driver
are shown in the following pages. The image buffer LIO driver and AIC23 LIO driver are used as
the bitstream input driver and PCM output driver for the DSC25 platform, respectively.

The image buffer DMA LIO driver transfers data between the image buffer memory in the DSP
data space and the host processor synchronous random-access memory (SDRAM) space by
direct-memory access (DMA). This driver also has ring buffer management and address skip
functions.

The AIC23 LIO driver outputs and inputs 16-bit stereo PCM data to/from an AIC23 codec device
through C5409 DMA-McBSP.

B.1 DSC Image Buffer DMA Driver

Table B-1. DSC Image Buffer DMA Driver Overview

Driver Name Vendor Arch Board Version Doc Date Library Name
DSC2X_IBUF Texas Instruments DSC2x DSC25 EVM 1.0 Aug 30 2002 dsc25 _ibuf.l54
(5000) DSC25 SDK

Table B-2. Hardware Interrupts Plugged

Hardware Source Interrupt No. ISR Name Argument

Image buffer DMA controller 8 (External user interrupt #3) DSC2X_IBUF_isr None

Table B-3. Mandatory Configuration Parameters

Module Parameter Value Description
HWI_SINT8 Source Image buffer DMA

HWI_SINT8 Function DSC2X_IBUF _isr Driver ISR
HWI_SINT8 Use dispatcher True Use HWI dispatcher

Table B-4. CTRL API Description

Description Command Syntax Argument
Gets the image buffer management Bool DSC2X_IBUF_ctrl(DSC2X_IBUF_MgmtParams *args
parameters LIO_Mode mode,

DSC2X_IBUF_CMD_GETSTATUS,

Ptr args

)

Sets the image buffer management Bool DSC2X_IBUF_ctrl(DSC2X_IBUF_MgmtParams *args
parameters. Use this function to initialize LIO_Mode mode,
or change the ring buffer position, size, DSC2X_IBUF_CMD_SETSTATUS,
and offset. Ptr args

)

MP3/AAC Player Implementation in RF3 17

{'? TEXAS

SPRA779 INSTRUMENTS
Table B-5. Memory Overhead
Category Sections Size
CSL text 475
.Cinit 174
.const 42
.csldata 172
PLIO + driver text 1017
.cinit 33
.const 70
.bss 28
NOTE: Reusable memory space: .text:init = 91
B.2 DSC25 AIC23 Driver
Table B—6. DSC25 AIC23 Driver Overview
Driver Name Vendor Arch Board Version Doc Date Library Name
DSC2X_DMA_MCBSP Texas Instruments DSC2x DSC25 EVM 1.0 Aug 30 2002 dsc25_aic23.154
(5000) DSC25 SDK
Table B-7. Hardware Interrupts Plugged
Hardware Source Interrupt No. ISR Name Argument
DMA 2 10 (DMA channel 2 interrupt) C54XX_DMA_MCBSP_isr 0
DMA 3 11 (DMA channel 3 interrupt) C54XX_DMA_MCBSP_isr 1
Table B—-8. Mandatory Configuration Parameters
Module Parameter Value Description
HWI_SINT10 Source DMA channel 2 interrupt Associate DMA 2 with McBSP 0 Rx
HWI_SINT10 Function C54XX_DMA_MCBSP_isr Driver ISR
HWI_SINT10 Use dispatcher True Use HWI dispatcher
HWI_SINT11 Source DMA channel 3 interrupt Associate DMA 3 with McBSP 0 Tx
HWI_SINT11 Function C54XX_DMA_MCBSP_isr Driver ISR
HWI_SINT11 Use dispatcher True Use HWI dispatcher

18 MP3/AAC Player Implementation in RF3

{9 TEXAS
INSTRUMENTS SPRA779

Table B-9. CTRL API Description

Description Command Syntax Argument

No CTRL commands implemented N/A N/A

Table B—-10. Memory Overhead

Category Sections Size

CSL text 1193
.cinit 174
.const 42
.csldata 172

PLIO + driver text 806
.cinit 69
.const 75
.bss 74

NOTE: Reusable memory space: .text:init = 714

MP3/AAC Player Implementation in RF3 19

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subjectto TI's terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using Tl components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by Tl regarding third—party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright 00 2002, Texas Instruments Incorporated

