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ABSTRACT

The TMS320C64x digital signal processing library (DSPLIB) provides a set of C-callable,
assembly-optimized functions commonly used in signal processing applications, e.g.,
filtering and transform. The DSPLIB includes several functions for each processing category,
based on the input parameter conditions, to provide parameter-specific optimal performance.
Therefore, it is important to understand the differences and requirements of the functions in
each category. This application report presents the usage and performance of three key
signal processing categories, i.e., finite impulse response (FIR), infinite impulse response
(IIR), and fast Fourier transform (FFT), to help users better utilize DSPLIB in their system
development.
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1 Introduction

TMS320C64x is an advanced, very long instruction word (VLIW) processor well-suited for
real-time signal processing applications with its high computing power and large on-chip memory.
It also provides enhanced direct memory access (EDMA) and cache to efficiently transfer data
to/from off-chip memory/device. To help users shorten the time-to-market in system development,
Texas Instruments provides a set of assembly-optimized functions, named digital signal
processing library (DSPLIB). Each function in the DSPLIB is designed to produce the best
performance possible by optimally utilizing available resources and avoiding potential resource
conflicts.

The DSPLIB includes several functions for each processing category, based on the input
parameter conditions, to provide parameter-specific optimal performance. Due to the parameter
specifics, it is important to understand the differences and requirements of the functions in each
category.

It is also important to understand potential overhead related to memory hierarchy, to estimate
and improve the actual performance of a system being developed. Figure 1 shows the memory
hierarchy of C64x and related potential overhead. For example, when new code needs to be
fetched and/or the program does not fit in the level-one program cache (L1P), L1P cache misses
can occur, stalling the central processing unit (CPU) until the required code is fetched. Similarly,
when the data do not fit in the level-one data cache (L1D) and/or a new set of data needs to be
transferred to/from off-chip memory/device, L1D cache misses stall the CPU. All L1P and L1D
misses are serviced by the level-two cache/static random-access memory (L2 cache/SRAM).

C64x is a trademark of Texas Instruments.



SPRA884A

3 Signal Processing Examples Using TMS320C64x Digital Signal Processing Library (DSPLIB)

CPU

L1P L1D
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EDMA/EMIF Off-chip memory
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1 L1 program cache misses

2 L1 data cache misses

3 L2 cache misses

4 Off−chip memory accesses

Figure 1. Memory Hierarchy and Potential Overhead

Similar to the L1D misses, L2 cache misses occur if the code and data do not fit in the L2 cache
and/or a new set of data needs to be transferred to/from off-chip memory/device. The L2 miss
overhead can be significant, compared to the L1P/L1D miss overhead, because the L2 cache
needs to communicate with slow off-chip memory/device via EDMA.

L2 SRAM can also be used to service L1D/L1P misses with EDMA to transfer code/data
between L2 SRAM and off-chip memory/device. The data transfer with EDMA is typically more
efficient than that with L2 cache, due to its nature of longer burst transactions, which reduces
memory access latency overhead. However, the EDMA transfer can involve more programming
effort because data transfers and synchronization have to be manually managed. TMS320C64x
provides both cache and EDMA mechanisms to allow the user to choose the right mechanism,
depending on situations.

This application report presents the usage and performance of three key categories, i.e., finite
impulse response (FIR) filter, infinite impulse response (IIR) filter and fast Fourier transform
(FFT), to help users better utilize DSPLIB in system development.

2 Benchmarking

2.1 Emulation/Simulation Setup

A TMS320C6416 test and evaluation board (TEB) is used in this application report to measure
cycle counts. Table 1 lists key features of the C6416, which are important factors in performance
analysis and optimization. More details on the C6416 internal memory structure and operations
are described in TMS320C64x DSP Two-Level Internal Memory Reference Guide (SPRU610).
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Table 1. C6416 Key Features

Item Description

Clock frequency 500 MHz

L1P 16K-byte, direct-mapped, 32-byte cache line

L1D 16K-byte, 2-way set associative, 64-byte cache line

L2 SRAM 8-cycle L1P miss penalty, 6-cycle L1D miss penalty, up to 1M byte

L2 cache 8-cycle L1P/L1D miss penalty, up to 256K bytes, 4-way set associative, 128-byte cache line

L2 to L1D read path 256 bits

L1D to L2 write buffer 64-bit, merge with 4 outstanding write misses

EMIF EMIF-A: 64-bit bus, EMIF-B: 32-bit bus

The C6416 TEB is connected to a PC through an XDS560 board. “_C64xx XDS560 Emulator
Address 0” is selected as a base Code Composer Studio Integrated Development
Environment (IDE) configuration. If you use other types of interfaces, e.g., XDS510, be sure to
choose the right configuration.

Code Composer Studio is a trademark of Texas Instruments.
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Be sure to select the right General Extension Language (GEL) file for the C6416 TEB.

If you use simulation, select “C6416 Sim Ltl Endian.” The cycle counts obtained from simulation
might not be accurate, especially with off−chip memory accesses.

Software version numbers used in this application report are as follows.

• Code Composer Studio: version 2.1

• C64x IMGLIB: version 1.02b

2.2 Cycle Count Measurement

The built-in timer in C6416 is used to measure cycle counts for DSPLIB examples. The following
sample code shows how to set up the timer and measure cycle counts with Chip Support Library
(CSL).
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     hTimer = TIMER_open(TIMER_DEVANY,0);   /* open a timer */
 
     /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
     /* Configure the timer. 1 count corresponds to 8 CPU cycles in C64 */
     /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
                           /* control     period      initial value     */
     TIMER_configArgs(hTimer, 0x000002C0, 0xFFFFFFFF, 0x00000000);
 
     /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
     /*  Compute the overhead of calling the timer.                    */
     /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
     start    = TIMER_getCount(hTimer); /* to remove L1P miss overhead */
     start    = TIMER_getCount(hTimer);
     stop     = TIMER_getCount(hTimer);
     overhead = stop − start;
 
     start = TIMER_getCount(hTimer);
 
     /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
     /*  Call a function here.                                         */
     /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
 
     diff = (TIMER_getCount(hTimer) – start) − overhead;
     TIMER_close(hTimer);
 
     printf(”%d cycles \n”, diff*8);

The maximum resolution of the timer is 8 CPU cycles since the input to the timer is fixed to the
CPU clock divided by eight. The function call overhead for TIMER_getCount() is roughly
measured and compensated. Additional information on the timer registers can be found in the
TMS320C6000 Peripherals Reference Guide (SPRU190).

2.3 Example Scenarios and Expected Performance

Assume two kinds of scenarios to analyze potential overhead related to memory hierarchy:

1. When data are in L1D

2. When data are in L2 SRAM

The overhead with off−chip memory accesses is not presented in this report because the
overhead can be minimized by overlapping the data transfer time and the computation time with
EDMA.
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2.3.1 Scenario 1: Data in L1D

In this ideal scenario, cycle counts close to the formula cycle counts listed in the TMS320C64x
DSP Library Programmer’s Reference (SPRU565) can be achieved. The L1P/L1D miss
overhead can be removed by calling a function twice, and measure the cycle count for the
second call only. Figure 2 shows a linker command file used for this scenario. For more
information on linker commands, refer to the TMS320C6000 Assembly Language Tools User’s
Guide (SPRU186). Information on TMS320C6000 memory maps can be found in the
TMS320C6000 Assembly Language Tools User’s Guide (SPRU186).

MEMORY

{
    L2SRAM:   o = 00000000h   l = 00100000h  /* 1 Mbytes */
}

SECTIONS
{
    .cinit      >       L2SRAM
    .text       >       L2SRAM
    .stack      >       L2SRAM
    .bss        >       L2SRAM
    .const      >       L2SRAM
    .data       >       L2SRAM
    .far        >       L2SRAM
    .switch     >       L2SRAM
    .sysmem     >       L2SRAM
    .tables     >       L2SRAM
    .cio        >       L2SRAM
}

Figure 2. Linker Command File for Scenarios 1 and 2

2.3.2 Scenario 2: Data in L2 SRAM

In this scenario, L1D miss overhead needs to be considered. The linker command file for
Scenario 1 can be used for this scenario. Table 2 lists expected stall cycles related to L1D read
and/or write transactions. When there are read transactions only, the number of stall cycles
(without considering pipelined misses) is the number of L1D read misses times L1D miss
penalty (i.e., 6 cycles). In case of write transactions only, there is no stall unless the write buffer
is full.

When there are both read and write transactions, the L1D read miss penalty can increase
because any write transaction in the write buffer has to be flushed before a read miss is
serviced, to maintain data coherency.

TMS320C6000 is a trademark of Texas Instruments.
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Table 2. Stall Cycles Related to L1D

Transaction Number of Stall Cycles

Read transaction only Number of L1D read misses * L1D miss penalty

Write transaction only No stall cycle unless the write buffer is full

Read and write transactions Number of L1D read misses * (L1D miss penalty + additional cycles for write buffer flush)

2.4 Data Alignment

Due to the structure of internal memory/cache, some DSPLIB functions require input/output
memory arrays to be aligned to a specific boundary. This restriction must be carefully managed
in all C64x devices for attaining optimal performance. As an example, the following statement is
used to allocate the array (input) to an 8−byte boundary.

#pragma DATA_ALIGN (input, 8)

The C64x compiler automatically aligns arrays of all types to an 8−byte boundary if they are not
declared in a struct statement. When dynamic memory allocation is used, the allocated memory
is also aligned to an 8−byte boundary, regardless of types. More information on data-alignment
rules by the compiler can be found in the TMS320C6000 Optimizing Compiler User’s Guide
(SPRU187).

The structure of internal memory/cache on the C64x generation varies from device to device.
Therefore, refer to the appropriate device data sheet to determine the structure of a particular
device.

3 Examples

This section presents the usage and performance of three key signal processing categories:
finite impulse response (FIR) filter, infinite impulse response (IIR) filter and fast Fourier transform
(FFT). To minimize the variation in cycle count measurement, be sure to select the Reset menu
(under Debug in Code Composer Studio) before running an example.

3.1 Finite Impulse Response (FIR) Filter

A generalized FIR filter of N filter coefficients, h(k), is defined as:

y(n) � �
N�1

k�0

h(k) x(n � k)

The C64x DSPLIB provides four real-number FIR functions: 

1. DSP_fir_gen

2. DSP_fir_r4

3. DSP_fir_r8

4. DSP_fir_sym

(1)



SPRA884A

9 Signal Processing Examples Using TMS320C64x Digital Signal Processing Library (DSPLIB)

The definitions and requirements of the real-number FIR functions follow.

void DSP_fir_gen (const short * restrict x, const short * restrict h, short *
restrict r, int nh, int nr )

The input data (x), output data (r), and filter coefficients (h) are represented in Q.15 format. The
number of filter coefficients (nh) must be greater than or equal to 5. The number of output
samples (nr) must be a multiple of 4. The accumulated result is shifted to the right by 15.

void DSP_fir_r4 (const short * restrict x, const short * restrict h, short *
restrict r, int nh, int nr )

The input data (x), output data (r), and filter coefficients (h) are represented in Q.15 format. The
number of filter coefficients (nh) must be a multiple of 4 and greater than or equal to 8. The
number of output samples (nr) must be a multiple of 2. The accumulated result is shifted to the
right by 15.

void DSP_fir_r8 (const short * restrict x, const short * restrict h, short *
restrict r, int nh, int nr )

The input data (x), output data (r), and filter coefficients (h) are represented in Q.15 format. The
number of filter coefficients (nh) must be a multiple of 8 and greater than or equal to 8. The
number of output samples (nr) must be a multiple of 2. The accumulated result is shifted to the
right by 15.

void DSP_fir_sym (const short * restrict x, const short * restrict h, short *
restrict r, int nh, int nr, int s )

The input data (x), output data (r), and filter coefficients (h) are represented in Q.15 format. The
number of filter coefficients (nh) must be a multiple of 8 and greater than or equal to 8. Due to its
symmetric nature of filter coefficients, only half the actual filter coefficients are specified. The
number of output samples (nr) must be a multiple of 2. The accumulated result is shifted to the
right by the amount specified (s).

Table 3 summarizes the requirements of the FIR functions.

Table 3. Requirements of FIR Functions

Function No. of Filter Coefficients (nh) No. of Outputs (nr) Right-Shift Amount

DSP_fir_gen � 5 Multiple of 4 15

DSP_fir_r4 � 4 and multiple of 4 Multiple of 2 15

DSP_fir_r8 � 8 and multiple of 8 Multiple of 2 15

DSP_fir_sym � 8 and multiple of 8
(actual length is 2 * nh + 1)

Multiple of 2 Variable

NOTE: In DSP_fir_gen, the output array (r) must be aligned to a 4-byte boundary. In DSP_fir_r8, the output array (r) must be aligned to a 4-byte
boundary. In DSP_fir_sym, the output array (r) must be aligned to a 4-byte boundary, while both the input data (x) and filter coefficients
(h) must be aligned to an 8−byte boundary.

Note that the filter coefficients must be stored in reverse order except for DSP_fir_sym. The filter
coefficients are generated using the Matlab Filter Design and Analysis Tool with the filter
specifications listed in Table 4. The frequency response of this FIR filter is shown in Figure 3.
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Table 4. FIR Filter Design Specifications

Filter Type Low-Pass

Order 239 (240 for DSP_fir_sym)

Design method Window (Kaiser with a beta of 0.5)

Sampling frequency 44,100 Hz

Cut-off frequency 10,000 Hz

Figure 3. Frequency Response of a Low-Pass FIR Filter

Sinusoidal input data to the FIR filter are generated as follows:

x_s[i]  = SCALE * sin(i*2*PI*Fin/Fs);

where Fin and Fs are the input data frequency and the sampling frequency, respectively. The
scale factor (SCALE) depends on the filter coefficients, and must be adjusted to prevent
overflow.

Figure 4 and Figure 5 show the results of the FIR filter. In both figures, the top graph is the input,
and the bottom graph is the output. When the input frequency (370 Hz) is below the cut-off
frequency, the signal is passed as shown in Figure 4. When the input frequency (10,500 Hz) is
above the cut-off frequency, the signal is attenuated as shown in Figure 5.
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Figure 4. FIR Filter Passband Input (top) and Output (bottom)

Figure 5. FIR Filter Stopband Input (top) and Output (bottom)

Table 5 lists the performance of the four FIR functions. As expected, performance increases as
parameter restrictions become more stringent, allowing better loop unrolling and software
pipelining. DSP_fir_sym further takes advantage of half-reduced memory accesses for filter
coefficients.
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Table 5. FIR Filter Benchmarks (240 Filter Coefficients and 200 Output Samples)

Number of Cycles

Functions Formula
Scenario 1
(L1D)

Scenario 2
(L2 SRAM)

DSP_fir_gen 12,550
= (11 + 4 * ceil(nh/4)) * nr/4 + 15; nh = 240; nr = 200

12,576 12,720

DSP_fir_r4 12,409
= (8+nh) * nr/4 + 9; nh = 240; nr = 200

12,424 12,552

DSP_fir_r8 12,017
= nh * nr/4 + 16; nh =240; nr = 200

12,032 12,160

DSP_fir_sym 8,276
= (10* nh/8 + 15) * nr/4 + 26; nh = 120; nr = 200

8,328 8,440

The cycle count for Scenario 1 in all functions is close to the formula cycle count (considering
function call overhead) because no cache miss occurred. For Scenario 2, L1D read/write miss
overhead needs to be considered. For example, in DSP_fir_gen, the actual length of data
loaded is 880 = 480 (i.e., length of filter coefficients) + 400 (i.e., length of input data), which
corresponds to 84 stall cycles (or 14 L1D read misses). The other stall cycles (i.e., 49 cycles)
are due to the additional L1D miss penalty caused by write buffer flush as explained in
section 2.3.2. Cycle counts for other functions can also be explained in a similar way.

3.2 Infinite Impulse Response (IIR) Filter

The DSPLIB provides a 4th order IIR filter defined as:

y(n) � �
4

k�0

c(k)x(n � k) ��
4

k�1

d(k)y(n � k)

where x(n) and y(n) are the input and output data, and c(k) and d(k) are the filter coefficients.
The d(k) are auto-regressive (AR) coefficients, i.e., the poles of the transfer function, and c(k)
are moving-average (MA) coefficients, i.e., the zeros of the transfer function.

IIR filters generally have nonlinear phase responses, but can meet magnitude response
specifications with much lower orders than FIR filters. However, due to their nature of instability,
care must be taken in their design to meet stability criteria.

The IIR filter function in DSPLIB is defined as:

void DSP_iir (short * restrict r1, const short * restrict x, short * restrict
r2, const short * restrict h2, const short * restrict h1, int nr )

The input data (x), output data (r2), moving average filter coefficients (h2), and auto-regressive
filter coefficients (h1) are represented in Q.15 format. It requires a temporary memory (r1) as
well as the output memory (r2). The number of output data (nr) must be greater than or equal to
8. Both input data (x) and temporary array (r1) must have 4 more elements than the number of
outputs (nr). The first four elements in r1 must have the previous outputs.

The filter coefficients are generated using the Matlab Filter Design and Analysis Tool with the
filter specifications listed in Table 6. The coefficients are in the range of (−1, 1) to prevent
overflow. Figure 6 shows the frequency response of this filter.

(2)
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Table 6. IIR Filter Design Specifications

Filter Type Order
Design
Method

Sampling
Frequency

Cut-Off
Frequency

Passband
Ripple

Low-pass 4 Chebyshev Type 1 44,100 Hz 12,000 Hz 1 dB

Figure 6. Frequency Response of a Low-Pass IIR Filter

Figure 7 and Figure 8 show the results of the IIR filter. In both figures, the top graph is the input,
and the bottom graph is the output. When the input frequency (370 Hz) is below the cut-off
frequency, the signal is passed as shown in Figure 7. When the input frequency (18,000 Hz) is
above the cut-off frequency, the signal is attenuated as shown in Figure 8.

Figure 7. IIR Filter Passband Input (top) and Output (bottom)
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Figure 8. IIR Filter Stopband Input (top) and Output (bottom)

Table 7 lists the performance of the IIR filter.

Table 7. IIR Filter Benchmarks (500 Output Samples)

Number of Cycles

Functions Formula
Scenario 1
(L1D)

Scenario 2
(L2 SRAM)

DSP_iir 2,021
= 4 * nr + 21; nr = 500

2,072 2,248

The cycle count for Scenario 1 is close to the formula cycle count, considering the function call
overhead. In Scenario 2, the actual length of input data loaded is 1020 = 20 (i.e., length of filter
coefficients) + 1000 (i.e., length of input data), which corresponds to 96 stall cycles (or 16 L1D
read misses). The other stall cycles (80 cycles) are due to the additional L1D miss penalty
caused by write buffer flush, as explained in section 2.3.2.

3.3 Lattice Infinite Impulse Response (IIR) Filter

The DSPLIB provides a lattice IIR function for the case where a real, all-pole IIR filter is used.
The lattice IIR filter function is defined as:

void DSP_iirlat (const short * restrict x, int nx, const short * restrict k,
int nk, int * restrict b, short * restrict r)

The input data (x), output data (r), and reflection filter coefficients (k) are represented in Q.15
format. The number of reflection coefficients (nk) must be a multiple of 2 and greater than or
equal to 10. There is no restriction on the number of input data (nx).
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The filter coefficients are generated using Matlab with the filter specifications listed in Table 8, as
follows:

[b a] = maxflat( 0, 6, 12*2/44.1); // generate a low-pass, all-pole IIR filter

k = tf2latc( 1, a ); // convert the IIR to an AR lattice IIR filter

// b is used to scale the output later

Figure 9 shows the frequency response of the lattice IIR filter.

Table 8. IIR Lattice Filter Design Specifications

Filter
Type

Numerator
Order (MA)

Denominator
Order (AR)

Design
Method

Sampling
Frequency

Cut-Off
Frequency

Low-pass 0 6 Maximally flat 44,100 Hz 12,000 Hz

Figure 9. Low-Pass IIR Filter Frequency Response

Table 9 lists the performance of the lattice IIR filter.

Table 9. Lattice IIR Filter Benchmarks (6 Reflective Coefficients and 500 Output Data)

Number of Cycles

Functions Formula
Scenario 1
(L1D)

Scenario 2
(L2 SRAM)

DSP_iirlat 9,509
= (2 * nk + 7) * nx + 9; nk = 6; nx = 500

9,520 9,648

The cycle count for Scenario 1 is close to the formula cycle count. In Scenario 2, the actual
length of data loaded is 1020 = 12 (i.e., length of reflective coefficients) + 1000 (i.e., length of
input data), which corresponds to 96 stall cycles (or 16 L1D read misses). The other stall cycles
(32 cycles) are due to the additional L1D miss penalty caused by write buffer flush.
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3.4 Fast Fourier Transform (FFT)

FFT is widely used for frequency-domain processing and spectrum analysis. It is a
computationally efficient discrete Fourier transform (DFT) defined as:

X(k) � �
N�1

n�0

xnW kn
N , k � 0,... , N � 1

where

W kn
N � e�2 j �nk � N

The C64x DSPLIB provides eight FFT functions: 

1. DSP_radix2

2. DSP_r4fft

3. DSP_fft

4. DSP_fft16x16r

5. DSP_fft16x16t

6. DSP_fft16x32

7. DSP_fft32x32

8. DSP_fft32x32s

Note that in all FFT functions, twiddle factors cannot be scaled not to scale input data. Twiddle
factors are generated with a fixed scale factor. For example, 32767(=2^15−1) for all 16-bit FFT
functions, 1073741823(=2^30−1) for DSP_fft32x32s, 2147483647(=2^31−1) for all other 32-bit
FFT functions.

DSP_radix2 and DSP_r4fft are from TMS320C62x DSPLIB for compatibility, while others are
optimized for C64x. DSP_fft is a radix-4 FFT, and the other five functions perform a series of
radix-4 FFTs followed by a radix-2 FFT, if needed.

DSP_fft16x16r and DSP_fft32x32s compute complex forward FFT with automatic scaling and
rounding. Scaling by 2 (i.e., >>1) takes place at each radix−4 stage except the last one. A
radix-4 stage could give a maximum bit−growth of 2 bits, which would require scaling by 4. To
completely prevent overflow, the input data must be scaled by 2^(BT−BS), where BT (total
number of bit growth) = log2(N) and BS (number of scales by the function) = ceil(log4(N)−1)).

The DSP_fft16x16r is an optimized FFT for less cache thrashing when all the required data do
not fit in L1D. In this application report, the focus is on the other three functions that require
scaled input (i.e., DSP_fft16x16t, DSP_fft16x32, and DSP_fft32x32).

The definitions and requirements of the functions follow.

void DSP_fft16x16t (const short * restrict w, int nx, short * restrict x,
short * restrict y )

It computes a complex forward FFT with truncation. Each complex number for twiddle factors
(w), input data (x), and output data (y) is represented in interleaved Q.15 format real and
imaginary pairs. Note that DSPLIB provides twiddle factor generators in the dsplib/bin directory.
All arrays must be aligned to an 8-byte boundary.

TMS320C62x is a trademark of Texas Instruments.

(3)

(4)
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void DSP_fft16x32 (const short * restrict w, int nx, int * restrict x, int *
restrict y )

It computes a complex forward FFT with rounding. Each complex number for twiddle factors (w)
is represented in interleaved Q.15 format real and imaginary pairs. Each complex number for
input data (x) and output data (y) is represented in interleaved Q.31 format real and imaginary
pairs. All arrays must be aligned to an 8-byte boundary.

void DSP_fft32x32 (const int * restrict w, int nx, int * restrict x, int *
restrict y )

It computes a complex forward FFT with rounding. Each complex number for twiddle factors (w),
input data (x), and output data (y) is represented in interleaved Q.31 format real and imaginary
pairs. All arrays must be aligned to an 8-byte boundary.

Table 10 summarizes the requirements of the FFT functions.

Table 10. Data Formats of FFT Functions

Function Twiddle Factors Input/Output Scaling/Rounding

DSP_fft16x16t Q.15 Q.15 Truncation

DSP_fft16x32 Q.15 Q.31 Rounding

DSP_fft32x32 Q.31 Q.31 Rounding

The input data need to be scaled to prevent overflow due to the bit growth in each FFT stage. To
completely prevent overflow, the input data must be scaled by 2^ (log2(N)).  For example, if a
512−point FFT is performed, up to 9 bits (log2(512)) can be added. Therefore, if the input is in
16 bits, the input data must be limited to signed 7 bits to prevent potential overflow.

Figure 10 shows the 16-bit input and output data generated with DSP_fft16x16t. The input graph
(top) shows real-part only, and the output graph (bottom) shows both real and imaginary parts.
The input data contains the frequency components of 10 and 40, and the output data clearly
shows the frequency components in the input data.
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Figure 10. 512-Point FFT Input (top) and Output (bottom)

Table 11 lists the performance of the FFT functions.

Table 11. 512-Point FFT Benchmarks

Number of Cycles

Functions Formula
Scenario 1
(L1D)

Scenario 2
(L2 SRAM)

DSP_fft16x16t 3,190
= (10 * N/8 + 19) * ceil(log4(N) − 1) + (N/8 + 2) * 7 + 28 + N/8;
N = 512

3,208 3,600

DSP_fft16x32 4,231
= (13 * N/8 + 24) * ceil(log4(N) − 1) + (N + 8) * 1.5 + 27;
N = 512

4,272 4,856

DSP_fft32x32 6,007
= ((N/4 + 1) * 10 + 10) * ceil(log4(N)−1) + 6*(N/4+2) + 27;
N = 512

6,024 6,792

The cycle count for Scenario 1 in all functions is close to the formula cycle count, considering
the function call overhead. In Scenario 2, L1D read/write miss overhead needs to be considered.
For example, in DSP_fft16x16t, the actual length of data loaded is 4,096 = 2,048 (i.e., length of
twiddle factors) + 2,048 (i.e., length of input data), which corresponds to 384 stall cycles (or 64
L1D read misses). Cycle counts of other functions can also be explained in a similar way.

The C64x DSPLIB also provides two inverse FFT functions:
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1. DSP_ifft16x32

2. DSP_ifft32x32

The same twiddle factors for FFT functions can be used for the IFFT functions. The definitions
and requirements of the functions follow.

void DSP_ifft16x32 (const short * restrict w, int nx, short * restrict x,
short * restrict y )

It computes a complex inverse FFT with rounding. Each complex number for twiddle factors (w)
is represented in interleaved Q.15 format real and imaginary pairs. Each complex number for
input data (x) and output data (y) is represented in interleaved Q.31 format real and imaginary
pairs. All arrays must be aligned to an 8-byte boundary.

void DSP_ifft32x32 (const short * restrict w, int nx, short * restrict x,
short * restrict y )

It computes a complex inverse FFT with rounding. Each complex number for twiddle factors (w),
input data (x), and output data (y) is represented in interleaved Q.31 format real and imaginary
pairs. All arrays must be aligned to an 8-byte boundary.

Table 12 summarizes the requirements of the IFFT functions.

Table 12. Data Formats of IFFT Functions

Function Twiddle Factors Input/Output Scaling/Rounding

DSP_ifft16x32 Q.15 Q.31 Rounding

DSP_ifft32x32 Q.31 Q.31 Rounding

Since the IFFT functions do not perform automatic scaling, the input data need to be scaled to
prevent overflow occurring from bit growth in each IFFT stage as in the FFT functions.

The C64x DSPLIB does not provide a 16-bit inverse FFT function. Therefore, a 16-bit FFT
function can be utilized to perform a 16-bit IFFT, as shown below.

x(n) � 1
N
�
N�1

k�0

X(k) W�kn
N �

1
N
�
N�1

k�0

X(k) �W kn
N
� * � 1

N
��N�1

k�0

X(k) * W kn
N �

*

In general, FFT can be used to compute IFFT with conjugated twiddle factors. However, some
twiddle factor additions and subtractions are hard-coded in the DSPLIB FFT functions.
Alternatively, the input data are conjugated before performing FFT, and then the outputs of FFT
are conjugated to obtain the final IFFT results.
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