
Application Report
SPRA885A − September 2003

1

Signal Processing Examples Using TMS320C62x Digital
Signal Processing Library (DSPLIB)

Chris Chung
Oliver Sohm

TMS320C6000 Software Applications

ABSTRACT

The TMS320C62x digital signal processing library (DSPLIB) provides a set of C-callable,
assembly-optimized functions commonly used in signal processing applications, e.g., filtering
and transform. The DSPLIB includes several functions for each processing category, based
on the input parameter conditions, to provide parameter-specific optimal performance.
Therefore, it is important to understand the differences and requirements of the functions in
each category. This application report presents the usage and performance of three key signal
processing categories, i.e., finite impulse response (FIR), infinite impulse response (IIR), and
fast Fourier transform (FFT), to help users better utilize DSPLIB in their system development.

Contents

1 Introduction 2.

2 Benchmarking 4.
2.1 Emulation/Simulation Setup 4.
2.2 Cycle Count Measurement 6.
2.3 Example Scenarios and Expected Performance 7.

2.3.1 Scenario 1: Data in L1D (C621x) or Data Memory (C620x) 7.
2.3.2 Scenario 2: Data in L2 SRAM (C621x Only) 8.

2.4 Data Alignment 9.

3 Examples 9.
3.1 Finite Impulse Response (FIR) Filter 9.
3.2 Infinite Impulse Response (IIR) Filter 13.
3.3 Lattice Infinite Impulse Response (IIR) Filter 16.
3.4 Fast Fourier Transform (FFT) 17.

4 References 20.

List of Figures

Figure 1. C620x Memory Hierarchy and Potential Overhead 3.
Figure 2. C621x Memory Hierarchy and Potential Overhead 3.
Figure 3. Example Linker Command File 8.
Figure 4. Frequency Response of a Low-Pass FIR Filter 11.
Figure 5. FIR Filter Passband Input (top) and Output (bottom) 12.
Figure 6. FIR Filter Stopband Input (top) and Output (bottom) 12.

TMS320C62x is a trademark of Texas Instruments.

Trademarks are the property of their respective owners.

SPRA885A

2 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

Figure 7. Frequency Response of a Low-Pass IIR Filter 14.

Figure 8. IIR Filter Passband Input (top) and Output (bottom) 15.

Figure 9. IIR Filter Stopband Input (top) and Output (bottom) 15.

Figure 10. Low-Pass IIR Lattice Filter Frequency Response 17.

Figure 11. 512-Point FFT Input (top) and Output (bottom) 19.

List of Tables

Table 1. C6711 DSK Key Features 4.

Table 2. Stall Cycles Related to L1D 8.

Table 3. Requirements of FIR Functions 10.

Table 4. FIR Filter Design Specifications 11.

Table 5. FIR Filter Benchmarks (240 Kernel Coefficients and 200 Output Samples) 13.

Table 6. IIR Filter Design Specifications 14.

Table 7. IIR Filter Benchmarks (500 Output Samples) 16.

Table 8. IIR Lattice Filter Design Specifications 16.

Table 9. Lattice IIR Filter Benchmarks (6 Reflective Coefficients and 500 Output Samples) 17.

Table 10. 512-Point FFT Benchmarks 19.

1 Introduction

TMS320C62x is an advanced, very long instruction word (VLIW) processor, well-suited for
real-time signal processing applications with its high computing power and large on-chip
memory. While TMS320C620x provides direct memory access (DMA) to efficiently transfer data
to/from off-chip memory, TMS320C621x provides cache as well as enhanced direct memory
access (EDMA). To help users shorten the time-to-market in system development, Texas
Instruments provides a set of assembly-optimized functions, named digital signal processing
library (DSPLIB). Each function in the DSPLIB is designed to produce the best performance
possible by optimally utilizing available resources and avoiding potential resource conflicts.

The DSPLIB includes several functions for each processing category, based on the input
parameter conditions, to provide parameter-specific optimal performance. Due to the parameter
specifics, it is important to understand the differences and requirements of the functions in each
category.

It is also important to understand potential overhead related to memory hierarchy, to estimate
and improve the actual performance of a system being developed. Figure 1 shows the memory
hierarchy of C620x and related potential overhead. For example, without considering
compulsory DMA/cache overhead, DMA operations and/or cache misses can occur when the
program is bigger than the size of the program memory (PM) and/or cache. Similarly, when the
data do not fit in the data memory (DM), DMA operations are required to transfer code/data
between DM and off-chip memory.

SPRA885A

3 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

CPU

PM/Cache DM

DMA/EMIF Off-chip memory

C620x

Program cache misses

Off-chip memory accesses

1

2

1

2

Figure 1. C620x Memory Hierarchy and Potential Overhead

Figure 2 shows the memory hierarchy of C621x and related potential overhead. For example,
when the program is bigger than the size of the level-one program cache (L1P), L1P cache
misses can occur, stalling the central processing unit (CPU) until the required code is fetched.
Similarly, when the data do not fit in the level-one data cache (L1D), L1D cache misses will stall
the CPU.

CPU

L1P L1D

L2 cache/SRAM

Off-chip memory

C621x

L1 program cache misses

L1 data cache misses

1

2

1

4
EDMA/EMIF

3

2
L2 cache misses

2

3

Off-chip memory accesses4

Figure 2. C621x Memory Hierarchy and Potential Overhead

All L1P and L1D misses are serviced by the level-two cache/SRAM (L2 cache/SRAM). When L2
cache is used, L2 misses will incur off-chip memory accesses via EDMA. When L2 SRAM is
used, EDMA is required to transfer code/data between L2 SRAM and off-chip memory if the
code and data do not fit in the L2 SRAM. The data transfer with EDMA is typically more effective
than that with L2 cache due to its nature of longer burst transactions, which reduces memory
access latency overhead. However, the EDMA transfer involves more programming effort
because data transfers and synchronization have to be manually managed. TMS320C621x
provides both cache and EDMA mechanisms to allow the user to choose the right mechanism,
depending on situations.

This application report presents the usage and performance of three key signal processing
categories, i.e., finite impulse response (FIR) filter, infinite impulse response (IIR) filter and fast
Fourier transform (FFT), to help users better utilize DSPLIB in system development.

SPRA885A

4 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

2 Benchmarking

2.1 Emulation/Simulation Setup

A TMS320C6711 DSP starter kit (DSK) is used in this application report to measure cycle
counts. Table 1 lists key features of the C6711 DSK, which are important factors in performance
analysis and optimization. More details on the C6711 internal memory structure and operations
can be found in TMS320C621x/C671x DSP Two-Level Internal Memory Reference Guide
(SPRU609).

Table 1. C6711 DSK Key Features

Item Description

Clock frequency 150 MHz

L1P 4K-byte, direct-mapped, 64-byte cache line

L1D 4K-byte, 2-way set associative, 32-byte cache line, 64-bit wide, dual-ported

L2 SRAM 5-cycle L1P miss penalty, 4-cycle L1D miss penalty, up to 64K bytes, four 64-bit banks

L2 cache 5-cycle L1P miss penalty, 4-cycle L1D miss penalty, up to 64K bytes, 1/2/3/4-way set
associative, 128-byte cache line, four 64-bit banks

L2 to L1D read path 128 bits

L1D to L2 write buffer 32-bit, 4-entry. L2 can process a write request every 2 cycles.

EMIF 32-bit bus

The C6711 DSK is connected to a PC through a XDS560 board and a Code Composer Studio
Integrated Development Environment (IDE) configuration based on “_C6x1x XDS560 Emulator
Address 0”, and is used as follows. If you use other types of interfaces, e.g., XDS510 or parallel
port, select the right configuration.

Code Composer Studio is a trademark of Texas Instruments.

SPRA885A

5 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

SPRA885A

6 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

Be sure to select the right General Extension Language (GEL) file for the C6711 DSK.

If you use simulation, select “C6711 Sim Ltl Endian.” Note that the cycle counts obtained from
simulation might not be accurate, especially with off−chip memory accesses.

Software version numbers used in this application report are as follows:

• Code Composer Studio: version 2.1

• C62x IMGLIB: version 1.02b

2.2 Cycle Count Measurement

The built-in timer in C6711 is used to measure cycle counts for DSPLIB examples. The following
sample code shows how to set up the timer and measure cycle counts with Chip Support Library
(CSL).

 hTimer = TIMER_open(TIMER_DEVANY,0); /* open a timer */

 /*−−−*/
 /* Configure the timer. 1 count corresponds to 4 CPU cycles in C62 */
 /*−−−*/
 /* control period initial value */
 TIMER_configArgs(hTimer, 0x000002C0, 0xFFFFFFFF, 0x00000000);
 /* −−− */
 /* Compute the overhead of calling the timer. */
 /* −−− */
 start = TIMER_getCount(hTimer); /* to remove L1P miss overhead */
 start = TIMER_getCount(hTimer);
 stop = TIMER_getCount(hTimer);
 overhead = stop − start;

 start = TIMER_getCount(hTimer);
 /* −−− */
 /* Call a function here. */
 /* −−− */
 diff = (TIMER_getCount(hTimer) – start) − overhead;
 TIMER_close(hTimer);
 printf(”%d cycles \n”, diff*4);

The maximum resolution of the timer is 4 CPU cycles since the input to the timer is fixed to the
CPU clock divided by four. The function call overhead for TIMER_getCount() is roughly
measured and compensated. Additional information on the timer registers can be found in the
TMS320C6000 Peripherals Reference Guide (SPRU190).

SPRA885A

7 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

2.3 Example Scenarios and Expected Performance

Assume two kinds of scenarios to analyze potential overhead related to memory hierarchy:

1. When data are in L1D

2. When data are in L2 SRAM

The overhead with off−chip memory accesses is not presented in this report because the
overhead can be minimized by overlapping the data transfer time and the computation time with
DMA/EDMA.

2.3.1 Scenario 1: Data in L1D (C621x) or Data Memory (C620x)

Although cycle counts close to the formula cycle counts listed in the TMS320C62x DSP Library
Programmer’s Reference (SPRU402) can be achieved in this scenario, additional stall cycles
can occur. For example, the write buffer can hold up to four transactions, and L2 cache/SRAM
can process a transaction every 2 cycles. Therefore, more than one write-miss transaction in
every two cycles can stall the CPU. Bank conflicts in C620x or access conflicts in C621x can
also incur additional stall cycles. In C620x, the L1D is organized as multiple banks; thus multiple
transactions can be handled at the same time unless they access the same bank. In C621x, the
L1D is dual-ported, allowing multiple transactions without bank conflicts. However, when two
transactions access the same word data , additional stall cycle will occur (i.e., data access
conflict).

Figure 3 shows a linker command file used for this scenario. For more information on linker
commands, refer to the TMS320C6000 Optimizing Compiler User’s Guide (SPRU187).
Information on C6000 memory maps can be found in the TMS320C6000 Assembly Language
Tools User’s Guide (SPRU186). In this scenario, the L1P/L1D miss overhead can be removed
by calling a function twice, and measure the cycle count for the second call only.

SPRA885A

8 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

MEMORY

{

 L2SRAM: o = 00000000h l = 00010000h /* 64 kbytes */

}

SECTIONS

{

 .cinit > L2SRAM

 .text > L2SRAM

 .stack > L2SRAM

 .bss > L2SRAM

 .const > L2SRAM

 .data > L2SRAM

 .far > L2SRAM

 .switch > L2SRAM

 .sysmem > L2SRAM

 .tables > L2SRAM

 .cio > L2SRAM

}

Figure 3. Example Linker Command File

2.3.2 Scenario 2: Data in L2 SRAM (C621x Only)

In this scenario, L1D miss overhead needs to be considered. The linker command file for
Scenario 1 is used for this scenario. Table 2 lists expected stall cycles related to L1D read
and/or write transactions. When there are read transactions only, the number of stall cycles is
the number of L1D read misses times L1D miss penalty (i.e., 4 cycles). In case of write
transactions only, there is no stall unless the write buffer is full. The write buffer is 32−bit wide,
and allows up to four outstanding misses.

When there are both read and write transactions, the L1D read miss penalty can increase
because any write transaction in the write buffer is flushed before a read miss is serviced,
to maintain data coherency.

Table 2. Stall Cycles Related to L1D

Transaction Number of Stall Cycles

Read transaction only Number of L1D read misses * L1D miss penalty

Write transaction only No stall cycle unless the write buffer is full

Read and write transactions Number of L1D read misses * (L1D miss penalty + additional cycles
for write buffer flush)

SPRA885A

9 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

2.4 Data Alignment

Due to the structure of internal memory/cache, some DSPLIB functions require input/output
memory arrays to be aligned to a specific boundary. While this restriction does not apply to
C621x that employs dual-ported internal memory/cache, it must be carefully managed in C620x
for attaining optimal performance. For example, the following statement is used to allocate the
array (input) to a 4-byte boundary.

#pragma DATA_ALIGN (input, 4)

The C62x compiler automatically aligns arrays of type double to an 8-byte boundary, while
others are aligned to a 4-byte boundary if they are not declared in a struct statement. When
dynamic memory allocation is used, the allocated memory is always aligned to an 8-byte
boundary, regardless of types. More information on data-alignment rules by the compiler can be
found in the TMS320C6000 Optimizing Compiler User’s Guide (SPRU187).

The structure of internal memory/cache on the C62x generation varies from device to device.
Therefore, refer to the appropriate device data sheet to determine the structure of a particular
device.

3 Examples

This section presents the usage and performance of three key signal processing categories, i.e.,
finite impulse response (FIR) filter, infinite impulse response (IIR) filter and fast Fourier transform
(FFT). To minimize the variation in cycle count measurement, be sure to select the Reset menu
(under Debug in Code Composer Studio) before running an example.

3.1 Finite Impulse Response (FIR) Filter

A generalized FIR filter of N filter coefficients, h(k), is defined as:

y(n) � �
N�1

k�0

h(k) x(n � k)

The C62x DSPLIB provides four real-number FIR functions:

• DSP_fir_gen

• DSP_fir_r4

• DSP_fir_r8

• DSP_fir_sym

The definitions and requirements of the real-number FIR functions follow.

void DSP_fir_gen (const short * restrict x, const short * restrict h, short *
restrict r, int nh, int nr)

The input data (x), output data (r), and filter coefficients (h) are represented in Q.15 format. The
number of filter coefficients (nh) must be greater than or equal to 5. The accumulated result is
shifted to the right by 15.

C62x is a trademark of Texas Instruments.

SPRA885A

10 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

void DSP_fir_r4 (const short * restrict x, const short * restrict h, short *
restrict r, int nh, int nr)

The input data (x), output data (r), and filter coefficients (h) are represented in Q.15 format. The
number of filter coefficients (nh) must be a multiple of 4 and greater than or equal to 8. The
number of output data (nr) must be a multiple of 2. The accumulated result is shifted to the right
by 15.

void DSP_fir_r8 (const short * restrict x, const short * restrict h, short *
restrict r, int nh, int nr)

The input data (x), output data (r), and filter coefficients (h) are represented in Q.15 format. The
number of filter coefficients (nh) must be a multiple of 8 and greater than or equal to 8. The
number of output data (nr) must be a multiple of 2. The accumulated result is shifted to the right
by 15.

void DSP_fir_sym (const short * restrict x, const short * restrict h, short *
restrict r, int nh, int nr, int s)

The input data (x), output data (r), and filter coefficients (h) are represented in Q.15 format. The
number of filter coefficients (nh) must be a multiple of 8 and greater than or equal to 8. Due to its
symmetric nature of filter coefficients, only half the actual filter coefficients are specified. The
number of output data (nr) must be a multiple of 2. The accumulated result is shifted to the right
by the amount specified (s).

Table 3 summarizes the requirements of the FIR functions.

Table 3. Requirements of FIR Functions

Function No. of Filter Coefficients (nh) No. of Outputs (nr) Right-Shift Amount

DSP_fir_gen � 5 Any 15

DSP_fir_r4 � 4 and multiple of 4 Multiple of 2 15

DSP_fir_r8 � 8 and multiple of 8 Multiple of 2 15

DSP_fir_sym � 8 and multiple of 8
(actual length is 2 * nh + 1)

Multiple of 2 Variable

NOTE: In DSP_fir_r8, the input data (x) and filter coefficients (h) must be aligned to a 4-byte boundary. In DSP_fir_sym, the
filter coefficients (h) must be aligned to a 4-byte boundary.

Note that the filter coefficients must be stored in reverse order, except for DSP_fir_sym. The
filter coefficients are generated using the Matlab Filter Design and Analysis Tool, with the filter
specifications listed in Table 4. The frequency response of this FIR filter is shown in Figure 4.

SPRA885A

11 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

Table 4. FIR Filter Design Specifications

Filter Type Low-Pass

Order 239 (240 for DSP_fir_sym)

Design method Window (Kaiser with a beta of 0.5)

Sampling frequency 44,100 Hz

Cut-off frequency 10,000 Hz

Figure 4. Frequency Response of a Low-Pass FIR Filter

Sinusoidal input data to the FIR filter are generated in Q.15 format as follows:

x_s[i] = SCALE * sin(i*2*PI*Fin/Fs); // 16-bit short (Q.15)

where Fin and Fs are the input data frequency and the sampling frequency, respectively. The
scale factor (SCALE) depends on the filter coefficients and must be adjusted to prevent
overflow.

Figure 5 and Figure 6 show the results of the FIR filter. In both figures, the top graph is the input
and the bottom graph is the output. When the input frequency (370 Hz) is below the cut-off
frequency, the signal is passed as shown in Figure 5. When the input frequency (10,500 Hz) is
above the cut-off frequency, the signal is attenuated as shown in Figure 6.

SPRA885A

12 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

Figure 5. FIR Filter Passband Input (top) and Output (bottom)

Figure 6. FIR Filter Stopband Input (top) and Output (bottom)

Table 5 lists the performance of the four FIR functions. As expected, performance increases as
parameter restrictions become more stringent, allowing better loop unrolling and software
pipelining. DSP_fir_sym further takes advantage of half−reduced memory accesses for filter
coefficients.

SPRA885A

13 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

Table 5. FIR Filter Benchmarks (240 Kernel Coefficients and 200 Output Samples)

Number of Cycles

Functions Formula Scenario 1 (L1D) Scenario 2 (L2 SRAM)

DSP_fir_gen 24,918
= (9 + 4 * ceil(nh/4)) * ceil(nr/2) + 18; nh = 240; nr =
200

24,964 25,144

DSP_fir_r4 24,814
= (8+nh) * nr/2 + 14;
nh = 240; nr = 200

24,872 25,068

DSP_fir_r8 24,028
= nh * nr/2 + 28;
nh = 240; nr = 200

24,056 24,216

DSP_fir_sym 19,020
= (3* nh/2 + 10) * nr/2 + 20;
nh = 120; nr = 200

19,040 19,236

The cycle count for Scenario 1 in all functions is very close to the formula cycle count
(considering function call overhead) because no cache miss occurred. In scenario 2, L1D
read/write miss overhead needs to be considered. For example, in DSP_fir_gen, the actual
length of data loaded is 880 = 480 (i.e., length of kernel coefficients) + 400 (i.e., length of input
data), which corresponds to 112 stall cycles (or 28 L1D read misses). The other stall cycles (i.e.,
68 cycles) are due to the additional L1D miss penalty caused by write buffer flush as explained
in section 2.3.2. Cycle counts for other functions can also be explained in a similar way.

3.2 Infinite Impulse Response (IIR) Filter

The DSPLIB provides a fourth-order IIR filter, defined as:

y(n) � �
4

k�0

c(k) x(n � k) ��
4

k�1

d(k) y(n � k)

where x(n) and y(n) are the input and output data, and c(k) and d(k) are the filter coefficients.
The d(k) are auto-regressive (AR) coefficients, i.e., the poles of the transfer function, and c(k)
are moving-average (MA) coefficients, i.e., the zeros of the transfer function.

IIR filters generally have nonlinear phase responses, but can meet magnitude response
specifications with much lower orders than FIR filters. However, due to their nature of instability,
care must be taken in their design to meet stability criteria.

The IIR filter function in DSPLIB is defined as:

void DSP_iir (short * restrict r1, const short * restrict x, short * restrict
r2, const short * restrict h2, const short * restrict h1, int nr)

SPRA885A

14 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

The input data (x), output data (r2), moving-average filter coefficients (h2), and auto-regressive
filter coefficients (h1) are represented in Q.15 format. It requires a temporary memory (r1) as
well as the output memory (r2). The number of output data (nr) must be greater than or equal to
8. Both input dta (x) and temporary array (r1) have four more elements than the number of
outputs (nr). The first four elements in r1 must have the previous outputs.

The filter coefficients are generated using the Matlab Filter Design and Analysis Tool with the
filter specifications listed in Table 6. The coefficients are in the range of (−1, 1) to prevent
overflow. Figure 7 shows the frequency response of this filter.

Table 6. IIR Filter Design Specifications

Filter Type Order
Design
Method

Sampling
Frequency

Cut-Off
Frequency

Passband
Ripple

Low-pass 4 Chebyshev Type 1 44,100 Hz 10,000 Hz 1 dB

Figure 7. Frequency Response of a Low-Pass IIR Filter

Figure 8 and Figure 9 show the results of the IIR filter. In both figures, the top graph is the input,
and the bottom graph is the output. When the input frequency (370 Hz) is below the cut-off
frequency, the signal is passed as shown in Figure 8. When the input frequency (18,000 Hz) is
above the cut-off frequency, the signal is attenuated as shown in Figure 9.

SPRA885A

15 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

Figure 8. IIR Filter Passband Input (top) and Output (bottom)

Figure 9. IIR Filter Stopband Input (top) and Output (bottom)

SPRA885A

16 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

Table 7 lists the performance of the IIR filter.

Table 7. IIR Filter Benchmarks (500 Output Samples)

Number of Cycles

Function Formula Scenario 1 (L1D) Scenario 2 (L2 SRAM)

DSP_iir 2,530
= 5 * nr + 30; nr = 500

2,544 2,864

The cycle count for Scenario 1 is close to the formula cycle count, considering the function call
overhead. In scenario 2, the actual length of input data loaded is 1020 = 20 (i.e., length of kernel
coefficients) + 1000 (i.e., length of input data), which corresponds to 128 stall cycles (or 32 L1D
read misses). The other stall cycles (80 cycles) are due to the additional L1D miss penalty
caused by write buffer flush, as explained in section 2.3.2.

3.3 Lattice Infinite Impulse Response (IIR) Filter

The DSPLIB provides a lattice IIR function for the case where a real, all-pole IIR filter is used.
The lattice IIR filter function is defined as:

void DSP_iirlat (const short * restrict x, int nx, const short * restrict k,
int nk, int * restrict b, short * restrict r)

The input data (x), output data (r), and reflection filter coefficients (k) are represented in Q.15
format. The number of reflection coefficients (nk) must be a multiple of 2, and greater than or
equal to 4. There is no restriction on the number of input data (nx). To avoid memory bank
conflicts, the output array (r) and reflection coefficients (k) must be in different spaces of the
memory banks.

The filter coefficients are generated using Matlab with the filter specifications listed in Table 8, as
follows:

[b a] = maxflat(0, 6, 12*2/44.1); // generate a low-pass, all-pole IIR filter

k = tf2latc(1, a); // convert the IIR to an AR lattice IIR filter

 // b is used to scale the output later

Table 8. IIR Lattice Filter Design Specifications

Filter Type
Numerator
Order (MA)

Denominator
Order (AR)

Design
Method

Sampling
Frequency

Cut-Off
Frequency

Low-pass 0 6 Maximally flat 44,100 Hz 12,000 Hz

Figure 10 shows the frequency response of the lattice IIR filter.

SPRA885A

17 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

Figure 10. Low-Pass IIR Lattice Filter Frequency Response

Table 9 lists the performance of the lattice IIR filter.

Table 9. Lattice IIR Filter Benchmarks (6 Reflective Coefficients and 500 Output Samples)

Number of Cycles

Function Formula Scenario 1 (L1D) Scenario 2 (L2 SRAM)

DSP_iirlat 9,509
= (2 * nk + 8) * nx + 5;
nk = 6; nx = 500

10,024 10,172

The cycle count for Scenario 1 is close to the formula cycle count. In scenario 2, the actual
length of data loaded is 1020 = 12 (i.e., length of reflective coefficients) + 1000 (i.e., length of
input data), which corresponds to 128 stall cycles (or 32 L1D read misses). The other stall
cycles (20 cycles) are due to the additional L1D miss penalty caused by write buffer flush.

3.4 Fast Fourier Transform (FFT)

FFT is widely used for frequency-domain processing and spectrum analysis. It is a
computationally efficient discrete Fourier transform (DFT), defined as:

X(k) � �
N�1

n�0

xn W kn
N , k � 0,.. . , N � 1

where

W kn
N � e�2j �nk�N

The C62x DSPLIB provides three FFT functions:

1. DSP_radix2

2. DSP_r4fft

3. DSP_fft16x16r

SPRA885A

18 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

DSP_radix2 and DSP_r4fft perform radix-2 and radix-4 FFT, respectively, and the output is in
bit-reversed order. Therefore, a separate function (DSP_bitrev_cplx) is provided to convert the
bit-reversed order output into a normal order output. The DSP_fft16x16r is an optimized FFT for
less cache thrashing. The use of DSP_fft16x16r is highly recommended due to its flexibility and
efficiency. Note that in all FFT functions, twiddle factors cannot be scaled not to scale input data.
Twiddle factors are always generated with a fixed cale factor of 32767(=2^15-1).

The definitions and requirements of DSP_fft16x16r follow.

void DSP_fft16x16r (int nx, short * restrict x, short * restrict w, unsigned
char * restrict brev, short * restrict y, int radix, int offset, int nmax)

The DSP_fft16x16r performs a series of radix-4 FFTs followed by a radix−2 FFT, if needed. Each
complex number for twiddle factors (w) and input/output data (x and y) is represented in
interleaved, Q.15 format real and imaginary pairs. The number of data (nx) must be a power of
2. The input/output data and twiddle factors must be aligned to an 8-byte boundary. This function
requires a table (brev) containg 64-entry bit-reverse data. Efficient use of cache is achieved with
four parameters: nx, radix, offset, and nmax. If all the required data fit into L1D, this function can
work as a normal mixed-radix FFT with the parameters of 0 offset, nmax equal to nx, and radix
of either 2 or 4, depending on nx (i.e., 2 for nx = a power of 2, and 4 for nx = a power of 4). If all
the required data do not fit into L1D, the four parameters can be used as in the example below.

DSP_fft16x16r (1024, &x[0], &w[0], y, brev, 4, 0, 1024);

is equivalent to:

DSP_fft16x16r (1024, &x[2*0], &w[0], y, brev, 256, 0, 1024);

DSP_fft16x16r (256, &x[2*0], &w[2*768], y, brev, 4, 0, 1024);

DSP_fft16x16r (256, &x[2*256], &w[2*768], y, brev, 4, 256, 1024);

DSP_fft16x16r (256, &x[2*512], &w[2*768], y, brev, 4, 512, 1024);

DSP_fft16x16r (256, &x[2*768], &w[2*768], y, brev, 4, 768, 1024);

Even with multiple calls, cache thrashing will happen in the first call. However, in the following
four calls, all the required data fit into L1D, resulting in much better performance compared to
the single-call case.

Scaling by 2 (i.e., >>1) takes place at each radix-4 stage except the last one. A radix-4 stage
could give a maximum bit-growth of 2 bits, which would require scaling by 4. To completely
prevent overflow, the input data must be scaled by 2^(BT-BS), where BT (total number of bit
growth) = log2(N) and BS (number of scales by the function) = ceil(log4(N)-1)).

Figure 11 shows the 16-bit input and output data generated with the DSP_fft16x16r. The input
graph (top) shows real-part only, and the output graph (bottom) shows both real and imaginary
parts. The input data contains the frequency components of 10 and 40, and the output data
clearly shows the frequency components in the input data.

SPRA885A

19 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

Figure 11. 512-Point FFT Input (top) and Output (bottom)

Table 10 lists the performance of DSP_fft16x16r.

Table 10. 512-Point FFT Benchmarks

Number of Cycles

Function Formula Scenario 1 (L1D) Scenario 2 (L2 SRAM)

DSP_fft16x16r 6,308
= 2.5 * N * ceil(log4(N)) − N/2 + 164;
N = 512

6,528 6,904

The C62x DSPLIB does not provide any inverse FFT functions. Therefore, the FFT function can
be utilized to perform IFFT as:

x(n) � 1
N
�
N�1

k�0

X(k) W �kn
N �

1
N
�
N�1

k�0

X(k) �W kn
N
�
*
�

1
N
��N�1

k�0

X(k)* W kn
N�

*

In general, FFT can be used to compute IFFT with conjugated twiddle factors. However, some
twiddle factor additions and subtractions are hard-coded in the DSPLIB FFT functions.
Alternatively, the input data are conjugated before performing FFT, and then the outputs of FFT
are conjugated to obtain the final IFFT results.

SPRA885A

20 Signal Processing Examples Using TMS320C62x Digital Signal Processing Library (DSPLIB)

4 References
1. TMS320C62x DSP Library Programmer’s Reference (SPRU402).

2. TMS320C621x/C671x DSP Two-Level Internal Memory Reference Guide (SPRU609).

3. TMS320C6000 Peripherals Reference Guide (SPRU190).

4. TMS320C62x DSP Library Programmer’s Reference (SPRU402).

5. TMS320C6000 Optimizing Compiler User’s Guide (SPRU187).

6. TMS320C6000 Assembly Language Tools User’s Guide (SPRU186).

7. John G. Proakis and Dimitris G. Manolakis, “Digital Signal Processing, Principles Algorithms,
and Applications,” Prentice Hall, Third Edition, 1996.

8. Emmanuel C. Ifeachor and Barrie W. Jervis, “Digital Signal Processing, A Practical
Approach,” Prentice Hall, Second Edition, 2002.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2003, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

