
Application Report
SPRA900B − April 2004

1

DSP/BIOS Timing Benchmarks for
Code Composer Studio v2.2

Arnie Reynoso, Sridhar Chakravarthy,
Ashutosh Agrawal, Prashanth L A

Software Development Systems

ABSTRACT

This document provides timing benchmarks for DSP/BIOS functions in the Code Composer
Studio 2.22.20.18 update release. Benchmark values are provided for TMS320C5000,
TMS320C6000, and TMS320C28x DSPs. These values may be used to calculate overall
system performance or overhead.

Where a particular API call may result in several different situations, benchmarks are
provided for each situation. In addition, the methodology used to obtain these benchmarks
is described, so that designers may better analyze their system performance.

Contents

1 DSP/BIOS Timing Benchmarks 3.
1.1 Interrupt Latency 3.
1.2 HWI—Hardware Interrupt Benchmarks 3.
1.3 SWI—Software Interrupt Benchmarks 4.
1.4 TSK—Task Benchmarks 5.
1.5 SEM—Semaphore Benchmarks 7.
1.6 MBX—Mailbox Benchmarks 8.
1.7 LCK—Resource Lock Benchmarks 10.
1.8 CLK—System Clock Benchmarks 11.
1.9 LOG—Log Benchmarks 11.
1.10 STS—Statistics Benchmarks 12.
1.11 MEM—Memory Benchmarks 12.
1.12 PIP—Pipe Benchmarks 12.
1.13 QUE—Queue Benchmarks 13.

2 DSP/BIOS Benchmarking Methodology 13.
2.1 DSP/BIOS Benchmarking Environment 13.
2.2 Calculating System Performance 14.

3 DSP/BIOS Timing Benchmarks 15.
3.1 DSP/BIOS Benchmark Results for the TMSC28x Architecture 15.
3.2 DSP/BIOS Benchmark Results for the TMSC5000 Architecture 18.
3.3 DSP/BIOS Benchmark Results for the TMSC6000 Architecture 21.

4 References 24.

Trademarks are the property of their respective owners.

SPRA900B

2 DSP/BIOS Timing Benchmarks for

List of Figures

Figure 1 Hardware Interrupt to Blocked Task 4.
Figure 2 Hardware Interrupt to Software Interrupt 4.
Figure 3 Post of Software Interrupt Again 4.
Figure 4 Post Software Interrupt without Context Switch 5.
Figure 5 Post Software Interrupt with Context Switch 5.
Figure 6 Create a New Task without Context Switch 5.
Figure 7 Create a New Task with Context Switch 6.
Figure 8 Set a Task’s Execution Priority without Context Switch 6.
Figure 9 Lower the Current Task’s Execution Priority, Context Switch 6.
Figure 10 Raise a Ready Task’s Execution Priority, Context Switch 7.
Figure 11 Task Yield 7.
Figure 12 Post Semaphore, Increment Semaphore Count 7.
Figure 13 Post Semaphore without Task Switch 7.
Figure 14 Post Semaphore with Task Switch 8.
Figure 15 Pend on Semaphore, No Context Switch 8.
Figure 16 Pend on Semaphore with Task Switch 8.
Figure 17 Post Mailbox, No Task Pending on Mailbox 9.
Figure 18 Post a Mailbox without Context Switch 9.
Figure 19 Post a Mailbox with Context Switch 9.
Figure 20 Pend on Mailbox, No Context Switch 9.
Figure 21 Pend on Mailbox with Context Switch 10.
Figure 22 Post a Resource LCK without Ownership Relinquishment 10.
Figure 23 Post a Resource LCK without Context Switch 10.
Figure 24 Post a Resource LCK with Context Switch 10.
Figure 25 Pend on a Self-Owned Resource LCK 11.
Figure 26 Pend on a Resource LCK without Context Switch 11.
Figure 27 Pend on a Resource LCK with Context Switch 11.

List of Tables

Table 1 Instructions Per Timer Tick on Various Architectures 13.
Table 2 Benchmark Programs Environment Setup 14.
Table 3 Benchmark Results for C28x 15.
Table 4 Benchmark Results for C5000 18.
Table 5 Benchmark Results for C6000 21.

SPRA900B

3 DSP/BIOS Timing Benchmarks for

1 DSP/BIOS Timing Benchmarks

The following sections identify DSP/BIOS modules and describe the APIs for which benchmarks
are provided in Section 3.

1.1 Interrupt Latency

Interrupt latency. This is the maximum number of instructions during which the DSP/BIOS kernel
disables maskable interrupts. DSP/BIOS minimizes this time as much as possible to allow the
fastest possible interrupt response time. The interrupt latency of the kernel is in a known region
inside the HWI scheduler. The measurement provided here is the cycle count measurement for
executing that region of code.

1.2 HWI—Hardware Interrupt Benchmarks

HWI_enable. This is the execution time of a HWI_enable function call, which is used to globally
enable hardware interrupts.

HWI_disable. This is the execution time of a HWI_disable function call, which is used to globally
disable hardware interrupts.

HWI_enter. This is the execution time of a HWI_enter function call, which is the hardware
interrupt service routine prolog. This document provides benchmarks for the following cases of
HWI_enter:

• Interrupt prolog (minimum). This is a measurement of execution time of HWI_enter macro
call. The execution time of the HWI_enter macro depends upon the list of registers to be
preserved for the ISR, as defined in masks specified by the user. This benchmark shows the
minimum execution time for the prolog when no registers are preserved.

• Interrupt prolog for calling C function. This is execution time of HWI_enter macro call with
preservation register list as C caller preserved register .

HWI_exit. This is the execution time of HWI_exit function call, which is the hardware interrupt
service routine epilog. This document provides benchmarks for the following cases of HWI_exit:

• Interrupt epilog (minimum). This is a measurement of the execution time of an HWI_exit
macro call. The execution time of HWI_exit depends upon the list of registers the user
specifies to be restored. This benchmark shows the minimum execution time for the epilog
when no registers are restored and without activation of DSP/BIOS scheduler.

• Interrupt epilog following C function call. This is execution time of HWI_enter macro call with
preservation register list as C caller preserved register. In this case DSP/BIOS scheduler is
not invoked from HWI_exit.

Hardware interrupt to blocked task. This is a measurement of the elapsed time from the start of
an ISR that posts a semaphore, to the execution of first instruction in the higher priority blocked
task, as shown in Figure 1.

SPRA900B

4 DSP/BIOS Timing Benchmarks for

Task 1 executing Task 2 executing

Interrupt to Blocked Task
Time

HWI_exitHWI_enter

Interrupt asserted Interrupt response

SEM_post TSK Context Switch

Figure 1. Hardware Interrupt to Blocked Task

Hardware interrupt to software interrupt. This is a measurement of the elapsed time from the
start of an ISR that posts a software interrupt, to the execution of the first instruction in the
higher priority posted software interrupt. This duration is shown in Figure 2.

SWI 1 executing SWI 2 executing

Interrupt to Blocked Task
Time

HWI_exitHWI_enter

Interrupt asserted Interrupt response

SWI_post SWI Context Switch

Figure 2. Hardware Interrupt to Software Interrupt

In Figure 2, SWI 2 (posted from the ISR) has a higher priority than SWI 1, so SWI 1 is
preempted. The context switch for SWI 2 is performed within the SWI executive invoked by
HWI_exit, and this time is included within the measurement. In this case, the registers
saved/restored by HWI_enter/HWI_exit correspond to that of “C” caller saved register.

1.3 SWI—Software Interrupt Benchmarks

SWI_enable. This is the execution time of a SWI_enable function call, which is used to enable
software interrupts.

SWI_disable. This is the execution time of a SWI_disable function call, which is used to disable
software interrupts.

SWI_post. This is the execution time of a SWI_post function call, which is used to post a
software interrupt. This document provides benchmarks for the following cases of SWI_post:

• Post software interrupt again. This case corresponds to a call to SWI_post of SWI that has
already been posted but hasn’t started running as it was posted by a higher priority SWI.
Figure 3 shows this case. Higher priority SWI1 posts lower priority SWI2 twice. The cycle
count being measured corresponds to that of second post of SWI2.

SWI 1 executing SWI 1 executing

Post a SWI that has

Time

SWI_post SWI 1 executing
of SWI 2

SWI_post
of SWI 2 again

already been posted

Figure 3. Post of Software Interrupt Again

SPRA900B

5 DSP/BIOS Timing Benchmarks for

• Post software interrupt, no context switch. This is a measurement of a SWI_post function
call, when the posted software interrupt is of lower priority then currently running SWI.
Figure 4 shows this case.

SWI 1 executing

Software Interrupt Post
Time

SWI_post SWI 2 executing
of SWI 2

Figure 4. Post Software Interrupt without Context Switch

• Post software interrupt, context switch. This is a measurement of the elapsed time between
a call to SWI_post (which causes preemption of the current SWI), and the execution of the
first instruction in the higher–priority software interrupt, as shown in Figure 5. The context
switch to SWI2 is performed within the SWI executive, and this time is included within the
measurement.

SWI 1 executing SWI 2 executing

Post Software Interrupt, Context Switch
Time

SWI_post of SWI 2 SWI Context Switch

Figure 5. Post Software Interrupt with Context Switch

1.4 TSK—Task Benchmarks

TSK_enable. This is the execution time of a TSK_enable function call, which is used to enable
DSP/BIOS task scheduler.

TSK_disable. This is the execution time of a TSK_disable function call, which is used to disable
DSP/BIOS task scheduler.

TSK_create. This is the execution time of a TSK_create function call, which is used to create a
task ready for execution. This document provides benchmarks for the following cases of
TSK_create:

• Create a task, no context switch. The executing task creates another task of lower or equal
priority, which results in no context switch. See Figure 6.

Task 1 executing Task 1 executing

Creates and Readies the New Task
Time

TSK_create Readies lower priority new Task 2

Figure 6. Create a New Task without Context Switch

SPRA900B

6 DSP/BIOS Timing Benchmarks for

• Create a task, context switch. The executing task creates another task of higher priority,
resulting in a context switch. See Figure 7.

Task 1 executing Task 2 executing

Creates a New Task, Task Switch
Time

TSK_create Readies higher priority new Task 2 TSK Context Switch

Figure 7. Create a New Task with Context Switch

NOTE: The benchmarks for TSK_create assume that memory allocated for TSK object is
available in the first free list and that no other task holds the lock to that memory. Additionally the
stack has been pre-allocated and is being passed as a parameter.

TSK_delete. This is the execution time of a TSK_delete function call, which is used to delete a
task. The Task handle created by TSK_create is passed to the TSK_delete API.

TSK_setpri. This is the execution time of a TSK_setpri function call, which is used to set a task’s
execution priority. This document provides benchmarks for the following cases of TSK_setpri:

• Set a task’s priority, no context switch. This case measures the execution time of the
TSK_setpri API called from a task Task1 as in Figure 8 if the following conditions are all true:

− TSK_setpri sets the priority of a lower priority task that is in ready state.

− The argument to TSK_setpri is less then the priority of current running task.

Task 1 executing

Set Task Priority
Time

TSK_setpri Task 1 executing

Figure 8. Set a Task’s Execution Priority without Context Switch

• Lower the current task’s own priority, context switch. This case measures execution time of
TSK_setpri API when it is called to lower the priority of currently running task. The call to
TSK_setpri would result in context switch to next higher priority ready task. Figure 9 shows
this case.

Task 1 executing Task 2 executing

Set the Current Task’s Execution Priority
Time

Lowers Task 1’s priorityTSK_setpri TSK Context Switch

Lower than Another Ready Task

Figure 9. Lower the Current Task’s Execution Priority, Context Switch

• Raise a ready task’s priority, context switch. This case measures execution time of
TSK_setpri API called from a task Task1 if the following conditions are all true:

− TSK_setpri sets the priority of a lower priority task that is in ready state.

− The argument to TSK_setpri is greater then the priority of current running task.

SPRA900B

7 DSP/BIOS Timing Benchmarks for

The execution time measurement includes the context switch time as shown in Figure 10.

Task 1 executing Task 2 executing

Set Another Ready Task’s Execution Priority
Time

Raises Task 2’s priorityTSK_setpri TSK Context Switch

Higher than the Current Task

Figure 10. Raise a Ready Task’s Execution Priority, Context Switch

TSK_yield. This is a measurement of the elapsed time between a function call to TSK_yield
(which causes preemption of the current task), and the execution of the first instruction in the
next ready task of equal priority, as shown in Figure 11.

Task 1 executing Task 2 executing

Task Yield
Time

TSK_yield TSK Context Switch

Figure 11. Task Yield

1.5 SEM—Semaphore Benchmarks

Semaphore benchmarks measure the time interval between issuing a SEM_post or SEM_pend
function call and the resumption of task execution, both with and without a context switch.

SEM_post. This is the execution time of a SEM_post function call. This document provides
benchmarks for the following cases of SEM_post:

• Post a semaphore, no waiting task. In this case, the SEM_post function call does not cause
a context switch as no other task is waiting for the semaphore. This is shown in Figure 12.

Task 1 executing Task 1 executing

Post Semaphore, Increment Semaphore Count
Time

SEM_post Increments sem count

Figure 12. Post Semaphore, Increment Semaphore Count

• Post a semaphore, no context switch. This is a measurement of a SEM_post function call,
when a lower priority task is pending on the semaphore. In this case, SEM_post readies the
lower priority task waiting for the semaphore and resumes execution of the original task, as
shown in Figure 13.

Task 1 executing Task 1 executing

Post Semaphore,
Time

SEM_post Readies lower priority Task 2

Readies the Task Waiting for Semaphore

Figure 13. Post Semaphore without Task Switch

SPRA900B

8 DSP/BIOS Timing Benchmarks for

• Post a semaphore, context switch. This is a measurement of the elapsed time between a
function call to SEM_post (which readies a higher priority task pending on the semaphore
causing a context switch to higher priority task), and the execution of the first instruction in
the higher–priority task, as shown in Figure 14.

Task 1 executing Task 2 executing

Post Semaphore, Task Switch
Time

SEM_post Readies higher priority Task 2 TSK Context Switch

Figure 14. Post Semaphore with Task Switch

SEM_pend. This is the execution time of a SEM_pend function call, which is used to acquire a
semaphore. This document provides benchmarks for the following cases of SEM_pend:

• Pend on a semaphore, no context switch. This is a measurement of a SEM_pend function
call without a context switch (as the semaphore is available.) See Figure 15.

Task 1 executing Task 1 executing

Pend Semaphore, Decrement Count
Time

SEM_pend Decrements sem count

Figure 15. Pend on Semaphore, No Context Switch

• Pend on a semaphore, context switch. This is a measurement of the elapsed time between a
function call to SEM_pend (which causes preemption of the current task), and the execution
of first instruction in next higher–priority ready task. See Figure 16.

Task 1 executing Task 2 executing

Post Semaphore, Task Switch
Time

SEM_pend Task 1 Suspends TSK Context Switch

Figure 16. Pend on Semaphore with Task Switch

1.6 MBX—Mailbox Benchmarks

Messages are copied in and out of the MBX. Therefore, the message length of the MBX is
significant when benchmarking it. A message length of 1 MADU was used in the measurement
of the MBX APIs.

MBX_post. This is the execution time of an MBX_post function call, which is used to post a
message to mailbox. This document provides benchmarks for the following cases of MBX_post:

• Post a mailbox, no tasks waiting. This is a measurement of an MBX_post function if the
following conditions are all true:

− Mailbox has an empty slot.

− No task is pending on the mailbox.

SPRA900B

9 DSP/BIOS Timing Benchmarks for

This MBX_post function call does not cause a context switch. Figure 17 shows this case.

Task 1 executing

Post Mailbox
Time

MBX_post Task 1 executing

Figure 17. Post Mailbox, No Task Pending on Mailbox

• Post a mailbox, no context switch. This is a measurement of an MBX_post API made from a
higher priority task that readies a lower priority task pending on the same mailbox. Figure 18
shows this case. Task1 is the higher priority task that posts a mailbox to ready lower priority
Task2 task.

Task 1 executing Task 1 executing

Post Mailbox, Readies the Task Waiting on mix
Time

MBX_post Readies lower priority Task 2

Figure 18. Post a Mailbox without Context Switch

• Post a mailbox, context switch. This is a measurement of the elapsed time between a
function call to MBX_post (which readies a higher priority task pending on the mailbox
causing a context switch to higher priority) and the execution of first instruction in the higher
priority task. Figure 19 shows this case.

Task 1 executing Task 2 executing

Post Mailbox, Task Switch
Time

MBX_post Readies higher priority Task 2 TSK Context Switch

Figure 19. Post a Mailbox with Context Switch

MBX_pend. This is the execution time of an MBX_pend function call, which obtains message
from mailbox. This document provides benchmarks for the following cases of MBX_pend:

• Pend on a mailbox, no context switch. This is a measurement of an MBX_pend function call
that obtains a message without blocking. See Figure 20.

Task 1 executing

Pend on Mailbox
Time

MBX_pend Task 1 executing

Figure 20. Pend on Mailbox, No Context Switch

SPRA900B

10 DSP/BIOS Timing Benchmarks for

• Pend on a mailbox, context switch. This is a measurement of the elapsed time between a
function call to MBX_pend (which causes preemption of the current task) and a switch to a
higher–priority task is blocked on MBX_post function call. See Figure 21.

Task 1 executing Task 2 executing

Pend on Mailbox, Task Switch
Time

MBX_pend Task 1 Suspends TSK Context Switch

Figure 21. Pend on Mailbox with Context Switch

1.7 LCK—Resource Lock Benchmarks

LCK_post. This is the execution time of a LCK_post function call, which is used to relinquish
ownership of a resource lock. This document provides benchmarks for the following cases of
LCK_post:

• Post a lock, no ownership relinquishment. In this case the current running task that owns the
lock (due to multiple prior calls to LCK_pend) calls LCK_post. This call to LCK_post is
benchmarked as shown in Figure 22.

Task 1 executing

Post a Resource LCK
Time

LCK_post Task 1 executing

Figure 22. Post a Resource LCK without Ownership Relinquishment

• Post a lock, no context switch. In this case LCK_post relinquishes ownership of a resource
lock, and continues execution of the current task. LCK_post does not result in a context
switch because no task is pending on the lock. See Figure 23.

Task 1 executing Task 1 executing

Post a Resource LCK, Relinquish its Ownership
Time

LCK_post Relinquish ownership of lock

Figure 23. Post a Resource LCK without Context Switch

• Post a lock, context switch. In this case, LCK_post relinquishes ownership of a resource
lock, and results in a context switch because a higher priority task is currently pending on the
lock. See Figure 24.

Task 1 executing Task 2 executing

Post a Resource LCK, Task Switch
Time

LCK_post Relinquish ownership of lock TSK Context Switch

Figure 24. Post a Resource LCK with Context Switch

SPRA900B

11 DSP/BIOS Timing Benchmarks for

LCK_pend. The execution time of a LCK_pend function call, which is used to acquire ownership
of a resource lock. This document provides benchmarks for the following cases of LCK_pend:

• Pend on a self-owned lock. This is the execution time of a LCK_pend when a task already
owns the resource lock. See Figure 25.

Task 1 executing

Pend on a LCK
Time

LCK_pend Task 1 executing

Figure 25. Pend on a Self-Owned Resource LCK

• Pend on a lock, no context switch. The lock is not owned by any task, and the current task
calls LCK_pend. The current task succeeds in acquiring ownership of lock, which grants the
current task exclusive access to the corresponding resource. See Figure 26.

Task 1 executing Task 1 executing

Pend on a LCK, Acquire Ownership
Time

LCK_pend Acquire ownership of lock

Figure 26. Pend on a Resource LCK without Context Switch

• Pend on a lock, context switch. The resource lock is owned by another task, LCK_pend
suspends execution of the current task until the resource becomes available and results in a
context switch. See Figure 27.

Task 1 executing Task 2 executing

Pend on a LCK, Task Switch
Time

LCK_pend Task 1 suspends TSK Context Switch

Figure 27. Pend on a Resource LCK with Context Switch

1.8 CLK—System Clock Benchmarks

CLK_gethtime. This is the execution time of a CLK_gethtime function call.

CLK_getltime. This is the execution time of a CLK_getltime function call.

1.9 LOG—Log Benchmarks

LOG_event. This is the execution time of a LOG_event function call, which is used to append an
unformatted message to an event log.

LOG_printf. This is the execution time of a LOG_printf function call, which is used to append a
formatted message to an event log. The execution time of the function is not dependent on the
number of arguments specified in the function call.

SPRA900B

12 DSP/BIOS Timing Benchmarks for

1.10 STS—Statistics Benchmarks

STS_add. This is the execution time of an STS_add function call, which is used to update the
total, count, and max fields of a statistics object.

STS_delta. This is the execution time of an STS_delta function call, which is used to update a
statistics object, using the difference between a provided value and a previous set point value.

STS_set. This is the execution time of an STS_set function call, which is used to set the
previous value for a statistics object.

1.11 MEM—Memory Benchmarks

MEM_alloc. This is the execution time of a MEM_alloc function call, which is used to allocate a
contiguous block of storage from a specified memory section. This document provides
benchmarks for the following cases of MEM_alloc:

• Memory allocated on first block. Memory block to be allocated fits on the first block of the
MEM_free list.

• Memory allocated on second block. Memory block to be allocated does not fit on the first
block, but fits on the second block of the MEM_free list.

• Memory allocated on third block. Memory block to be allocated does not fit on the first, nor
the second block, but fits on the third block of the MEM_free list.

• Memory allocated on fourth block. Memory block to be allocated does not fit on the first,
second and third block of MEM_free list but fits on the fourth block of the MEM_free list.

MEM_free. This is the execution time of a MEM_free function call, which places the memory
block specified back into the free pool of the section specified. This document provides
benchmarks for the following cases of MEM_free:

• Memory coalesces no block. Memory block to be freed cannot coalesce with either of its
neighboring memory segments.

• Memory coalesces one block. Memory block to be freed coalesces with one neighboring
memory segment either above it or below it.

• Memory coalesces two blocks. Memory block to be freed coalesces with both neighboring
memory segments above and below it.

1.12 PIP—Pipe Benchmarks

NOTE: Each of the following pipe benchmarks includes the execution time of a minimal
notifyWriter (or notifyReader) C function call—that is, a function that simply returns.

PIP_alloc. This is the execution time of a PIP_alloc function call, which is used to allocate an
empty frame from a pipe.

PIP_free. This is the execution time of a PIP_free function call, which is used to recycle a frame
back into a pipe.

PIP_get. This is the execution time of a PIP_get function call, which is used to get a full frame
from a pipe.

SPRA900B

13 DSP/BIOS Timing Benchmarks for

PIP_put. This is the execution time of a PIP_put function call, which is used to put a full frame
into a pipe.

PIP_peek. This is the execution time of a PIP_peek function call, which is used to get the pipe
frame size and address without actually claiming the pipe frame.

1.13 QUE—Queue Benchmarks

QUE_dequeue. This is the execution time of a QUE_dequeue function call, which is used to
remove the element from the front of a queue (non-atomically).

QUE_empty. This is the execution time of a QUE_ empty function call, which is used to test for
an empty queue.

QUE_enqueue. This is the execution time of a QUE_enqueue function call, which is used to
insert an element at the end of a queue (non-atomically).

QUE_get. This is the execution time of a QUE_get function call, which is used to remove the
element from the front of a queue (atomically).

QUE_insert. This is the execution time of a QUE_insert function call, which is used to insert an
element in the middle of a queue (non-atomically).

QUE_put. This is the execution time of a QUE_put function call, which is used to put an element
at the end of a queue (atomically).

QUE_remove. This is the execution time of a QUE_remove function call, which is used to
remove an element from the middle of a queue (non-atomically).

2 DSP/BIOS Benchmarking Methodology

2.1 DSP/BIOS Benchmarking Environment

To obtain the benchmarks, the non-instrumented version of the DSP/BIOS API was used. That
is, DSP/BIOS real-time analysis was disabled.

The benchmark numbers were obtained using the DSP’s hardware timer. The API benchmark
numbers were obtained by clearing and starting the timer, calling the API, and reading the timer
value again. The overhead of the timer has been factored out of the timer reading and multiplied
by the number of instructions per timer tick. The number of instructions performed during a
single timer tick varies on the different DSP architectures as shown in Table 1.

Table 1. Instructions Per Timer Tick on Various Architectures

C28x C54x C55x C62x/C67x C64x

1 instruction/tick 1 instruction/tick 1 instruction/tick 4 instructions/tick 8 instructions/tick

DSP/BIOS benchmarks presented in this paper corresponds to particular placement of
application of code in conjunction with a specific processor configuration. Table 2 details the
memory placement and application configuration.

SPRA900B

14 DSP/BIOS Timing Benchmarks for

Table 2. Benchmark Programs Environment Setup

Memory Placement

DSP Architecture Code Data Heap Application Configuration BoardConfiguration

TMS320F28x (Large) H0SARAM L0SARAM L0SARAM Data Model = Large TMS320F2812 DSK

TMS320C54x (Near) IPROG IDATA IDATA Code Model = Near TMS320C5416 DSK

TMS320C54x (Far) IPROG IDATA IDATA Code Model = Far TMS320C5416 DSK

TMS320C55x (Small) SARAM DARAM DARAM Stack Mode = Fast Return
Data Model = Small

TMS320C5510 DSK

TMS320C55x (Large) SARAM DARAM DARAM Stack Mode = Fast Return
Data Model = Large

TMS320C5510 DSK

TMS320C62x/C67x†

(Best Case)
IDRAM IDRAM IDRAM Flat memory system

(Single Cycle Memory
access)

TMS320C6201 EVM

TMS320C62x/C67x‡

(Best-Worst Case)
IDRAM IDRAM IDRAM L2 Cache disabled.

L1 Data and Program is
invalidated before every
DSP/BIOS API call

TMS320C6711 DSK

TMS320C64x†

(Best Case)
SRAM SRAM SRAM Flat memory system

(Single Cycle Memory
access)

TMS320C6416
Functional Simulator

TMS320C64x‡

(Best-Worst Case)
SRAM SRAM SRAM L2 Cache disabled.

L1 Data and Program cache
is invalidated before every
DSP/BIOS API call

TMS320C6416 TEB
Rev 1.1

† For these “Best Case” benchmarks, a flat memory system is used. A single cycle memory access is used to simulate no cache misses.
‡ For these “Best-Worst Case” benchmarks, L2 is configured as SRAM by disabling L2. All code and data is placed in L2 SRAM. The L1P and

L1D are invalidated prior to every API benchmark. This forces L1P and L1D cache misses to occur. The processor loads L1P and L1D from L2
SRAM. The worst case would be to place code and data in external memory. “Best-Worst case” is an intermediate case because although code
and data are place in internal memory, the cache is flushed before each benchmark.

2.2 Calculating System Performance

We can estimate the amount of DSP/BIOS overhead in terms of CPU load in any application.
This is possible since all DSP/BIOS operations are visible to the developer. That is, the
developer specifies which DSP/BIOS components and function calls to include into the
application, either in the Configuration Tool, or explicitly in the code. The developer needs only
to compute the sum of the components and frequency of occurrence to determine the overhead
analytically. By using the RTA tools in CCS, developers may also directly measure the overhead
on their specific hardware platform.

To calculate the amount of memory consumed by the DSP/BIOS kernel, the developer again
needs to identify the DSP/BIOS components and API calls in the program. By summing the
components, the developer can estimate the memory usage, both data and program. By using
the memory map from the application, the exact amount can be determined.

SPRA900B

15 DSP/BIOS Timing Benchmarks for

In a similar fashion, developers can analytically determine the overhead attributed to the
DSP/BIOS kernel. However, since it is the nature of software to change over time, analytical
calculation can be tedious. The real-time analysis tool provided by the DSP/BIOS kernel allows
developers to measure the overhead directly. Finally, since developers can choose the amount
of the DSP/BIOS kernel to use and include in their applications, they have full control over the
overhead.

3 DSP/BIOS Timing Benchmarks

3.1 DSP/BIOS Benchmark Results for the TMSC28x Architecture

Table 3 provides timing information for DSP/BIOS APIs on the C28x. See Table 2 for a
description of the environment used to obtain these benchmarks.

Table 3. Benchmark Results for C28x

C28x (Large)

Interrupt latency

Interrupt latency 103

Hardware Interrupts (HWIs)

HWI_enable 11

HWI_disable 13

Interrupt prolog (minimum) 82

Interrupt prolog for calling C function 94

Interrupt epilog (minimum) 113

Interrupt epilog following C function call 125

Hardware interrupt to blocked task 967

Hardware interrupt to software interrupt 391

Software Interrupts (SWIs)

SWI_enable 31

SWI_disable 10

Post software interrupt again 45

Post software interrupt, no context switch 93

Post software interrupt, context switch 201

Tasks

TSK_enable 106

TSK_disable 66

Create a task, no context switch 1886

Create a task, context switch 2016

SPRA900B

16 DSP/BIOS Timing Benchmarks for

Table 3. Benchmark Results for C28x (Continued)

C28x (Large)

TSK_delete 726

Set a task’s priority, no context switch 504

Lower the current task’s own priority, context switch 695

Raise a ready task’s priority, context switch 687

TSK_yield 321

Semaphores

Post a semaphore, no waiting task 52

Post a semaphore, no context switch 337

Post a semaphore, context switch 427

Pend on a semaphore, no context switch 36

Pend on a semaphore, context switch 393

Mailboxes

Post a mailbox, no tasks waiting 245

Post a mailbox, no context switch 530

Post a mailbox, context switch 801

Pend on a mailbox, no context switch 244

Pend on a mailbox, context switch 409

Resource Locks

Post a lock, no ownership relinquishment 17

Post a lock, no context switch 77

Post a lock, context switch 469

Pend on a self-owned lock 49

Pend on a lock, no context switch 88

Pend on a lock, context switch 419

Clock Operations

CLK_gethtime 35

CLK_getltime 11

Log Operations

LOG_event 67

LOG_printf 65

SPRA900B

17 DSP/BIOS Timing Benchmarks for

Table 3. Benchmark Results for C28x (Continued)

C28x (Large)

Statistics Operations

STS_add 15

STS_delta 20

STS_set 12

Memory Operations

Memory allocated on first block 342

Memory allocated on second block 403

Memory allocated on third block 466

Memory allocated on fourth block 527

Memory coalesces no block 348

Memory coalesces one block 391

Memory coalesces two blocks 416

Pipe Operations

PIP_alloc 70

PIP_free 78

PIP_get 70

PIP_put 68

PIP_peek 44

Queue Operations

QUE_dequeue 13

QUE_empty 12

QUE_enqueue 11

QUE_get 40

QUE_insert 7

QUE_put 34

QUE_remove 12

SPRA900B

18 DSP/BIOS Timing Benchmarks for

3.2 DSP/BIOS Benchmark Results for the TMSC5000 Architecture

Table 4 provides timing information for DSP/BIOS APIs on the C5000. See Table 2 for a
description of the environments used to obtain these benchmarks.

Table 4. Benchmark Results for C5000

C54x (Near) C54x (Far) C55x (Small) C55x (Large)

Interrupt latency

Interrupt latency 77 77 142 144

Hardware Interrupts (HWIs)

HWI_enable 11 12 12 11

HWI_disable 14 15 20 21

Interrupt prolog (minimum) 96 96 94 96

Interrupt prolog for calling C function 110 110 140 137

Interrupt epilog (minimum) 71 72 123 122

Interrupt epilog following C function call 85 86 169 165

Hardware interrupt to blocked task 935 961 1054 1106

Hardware interrupt to software interrupt 386 387 405 416

Software Interrupts (SWIs)

SWI_enable 48 49 37 38

SWI_disable 21 22 14 13

Post software interrupt again 78 79 46 46

Post software interrupt, no context switch 147 148 90 91

Post software interrupt, context switch 292 293 254 259

Tasks

TSK_enable 111 118 112 121

TSK_disable 61 69 76 77

Create a task, no context switch 922 986 790 948

Create a task, context switch 1011 1080 973 1185

TSK_delete 673 709 568 649

Set a task’s priority, no context switch 437 461 464 541

Lower the current task’s own priority, context
switch

544 569 630 754

Raise a ready task’s priority, context switch 540 565 630 755

TSK_yield 239 258 318 344

SPRA900B

19 DSP/BIOS Timing Benchmarks for

Table 4. Benchmark Results for C5000 (Continued)

C55x (Large)C55x (Small)C54x (Far)C54x (Near)

Semaphores

Post a semaphore, no waiting task 52 57 53 54

Post a semaphore, no context switch 261 276 249 273

Post a semaphore, context switch 324 340 367 404

Pend on a semaphore, no context switch 32 33 32 31

Pend on a semaphore, context switch 328 335 367 417

Mailboxes

Post a mailbox, no tasks waiting 219 231 225 228

Post a mailbox, no context switch 428 450 421 447

Post a mailbox, context switch 647 680 703 745

Pend on a mailbox, no context switch 218 230 225 230

Pend on a mailbox, context switch 345 352 381 434

Resource Locks

Post a lock, no ownership relinquishment 26 28 24 23

Post a lock, no context switch 78 87 76 77

Post a lock, context switch 364 384 399 439

Pend on a self-owned lock 35 36 33 40

Pend on a lock, no context switch 70 72 67 72

Pend on a lock, context switch 346 357 386 439

Clock Operations

CLK_gethtime 36 37 37 36

CLK_getltime 11 12 13 13

Log Operations

LOG_event 61 67 54 61

LOG_printf 57 63 61 61

Statistics Operations

STS_add 43 44 22 22

STS_delta 49 50 24 25

STS_set 20 21 15 16

SPRA900B

20 DSP/BIOS Timing Benchmarks for

Table 4. Benchmark Results for C5000 (Continued)

C55x (Large)C55x (Small)C54x (Far)C54x (Near)

Memory Operations

Memory allocated on first block 377 394 274 300

Memory allocated on second block 419 436 297 336

Memory allocated on third block 461 478 320 371

Memory allocated on fourth block 503 520 343 300

Memory coalesces no block 390 408 274 318

Memory coalesces one block 413 431 292 374

Memory coalesces two blocks 419 437 292 401

Pipe Operations

PIP_alloc 104 109 105 105

PIP_free 121 127 105 97

PIP_get 104 109 105 104

PIP_put 123 129 97 99

PIP_peek 38 41 25 28

Queue Operations

QUE_dequeue 11 11 14 21

QUE_empty 13 13 5 8

QUE_enqueue 13 13 13 12

QUE_get 30 31 38 38

QUE_insert 17 17 15 8

QUE_put 37 38 36 37

QUE_remove 12 12 19 16

SPRA900B

21 DSP/BIOS Timing Benchmarks for

3.3 DSP/BIOS Benchmark Results for the TMSC6000 Architecture

Table 5 provides timing information for DSP/BIOS APIs on the C6000. See the footnotes to
Table 2 for a description of the “Best Case” and “Best-Worst Case” environments.

Table 5. Benchmark Results for C6000

C62x/C67x
(Best Case)

C62x/C67x
(Best-Worst Case)

C64x
(Best Case)

C64x
(Best-Worst Case)

Interrupt latency

Interrupt latency 71 110 72 105

Hardware Interrupts (HWIs)

HWI_enable 12 24 16 32

HWI_disable 12 24 16 40

Interrupt prolog (minimum) 32 80 32 64

Interrupt prolog for calling C function 44 92 56 112

Interrupt epilog (minimum) 40 72 40 88

Interrupt epilog following C function call 52 100 72 144

Hardware interrupt to blocked task 700 1244 752 1296

Hardware interrupt to software interrupt 272 500 288 520

Software Interrupts (SWIs)

SWI_enable 68 104 72 112

SWI_disable 20 36 24 40

Post software interrupt again 60 100 64 112

Post software interrupt, no context
switch

116 188 120 184

Post software interrupt, context switch 232 392 232 384

Tasks

TSK_enable 104 192 104 192

TSK_disable 64 100 72 128

Create a task, no context switch 1220 1664 744 1152

Create a task, context switch 1316 1796 840 1288

TSK_delete 476 820 480 816

Set a task’s priority, no context switch 348 572 344 576

Lower the current task’s own priority,
context switch

440 736 432 696

SPRA900B

22 DSP/BIOS Timing Benchmarks for

Table 5. Benchmark Results for C6000 (Continued)

C64x
(Best-Worst Case)

C64x
(Best Case)

C62x/C67x
(Best-Worst Case)

C62x/C67x
(Best Case)

Raise a ready task’s priority, context
switch

436 732 432 688

TSK_yield 232 424 232 432

Semaphores

Post a semaphore, no waiting task 24 56 32 64

Post a semaphore, no context switch 200 356 200 360

Post a semaphore, context switch 260 492 264 488

Pend on a semaphore, no context
switch

16 32 16 56

Pend on a semaphore, context switch 232 472 240 448

Mailboxes

Post a mailbox, no tasks waiting 140 260 112 240

Post a mailbox, no context switch 312 560 288 536

Post a mailbox, context switch 476 836 432 768

Pend on a mailbox, no context switch 136 252 112 232

Pend on a mailbox, context switch 244 484 248 472

Resource Locks

Post a lock, no ownership
relinquishment

28 40 32 56

Post a lock, no context switch 44 84 48 96

Post a lock, context switch 292 536 296 520

Pend on a self-owned lock 32 52 32 48

Pend on a lock, no context switch 52 88 48 96

Pend on a lock, context switch 256 496 256 496

Clock Operations

CLK_gethtime 28 56 32 72

CLK_getltime 16 36 16 40

Log Operations

LOG_event 32 48 32 64

LOG_printf 36 64 40 88

SPRA900B

23 DSP/BIOS Timing Benchmarks for

Table 5. Benchmark Results for C6000 (Continued)

C64x
(Best-Worst Case)

C64x
(Best Case)

C62x/C67x
(Best-Worst Case)

C62x/C67x
(Best Case)

Statistics Operations

STS_add 16 28 16 32

STS_delta 20 32 24 40

STS_set 12 20 16 32

Memory Operations

Memory allocated on first block 188 348 184 336

Memory allocated on second block 208 364 208 368

Memory allocated on third block 228 380 224 384

Memory allocated on fourth block 240 404 248 424

Memory coalesces no block 216 388 224 360

Memory coalesces one block 220 380 224 376

Memory coalesces two blocks 220 388 224 376

Pipe Operations

PIP_alloc 96 140 96 152

PIP_free 92 180 96 168

PIP_get 96 148 96 160

PIP_put 92 164 96 160

PIP_peek 20 32 24 40

Queue Operations

QUE_dequeue 16 32 24 32

QUE_empty 12 16 16 16

QUE_enqueue 16 28 16 24

QUE_get 16 36 24 48

QUE_insert 12 16 16 16

QUE_put 16 24 16 32

QUE_remove 16 20 16 16

SPRA900B

24 DSP/BIOS Timing Benchmarks for

4 References
1. TMS320 DSP/BIOS User’s Guide (SPRU423B)

2. TMS320C28x DSP/BIOS API Reference Guide (SPRU625)

3. TMS320C5000 DSP/BIOS API Reference Guide (SPRU404E)

4. TMS320C6000 DSP/BIOS API Reference Guide (SPRU403E)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2004, Texas Instruments Incorporated

http:\\amplifier.ti.com
http:\\dataconverter.ti.com
http:\\dsp.ti.com
http:\\interface.ti.com
http:\\logic.ti.com
http:\\power.ti.com
http:\\microcontroller.ti.com
http:\\www.ti.com\audio
http:\\www.ti.com\automotive
http:\\www.ti.com\broadband
http:\\www.ti.com\digitalcontrol
http:\\www.ti.com\military
http:\\www.ti.com\opticalnetwork
http:\\www.ti.com\security
http:\\www.ti.com\telephony
http:\\www.ti.com\video
http:\\www.ti.com\wireless

