
Application Report
SPRA910 – June 2003

1

A DSP/BIOS USB Device Driver for the TMS320C5509
Software Development Systems

ABSTRACT

This document describes the usage and design of the Texas Instruments TMS320C5509
USB peripheral device driver. This device driver is written in conformance to the DSP/BIOS
IOM device driver model and is USB Specification 1.1 Chapter 9 compliant. Application
examples are provided in the DSP/BIOS DDK so users can get started developing
applications. By replacing USB descriptors, adding or replacing USB endpoints, and
extending or replacing the USB request handlers, one can create a fully functional and
customized USB driver. Also included is a brief USB 1.1 specification overview.

Contents

1 Usage 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.1 Configuration 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.2 Device Parameters 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.2.1 C5509_USB_DeviceConfig Structure 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.2.2 C5509_USB_IfcConfig Structure 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.2.3 C5509_USB_EpConfig Structure 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.3 Channel Parameters 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.4 USB Event and State Notifications 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.4.1 Bus Connected Notification 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.4.2 USB State Information (C5509_USB_StateInfo Struct) 7. . . . . . . . . . . . . . . . . . . . . . . . . . 
1.4.3 USB Event and Setup Event Handler Override 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 Architecture 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.1 Internal Data Structures 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.1.1 C5509_USB_ChanObj and ChanHandle 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.1.2 C5509_USB_DevObj and C5509_USB_DevHandle 11. . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.1.3 C5509_USB_UsbRequestStruct 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2 Event Handlers 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.2.1 Control Endpoint 0 Handler 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.2.2 Mini-Driver Built-In USB Spec. Chapter 9 Standard Request Handler 14. . . . . . . . . . . . 

2.3 Mini-Driver Function Implementation 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3.1 C5509_USB_mdBindDev 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3.2 C5509_USB_mdControlChan 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3.3 C5509_USB_mdCreateChan 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3.4 C5509_USB_mdDeleteChan 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3.5 C5509_USB_mdSubmitChan 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3.6 C5509_USB_mdUnbindDev 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3 Constraints 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4 References 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Trademarks are the property of their respective owners.



SPRA910

2 A DSP/BIOS USB Device Driver for the TMS320C5509

Appendix A Device Driver Data Sheet 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.1 Device Driver Library Name 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.2 DSP/BIOS Modules Used 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.3 DSP/BIOS Objects Used 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.4 CSL Modules Used 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.5 CPU Interrupts Used 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.6 Peripherals Used 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.7 Interrupt Disable Time 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.8 Memory Usage 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

List of Figures

Figure 1 DSP/BIOS IOM Device Driver Model 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2 USB Interfaces and Data Structures 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

List of Tables

Table A–1 Device Driver Memory Usage 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1 Usage
The device driver described here is part of an IOM mini-driver. That is, it is implemented as the
lower layer of a 2-layer device driver model. The upper layer is called the class driver and can
be either the DSP/BIOS GIO, SIO, or PIP modules. The class driver provides an independent
and generic set of APIs and services for a wide variety of mini-drivers and allows the application
to use a common interface for I/O requests. Figure 1 shows the overall DSP/BIOS device driver
architecture. For more information about the IOM device driver model as well as the GIO, SIO,
and PIP modules, see the DSP/BIOS Device Driver Developer’s Guide (SPRU616).

Application / Framework

SIO APIsPIP APIs

PIO Adapter DIO Adapter

GIO APIs

IOM Mini-Driver(s)

Device
Driver

Chip Support Library (CSL)

Class
Driver

Mini-
Driver

On-Chip Peripheral Hardware Off-Chip Peripheral Hardware

Figure 1. DSP/BIOS IOM Device Driver Model



SPRA910

3 A DSP/BIOS USB Device Driver for the TMS320C5509

The USB “mini-driver” presented here depends heavily on the Chip Support Library’s (CSL) USB
module. Please refer to the TMS320C55x CSL USB Programmer’s Reference Guide (SPRU511)
for details on the USB CSL design and usage. This IOM driver calls CSL USB library routines to
handle the low level work.

In the rest of this document, all variable, macro, constant and function names in the text will be
in italic. All data structure types and their fields will be quoted in “italic.” All the file names will be
in bold. All the data type and function names prefixed by “USB” are CSL_USB library data type
and functions unless otherwise designated.

1.1 Configuration

All header files whose names are prefixed with “c5509_usb_” define the USB mini-driver’s
interface and implementation. File c5509_usb.h defines the IOM related interface including USB
Spec. 1.x Chapter 9 USB request related interface. It allows an application to extend the
functionality of the mini-driver built-in default request handler, or even replace the default handler
to support vendor specific requests. All data types are prefixed with “C5509_USB”.

Mini-driver internal data structures and function prototypes are declared in files prefixed with
“_c5509_usb”. The file _c5509_usb.h defines private data structures and function prototypes.

All mini-driver level source code is contained in C files naming-prefixed with “c5509_usb”.

Data types and structures with the “USB_” prefix are defined in the CSL header file “csl_usb.h”.

1.2 Device Parameters

The device parameter structure “C5509_USB_DevParams” is defined in file c5509_usb.h. The
application is required to declare persistent space for the “C5509_USB_DevParams” type
structure and pass it to function C5509_USB_mdBindDev() so that the USB module can be
initialized. This structure looks like the following:

typedef struct C5509_USB_DevParams

    Uns version;      /* version of mini–driver(e.g. C5509_USB_VERSION0) */

    Uns ier0mask;     /* IER0 mask used by HWI_dispatchPlug in mdBindDev */

    Uns ier1mask;     /* IER1    ”                 ”                     */

    Uns inclk;        /* input clock freq(Mhz at CLKIN pin). See USB_initPLL */

    Uns plldiv;       /* input clock divide down value (CLKIN pin). */

    SmUns pSofTmrCnt; /* 8–bit counter value for pre–SOF timer. See USB_init */

    C5509_USB_DeviceConfig *deviceConfig;  /* device, string & lang id desc */

    C5509_USB_IfcConfig *ifcConfig; /* usb endpoint interface configuration */

} C5509_USB_DevParams;

CAUTION:
The USB configuration structures defined by an application must be in persistent
memory. The driver does not copy data from this structure but rather references
this structure in order to save on overall memory usage.

• version is the mini-driver’s revision number. This should be set to the latest revision
supported as seen in the c5509_usb.h file. If the mini-driver does not support the version
specified here, the driver’s mdBindDev function will return failure



SPRA910

4 A DSP/BIOS USB Device Driver for the TMS320C5509

• ier0mask is the IER0 mask used by HWI_dispatchPlug in mdBindDev. Set ier0mask and
ier1mask to 1 in order to mask the USB device interrupt itself during ISR processing. Refer
to DSP/BIOS HWI module for the usage of these IERx masks.

• ier1mask is the IER1 mask used by HWI_dispatchPlug in mdBindDev.

• inclk is the input clock freq (MHz at CLKIN pin) used to init the USB CSL PLL. The input
clock is divided down using the “plldiv” value below. The CSL function USB_initPLL() uses
inclk and plldiv parameters during initialization.

• plldiv is the input clock divide down value (CLKIN pin).

• pSofTmrCnt is the 8-bit counter value for the pre-start-of-frame timer. This parameter is used
for the CSL initialization call “USB_init”.

• deviceConfig is the USB device, string and language ID descriptors. See description below.

• ifcConfig is the USB endpoint configuration pointer. See description below.

1.2.1 C5509_USB_DeviceConfig Structure

The “C5509_USB_DeviceConfig “ structure is part of the “C5509_USB_DevParams” structure
described above and encapsulates USB device specific descriptors, including the USB language
ID and string descriptors and USB event handler override functions (“eventHandler” and
“setupEventHandler”). Set “eventHandler” and/or “setupEventHandler” to null to use default
event processing.

typedef struct C5509_USB_DeviceConfig {

    Uint16 *deviceDesc;                       /* device descriptor */

    Uint16 *stringDescLangId;                 /* string desc language id */

    String *stringDesc;                       /* string descriptor */

    C5509_USB_eventCb      eventHandler;      /* non–setup event handler */

    C5509_USB_SetupEventCb setupEventHandler; /* setup event handler */

} C5509_USB_DeviceConfig;

• deviceDesc is the USB device descriptor with a data format as defined in the USB 1.x Spec
Chapter 9.

NOTE: Examples of the USB device descriptors can be found in the DSP/BIOS DDK USB
example applications driver. The USB descriptor formats are specified in the USB 1.x spec and
allocated by the user application on behalf of the USB device driver.

• stringDescLangId is the USB language identifier with a data format as defined in the USB 1.x
Spec Chapter 9.

• stringDesc is the USB string descriptor with a data format as defined in the USB 1.x Spec
Chapter 9.

• eventHandler is the non-setup event handler function. Set to NULL to use the default
handler. When any non-setup event happens, such as the host requesting the device to
reset or to suspend, the mini-driver will pass the default event handler function pointer to the
application. The application can call this handler function or can override it by providing
another handler function.

• setupEventHandler is the setup event handler for USB setup events. Set to NULL to use the
default handler. If provided, this is the application hook to the USB setup information.



SPRA910

5 A DSP/BIOS USB Device Driver for the TMS320C5509

1.2.2 C5509_USB_IfcConfig Structure

The “C5509_USB_IfcConfig” structure is part of the “C5509_USB_DevParams” structure
described above and encapsulates the USB endpoint configuration. More than one USB
alternate interface may be specified, but only a single USB configuration is supported. Refer to
USB 1.x spec for USB descriptor formats.

typedef struct C5509_USB_IfcConfig {

    Uint16                numEps;     /* total number of endpoints */

    USB_DataStruct       *usbConfig;  /* USB config and alt i/f(s) */

    C5509_USB_EpConfig   *epConfig;   /* USB endpoint configuration */

} C5509_USB_IfcConfig;

• “numEps” is the number of user-configured endpoints contained in the structure pointed to
by  epConfig. This number does not include the two reserved control endpoints (EP0 IN and
OUT).

• “usbConfig” is the list of USB configuration and interface descriptors in the format expected
by the underlying USB communications.

• “epConfig” is the list of the user USB endpoint descriptors in the format expected by the
underlying USB communications.

1.2.3 C5509_USB_EpConfig Structure

The “C5509_USB_EpConfig” structure is part of the “C5509_USB_IfcConfig” structure described
above and encapsulates each user endpoint object and its’ configuration.

typedef struct C5509_USB_EpConfig {

    USB_EpObj   *eptr;         /* Ptr to CSL unintialized endpoint object */

    USB_EpNum    epNum;        /* Endpoint number (e.g., USB_OUT_EP2) */

    USB_XferType epType;       /* Endpoint transfer type (e.g., USB_BULK, USB_INTR) */

    Uint         epMaxPktLen;  /* Maximum USB packet size(bytes) allowed */

    Uint16       epEvtMask;    /* USB endpoint OR’d event masks(e.g. USB_EVENT_EOT).*/

} C5509_USB_EpConfig;

• “eptr” is a pointer to a single uninitialized endpoint object. The underlying CSL will initialize
all endpoints as part of the mini-drivers’ mdBindDev processing

• “epNum” is the USB endpoint number for the associated endpoint (e.g., USB_OUT_EP2).

• “epType” is the endpoint type for the associated endpoint. Endpoint type can be USB_CTRL,
USB_BULK, USB_INTR or USB_ISO.

• “epMaxPktLen” defines the maximum transfer packet length for the associated endpoint.
This is the max length of each USB packet transferred, not the max application buffer length.

• “epEvtMask” is the associated endpoint event mask containing OR’ed bits representing the
USB endpoint events of interest such as an end of posted transaction USB_EVENT_EOT.
Refer to the “csl_usb.h” file for a complete set of USB events



SPRA910

6 A DSP/BIOS USB Device Driver for the TMS320C5509

1.3 Channel Parameters

Currently, there is no channel parameter structure used in this driver.

To specify a particular USB endpoint, the user specifies an endpoint by name (e.g., “1”, “2” …
“7”) along with the direction, input or output, when creating a IOM channel. For example, for the
user to use the configured endpoint USB_IN_EP2, an application using SIO with a configured
device named “usb” would do something like the following:

    outStream = SIO_create(”/usb2 ”, SIO_OUTPUT, SIOBUFSIZE, &attrs);

Note the “2” after the device name “/usb”. The “2” signifies endpoint 2 and the SIO direction is
SIO_OUTPUT (i.e., output from DSP to the host). Note: that a DSP/BIOS “SIO_OUTPUT”
stream direction is equivalent a “USB_IN_xxx” direction. An error is returned if the specified
endpoint was not configured in the device parameters; see previous section.

1.4 USB Event and State Notifications

Several USB device events and states are accessible to DSP applications.

1.4.1 Bus Connected Notification

Before the DSP can initiate transfers on the USB bus, the USB device must be “connected” to
the USB host. A typical USB host performs a bus enumeration by identifying newly attached
USB device(s) on the bus. The C5509 EVM is identified as such a device and registered with the
host software during this USB enumeration phase. As part of the host enumeration the host will
send a request to the device, asking for the endpoint interface configuration information. The
DSP device driver uses this request from the host as the indication that the host and USB device
are now “connected”. The USB device should not attempt to use the bus until this “connected”
state is achieved. The USB driver implements a software mechanism to allow DSP application
thread(s) to get notified with the bus is connected.

Any DSP thread may make a device driver control call (e.g., SIO_ctrl) with the command code
C5509_USB_DEVICECONNECT with an argument pointer to a structure of type
C5509_USB_AppCallback in order to register a function and argument to be called by the driver
when the bus is connected. Refer to the “c5509_usb.h” file for structure definitions. For
example, if a DSP/BIOS user thread wants to block until the USB bus is connected the
application could perform the following:

static C5509_USB_AppCallback deviceConnectCb = {

/* function to call when connected */
      (C5509_USB_TappCallback)SEM_post,

/* semaphore handle to post when/if connected */
       usbDeviceConnect

};

/* connect USB device to the host and call deviceConnectCb()  fxn when connected */

SIO_ctrl(outStream, C5509_USB_DEVICECONNECT, &deviceConnectCb );

/* block until bus is connected */

SEM_pend(usbDeviceConnect, SYS_FOREVER);



SPRA910

7 A DSP/BIOS USB Device Driver for the TMS320C5509

usbDeviceConnect is a handle to a semaphore(SEM_Handle).

The user thread will pend on the semaphore if the bus is not connected. Note, the callback(Cb)
function will get called immediately if the bus has already been connected.

Another usage scenario that is possible, is to not specify a callback function(e.g., SEM_post),
then the application thread will “spin wait” until the bus is connected. The SIO_ctrl() call will only
return when the bus is connected. For example,  the following call will not return until the bus is
connected:

/* connect USB device to the host and spin–wait until bus connected */

SIO_ctrl(outStream, C5509_USB_DEVICECONNECT,  NULL ); /* no Cb specified */

1.4.2 USB State Information (C5509_USB_StateInfo Struct)

Applications can access USB Spec 1.x Chapter 9 internal state information by providing a
pointer to a data structure of type C5509 USB StateInfo to be filled in by the mini-driver.

typedef struct C5509_USB_StateInfo {

    Uint16 usbCurConfig;      /* current USB configuration number */

    Uint16 usbCurIntrfc;      /* current USB interface number */

    Uint16 usbCurAltSet;      /* current USB alternate set number */

    Uint16 usbCurDev;         /* current USB device state */

} C5509_USB_StateInfo;

The device specific control command C5509_USB_GETSTATEINFO is used along with the
C5509_USB_StateInfo data structure to retrieve this information. For example, an application
can make the following GIO_control() call:

    GIO_control(readChan, C5509_USB_GETSTATEINFO, &info);

Where readChan is any valid IOM channel and &info is the address of a C5509_USB_StateInfo
structure.

Similarly, the SIO API can be used to access this info:

    SIO_ctrl(inputStream, C5509_USB_GETSTATEINFO, &info);

The contents of the C5509_USB_StateInfo info structure is undefined if GIO_control() or
SIO_ctrl() returns an error.

1.4.3 USB Event and Setup Event Handler Override

By default, the IOM USB driver handles the following USB event types as part of the control
endpoint 0 processing, host sends USB protocol requests to the C5509 EVM on endpoint 0
OUT(USB_OUT_EP0), and receives the EVM’s replies on endpoint 0 IN (USB_OUT_EP0):

• USB_EVENT_RESET

• USB_EVENT_SETUP

• USB_EVENT_SUSPEND

• USB_EVENT_RESUME



SPRA910

8 A DSP/BIOS USB Device Driver for the TMS320C5509

• USB_EVENT_EOT

Refer to USB 1.x Chapter 9 for protocol details.

An application can override or extend this event processing by supplying the “eventHandler”
and/or “setupEventHandler” event handlers as part of the C5509_USB_DeviceConfig structure
in the USB C5509_USB_DevParams device configuration structure as described earlier.

The eventHandler is a structure of type C5509_USB_eventCb that handles the non-setup USB
events, such as  USB_EVENT_RESET and USB_EVENT_SUSPEND. An application can
override the default eventHandler processing as implemented in file c5509_usb_ctrl.c by
providing a custom handler routine. For example, the function myEvtCb() below is an example of
an application provided USB non-setup event handler. Since the driver passes the underlying
non-setup event handler function to the application, the user can simply extend it or completely
override it.

static Void myEvtCb( Uint16 event, C5509_USB_UsbEventHandler handler) {

    if (event == USB_EVENT_RESET) {

        /*

         * application can extend functionality here.

         */

        handler();    /* call the default reset event handler */

    }

    else if (event == USB_EVENT_SUSPEND) {

        /*

         * application can extend functionality here

         */

        handler();    /* call the default suspend event handler */

    }

}

Similarly, the setupEventHandler is a structure of type C5509_USB_SetupEventCb that handles
the USB setup. An application can gain access to the USB setup data and override or extend
the default setupEventHandler processing as implemented in files c5509_usb_reqhndlr.c and
c5509_usb_ctrl.c by providing a custom handler routine, for example, the function
mySetupEvtCb() below shows an application provided USB setup event handler. Since the
driver passes a pointer to the USB setup data (USB_SetupStruct) as well as the  underlying
setup event handler function to the application, the user can simply extend it or completely
override it.



SPRA910

9 A DSP/BIOS USB Device Driver for the TMS320C5509

/*

 * Override default setup event handler

 */

static C5509_USB_UsbReqRet mySetupEvtCb( Uint16 requestId,

        C5509_USB_UsbReqHandler handler, USB_SetupStruct * setupPacket) {

    /*

     * application can extend functionality here.

     */

    return handler();    /* call the default setup event handler */

}

Note that the setup event handler returns a status value of type C5509_USB_UsbReqRet. This
enum type is used to complete the USB transaction by sending the host a USB ACK
(_C5509_USB_REQUEST_SEND_ACK, i.e., a zero length data message), getting an ACK from
the USB host (_C5509_USB_REQUEST_GET_ACK), stalling the endpoint
(_C5509_USB_REQUEST_STALL), or no response at all (_C5509_USB_REQUEST_DONE).
Currently, _C5509_USB_REQUEST_DATA_IN and _C5509_USB_REQUEST_DATA_OUT are
not used and performs no processing.
typedef enum {

    C5509_USB_REQUEST_DONE = 0,  /* Request done. Can call again after setup */

    C5509_USB_REQUEST_STALL,     /* STALL the control endpoint */

    C5509_USB_REQUEST_SEND_ACK,  /* Send a 0 length IN packet */

    C5509_USB_REQUEST_GET_ACK,   /* Prepare to receive 0 length OUT packet */

    C5509_USB_REQUEST_DATA_IN,   /* Notify handler when IN data transmitted */

    C5509_USB_REQUEST_DATA_OUT   /* Notify handler when OUT data received */

} C5509_USB_UsbReqRet

• USB_REQUEST_DONE is returned to notify the control endpoint 0 handler that the request
is completed.

• USB_REQUEST_STALL is returned to notify the control endpoint 0 handler to stall control
endpoint USB_OUT_EP0 and USB_IN_EP0.

• USB_REQUEST_SEND_ACK is returned to notify the control endpoint 0 handler to send a
0-byte length IN packet to host.

• USB_REQUEST_GET_ACK is returned to notify the control endpoint 0 handler to prepare to
receive a 0-byte length OUT packet from host.

• USB_REQUEST_DATA_IN is returned to notify the control endpoint 0 handler that the host
is waiting to receive more data. Currently not used.

• USB_REQUEST_DATA_OUT is returned to notify control endpoint 0 handler that host will
continue sending data to device. Currently not used.

This setup event processing is located in file c5509_usb_ctrl.c and the user’s handler simply
needs to return one of the C5509_USB_UsbReqRet enum values shown above.

2 Architecture
C5509_USB_Fxns is defined in the file c5509_usb.c. All IOM mini-driver functions are
implemented in files whose names are prefixed with “c5509_usb_”. The control endpoint 0
handler is implemented in the file c5509_usb_ctrl.c. All built-in USB Spec. Chapter 9 request
handlers are implemented in file c5509_usb_reqhndlr.c.



SPRA910

10 A DSP/BIOS USB Device Driver for the TMS320C5509

Figure 2 shows an overview of the USB driver’s salient interfaces and data structures. An
important note about the IOM driver architecture is that CSL really performs the major portion of
the USB event and data handling. The IOM driver is provided to encapsulate the USB “driver”
into the common DSP/BIOS driver model. Refer to the TMS320C55x CSL USB Programmer’s
Reference Guide (SPRU511).

CSL

CSL ISR and
event processing

IO
M

 c
al

lb
ac

k 
F

xn

m
d

S
u

b
m

it
C

h
an

m
d

C
o

n
tr

o
lC

h
an

IOM
device
object

(DevObj)

USB device-

DEVICE_CONNECT

IOM
channel
object

(ChanObj)

CSL
endpoint

object
(EpObj)

CSL services used by driver
USB_initPLL
USB_initEndptObj
USB_init
USB_connectDev
USB_postTransaction
USB_isTransactionDone
USB_abortAllTransaction
USB_setAPIVectorAddress

IOM C5509_USB
 mini-driver

m
d

B
in

d
D

ev

specific control
m

d
C

re
at

eC
h

an

IOM interface

DEVICE_RESET
CHANNEL_RESET

GETSTATEINFO

Device/endpoint event handlers
(C5509_USB_DeviceConfig/

_C5509_USB_transactionHandler)

U
S

B
 in

te
rr

u
p

ts

D
at

a

USB peripheral hardware

Figure 2. USB Interfaces and Data Structures



SPRA910

11 A DSP/BIOS USB Device Driver for the TMS320C5509

2.1 Internal Data Structures

2.1.1 C5509_USB_ChanObj and ChanHandle
typedef struct C5509_USB_ChanObj {

    Uns mode;                    /* IOM_INPUT, IOM_OUTPUT, etc */

    USB_EpHandle endptHandle;    /* endpoint */

    IOM_Packet *flushPacket;     /* IOM_FLUSH/ABORT packet */

    IOM_Packet *dataPacket;      /* current active I/O packet */

    QUE_Obj pendList;            /* list of packets for I/O */

    IOM_TiomCallback cbFxn;      /* IOM callback */

    Ptr  cbArg;                  /* IOM callback argument */

    C5509_USB_TappCallback fxnConnect;  /* Fxn called when bus is connected */

    Ptr argConnect;                     /* argument to fxnConnect() */

} C5509_USB_ChanObj, *ChanHandle;

This struct is defined in the public header file c5509_usb.h although it is an internally used
driver structure. Applications declare all IOM channel objects to avoid dynamically allocating
these structures in the driver.

• “mode” defines the I/O direction.

• “endptHandle” is the pointer to the associated endpoint object.

• “flushPacket” is the pointer to the packet handling IOM_flush().

• “dataPacket” is the pointer to the current active I/O request packet.

• “pendList” holds all pending I/O packets.

• “cbFxn” is the pointer to the IOM callback routine.

• “cbArg” is the pointer to the IOM callback argument.

• “fxnConnect” is the a function pointer to the function type C5509_USB_TappCallback.

• “argConnect” is the parameter passed to “function fxnConnect”.

2.1.2 C5509_USB_DevObj and C5509_USB_DevHandle
typedef struct C5509_USB_DevObj{

    volatile Bool busConnected;   /* Set TRUE after host enumerates bus */

    Uint16  lastRequest;          /* last control channel request */

    C5509_USB_ChanHandle chans[_C5509_USB_ENDPTNUMS]; /* IOM chan ptr array */

    USB_EpHandle eps[_C5509_USB_ENDPTNUMS+1];         /* array of null term’d EPs */

    C5509_USB_StateInfo stateInfo;  /* Internal USB state values */

} C5509_USB_DevObj, *C5509_USB_DevHandle;

extern C5509_USB_DevObj C5509_USB_devObj;

This structure is defined in file _c5509_usb.h. A global device object, C5509_USB_devObj is
declared in file c5509_usb_bind.c to maintain state and context information for all IOM
channels for the device.



SPRA910

12 A DSP/BIOS USB Device Driver for the TMS320C5509

The “busConnected” volatile flag is used to record if the host has enumerated the USB bus and
requested endpoint descriptor information.

The “lastRequest” field is used to store away the setupEventHandlers last USB setup packet.

The “chans[]” array is used to mark a particular channel as being used. An application attempt to
open(e.g., SIO_create) the same channel will return and error to the application.

The “eps[]”array is the complete private array of sixteen CSL endpoints used to initialize the
USB CSL module. The first two endpoint handles belong to the driver to be used as control
endpoints. Users may use the remaining 14 endpoints.

2.1.3 C5509_USB_UsbRequestStruct

typedef struct {

  Uint16 request;    /* request ID */

  C5509_USB_UsbReqHandler usbReqHandler;      /* request handler function pointer */

} _C5509_USB_UsbRequestStruct;

This struct is defined in file _c5509_usb.h and is used internally  to perform a table lookup of the
request handler given the host request identifier. File c5509_usb_reqhndlr.c defines the
request-to-handler lookup table _C5509_USB_usbReqTable[] used for control endpoint setup
event requests.

“request” is the request id. USB Spec. Chapter 9 standard request ID. The “usbReqHandler” is
the function pointer to the request handler. The mini-driver supports the following requests:

• _C5509_USB_REQUEST_GET_STATUS – decodes status request from host. Status
reported is device status, interface status and endpoint status.

• _C5509_USB_REQUEST_CLEAR_FEATURE – decodes the host’s USB feature request
setup packet to install the requested endpoint  number or to clear the remote wake-up
feature by calling the CSL USB_setRemoteWakeup() function.

• C5509_USB_REQUEST_SET_FEATURE – decodes the host feature request to stall the
requested endpoint  number or to set the remote wake-up feature by calling the CSL
USB_setRemoteWakeup() function.

• _C5509_USB_REQUEST_SET_ADDRESS – Sets the new device address sent in the
wValue field of the setup packet by calling the USB_setDevAddr() CSL function.

• _C5509_USB_REQUEST_GET_DESCRIPTOR – Returns the requested USB descriptors.

• _C5509_USB_REQUEST_GET_CONFIGURATION – Return current device configuration
value.

• _C5509_USB_REQUEST_SET_CONFIGURATION – Set active configuration of the USB
device.

• _C5509_USB _REQUEST_GET_INTERFACE – Return current interface alternate set value.

• _C5509_USB _REQUEST_SET_INTERFACE – Set active interface of the USB device

For other requests, the mini-driver will pass to application the usbReqUnknown() routine, which
notifies control endpoint 0 handler to stall.



SPRA910

13 A DSP/BIOS USB Device Driver for the TMS320C5509

2.2 Event Handlers

2.2.1 Control Endpoint 0 Handler

In the file c5509_usb_ctrl.c, the function _C5509_USB_usbCtrlHandler() is implemented as the
USB control endpoint 0 handler. It does the following work:

1. Call USB_getEvents() to find out which event happened on endpoint Out0 and In0.

2. If the host requests the device to RESET the following is done by default. The devParams
eventHandler will be NULL, or else it will be the application’s responsibility to perform RESET
processing:

– Abort all transactions.

– Free all pending packets.

– Set device to default state.

– Re-configure the USB module by calling USB_init().

– If the host request SUSPEND, by default the mini-driver performs nothing. The
application may override this to, for example, put the device in a power saving state
using the eventHandler specified in devParams.

3. If a setup packet is received, the setup packet is decoded by calling USB_getSetupPacket().
If the setup packet is decodable, USB_lookupReqHandler() is called to find an appropriate
handler to the request and then go to step 5. Otherwise, set ReqHandlerRet to
USB_REQUEST_STALL

4. If the “setupEventHandler” is specified non-null in devParams  the built-in handler may be
overridden for handling  setup packets received.

5. Check ReqHandlerRet to do the appropriate post processing.

– If ReqHandlerRet == C5509_USB_REQUEST_SEND_ACK, which means the USB device
has received all control information from host and the request handler has completed the
request. Send a 0-byte IN packet to tell the host that the request is done. Then set
fpRequestHandler to USB_reqUnknown.

– If ReqHandlerRet == C5509_USB_REQUEST_GET_ACK, which means the device already
sent to the host the control information requested, set fpRequestHandler to
USB_reqUnknown and prepare to receive a 0-byte OUT packet from the host.

– If ReqHandlerRet == C5509_USB_REQUEST_DATA_OUT, which means device is waiting
for more data to get request done, do nothing so that the same request handler will be called
next time.

– If ReqHandlerRet == C5509_USB_REQUEST_DATA_IN, which means the device needs to
send more control information to the host, nothing is done so that the same request handler
will be called again when the current data packet moves out of the endpoint buffer.

– If ReqHandlerRet == C5509_USB_REQUEST_STALL, which means device doesn’t
understand the setup packet or the request cannot be completed, stall the endpoint Out0 and
In0.

– If ReqHandlerRet == C5509_USB_REQUEST_DONE, which means nothing needs to be
done, set fpRequestHandler to USB_reqUnknown.

6. Clear usbSetup.New flag so that new setup packets can be detected.



SPRA910

14 A DSP/BIOS USB Device Driver for the TMS320C5509

2.2.2 Mini-Driver Built-In USB Spec. Chapter 9 Standard Request Handler

• usbReqSetAddress

This routine calls USB_setDevAddr() to set the new USB device address assigned by the
host.

• usbReqSetConfiguration

This function is called when the host requests to set the configuration value. Since only one
configuration is supported in this implementation, simply check whether the value is valid. If
yes,  set the dev objects usbCurConfig value assigned by the host and return
C5509_USB_REQUEST_SEND_ACK. Otherwise, C5509_USB_REQUEST_STALL is
returned. User needs to extend this function or override this function if multiple
configurations are supported.

• usbReqSetInterface

This function is called when the host requests to set interface. In our example, only one
configuration and one interface are supported. We simply check whether the value is valid. If
yes, we set C5509_USB_usbCurAltSetStat the value assigned by host and return
_C5509_USB_REQUEST_SEND_ACK so that a 0-byte IN packet will be sent back to host.
Otherwise, _C5509_USB_REQUEST_STALL is returned to let
_C5509_USB_usbCtrlHandler() stall the control endpoint Out0 and In0. User needs to
extend or override this function if multiple configurations, interfaces are supported.

• usbReqClearSetFeature

This function is called when host requests to clear/set some features of the device. Currently
we only support USB_FEATURE_REMOTE_WAKEUP and
USB_FEATURE_ENDPOINT_STALL. If the request can be handled, a
_C5509_USB_REQUEST_SEND_ACK is returned. Otherwise,
_C5509_USB_REQUEST_STALL is returned.

• usbreqGetStatus / usbGetConfiguration / usbGetInterface / usbGetDescriptor

Device sends appropriate information to the host based on the request and returns
_C5509_USB_REQUEST_GET_ACK to USB_ctl(). Then _C5509_USB_usbCtrlHandler()
will prepare to receive a 0-byte OUT packet from the host to ensure that the host does
receive the data and complete the request. If the request cannot be completed,
_C5509_USB_REQUEST_STALL is returned.

2.3 Mini-Driver Function Implementation

2.3.1 C5509_USB_mdBindDev

This function is implemented in the file c5509_usb_bind.c. It is not called by application
program but rather from DSP/BIOS during initialization. A pre-defined global device parameter,
called devParams in our example, must be passed to it. It does the following work:

1. Call USB_setAPIVectorAddress() to set the USB API vector base address.

2. Initialize USB PLL with the configured devParam structure provided values.

3. Initialize all endpoints. The routine usbCtrlHandler() is registered as the event handler for
endpoint 0 IN and OUT. The routine transactionHandler() is registered as the event handler
for other endpoints to handle the actual I/O. In this implementation, most non-control
endpoints respond to event EOT only.



SPRA910

15 A DSP/BIOS USB Device Driver for the TMS320C5509

4. Call USB_init() to initialize the USB module.

5. Set the USB interrupt mask.

The USB device is correctly initiated by now but hasn’t been connected to host. To connect it to
the host, the global interrupts needs to be enabled so that bus enumeration can start. Since this
function is called before main as part of DSP/BIOS initialization when interrupt is not allowed be
enabled at this time, we will postpone the work to the point when application calls the device
control (e.g., SIO_ctrl() or GIO_control() API) with the C5509_USB_DEVICECONNECT
command code.

2.3.2 C5509_USB_mdControlChan

This function is implemented in file c5509_usb_control.c. It handles four commands,
IOM_CHAN_RESET, IOM_DEVICE_RESET, IOM_CHAN_TIMEDOUT and
C5509_USB_DEVICECONNECT. Application can call GIO_control, for example, which in turn
calls this function to reset a channel or the whole device in case a serious error occurred, or
connect the device to the host. Since queue objects need to be manipulated to abort pending I/O
packets, the interrupt is disabled at the entry of this function.

• IOM_CHAN_RESET and IOM_CHAN_TIMEDOUT

– Abort all pending I/Os by calling function removePackets() which is defined in file
c5509_usb_submit.c.

– Call function flushPacketHandler() to complete the GIO_flush call if there is any.

– Restore the interrupt and return IOM_COMPLETED.

• IOM_DEVICE_RESET

– Call function resetDevice() which is defined in the same file. ResetDevice() will abort all
transactions, reset the device which disconnect the device from host, call freeAllPackets() to
reset all channels, and finally call freeAllChan() to free all channels.

– Restore interrupt.

– Re-initiate USB module by calling function reInitUsb(). reInitUsb() set
C5509_USB_usbCurConfigStat and C5509_USB_usbCurAltSetStat to 0, which put the
device into default state. It then calls USB_init() to init the USB module.

• C5509_USB_DEVICECONNECT

– Restore interrupt.

– Call function connectDevice() which is defined in the same file. Function connectDevice()
will call USB_connectDev() to pull up D+ wire to notify the USB host that a new device has
been attached to the bus.

2.3.3 C5509_USB_mdCreateChan

This function is implemented in file c5509_usb_create.c. C5509_USB_mdCreateChan() does
the following work:

1. Performs a lookup of the requested endpoint to open by returning the configured channel
associated by the named endpoint and direction. If the endpoint can not be found in the user’s
configured list of endpoints and error is returned to the user.

2. Initialize the channel object and return the channel handle to the user.



SPRA910

16 A DSP/BIOS USB Device Driver for the TMS320C5509

2.3.4 C5509_USB_mdDeleteChan

This function is not implemented. The mini-driver function table contains the “stub” function
IOM_DELETECHANNOTIMPL so any call to mdDeleteChan() will return the IOM_ENOTIMPL
error code. This is a memory saving measure since all IOM channel memory is provided by the
application when the IOM device driver is “bound” by mdBindDev().

2.3.5 C5509_USB_mdSubmitChan

This function is implemented in file c5509_usb_submit.c. It handles synchronous I/Os,
asynchronous I/Os, flushing and aborting.

• Synchronous I/O (e.g., GIO_read() or GIO_write() API)

– The upper level class driver (e.g., GIO_submit() function) fills in the I/O request packet and
then calls the mini-driver’s C5509_USB_mdSubmitChan() function.

– The mini-driver C5509_USB_mdSubmitChan() appends the I/O packet to the “pendlist” if
the current I/O has not been completed. Otherwise it posts the current transaction. In either
case, IOM_PENDING is returned.

– Seeing that the return value is not IOM_COMPLETED for the synchronous I/O, the class
drivers GIO_submit() will call SEM_pend() to wait for the current I/O to complete. If a timeout
occurs, it will call C5509_USB_mdControlChan() with the IOM_CHAN_TIMEOUT
command for the mini-driver to perform any needed timeout processing.

– When the USB event End-Of-Transaction(EOT) occurs, USB_evDispatch() finds out which
endpoint caused the event to happen, then goes into function transactionHandler().
Function transactionHandle() will  callback into the class driver to notify that an I/O request
has been completed.

– The class driver posts the blocking function (e.g., SEM_post) to unblock the calling thread.

– The class driver then returns IOM_COMPLETED to the application, indicating the requested
I/O is finished.

• Asynchronous I/O

The application starts asynchronous I/O by directly calling the class drivers submit() function
with an application callback Fxn. For example for the GIO class driver API it works as
follows:

– GIO_submit() tries to get a free packet, fill it, and then call C5509_USB_mdSubmitChan(). If
no free packets are available, it returns IOM_ENOPACKETS.

– The mini-drivers’ C5509_USB_mdSubmitChan() function appends the I/O packet to the
pendlist if the current I/O has not been completed. Otherwise, it posts the current transaction.
In either case, IOM_PENDING is returned.

– GIO_submit() simply returns IOM_PENDING to application.

– When event EOT occurs, function transactionHandler() is called. Function
transactionHandle() will invoke a callback function to notify the GIO class driver for example
that an I/O request is completed.

– The class driver will put the packet back to the free packet list for later reuse and invoke the
application’s callback function to notify application that the I/O is completed.



SPRA910

17 A DSP/BIOS USB Device Driver for the TMS320C5509

• Aborting I/O

Application can directly call GIO_submit() with an IOM_ABORT command or call
GIO_abort() to abort all pending I/Os for a channel. GIO_abort() is treated as a synchronous
request with timeout parameter SYS_FOREVER. It works as follows:

– GIO_submit() fills syncPacket and then calls C5509_USB_mdSubmitChan().

– C5509_USB_mdSubmitChan() will pass an IOM_ABORTED parameter and call
removePackets() to abort all pending I/Os.

– For each aborted I/O request, the IOM callback will simply do App. callback with
IOM_ABORTED status to notify the application that the I/O request is aborted.

– C5509_USB_mdSubmitChan() returns IOM_COMPLETED to GIO_submit().

– GIO_submit() returns IOM_COMPLETED to the application, indicating that GIO_abort() is
completed.

• Flushing I/O

The application can directly call GIO_submit() with an IOM_FLUSH command or call
GIO_flush() to flush all pending I/O requests on a channel. GIO_flush() is treated as a
synchronous request with timeout parameter SYS_FOREVER. If the channel is an
IOM_IINPUT channel, GIO_flush() is handled similarly as GIO_abort(), except that the status
parameter is replaced by IOM_FLUSHED.

Flushing an IOM_OUTPUT channel is handled differently, since the IOM specification
requires that all pending write requests should be completed routinely. It works as follows for
an application using the GIO API :

– C5509_USB_mdSubmitChan() returns IOM_COMPLETED if there is no pending write
request. In this case, GIO_submit() will return IOM_COMPLETED to the application,
indicating that GIO_flush() or SIO_idle() is completed. If there is any pending write request,
flushPacket is set and IOM_PENDING is returned.

– Seeing that the return value is not IOM_COMPLETED, GIO_submit() will call SEM_pend() to
wait forever until the request is complete.

– When an EOT event occurs, the program goes into transactionHandler(). It continues to post
the next pending transaction until all pending write requests are completed. Then it calls
flushPacketHandler() to complete the flush request.

– Function flushPacketHandler() will simply set flushPacket to NULL and do an OM callback
with status IOM_COMPLETED.

– The IOM callback will call SEM_post() to unblock the GIO_submit() application thread when
using tasking.

– GIO_submit() returns IOM_COMPLETED to application.

2.3.6 C5509_USB_mdUnbindDev

This function is not implemented. The mini-driver function table contains the “stub” function
IOM_BINDDEVNOTIMPL for the mdUnBindDev  table entry to return the IOM_ENOTIMPL error
code if this function ever got called.. DSP/BIOS currently never calls mdUnBindDev().



SPRA910

18 A DSP/BIOS USB Device Driver for the TMS320C5509

3 Constraints
• This device driver and underlying USB CSL currently only supports one USB device.

• This driver is not reentrant for a given IOM channel, which means two different threads
cannot issue I/O requests to the same channel in a safe way. It is the application’s
responsibility to serialize multithread usage on a single IOM channel.

4 References
1. USB Specification 1.1 from http://www.usb.org.

2. TMS320C55x CSL USB Programmer’s Reference Guide (SPRU511).

3. TMS320C55x USB Peripheral Reference Guide (SPRU317b).

4. DSP/BIOS Driver Developer’s Guide (SPRU616).

5. USB host driver and application demo from Thesycon at http://www.thesycon.com.

6. Windows driver programming site: http://www.microsoft.com/ddk/.

7. Writing Windows Device Drivers: Covers Nt4, Win 98, and Win 2000, by Chris Cant.

8. Programming the Microsoft Windows Driver Model, by Walter Oney.

9. Writing Linux Device Drivers, by Takanari Hayama.

10. Linux Device Drivers, 2nd Edition, at http://www.xml.com/ldd/chapter/book.

11. Programming Guide for Linux USB Device Drivers at http://usb.cs.tum.edu/usbdoc.



SPRA910

19 A DSP/BIOS USB Device Driver for the TMS320C5509

Appendix A Device Driver Data Sheet

A.1 Device Driver Library Name

C5509_usb.l55 (small memory model) and C5509_usb.l55l (large memory model) for
TMS320C5509 DSPs.

A.2 DSP/BIOS Modules Used

• HWI

• QUE

• IOM

A.3 DSP/BIOS Objects Used

QUE_Obj

A.4 CSL Modules Used

• USB

• IRQ

A.5 CPU Interrupts Used

USB Interrupt IRQ_EVT_USB (bit number 8 in IER0/IFR0)

A.6 Peripherals Used

• USB

A.7 Interrupt Disable Time

Maximum time hardware interruptsare disabled by the driver:

• 5,025 cycles

A.8 Memory Usage

Table A–1. Device Memory Usage

Uninitialized Memory Initialized Memory

Small Model Large Model Small Model Large Model

CODE — — 2970 
(8-bit bytes)

3578 
(8-bit bytes)

DATA 356
( 8-bit bytes)

440 
(8-bit bytes)

314 
(8-bit bytes)

380 
(8-bit bytes)

NOTE: This data was gathered using the sectti command utility.
Uninitialized data: .bss
Initialized data: .cinit + .const
Initialized code: .text + .text:init



IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters  stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright   2003, Texas Instruments Incorporated


