
Application Report
SPRAA01 − September 2004

1

Using CacheTune (Code Composer Studio v3.0) to
Improve Cache Utilization on TMS320C6000 Targets

Ning Kang Software Development Systems

ABSTRACT

Many of today’s digital signal processors (DSPs) have incorporated cache into the on-chip
memory to support higher clock rates. While cache improves processor throughput by
reducing the average memory access time, sub-optimal cache usage causes some
performance overhead and could become a critical bottleneck in the system. Maximizing
cache effectiveness becomes a key to boosting the overall system performance.

CacheTune is a new tool that helps the developer attain high levels of cache efficiency by
addressing the issues in cache visualization, analysis and optimization. It graphically visual-
izes program and data cache accesses over time, which enables quick and effective reorga-
nization of non-optimal cache utilization. The tool also provides proactive advice in guiding
the developer to analyze the memory accesses patterns and tune the cache memory sub-
system to meet performance goals.

This application report introduces the CacheTune tool, discusses the recommended code de-
velopment flow to tune your application for a high level of cache efficiency and uses an exam-
ple to illustrate the necessary steps required to utilize the CacheTune tool.

Contents

1 Introduction 3.

2 CacheTune Overview 3.
2.1 Development Flow to Increase Cache Efficiency 6.

3 Using CacheTune with an Example 8.
3.1 Application Validation 9.
3.2 Data Collection 12.
3.3 Data Cache Visualization and Optimization 17.

3.3.1 Applying Application Level Optimization: EDMA Double Buffering Framework 23.
3.3.2 Applying Procedural Level Optimization: Restructuring the Data Layout 25.
3.3.3 Exploiting Miss Pipelining 28.

3.4 Program Cache Visualization and Optimization 29.
3.5 Overall System Improvement 33.

4 Conclusion 34.

5 References 34.

Appendix A Cache Basics 35.

Appendix B Cache Structure on TI C6000 DSPs 37.
B.1 TMS320C6000 Two-Level Cache 37.

Trademarks are the property of their respective owners.

SPRAA01

2 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

List of Figures

Figure 1 A First Look at CacheTune (Data Cache View) 4.
Figure 2 CacheTune General Advice 5.
Figure 3 Advice for Program Cache 6.
Figure 4 Development Flow to Increase Cache Efficiency 7.
Figure 5 Code for Processing Chain 9.
Figure 6 Linker Command File 10.
Figure 7 Graph Property Dialog Window 11.
Figure 8 Input and Output Images Data Collection 12.
Figure 9 Range Tab of the Profile Setup Window 13.
Figure 10 Add Control Point Dialog Window 14.
Figure 11 Goals Window 15.
Figure 12 Trace Information Window 17.
Figure 13 Overview of Data Cache Accesses 18.
Figure 14 Sequential Accesses to Data Buffers 19.
Figure 15 Access Patterns to Data Buffers 20.
Figure 16 Cross Cache 22.
Figure 17 EDMA Double Buffering Framework 23.
Figure 18 Data Cache Accesses After Using EDMA 26.
Figure 19 Data Cache Accesses After Restructuring 28.
Figure 20 Viewing the Symbol 30.
Figure 21 Conflict Misses in Program Cache 31.
Figure 22 Modified Linker Command File 32.
Figure 23 Program Cache After Optimization 33.

List of Tables

Table 1 Development Flow 7.
Table 2 Profile Date of Initial Run 15.
Table 3 Profile Data Comparison 1 25.
Table 4 Profile Data Comparison 2 27.
Table 5 Profile Data Comparison 3 29.
Table 6 Profile Data Comparison 4 32.
Table 7 Overall Cache Events Comparison 34.

SPRAA01

3 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

1 Introduction

The TMS320C621x, TMS320C671x, and TMS320C64x digital signal processors (DSPs) of
the TMS320C6000 DSP family employ a highly efficient two-level cache-based memory
architecture for on-chip and for external memory accesses program and data accesses. Cache
reduces the average memory access time by exploiting the locality of the memory accesses,
hence improving the CPU throughput. Using the cache subsystem effectively allows the DSP
developer to meet real-time requirements.

The CacheTune tool, available in Code Composer Studio v3.0, is aimed at identifying
inefficient cache usage and providing proactive advice to facilitate making rapid improvements in
cache performance. By using color-coding schemes for different accesses in the cache, the
CacheTune tool provides a way to visualize the memory reference by address range over time,
at different resolutions of time. It effectively helps the developer to recognize inefficient cache
usage. Furthermore, the tool provides proactive advice in assisting the developer to analyze the
graphical display and identify the memory accesses patterns. Cache optimization techniques
and code examples are also provided that describe how to tune the application to improve cache
performance. Using this tool, the developer can quickly improve cache usage and thereby
optimize the CPU cycles consumed in the cache subsystem.

2 CacheTune Overview

This section introduces the CacheTune tool and describes the recommended code development
flow to improve cache efficiency.

The CacheTune tool utilizes software simulation platforms. All the C621x, C671x and C64x
device and functional simulators are capable of collecting cache data that can be visualized by
CacheTune.

The profiled memory reference data can be viewed inside a two-dimensional display grid. The
accessed addresses are plotted along the vertical axis while access times are plotted along the
horizontal axis. All the accesses are color-coded by type, for example, cache hits are shown as
green pixels while cache misses are shown in red. The tool can also display symbolic
information when available, such as symbol name, size and section, etc., which allows for easy
identification of functions and major data structures. In addition, the tool provides various filters,
panning and zoom features to navigate and drill down into inefficient cache memory areas. This
visual temporal and spatial view of cache accesses enables quick identification of sub-optimal
cache usage areas. Issues such as functions conflicting with one another and data accesses
that make insufficient use of the cache can be easily discovered.

For C6000 devices, CacheTune supports three graphical views: program cache, data cache and
cross cache. Each view tracks different aspects of the cache memory system behavior. They
can be viewed separately by clicking on the cache tabs under the toolbar. Each type of the
graphical view and the supported events are described below. For certain cache terminologies,
refer to related Code Composer Studio online help topics.

• Program cache

This correlates program memory references with the outcomes in level-one program cache
(L1P) and level−two (L2) unified memory. The supported events are cache hit and cache
miss.

SPRAA01

4 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

• Data cache

This correlates data memory references with the outcomes in level-one data cache (L1D)
and level−two (L2) unified memory. The supported events are memory read, memory write,
cache hit and cache miss.

• Cross cache

This encodes a cross-reference of instruction memory references with the cache outcome of
level-one data cache. The addresses are the same as for the program cache display, but the
events displayed are with respect to the data memory references contained within those
instructions. The supported events are memory read, memory write, cache hit and cache
miss.

Figure 1 demonstrates a sample CacheTune window and some annotations.

Cache misses = red

Cache hits = green

Figure 1. A First Look at CacheTune (Data Cache View)

SPRAA01

5 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

One key feature that CacheTune offers is the proactive advice that helps you utilize the
CacheTune tool to increase cache efficiency. The advice is displayed in an Advice Window,
which is automatically displayed after launching the tool. There are cache-specific advice topics
available for each graphical view as well as a general advice topic. The general advice is the
first advice displayed. It tells you how to collect cache data and what steps to take next. A
screen shot of the CacheTune general advice window is shown in Figure 2.

Figure 2. CacheTune General Advice

The cache-specific advice tells you what type of misses are possible in the data and program
caches, why these misses occur, what pattern to look for in the CacheTune graphical display
and what steps you can perform to reduce those misses. The cache misses in data and program
caches are categorized into different miss scenarios. The cause of each miss scenario and
possible optimization techniques are described. There are links to online help topics that show
how each type of misses appears in the CacheTune graph. This can help developers interpret
the graphical display and identify the miss patterns of their application. Once those misses are
identified, corresponding optimization techniques can be applied to reduce the misses.
Examples are provided to illustrate how to modify your program to employ certain techniques.
Figure 3 shows a screen shot of program cache advice window.

SPRAA01

6 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

Figure 3. Advice for Program Cache

To better use the CacheTune tool, it is beneficial to understand the fundamental concepts of
cache and the characteristics of the cache memory architecture. These are discussed in
Appendix A and B respectively. The CacheTune tool can be invoked from the Profile → Tuning
menu in Code Composer Studio. Section 3 discusses the procedures to set up and invoke the
tool in detail with a code example.

2.1 Development Flow to Increase Cache Efficiency

The recommended code development flow involves utilizing the CacheTune tool to aid your
optimization to increase cache performance. The flow consists of three phases that are
illustrated in Figure 4.

SPRAA01

7 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

Profile

Visualize

Analyze

Optimize cache
efficiency

Compile

Profile

Efficient?

More cache
optimization?

Complete
Yes

No

Yes

Phase 1:
Simulate

Phase 1:
Analyze

Phase 3:
Optimize

Figure 4. Development Flow to Increase Cache Efficiency

The goals for the phases in the development flow are described in Table 1.

Table 1. Development Flow

Phase Goal

1 Run the program to collect cache information and use the profile viewer tool to count the
occurrence of cache events, such as the number of cache misses and CPU stalls caused by
cache misses, etc. To analyze the cache behavior of your code, proceed to phase 2.

2 Visualize the memory reference patterns in the CacheTune tool to identify the areas of code and
data that are incurring cache misses. Use the advice to identify the miss patterns. To improve
the efficiency of cache, proceed to phase 3.

3 Apply optimization techniques and transformations to improve cache efficiency. Use the profile
viewer tool to check the improvement. If the code is still not as efficient as you would like, repeat
steps in phase 2 and 3 until you are satisfied.

SPRAA01

8 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

All three phases can be achieved within the simulator environment. The device simulator is
required to accurately measure the total execution cycles as well as the cache stall cycles of the
application.

The typical user workflow reflecting the CacheTune usage in each development phase is
described:

1. Compile and profile the application with device simulator

− Use Code Composer Studio setup to select the device simulator

− Use Profile Setup tool to instruct the simulator to collect cache information

− Run the application to collect cache data and view the profile data from Profile Viewer

2. Visualize and analyze the memory accesses from CacheTune

− Visualize the cache events with CacheTune

− Locate the areas of caches misses

− Use the typical miss patterns from cache-specific advice to analyze the display and
identify the miss scenario, that is, the classes of misses

3. Optimize cache performance

− Apply the recommended optimization technique for each miss scenario using the
provided example for references

Steps 1−3 can be repeated as needed until the cache stall cycles are reduced to meet particular
efficiency needs.

3 Using CacheTune with an Example

This section walks you through the code development flow to increase the cache performance.
An image processing code example is provided here to illustrate how to use the software
development tools in each phase of the development flow. The example consists of a processing
chain that processes an input image, utilizing routines from the Texas Instruments C64x Image
and Video Processing Library (IMGLIB). The example uses C64x device as a target, but also
conceptually applies to C621/C671x devices.

The complete source code is provided with this documentation. In order to get the most out of
the examples, it is recommended that you work through the instructions in the text. To do so,
install accompanying self-extracting file into directory C:\CCStudio\myprojects. If Code
Composer Studio is not installed in the default directory, you need to change the path
accordingly.

The following sequence illustrates the steps needed with each phase of the development flow. It
is based on the assumption that you are already familiar with Code Composer Studio IDE (know
how to set up Code Composer Studio as well as to create and build a project in Code Composer
Studio). Some simplifications are used to keep the content manageable in length. Refer to
TMS320C6000 DSP Cache User’s Guide (SPRU656) for detailed descriptions on the features
and discussion on cache optimization techniques.

SPRAA01

9 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

3.1 Application Validation

Step A: Setting up the device simulator

The first step is to select the C6416 device simulator, which provides cycle accurate program
execution time. Cycle accurate CPU execute time is necessary to measure the overall
application performance. We will assume you are familiar with the Code Composer Studio setup
interface.

1. Start the Code Composer Studio setup utility.

2. From the list of available configurations within the Import Configuration dialog box, select
the standard configuration C6416 Device Cycle Accurate Simulator, Little Endian as the
target simulator.

3. Save the configuration and exit the setup utility.

Step B: Opening and examining the project

1. Start Code Composer Studio.

2. Choose the Project → Open menu item. Open the wave_horz.pjt project in the directory
c:\CCStudio\myprojects\wave_hoz\original.

3. Expand the Project View list by clicking the + signs next to Projects, wave_horz.pjt, and
Source. The files used in this program include:

− main.c: This file contains main function that utilizes APIs from TMS320C6000 Chip
Support Library (CSL) to configure 256K bytes of level-two (L2) memory as cache and
calls the function proc_chain. For more information on the CSL functions, refer to
TMS320C6000 Chip Support Library API Reference Guide (SPRU401).

− proc_chain.c: This file contains function proc_chain and related data declaration. The
function proc_chain calls the IMGLIB functions to process the image data, as shown in
Figure 5.

− lnk.cmd: This is the linker command file for this project.

4. Double-click on each program file to open it. Examine the source code for this program in
the editor window of Code Composer Studio. Notice the following aspects of the program:

In this example, a horizontal wavelet filter (IMG_wave_horz) is applied to an image that is
located in external memory. Since the filter routine operates on 16-bit data, two additional
routines (IMG_pix_expand and IMG_pix_sat) are required, which convert the 8-bit image
data to 16-bit data, and vice versa. All three routines are taken from C64x IMGLIB. For more
information on the three functions, refer to TMS320C64x Image/Video Processing Library
Programmer’s Reference (SPRU023).

IMG_pix_expand(IMGSIZE, in_image_ext, expand_out);

 for (j=0; j<(IMGSIZE/COLS); j++)
 IMG_wave_horz (&expand_out[j*COLS], qmf, mqmf, &wave_out[j*COLS], COLS);

IMG_pix_sat(IMGSIZE, wave_out, out_image_ext);

Figure 5. Code for Processing Chain

SPRAA01

10 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

Since the data buffers are too large to fit into the level-two (L2) memory, they are allocated in
external memory, which is identified as CE0 in this case. All other sections are allocated into
L2 memory configured as RAM while 256 Kbytes of level-two memory are configured as
cache. Furthermore, by relative placement in the linker command file, the three functions:
IMG_pix_expand, IMG_pix_sat and IMG_wave_horz are placed into memory so that they
are 0x4000 (16 K) bytes away from each other. For more information on the linker command
file, refer to TMS320C6000 Assembly Language Tools User’s Guide (SPRU186). Part of the
linker command file is listed in Figure 6.

MEMORY

{
 VEC: o = 00000000h l = 00000020h
 SRAMT o = 00000020h l = 00011FE0h
 SRAM: o = 00020000h l = 000A0000h
 CE0: o = 80000000h l = 01000000h
}

SECTIONS
{
. . .
 GROUP > SRAMT
 {
 .text

 /* Functions are placed 16K bytes away from each other by inserting holes */
 .text:_pix_expand
 .text:_pix_sat {
 . += 0x3F80; /* Create a hole with size 0x3F80 */
 }
 .text:_wave_horz {
 . += 0x3F80; /* Create a hole with size 0x3F80 */
 }

 } /* End of GROUP */

. . .
}

Figure 6. Linker Command File

Step C: Validating the output

1. Compile and load the program.

2. Run the program to completion.

Code Composer Studio provides a graph menu which contains many options in displaying
your image data. You can display a graph to validate the image-processing algorithm.

3. From the menu, select View → Graph → Image. Modify the Dialog as shown in Figure 7
and click OK. This displays the original input image in the Graphical Display window.

SPRAA01

11 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

Figure 7. Graph Property Dialog Window

4. Repeat step 3 to display the output image in another Graphical Display window by
replacing “in_image_ext” with “out_image_ext”. The input and output images are shown in
Figure 8.

You have successfully built your project and validated the outputs through the Graphical Display
window. These are achieved under the standard layout, also known as the debug layout, which
enables you to build and debug your code. You are now ready for the tuning phase aimed at
increasing the efficiency of your application. In addition to the standard (debug) layout, Code
Composer Studio provides a Tuning layout that is meant to focus your attention on the
optimization needs. As the example is using already optimized assembly routine from IMGLIB,
you will be mainly focusing on minimizing the cache overhead.

SPRAA01

12 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

Figure 8. Input and Output Images Data Collection

3.2 Data Collection

Step A: Switching to the tuning mode

1. Activate tuning mode by clicking the tuning fork icon or by clicking the menu item View →
Layout → Tuning Layout. Switching to Tuning mode reorganizes the workspace to provide
a good view of both the Project and the Advice windows, which helps guide the tuning
process. If you are the first-time user, it is highly recommended to follow the advice within
the advice window.

2. From the Welcome to Tuning advice window, click the Setup Advice icon under the
action section. Examine the advice on Profile Setup.

As prompted from the advice, you need to perform a CPU reset then reload the program
before data collection. This is to ensure accurate profile results.

3. To reset CPU, either click the link in the Setup advice window or select Reset CPU from
the Debug menu.

4. From File menu, select Reload the Program.

Input Image Output Image

SPRAA01

13 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

Step B: Selecting the type of profile data

In this step, you will instruct the simulator to collect the type of profile data for cache tuning using
the Profile Setup tool. For more information on Profile Setup, refer to Code Composer Studio
on-line help.

1. Within the Setup advice window, click the Profile Setup icon . This opens the Profile
Setup tool on the right side of the window. You will use the Profile Setup tool to instruct the
simulator to profile your application.

2. From the Profile Setup toolbar, toggle on the Enable/Disable Profiling button. This enables
the profiling capacities in Code Composer Studio.

3. By default, Profile Setup displays the Activity tab. Select the activities Collect application
level profile for total cycles and code size. Collect data on Cache Accesses over a specific
address range and Collect cache Information over time. Clicking each activity displays a
detailed description in the lower portion of the Activity tab. These activities collect the most
common types of data that are necessary for cache tuning.

4. Other events needed for tuning cache performance for this application can be manually
selected from the Custom tab. Click the Custom tab of the Profile Setup window. Observe
that some CPU, L1D, and L1P events have already been selected as a result of selecting
the activities in the Activity tab from the previous step. Select the following events from the
range pane (top portion of the custom tab):

− L2.cache.miss.data.read

− L2.cache.miss.data.write

− L1D.stall.write_buf_full

− cycle.total

− cycle.CPU

5. From time pane (lower portion of the custom tab), select the following events:

− data.L2.cache.hit.data.read

− data.L2.cache.hit.data.write

− data.L2.cache.miss.data.read

− data.L2.cache.miss.data.write

A screen shot of the range tab with the events selects is shown is Figure 9.

SPRAA01

14 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

Figure 9. Range Tab of the Profile Setup Window

Step C: Selecting the range of profile data

In this step, the range of profile data will be selected. You will create Halt Collection and Resume
Collection points (control points) to exclude the initialization area of code.

NOTE: In order to create control points at the desired position, the source file main.c is
compiled with file specific compiler option: −g and no optimization. As file main.c only contains
set up code, the specific option has least or no effect on the performance. For more information
on using file specific compile options, see Code Composer Studio online help.

1. Switch to Control tab of Profile Setup.

2. Right click on the Halt/Resume collection pane (lower pane) and select create halt
collection point… from the context menu. This brings up the Add Control Point dialog box.

3. By default the Symbol ratio button is selected. Enter c_int00 in the Function Name filed, as
shown in Figure 10. C_int00 is the program’s entry point and creating a halt collection
point here will stop the data collection at the beginning of the application.

SPRAA01

15 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

Figure 10. Add Control Point Dialog Window

4. From file main.c, highlight the line of calling function proc_chain and drag-and-drop it to
the Resume Collection pane within the Control tab. Data collection will now resume when
the proc_chain function is reached.

5. From the same file, highlight the line of the closing brace (}) of the main function and
drag-and-drop it to the Halt Collection pane in the Control tab.

The added Halt Collection and Resume Collection points are displayed in the Halt/Resume
Collection Pane of Profile Setup window. By setting up the control points this way, you will
only profile the key functions and exclude any other initialization and setup routines.

6. Select Enable/Disable All Functions icon from the toolbar. Switch to Range tab and you
will notice the program’s functions appear within the Function branch.

7. Hide the Profile Setup window by right-clicking on the window and selecting Hide from the
context menu. Closing un-used window is a good practice to regain window space. Profile
setup can be re-launched easily when needed and all the selected events will be retained.

Step D: Viewing profile data

1. Run the application to completion.

2. Invoke Goals Window by selecting menu item Profile → Tuning →Goals. Goals Window
displays total cycles and code size at the application level. You will focus on the total cycle
count to track the improvement on the performance at the application level. Figure 11 is a
screen shot of this window.

SPRAA01

16 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

Figure 11. Goals Window

3. From Profile menu, select Viewer to open the Profile Viewer window. Profile Viewer
displays the selected events after the program finishes. In the Profile Viewer window, look
at the number in the inclusive total columns of the proc_chain function. The Inclusive Total
column shows the total number of cycles spent executing the profile area, including the
execution time (cycle count) of any subroutines called from within the profile area. So the
inclusive total events of proc_chain function also include all subroutines called by this
function. The profile results are summarized in Table 2.

Table 2. Profile Date of Initial Run

Profile Events Cycles Profile Events Counts

CPU.stall.mem.L1D 6,068,428 L1D.misses.summary 380,931

CPU.stall.mem.L1P 132 L1P.misses.summary 29

Cycle.CPU 641,062 L2.cache.miss.data.read 10,240

Cycle.Total 6,709,606 L2.cache.miss.data.write 10,240

L1D.stall.write_buf_full 2,722,684 Cache overhead 947%

The cache overhead can be assessed by measuring the pure CPU executed cycles and
cache stall cycles: (CPU.stall.mem.L1D + CPU.stall.mem.L1P) / Cycle.CPU. For more
detailed discussion on cache overhead, refer to the related CacheTune online help topic.
The cache overhead now is roughly 947% ((6,068,428+ 132) / 641,062). Most of the cache
overhead is from data cache stalls that are caused by misses when accessing data from
L1D and L2 cache as well as write buffer full occurrences. Your numbers may vary.

Step D: Saving the profile data set

Rather than manually recording the profile results for each execution, you can save the profile
data set from Profile Viewer and restore them later for comparison.

1. Click the Save Current Data Set icon in the Profile Viewer window.

2. After the Save As window appears, save the current data set as run0.xml in a new folder
named Dataset.

So far, you have completed phase 1 of the development discussed in section 2. Knowing the
cache performance is the bottleneck of the application, you are ready to proceed to the next
phase: visualize and analyze the cache accesses. Your numbers my vary.

SPRAA01

17 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

3.3 Data Cache Visualization and Optimization

Step A: Visualizing and analyzing data cache

To achieve high cache utilization, you need to have a thorough understanding of where and
when memory accesses occur and what kind of accesses, that is, hits or misses, writes or
reads. You also need to know which data accesses by which function demonstrates non-optimal
cache usage. This information can be obtained by visualizing and analyzing the CacheTune
graphical display.

1. Select the menu item Profile → Tuning → CacheTune. This launches the CacheTune tool
in the main editor window and also activates the CacheTune tab in Advice Window. By
default, the CacheTune output graph window shows the cache accesses for data cache.

NOTE: Always start with data cache because the code may be modified after you optimize for
data cache performance, thus changing the memory access pattern of the program cache.

2. Click the Show Trace Information button from the toolbar to display the trace
information. This displays a window that provides overview information of the trace data
plotting in the CacheTune graph. The Trace Information window is shown in Figure 12.
The window tells you the data cache is two-way set-associative with a total size of 0x4000
(16 K) bytes. Each cache way is 8K bytes and the cache line is 64 bytes. L1D is
read-allocate cache: it only brings data into cache on a read miss only; write misses are
passed directly to L2 through a write buffer, bypassing L1D. Write misses do not stall the
CPU unless the write buffer is full. Unlike L1D, L2 cache is a read and write allocate
cache, meaning the data is brought into cache on a write miss as well. This information is
necessary to understand the cache behavior with this particular example. The cache
events collected and the graph properties (cycle interval, address ranges, etc.) are also
displayed in the window.
Click “OK” to close the window.

Figure 12. Trace Information Window

SPRAA01

18 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

3. Click the Full Zoom button to zoom out as far as possible on the address data plotted
on the vertical axis and cycle data plotted on the horizontal axis. This allows you to view
all data cache accesses and provides an overview of memory access patterns so that you
can easily point out the hot spots where most cache misses occur. It should resemble the
image shown in Figure 13. (Actual image may vary depending on screen resolution.)

Figure 13. Overview of Data Cache Accesses

The plot of data memory accesses in the graphical display area shows up as two narrow
bands, which are scattered in the upper and lower portion of the display. This happens
because data are allocated in both internal and external memory and hence covers a large
range. You may also observe that in the upper portion of the graph there are mostly green
pixels, indicating cache hits; whereas, yellow pixels are shown in the lower portion, indicating
both cache hits and misses occur. As you may recall, most data buffers that are processed
by the proc_chain function are in the external memory; therefore, you will focus on the
access to the external memory for the time being.

4. Use the zoom in area feature to zoom in the area for the lower band. You may need to
zoom in a few times to narrow down the address range in order to view in more detail.

5. From the Mark Symbol drop-down menu, select <<All Symbols>>. This marks all the
global data symbols and their address ranges in the address section of the display. The

SPRAA01

19 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

graph should resemble the image in Figure 14. As observed from the display, data buffers
allocated in the external memory are in_image_ext, expand_out, wave_out and
out_image_ext; cache events occur on memory accesses to these data buffers.

Figure 14. Sequential Accesses to Data Buffers

Also notice from the color options section on the left of the display, the default color option is
on hits/misses. This color scheme color codes the memory references according to whether
they were L1D cache hits or L1D cache misses. The legend area above the graph shows the
color key to each cache event; for example, yellow indicates both cache hits and misses
occur; red means only cache misses occur.

6. Toggle the color options to reads/write, where the references are color coded according to
whether data are read from or written to memory. Notice that there are no more yellow
pixels in the display but only green and red pixels. Within a particular period of time, the
program processes only two buffers: reads from one buffer and writes to the other one.
For example, the program initially reads data from in_image_ext while writing data to
expand_out, then the program reads the data from expand_out and writes to wave out,
etc.

7. Reset the color options to miss/hits and double-click the symbol in_image_ext displayed in
the address range area. CacheTune zooms in to display the memory range for the

SPRAA01

20 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

in_image_ext only. This allows you to drill down the memory access patterns on selected
symbol.

8. From the Event Options section, deselect other cache events and leave only one event at
a time. For instance, only select L1D.hit.read. This will display only the cache hit event
when reading from L1D. Notice that when selecting only L1D.hit.write or L1D.miss.write,
there is no event displayed in the graph. This implies that the program does not write to
in_image_ext, which matches the analysis from step 6. You can also observe that read
hits and read misses occur when accessing the data from L2 cache.

NOTE: The L2 events are displayed according to the order shown in the Event Option area. For
example, when both L2.cache.hit.data.read and L2.cache.miss.data.read.miss occur in the
same pixel, only L2.cache.hit.data.read will show up in the display. To view all
L2.cache.miss.data.read.miss events, you need to deselect all the events that are in the higher
order in the Event Option.

9. Click the undo zoom icon to return to previous display. Then repeat step 7 and 8 for
the rest of data buffers.
For expand_out and wave_out, the entire data buffers are referenced twice. At first, the
program writes to them, causing write misses in L1D and both write misses and hits in L2.
And then, the program reads from them, causing read misses and hits in L1D and L2. The
data accesses patterns of these two buffers are displayed in Figure 15. Again, red pixels
indicate cache misses; yellow pixels indicate both cache hits and misses occur.

Figure 15. Access Patterns to Data Buffers

For out_image_ext, the program only writes to it, causing write misses in L1D and write
misses and hits in L2.

SPRAA01

21 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

The program makes a large series of sequential accesses to all the data buffers. This
reflects a linear access pattern in the CacheTune display. When a read miss occurs, a cache
line worth of data will be brought into the cache. Since array elements in each buffer are
read consecutively, the subsequent accesses will hit in cache. As can be observed from the
display, there are multiple consecutive read hits following one read miss in both L1D and L2
since they are both read-allocate. As L2 is also write-allocate, L2 write access has a similar
pattern. L1 write miss does not allocate data in the cache, so all the writes will miss in L1D.

An L1D miss is serviced by the L2 cache. When it also misses in L2, the CPU is stalled while
the L2 retrieves the data from external memory. The number of stall cycles may vary
depending on type and width of external memory, as well as other aspects of system
loading. The L2 miss overhead can be significant because the L2 cache needs to
communicate with slow off-chip memory. Considering the speed disparity between the
processor and off-chip memory, handling data transfer carefully is one of critical factors for
attaining higher performance.

Step B: Visualizing and analyzing cross cache

You have known so far which data are referenced and what kind of references (hits/misses;
read/write), but there is no knowledge on which functions/program accesses these data. Cross
cache can help at this point.

The cross cache view in CacheTune encodes a cross-reference of program memory accesses
with data cache accesses. The addresses are the same as for the program cache display, but
the events displayed are with respect to the data memory reads and writes (loads and stores)
contained within those instructions and whether those loads and stores hit or missed in L1D.

1. Switch to the cross cache view by clicking the Cross Cache tab located below the
CacheTune toolbar. Each tab maintains its own toolbar state, mode, selected symbol, etc.
The advice will change to cross cache advice.

2. Click the full zoom button . The graph will look similar to the following image. There are
three horizontal bars across the display, which represent the code that references the data
memory.

SPRAA01

22 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

Figure 16. Cross Cache

3. Move the cursor on top of the bars. The information display area (left side of the
CacheTune window) updates with the current address range, section, symbol (if any), and
cycle range corresponding to the pixel currently under the cursor. This identifies three
functions (from left to right): IMG_pix_expand, IMG_wave_horz and IMG_pix_sat. The
yellow pixels indicate that all three functions contain executed load and store instructions.
The functions are executed one at a time. You can tell what data buffers are accessed by
each function by correlating execution period from x-axis across the data cache and cross
cache display.

In conjunction with the analysis on data cache display, you can get the entire picture of the
data flow on the processing chain. All three functions operate out-of-place, that is, the results
are placed in an array different from the input. For instance, function IMG_pix_expand reads
data from the input image buffer in_image_ext and then stores the results into the buffer
expand_out. Also notice the results from one function forms the input of the next function.
This type of processing chain scenario is often frequently found in typical DSP applications.

A good strategy for tuning cache performance is to start with the application level then move
to the procedural level. The following steps will reflect the order to address the optimization.

SPRAA01

23 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

3.3.1 Applying Application Level Optimization: EDMA Double Buffering Framework

In this section, you will apply the cache optimization techniques at the application level to reduce
the data cache related overhead. The application level cache optimization tends to be
straightforward to implement and typically have a high impact on the overall performance
improvement.

Step A: Examining the general optimization advice

1. Use the back arrow on top of the advice window to go back to the CacheTune General
Advice. Click the yellow arrow next to Optimization techniques. This opens up the
related topic in online help which discusses in detail on the general optimization
techniques.

2. Go through the text under this topic, noting that it is recommended to apply application
level optimizations first then procedural level. Also note one application level technique is
to use EDMA for transferring from external memory instead of L2 Cache.

For this application, data is too large to fit in L2 SRAM and has to be allocated into external
memory. Using L2 as cache is a fast way to get an application up and running as the off-chip
memory access is seamlessly handled by the cache controller with L2 cache. You can also
use L2 SRAM with EDMA to transfer data to external memory. Whereas the EDMA transfer
involves more programming effort, it is typically more advantageous than using L2 cache
alone in terms of performance.

Step B: Using EDMA double buffering framework

Figure 17 shows the program flow for an EDMA double-buffering framework for the wavelet
processing chain. The image is transferred to a buffer in L2 SRAM using EDMA. The processing
chain is then processed, and the output is transferred back to the external memory. While one
EDMA input buffer is being processed, EDMA is filling the second buffer in the background.

When implementing the EDMA double buffering framework, one important factor to consider is
the size of the EDMA buffer. The buffer should be large enough to minimize EDMA setup cycles.
Or, it should be small enough to leave enough on-chip memory for other critical data and code.
In this example, a buffer size of 16K bytes is chosen. As smaller buffers are processed at a time,
the interface buffers (expand_out and wave_out) can be allocated into L2 SRAM. The input
image is 256 Kbytes, so 16 EDMA transfers are required.

DMA

inbufA

inbufB

pix_expand expand_
out wave_horz wave_

out pix_sat

outbufA

outbufB

DMA

Figure 17. EDMA Double Buffering Framework

1. From Windows Explorer, copy the files from the stage1 folder to your project folder:
c:\ccstudio\wavelet\original.

SPRAA01

24 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

2. Click Yes to replace the existing files. The new files include a new function called
dma_double_buf that implements the EDMA double buffering framework to transfer the
data from external memory instead of L2 cache. The routines used for setting up the
EDMA transfers (for example, DAT_copy and DAT_wait) are from the C64x Chip Support
Library (CSL). Refer to TMS320C6000 Chip Support Library API Reference Guide
(SPRU401) for more information.

3. Rebuild the project.

4. Perform a CPU Reset, and reload the program.

Step C: Resetting the range of profile data

As the program is modified, more functions are added and the profiled data are changed. You
need to reset the range of profile data using the Profile Setup tool.

1. Re-open Profile Setup from Profile menu.

2. Click the Range tab and observe that several new functions have been added into the
function list. The function list automatically re-populates to include the latest functions after
loading the program.

3. The positions for the control points set in the source file main.c are no longer applicable as
the program is changed. Select the halt collection point from the Control tab and hit
“delete” key to remove it. Follow the same procedures to remove the resume collection
point.

4. Repeat the steps described in section 3.2 step B to set halt collection points at the source
line that calls DAT_close in the file main.c; a resume collection point at the source line that
calls dma_double_buf function.

NOTE: The halt collect point set at the symbol c_int00 can be left unchanged as it is created by
symbol name and the position is updated automatically.

5. Hide the Profile Setup window.

Step D: Measure the cache usage improvement

1. Run the application to completion.

2. To verify that correct output is generated, you can check the Graphical Display in Standard
Layout. Click the Standard Layout icon to switch back the standard layout.

3. Right-click the Graphical Display window of the output image and select refresh from the
context menu.

4. Once you have verified that the same image as shown in Figure 8, click the Tuning
wrench icon to activate the tuning layout again.

5. Inspect the profile data in the inclusive columns of the dma_double_buf function as now
most subroutines are called by this function.

6. From Profile Viewer, save this profile data set as run1.xml in dataset folder that is created
in section 3.2 step C.

For comparison, you can open another Profile Viewer window to view the previously saved
data set.

7. From Profile menu, select Viewer to launch another Profile Viewer.

SPRAA01

25 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

8. From the Profile Viewer toolbar, click the load data set button and open previously
saved data set run0.xml. This displays the saved data set in the new Profile Viewer
window.

The comparisons of profile results before and after optimization are summarized in Table 3.
Close the Profile Viewer of run0.xml after comparing the data.

Table 3. Profile Data Comparison 1

Profile Events Stage 0 Stage 1

CPU.stall.mem.L1D 6,068,428 222,072

CPU.stall.mem.L1P 132 1,487

Cycle.CPU 640,262 651,038

Cycle.Total 6,709,606 874,298

L1D.stall.write_buf_full 2,722,684 5,653

Cache Overhead 947% 25.6%

9. Check the Delta column of Goals Window. It shows a decrease of 5 million (5,835,303)
cycles. This is almost an 8x improvement over the previous implementation by applying
the application level optimization.

The application benefits from processing the data buffers that are allocated in L2 SRAM.
This reduces cache overhead and gives you more control over memory accesses since only
Level 1 cache is involved whose behavior is easier to analyze. Meanwhile, this allows you to
make some modifications to algorithms in the way the CPU is accessing data, and/or to alter
data structures to allow for more cache-friendly memory access patterns. Your numbers may
vary.

3.3.2 Applying Procedural Level Optimization: Restructuring the Data Layout

1. From CacheTune toolbar, click the Data Cache tab to display the updated data cache
accesses.

2. Click the Full Zoom button to view all the data accesses. Observed most data cache
accesses occur in L2 SRAM memory area.

There are two narrow band of cache misses occur at the memory range 0x01A00000 –
0x02000000. These memory ranges are for the EDMA control registers. Memory-mapped
peripheral registers are non-cacheable and therefore accesses to them will miss in cache.
The data will pass directly to the CPU and are not stored in cache. These misses are
considered as compulsory misses.

3. Use the Zoom in Area button to select the area where the data buffers are referenced.

4. From the Mark Symbol drop down menu, select <<All Symbols>> to display all the
symbols. The image should resemble Figure 18.

SPRAA01

26 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

Figure 18. Data Cache Accesses After Using EDMA

As may be observed from Figure 18, similar linear processing chain access patterns were
repeated 16 times (16 EDMA transfers). Read misses and write misses occur when
accessing the data, causing L1D stalls as well as write-buffer-full stalls. Data buffers
expand_out and wave_out are both 32K bytes in size, and are larger than the cache size
16K bytes. After each iteration, the beginning of the data buffer has already been replaced
with the end of the data buffer as the capacity is insufficient. The following iteration will then
experience misses again.

5. Examine the Data Cache Advice, noticing that this matches the third miss scenario. Click
the link next to the typical miss patterns. This brings up the online help window,
displaying a typical CacheTune graph for this kind of miss patterns. Also notice the figure
looks very similar to your CacheTune graph.

Based on the analysis above, most read misses on L1D are capacity misses due to
sub-optimal data usage, that is, the algorithm does not reuse the data when they are still in
cache. The Data Cache Advice prompts you that this type of miss can be reduced by
restructuring the data in order to work on smaller blocks of data at a time.

SPRAA01

27 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

In a processing chain, the output of one function forms the input of the next function. If the
buffers that interface the functions (expand_out and wave_out) can be retained in L1D, there
will be no cache misses inside the processing chain, thus completely eliminating read miss
and write buffer related stalls. An appropriate memory layout has to be carefully arranged to
ensure the interface buffers are retained in L1D. In this example, the program has read
accesses to four buffers: the two input EDMA buffers and two interface buffers (expand_out
and wave_out). To fit the interface buffers completely in cache and protect them from being
evicted by the input buffers, they need to be placed within one cache way (8K bytes). This
leaves the interface buffer with a size of 4K bytes each and they have to be allocated
contiguously in memory.

6. From Windows Explorer, copy the files from the stage2 folder to your project folder:
c:\ccstudio\wavelet\original. Click Yes to replace the existing files.

7. You can open the new proc_chain.c source file to view the data declaration to fulfill the
memory layout requirement. Rebuild the program.

8. Reset CPU then reload the program.

9. Run the program to the completion.

10. Repeat the steps discussed earlier to validate the application by viewing the image output.

11. Check the delta column of Goals Window. Notice there is a decrease of 149,110 cycles, a
17% improvement from the previous run.

12. The Profile Viewer window also updates to display the profile data. Check the results of
the dma_double_buf function. Save the profile data set as run2.xml. You can repeat the
steps discussed in section 3.3.1 Step D to open another Profile Viewer window to
compare the numbers. Table 4 gives a summary on comparisons between run2 and run3.
Note that the L1D stalls including write buffer stalls are reduced dramatically, but L1P
stalls increases. The cache overhead is reduced to 11.1%. Close the Profile Viewer of
run2 after comparing the data.

Table 4. Profile Data Comparison 2

Profile Events Stage 1 Stage 2

CPU.stall.mem.L1D 222,072 57,922

CPU.stall.mem.L1P 1,487 10,352

Cycle.CPU 651,038 657,598

Cycle.Total 874,298 725,198

L1D.stall.write_buf_full 5,653 42

Cache Overhead 25.6% 10.4%

13. Click the data cache tab of CacheTune and then click on the Zoom in Area button to
view the data cache accesses again. A screen shot is shown in Figure 19.
The function now works on smaller pieces of the input buffer at a time. This reduces the size
of the working set and improves temporal locality. The only read misses that then occur are
compulsory misses for the first routine, IMG_pix_expand, which reads new data from the
EDMA buffers. The first time the processing chain is executed, read accesses to these
interface buffers will miss. However, all following iterations will then access these buffers in
L1D.

SPRAA01

28 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

Note that repeated write misses on the EDMA output buffers (OutBuffA and OutBuffB) in
L1D that does not write-allocate are categorized as compulsory misses.

Figure 19. Data Cache Accesses After Restructuring

3.3.3 Exploiting Miss Pipelining

The C64x cache architecture pipelines read misses, which reduces the read miss overhead by
overlapping processing of several cache misses. Multiple parallel and consecutive read misses
consume as few as 2 cycles once pipelining is setup:

1. Examine the Data Cache Advice. The last advice is related to touch loop. The touch
routine reduces the number of stall cycles per miss by exploiting miss pipelining. The
previous discussion showed how to eliminate most of the cache misses. The only cache
read misses left are now the compulsory misses due to the first time reference of the input
data. The impact of compulsory misses can be reduced by using the touch routine. Also,
the touch routine can be used to pre-allocate the interface buffers prior to the first iteration.
This has the additional effect of eliminating write buffer related stalls during the first
iteration.

SPRAA01

29 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

2. From the Data Cache Advice window, click the link under the touch loop advice. The
online help provides the complete source code and C prototype for the touch routine. For
your convenience, the source code of touch routine is also provided in folder stage3 as file
touch.asm.

3. Click the link next to the example for the third miss scenario. The example in the online
help also has a reference on how to utilize the touch routine.

4. Copy the files in folder Stage3 into your project directory. The file touch.asm contains a C
callable assembly touch routine.

5. Add the file touch.asm into the project and rebuild the project.

6. Reset the CPU and reload the program.

7. Run the program to completion.

8. Validate the application by inspecting the output image.

You can now visualize the new data cache access pattern with the CacheTune tool and use
the profile tools to check the improvement.

9. From CacheTune graph, notice the series of read misses occur when reading from input
buffers and the first accesses to the interface buffers. These consecutive misses are
pipelined, and thus the overall miss stalls are reduced.

10. From Profile Viewer, save the data set as run3.xml. Repeat the steps described in last
section to open another profile viewer and compare the profile data from the previous run.
Table 5 gives a summary on the cache events for function dma_double_buf. Notice that
the L1D stalls have decrease 21, 914 cycles and the overall application cycles reduces
17,052 cycles. Your numbers may vary.

Table 5. Profile Data Comparison 3

Profile Events Stage 2 Stage 3
CPU.stall.mem.L1D 57,922 36,008
CPU.stall.mem.L1P 10,135 10,484
Cycle.CPU 657,598 662,082
Cycle.Total 725,198 708,146
L1D.stall.write_buf_full 42 0
Cache Overhead 10.4% 7%

3.4 Program Cache Visualization and Optimization

While the data cache stalls are dramatically reduced, more program cache stalls occur. You
need to investigate the program memory access pattern and improve program cache utilization.

Step A: Visualizing and analyzing the program cache

1. Click the Program Cache tab.

2. Click the Full Zoom button to view the entire trace.

3. Hover your mouse pointer over the cache misses legend. This view only the cache misses
event, while the other events are grayed out.

Notice there are three red horizontal bars across the display. This signifies that the same
piece of code repeatedly misses the cache within a short period of time.

SPRAA01

30 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

4. Examine the program cache advice. There are two possible miss scenarios: conflict
misses and capacity misses. Click the arrow next to the Typical Patterns under conflict
misses. This opens up the online topic which displays the typical miss patterns for conflict
misses. The miss patterns are very similar to the one shown in the CacheTune display.
This signals that the cache misses might be caused by memory conflict.

5. The interference shadow feature supplied with the CacheTune tool can easily highlight this
kind of miss. Select the origin of the grid at an address within the memory range of
function IMG_pix_sat (represented by the horizontal bar in the middle). The resulting
display will show dark bands across the graphical display area to indicate the address
ranges that interfere with this function in the cache.

When you select the Interference Shadow, it will display the symbol name in the Address

Section; this also enables the Find Conflicting Symbols button . Find Conflicting Symbols
displays a list of the symbols and graphs that conflict in memory with the selected symbol.

6. As the symbol name is too long to be displayed in the address area, only the last 12
characters are shown. To view the entire symbol, simply roll your mouse point on top of
the symbol box and the complete symbol name will be display in the tip box, as shown in
Figure 20.

Figure 20. Viewing the Symbol

7. Click the Find Conflicting Symbols button . This displays all cache conflicting symbols
with a red box around them in the Address Section. Also, the CacheTune tab of Advice
Window displays text information on the conflicting symbols, such as the symbol’s name,
the conflict range, etc. Again, hover your mouse over the cache misses legend to view
only the cache misses event. A screen shot is shown in Figure 21. Notice dark shadows
are drawn on top of the upper and lower horizontal bars.

These repetitive misses are due to cache conflict misses, which result from three functions,
IMG_pix_expand, IMG_pix_sat, and IMG_wave_horz, being mapped to the same cache line
of L1P (L1P on C6416 is direct-mapped). When the functions execute back to back (they are
called repeatedly in a loop), they replace each other from the cache and miss the next time
they execute.

NOTE: In order to view the symbols of functions from Image Library, you might need to rebuild
the library. To rebuild the library, using the following command from the LIB directory where
image library is installed:

mk6x img64x.src -mv6400 -l img64x.lib

SPRAA01

31 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

Interference shadow

Figure 21. Conflict Misses in Program Cache

Step B: Eliminating the conflict misses

The cache misses are called conflict misses because two or more functions are mapped to the
same cache lines. The affected functions can be placed in different memory locations to ensure
they do not overlap in the cache. CacheTune provides general advices and example on how to
eliminate these kind of misses.

1. Click the Program Cache tab again to bring back the program cache advice. Click the
yellow arrow next to Example under conflict misses category. This brings up the online
topic which uses an example to describe possible solutions to eliminate the conflict
misses. One possible solution is to allocate the functions contiguously in memory. Since
the functions that execute when the interference occurs occupy less than 16KB of memory
(the C64x program cache size), allocating them contiguously will eliminate any conflicts. In
addition to the three functions in the processing chain, the code for setting up EDMA
transfers (for example, DAT_copy and DAT_wait routines) and the touch loop should also
be taken into account. This can be accomplished by editing the linker command file. For
details regarding the linker command file, refer to TMS320C6000 Assembly Language
Tools User’s Guide (SPRU186).

SPRAA01

32 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

2. Replace the linker command file with the one in folder stage4. A portion of the linker
command file is shown in Figure 22. The functions are not only allocated contiguously, but
also allocated in the way sorted by the CPU cycle counts. This is to guarantee that the
functions that execute the most cycles are allocated together so as to avoid potential
conflict misses. A GROUP command guarantee the functions are allocated in the order
specified in the linker command file.

SECTIONS
{
 GROUP > SRAMT
 {
 .text:_wave_horz
 .text:_pix_expand
 .text:_pix_sat
 .text:_touch
 .text:_DAT_copy
 .text:_DAT_wait
 .text:
 } /* End of GROUP */
 . . .
}

Figure 22. Modified Linker Command File

3. Re-link the application with the new function placement.

4. Reset CPU and reload the program.

Step C: Measure the cache usage improvement

1. Run the program to completion. Once program finishes execution, the CacheTune output
window, Goals Window, and Profile Viewer will update to display the new data.

2. View the new profile results of function dma_double_buf from Profile Viewer window.
Table 6 gives a comparison of profile data before and after the optimization. The stalls
caused by L1P misses are remedied. This results in an improvement of the application
execution time by 9,474 cycles. Although in this case this is not as significant as the
improvement from the data cache optimization, this is simply achieved by re-linking the
program and without modifying the code and recompilation.

3. Save the profile data set as run4.xml from Profile Viewer.

Table 6. Profile Data Comparison 4

Profile Events Stage 3 Stage 4

CPU.stall.mem.L1D 36,008 36,355

CPU.stall.mem.L1P 10,484 269

Cycle.CPU 662,082 662,070

Cycle.Total 708,146 698,672

L1D.stall.write_buf_full 0 14

Cache Overhead 7% 5.5%

4. Within CacheTune, select the program cache tab; then click the Full Zoom button .
Figure 23 gives the display of program cache after the optimization.

SPRAA01

33 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

Compulsory
misses

Figure 23. Program Cache After Optimization

From the display, notice all functions are now grouped together and the conflict misses are
eliminated. The cache misses that are left are compulsory misses.

3.5 Overall System Improvement

All the profile data through Table 3 to Table 6 are consolidated into Table 7 for a breakdown of
results after each stage. Another way to do this is to export each saved data set into delimitated
text file from Profile Viewer; then import them to a spreadsheet program.

By optimizing the cache effectiveness, almost a 10x reduction in application total cycle counts is
obtained and the cache overhead is reduced from 947% to 5.5%! Most improvement is from
eliminating data cache misses and hence the related miss stalls and write buffer full stalls. The
application level optimization of using DMA double buffer framework has the biggest impact on
the performance. The data cache stalls are further reduced significantly by applying procedural
level optimization techniques. The capacity misses in data cache are lessened by re-structuring
the data to work on smaller buffers at a certain time and the stall cycles for compulsory misses
are minimized by exploiting miss pipelining. The data cache tuning requires the function to be
executed repeatedly. As functions are overlapped in the program cache, this cause conflict
misses in the program cache and hence an increase of the L1P stalls. The conflict misses are
completely eliminated by allocating the program contiguously in memory.

SPRAA01

34 Using CacheTune (Code Composer Studio v3.0) to Improve Cache Utilization on TMS320C6000 Targets

Table 7. Overall Cache Events Comparison

Profile Events Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

CPU.stall.mem.L1D 6,068,428 222,072 57,922 36,008 36,355

CPU.stall.mem.L1P 132 1,487 10,135 10,484 269

Cycle.CPU 640,262 651,038 657,598 662,082 662,070

Cycle.Total 6,709,606 874,298 725,198 708,146 698,672

Cache Overhead 947% 25.6% 10.4% 7% 5.5%

4 Conclusion

Texas Instruments’ new CacheTune tool offers a plethora of useful features and proactive
advices to suit the tuning need of maximizing cache effectiveness.

The example walked through the steps necessary to utilize the CacheTune tool. The tool helps
you quickly identify performance overhead in the data cache. The overhead in the data cache
are reduced drastically after applying both application level and procedural level optimization.
CacheTune is also very effective in detecting functions conflicting with each other in the program
cache. You easily remedy these conflict misses by reallocating the conflicting functions using the
linker command file. The misses in the program cache are eliminated completely without any
extra coding effort and compilation. The overall system performance is boosted up by almost
10x after using the tool to tune the cache effectiveness.

The CacheTune tool addresses the aspects of efficiency analysis targeted at better memory
management and helps developers achieve efficiency quickly, hence shortening the application
development lifecycle and reducing the time to market for the developer.

5 References
1. TMS320C64x DSP Two-Level Internal Memory Reference Guide (SPRU610)

2. TMS320C621x/C671x Two Level Internal Memory Reference Guide (SPRU609)

3. TMS320C6000 DSP Cache User’s Guide (SPRU656)

4. TMS320C64x Image/Video Processing Library Programmer’s Reference (SPRU023)

5. TMS320C6000 Chip Support Library API Reference Guide (SPRU401)

6. TMS320C6000 Assembly Language Tools User’s Guide (SPRU186)

7. Cache Usage in High-Performance DSP Applications With the TMS320C64x (SPRA756)

8. David A. Patterson and John L. Hennessy, Computer Organization & Design, Second
edition, Morgan Kaufmann, 1998

SPRAA01

35 Using CacheTune (CCStudio 3.0) to Improve Cache Utilization on TMS320C6000 Targets

Appendix A Cache Basics

Processing data at high clock rates requires fast memory connected directly to the CPU (Central
Processing Unit). However, a bandwidth dilemma has occurred with the dramatic increase in
processor speed. While processor speed has increased dramatically, memory speed has not.
Therefore, the memory to which the CPU is connected often becomes a processing bottleneck.
Caches are small, fast memory that reside between the CPU and slower system memory. The
cache provides code and data to the CPU at the speed of processor while automatically
managing the data movement from the slower main memory that is frequently located off-chip.

This section will introduce the basic conceptual ideas behind cache, though many abstractions
are used for simplification. Refer to TMS320C6000 DSP Cache User’s Guide (SPRU656) for a
more detailed discussion.

Cache operates by taking advantage of the principle of locality. There are two different types of
locality:

• Temporal locality: if an item has been accessed recently, it is likely to be accessed again.
Accessing the instructions and data repeatedly within a loop structure shows a high amount
of temporal locality.

• Spatial locality: items that are close to other recently accessed items are likely to be
accessed soon. For example, sequentially accesses to matrix elements will have high
degrees of spatial locality.

Cache memory takes advantage of locality by holding current data or program accesses closer
to the processor. The smallest block of data that the cache operates on is called a line. Typically,
the line size is larger than one data value or one instruction word in length.

If data from a requested memory location appears in a line of cache, this is called a hit. The
opposite event, a miss, occurs when the requested data is not found in the cache. If a miss
occurs, the next level of memory is accessed to fetch the missing data. The number of cache
misses is often an important measure of cache performance; the more misses you have, the
lower your performance will be. In addition when data is missed, a location needs to be selected
to place the newly cached data. This process is known as allocation, which often involves
replacing the data occupying an existing cache line to make room for the new data.

Cache can be categorized by the schemes used for placing lines. A direct-mapped cache maps
each line of memory to exactly one location in the cache. This is in contrast to a multi-way
set-associative cache, which selects a “set” of locations to place the line. The number of
locations in each set is referred as the number of ways. For instance, in a 2-way set-associative
cache, each set consists of 2 line-frames (ways). Any given cacheable address in the memory
map maps to a unique set in the cache, and a line can be placed in two possible locations of that
set. An extreme of set-associative cache is fully associative cache that allows any memory
address to be stored at any location within the cache. For the latter two types of cache, an
allocation policy will be needed to choose among line frames in a set when a cache miss occurs.

Let us now investigate the sources of cache misses and how the misses can be remedied from
the programmer’s perspective. All cache misses can be divided into one of these three classes:

• Compulsory misses: these cache misses occur during the first access to a line. This miss
occurs because there was no prior opportunity for the data to be allocated in the cache.
These are sometimes referred to as ”first-reference misses”.

SPRAA01

36 Using CacheTune (CCStudio 3.0) to Improve Cache Utilization on TMS320C6000 Targets

• Capacity misses: these cache misses occur when the cache does not have sufficient room to
hold all the data during the execution of a program.

• Conflict misses: these cache misses occur because more than one data or program code
are competing for the same cache line.

These sources of misses can be reduced by a number of code optimization techniques. Conflict
misses can be eliminated by changing the locations of data or program code in memory, and
hence they will not contend for the same cache line. Capacity misses can be reduced by
working on smaller amounts of data or code at a time, which can be achieved by reordering the
accesses of the data or by partitioning the algorithm into smaller pieces. Refer to TMS320C6000
DSP Cache User’s Guide (SPRU656) for more discussions on cache optimization techniques.

SPRAA01

37 Using CacheTune (CCStudio 3.0) to Improve Cache Utilization on TMS320C6000 Targets

Appendix B Cache Structure on TI C6000 DSPs

There are several TI C6x DSP devices that contain one or more caches. An instruction cache is
available on certain TMS320C620x and TMS320C6701 DSPs to buffer most recently accessed
instructions on chip. Some members of TMS320C6000 DSP family employ a two-level cache for
internal data and program storage to deliver high performance without the cost associated with
large on-chip memory.

B.1 TMS320C6000 Two-Level Cache

Some newer members of TMS320C6000 family (C6x1x devices) employ a highly efficient
two-level memory architecture for on-chip program and data accesses. In this hierarchy, the
C6x1x CPU interfaces directly to a dedicated level-one program (L1P) and data (L1D) cache.
These L1 caches operate at the same speed as the CPU.

The L1P operates as a direct-mapped cache. It is readable only. The L1D is a two-way set
associative cache. The L1 memories are connected to a second-level memory of on-chip
memory called L2. L2 is a unified memory block that contains both program and data. The L2
cache serves as a bridge between the L1 and off-chip memory. Refer to TMS320C64x DSP
Two-Level Internal Memory Reference Guide (SPRU610) for a detailed documentation of this
cache architecture.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2004, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

