
Application Report
SPRAA64 − November 2004

1

Using OFD Utility to Create a DSP Boot Image
Jelena Nikolic-Popovic DSP Field Applications

ABSTRACT

The object file display (OFD) utility processes common object file format (COFF) files and
converts the information contained in such files into XML format. This application note
describes how to create a DSP boot image using COFF and XML files, and a simple Perl
script. The resulting image is a C source file, which can be included into the host processor’s
application program and downloaded to the DSP via HPI or PCI interfaces.

The OFD utility is available in Code Composer Studio Release 3.0 or greater.

This application report contains project code that can be downloaded from this link.
http://www−s.ti.com/sc/psheets/spraa64/spraa64.zip

Contents
1 Motivation 1 .
2 COFF Format 3 .
3 OFD Text Output 4 .
4 OFD XML Output 6 .
5 Tools for Processing OFD Output 9 .
6 Creating a Host Image 10 .
7 Summary and Conclusion 12 .
8 References 13 .

List of Figures

Figure 1. COFF File Structure 4 .
Figure 2. OFD Output (Text Format) 5 .
Figure 3. Tree Representation of XML Tags Generated by OFD 8 .
Figure 4. Sample OFD XML Output 9 .
Figure 5. Boot image .h file 10 .
Figure 6. Boot image .c file 11 .

1 Motivation
In a signal processing system consisting of one or more DSPs and a host processor where the
DSP code initially resides in host’s memory space, the DSP code needs to be converted into a
particular format; so that, it can be included into host’s application program, and then copied to
the DSP memory space upon system startup. Typically, the DSP image is included in the form of
a C source file.

Trademarks are the property of their respective owners.

SPRAA64

2 Using OFD Utility to Create a DSP Boot Image

The traditional way to create an image is:

• to generate COFF (.out file) using TI’s linker

• to convert COFF file into an ASCII image using TI’s HEX utility

• to write a script or a C program to convert the ASCII image into a C header file

This process is described, for example, in [1].

This method has some shortcomings: the HEX utility itself only supports a limited set of
commonly used formats, and users often write additional utilities to reformat the HEX output or
extract information about the object file, such as section length information. In addition, changes
to the utility are required with each change to the object format. Hence, it would benefit DSP
users to have a more robust and more flexible way to process object files, without having
intimate knowledge of the object file formats.

Starting with Code Composer Studio version 3.0, a new tool is available which makes it easier to
generate the above mentioned DSP image, and, in general, makes it easier to perform any
custom post-processing of a COFF file. This tool is called object file display (OFD) utility. It can
be seen as an API into TI’s object file format, (i.e. it provides all relevant information about the
object file and eliminates the need for the user to understand the details of the object format).

For developers who use Code Generation Tools (CGT) such as OFD outside of Code Composer
Studio, OFD is introduced in the releases listed in Table 1.

Table 1. OFD Availability

Device Family CGT Version

C6000 5.00 or greater

TMS470 (ARM) 3.00 or greater

C5500 3.00 or greater

C5400 4.00 or greater

C2800 4.00 or greater

The OFD utility takes COFF file as the input, and generates an output in XML format. This
output can be customized and processed further to convert the COFF file into a desirable
format, such as C source format; or extract specific information out of the COFF file, for
example, the number of sections and their respective types and sizes, or object endianess. In
order to extract information from an XML file, it is common to use already available XML parser
modules, which parse an XML document and provides access to its data. XML parsers are
available for various programming languages including Perl, Visual Basic, C++, and Java.

SPRAA64

3 Using OFD Utility to Create a DSP Boot Image

2 COFF Format

Since the main purpose of the OFD utility is to convert a COFF file, and most of the tags defined
in the XML output have a corresponding entry in the COFF file, we first briefly recap some of the
main elements of the COFF format. For more detailed information on COFF file structure, the
user is referred to the relevant sections in [6]−[10].

The general structure of a COFF file is shown in Figure 1. The main components of a COFF file
are sections. Each section has a header containing information on the type of the section,
physical and virtual addresses, and its size. Each initialized section also has raw data
associated with it. If the object is relocatable, relocation information and line number tables are
also generated for each section. A section header contains pointers to raw data, relocation
information, and the line number table. Examples of initialized sections are .text, .cinit, and
.switch. Examples of uninitialized sections are .stack, .sysmem, .bss, and .far.

In addition to section-related contents, a COFF file has a file header and an optional file header.
The file header and optional file header contains information on COFF version, the number of
sections, the number of symbols, size and start address of certain sections, as well as entry
point, endianess, relocation information, etc.

SPRAA64

4 Using OFD Utility to Create a DSP Boot Image

General info on versions, number of sections and symbols,
endianess, presence of symbolic info, if file is relocatable or
not, size of code and initialized and uninitialized data, start of
code and initialized data, entry point, etc.

Raw data (initialized sections only).

Relocation info (initialized sections only), only exist if the linker
generates relocatable code. There is one entry for each
relocatable reference.

Symbolic debug
information.

For each section: name, physical and virtual address, size,
section type flags (STYP_REG, STYP_DSECT, STYP_NOLOAD,
STYP_BLOCK, STYP_VECTOR, STYP_PADDED, STYP_COPY,
STYP_TEXT, STYP_DATA, STYP_BSS, STYP_CLINK, etc.) and
pointer to data, relocation entries and line numbers. For
uninitialized sections, all pointers are zero.

Used if code is relocatable or for symbolic debug.

File header

Optional
file header

Section 1 header

Section 2 header

Section n header

Section 1 raw data

Section 2 raw data

Section n raw data

Section 1 relocation info

Section 2 relocation info

Section n relocation info

Section 1 line numbers

Section 2 line numbers

Section n line numbers

Symbol table

String table

Figure 1. COFF File Structure

3 OFD Text Output

To get a better understanding of what the OFD utility does, you will first examine the human
readable output format, which is obtained by invoking OFD without any options, with the object
file name as the only argument. An abbreviated example is shown in Figure 2. Notice that the
OFD utility translates the information contained in the COFF file structure described in the
previous section into a format which is easily understandable by a human reader. It displays the
basic information about the overall object file and each individual section, while eliminating the
need to understand the specifics of the COFF format. Also, the OFD output does not contain the
raw data, it only gives COFF file pointers to the raw data.

SPRAA64

5 Using OFD Utility to Create a DSP Boot Image

OBJECT FILE: Debug\example1.out

 FILE HEADER RECORD INFORMATION :
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 COFF Version : 0302 (octal) [COFF2]
 Target id : 0231 (octal) [C60]
 Current file has 12 sections and 571 symbol definitions
 Object file flags = 0x11a3
 Relocation info stripped
 Executable (no unresolved refs)
 Tags, etc were merged − no duplicates
 CPU generation = 0xa0
 Little endian (object code is LSB first)
 File is NOT SWAPPED
 File length = 50580 bytes

 OPTIONAL HEADER INFORMATION :
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 Magic = 0x108 Version stamp = 436
 Size of ”.text” section = 0x8b60 bytes, starting at address >0x200
 Size of ”.data” section = 0x0 bytes, starting at address >0x200
 Size of ”.bss” section = 0x0 bytes
 Entry point into module = 0x8b80

 DEFINITION OF SECTION ”$BRID”
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 Physical addr = 0x0, Virtual addr = 0x0, Size = 0x62c,
 Number of relocation entries = 0, line number entries = 0
 Flags = 0x10, Memory Width = 0 bits
 [Alignment = 1 units, Type = COPY]

 File pointers : Raw data at 0x272
 : Relocation at 0x0
 : Line # entries at 0x0

 DEFINITION OF SECTION ”.text”
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 Physical addr = 0x200, Virtual addr = 0x200, Size = 0x8b60,
 Number of relocation entries = 0, line number entries = 0
 Flags = 0x520, Memory Width = 0 bits
 [Alignment = 32 units, Type = TEXT]

 File pointers : Raw data at 0xa9e
 : Relocation at 0x0
 : Line # entries at 0x0
DEFINITION OF SECTION ”.stack”
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 Physical addr = 0x8d60, Virtual addr = 0x8d60, Size = 0x400,
 Number of relocation entries = 0, line number entries = 0
 Flags = 0x380, Memory Width = 0 bits
 [Alignment = 8 units, Type = BSS]

 File pointers : Raw data at 0x0
 : Relocation at 0x0
 : Line # entries at 0x0

 […]

Figure 2. OFD Output (Text Format)

SPRAA64

6 Using OFD Utility to Create a DSP Boot Image

Although the interpretation of this text output is for the most part straight forward, the following
points are interesting to note:

• For each initialized section (such as .text), the “Raw data” pointer is a pointer into the COFF
file where the actual section data is found. This pointer is used when extracting the data from
the COFF file. For uninitialized sections, such as .stack and .bss, the raw data pointer is 0x0.

• In the above example, there are no line number entries (the number is zero, and the pointer
to them is also zero). The fact that there are no line number entries in the file indicate that
the COFF file was generated without any symbolic debug options. If symbolic debug were
turned on, for example, using –g option, line number information would appear.

• There are no relocation entries because, by default, the linker creates an absolute
executable image. Such files do not require any relocation information.

• Virtual address does not have any significance in TI’s COFF files. This particular entry was
inherited from the UNIX format where virtual addressing is supported.

• The COFF file, and therefore the OFD output, may contain compiler-internal sections, such
as “$BRID” in Figure 2. Such sections are COPY sections that do not consume any target
memory. Therefore, COPY sections are typically ignored.

Also, the OFD utility can be run on archives (.lib), not only .obj or .out files. For every .obj
included in the archive, information similar to that given in Figure 2 is displayed.

4 OFD XML Output

The XML output format is generated when the OFD utility is invoked with −x option. The
information contained in this output is the same as the information contained in OFD text output
discussed in the previous section. It is in a format which is both industry-standard and easy to
process using a wide variety of existing tools which will be discussed in the next section.

Additional information on XML can be found, for example, in [2], [3], [4], [5]. For the purpose of
understanding and processing the OFD output, the user only needs to be familiar with the
high-level structure of an XML document, the specific set of tags generated by the OFD utility,
and the tools used to extract the information associated with those tags.

An XML document has a tree-like structure where each entity is enclosed by start tags and end
tags, and all entities are nested within one another. The tree structure of the OFD output along
with the tags it generates are shown in Figure 3. Note that, not all of the tags are shown, for
example, relocation and symbolic information is not expanded in the given view. For an
exhaustive list of tags generated by the utility, the reader is referred to the relevant sections in
[6]−[10].

It can be seen from Figure 3 that the <ofd> tag denotes the root of the XML document. The
information contained in COFF headers corresponds to
ofd−>object_file−>ti_coff−>file_header and
ofd−>object_file−>ti_coff−>optional_file_header entities, respectively. This
information (for example, the total file length, or the total number of sections or symbols), could
be used to further process the COFF file. A simple example is that QualiTI, the XDAIS Algorithm
Compliance Tool, could read the ofd−>object_file−>ti_coff−>file_header−>endian
entry to confirm that a submitted third-party algorithm is indeed little-endian.

SPRAA64

7 Using OFD Utility to Create a DSP Boot Image

Each section header in a COFF file corresponds to an
ofd−>object_file−>ti_coff−>section entity in the XML file. The number of such entities
is equal to the number of sections in a COFF file, which can be retrieved from the
ti_coff−>file_header−>section_count entity.

For the purpose of building a boot image, it is necessary to determine, for each initialized
section, the length and the location of the raw data. This information is contained in the
section−>raw_data_size and section−>file_offsets−>raw_data_ptr elements,
respectively. To determine if a section is initialized or not, use the tags which correspond to the
section header flags. For example, if tags <text> or <data> are defined, the section is
initialized. On the other hand, if tags <bss>, <copy>, <dummy> or <noload> are defined, the
section is not initialized.

SPRAA64

8 Using OFD Utility to Create a DSP Boot Image

banner

copyright

object_file

name

physical_addr

virtual_addr

raw_data_size

reloc_count

addr_size

alignment

bss

text

data

copy

file_offsets

line_numbers

line_count

ofd

section

name

ti_coff

xml_version

file_header

optional_file_header

section

section

section

symbol_table

string_table

.

.

.

version

target_id

section_count

symbol_count

reloc_strip

exec

sym_merge

cpu_flags

file_length

endian

magic

tool_version

text_size

text_start

data_size

data_start

bss_size

entry_point

raw_data_ptr

reloc_pt

line_ptr

Figure 3. Tree Representation of XML Tags Generated by OFD

SPRAA64

9 Using OFD Utility to Create a DSP Boot Image

The tree structure can be easily visualized by displaying the XML output of OFD in a Web
browser such as Internet Explorer. An example listing is shown in Figure 4. Note that “+” and “−“
signs denote collapsed and expanded contexts, respectively.

Figure 4. Sample OFD XML Output

5 Tools for Processing OFD Output

The processing of OFD’s XML output starts with parsing the XML file. Since XML is basically a
text file, it is possible to write a program from scratch to parse it, but this is typically not needed
since XML parser modules are available for various programming environments. For example,
MS Visual Studio .NET includes an XML parser for use with VB scripts and Visual C++ programs
(available via msxml.dll). Also, ActiveState’s ActivePerl distribution includes a number of
different XML parser modules (see for example [11]).

In this application note, we show how to work with the OFD output in the ActivePerl
environment. We will assume that the reader is new to Perl scripting.

SPRAA64

10 Using OFD Utility to Create a DSP Boot Image

The attachment associated with this application note includes a sample Perl script
(bootimage.pl) which processes an .out file by using its corresponding OFD XML output. In this
section, we show how to run this script. In the next section, we explain the details of what the
script actually does. The steps to run the Perl script are:

1. Download ActivePerl from ActiveState, see [12].

2. Install it and reboot your PC to get updated path information.

3. Unzip the zip file associated with this application note which contains a sample project.

4. Open the project in Code Composer Studio and build. The Perl script (bootimage.pl) runs
as a “final build step”, see Project → Build Options → General. (Note: the OFD utility is
called from the Perl script, so it is not necessary to run it before running the script).

5. The script generates app.out.c and app.out.h files to be included in host application.

In the next section, we explain in detail what bootimage.pl does. For absolute novices to Perl, it
may be useful to go through a Perl tutorial, for example, [13], or refer to [14].

6 Creating a Host Image

In a system where a microprocessor boots the DSP (via HPI or PCI ports on the DSP), the DSP
image needs to be included as a part of the host application. In addition to the actual HEX data
which is contained in a COFF file, the host needs information about the destination addresses
and length of different sections, all of which can be obtained from the XML file.

In our example, the boot image is in the form of a C header file (filename.out.h) and an
associated source file (filename.out.c). The header file contains extern array declarations for
each initialized section, as shown for example in Figure 5.

extern const unsigned char _vectors[0x200];
extern const unsigned char _const[0x138];
extern const unsigned char _text[0x8c00];
extern const unsigned char _cinit[0x35c];

Figure 5. Boot image .h file

The source file contains the actual HEX data for each section (one C array for each section), as
well as, the physical and the virtual addresses for that section. An (abbreviated) example is
shown in Figure 6.

SPRAA64

11 Using OFD Utility to Create a DSP Boot Image

/***
** _vectors[0x200]: paddr = 0x00000000 vaddr = 0x00000000
**/
const unsigned char _vectors[0x200] = {
0x2a, 0x60, 0x46, 0x00, 0x6a, 0x00, 0x00, 0x00, 0x62, 0x03, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
...
}

/***
** _text[0x8c00]: paddr = 0x00000200 vaddr = 0x80000000
**/
const unsigned char _text[0x8c00] = {
0xf1, 0x18, 0xbc, 0x0f, 0xf4, 0xd4, 0x3d, 0x06, 0x45, 0x61, 0x7c, 0x05, 0xa0,
0x06, 0x10, 0x05, 0x64, 0x02, 0xa8, 0x03, 0x00, 0x00, 0x00, 0x00, 0xf6, 0x42,
0x60, 0x8d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x60,
0xa5, 0x00, 0x00, 0xd8, 0x97, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
...
}

/***
** _cinit[0x35c]: paddr = 0x00009220 vaddr = 0x00009220
**/
const unsigned char _cinit[0x35c] = {
0x30, 0x02, 0x00, 0x00, 0xd8, 0x9b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
....
}

Figure 6. Boot image .c file

The .c and .h files are generated using the attached Perl script bootimage.pl. The script does the
following:

1. Takes as the input argument an existing .out file.

2. Runs the .out file through OFD with –x option (to generate the XML file)

3. Parses the XML file using XML::Simple module. This operation returns a data structure
(nested hashes and arrays) consisting of nodes which represent various document
components (elements, text contents, etc). For example, the following code snippet is
used to get access to all “section” entities:

my $xml = ‘ofd6x −x $filename‘;

my $config = XMLin($xml);

my $sections = $config−>{’object_file’}−>{’ti_coff’}−>{’section’};

4. Opens destination files (e.g. filename.out.c and filename.out.h)

5. For all section entities within the XML file:

a. Gets the size of the section (section−>raw_data_size)

b. Gets the file pointer inside the .out file section
(section−>file_offsets−>raw_data_ptr)

c. If the section should be copied (i.e. if its size is greater than zero, if it is in the .out file,
and if it is not a BSS, COPY, DUMMY or NOLOAD type section):

SPRAA64

12 Using OFD Utility to Create a DSP Boot Image

� Find the appropriate position in the .out file using the above obtained pointer and a
seek() function

� Generate a declaration in the header file (.h)

� For the entire length of the section

read a byte from the .out file and write it into a C file.

The script, as is, is generic and may not handle various special cases that can be encountered
in a COFF file. Therefore, it should be thought of as a baseline which can be modified to fit
specific needs.

The part which will be most likely modified is step (5c) above, (i.e. deciding if the section needs
to be copied or not). One special case would be if –fill command is used in the linker .command
file on certain uninitialized data sections (for example, a DSP/BIOS application fills the .stack
section with value 0x00c0ffee). Such sections may not need to be be part of the host image and
the script can be modified to exclude them.

7 Summary and Conclusion

This application note shows how to create a DSP boot image directly from a .out file, using the
OFD utility and a simple Perl script. This approach eliminates the need to use the HEX utility and
a custom C program which reformats the HEX utility output. Thus, the development flow
becomes simpler, more robust and more flexible. For example, the user can easily include or
exclude certain sections, or analyze their properties (for example, size or address). A Perl script
which generates the boot image is explained in the application note and provided with the
associated code. The script can be easily modified to accommodate various application specific
needs related to processing individual sections.

This is only one of the many possible uses of the OFD utility. The main purpose of this utility is to
provide information about a COFF file, without exposing the COFF format itself. The information
is provided in the XML format, which is both easy to understand and easy to process using
already available libraries such as Perl XML or MSXML. As such, this utility enables custom
post-processing of COFF files.

SPRAA64

13 Using OFD Utility to Create a DSP Boot Image

8 References
1. TMS320C6000 HPI Boot Operation (SPRA512)

2. http://www.xml.org

3. XML tutorial, http://www.w3schools.com/xml/default.asp

4. XML: The ACSII of the Future?
http://msdn.microsoft.com/archive/default.asp?url=/archive/en-us/dnarxml/html/xmlfinal.asp

5. TMS320C6000 Assembly Language Tools User’s Guide (SPRU186)

6. TMS320C55x Asembly Language Tools User’s Guide (SPRU280)

7. TMS470R1x Assembly Language Tools User’s Guide (SPNU118)

8. TMS320C54x Assembly Language Tools User’s Guide (SPRU102)

9. TMS320C28x Assembly Language Tools User’s Guide (SPRU513)

10. Perl-XML Frequently Asked Questions, http://www.perl-xml.sourceforge.net/faq/

11. ActivePerl distribution from ActiveState, http://www.activestate.com

12. Introductory Perl Tutorial Course for Windows, http://www.gossland.com/course/

13. Comprehensive Perl Archive Network, http://www.cpan.org

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2004, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

