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ABSTRACT

In this application report, a novel technique is presented for processing multiple voice
channels using the standard ITU G.726 codec on a TMS320C6416 digital signal
processor (DSP) from Texas Instruments Incorporated. High channel density is a key
requirement for central office applications. Previous implementations, process one
channel at a time and the number of channels supported by a device is then
determined by its processing speed in MHz and memory supported. For example, a
200MHz device supports 20 channels of G.726 if each channel requires 10MHz to
process. In this applicaton report, the inherent, multiple processing units are exploited
and available on the TMS320C6416 device to simultaneously process two or more
channels at a time. As a result, the effective MHz required for each channel is reduced
significantly. Using this novel approach shows that for G.726 codec, the effective MHz
per channel is reduced from 6.25MHz to 3.22MHz when two channels at a time are
processed. This opens the opportunity for processing three or more channels at a time.
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TMS320C64x is a trademark of Texas Instruments.

This application report discusses how to implement a 2-channel-processing method and list the details.
This enables a 200MHz device to support 62 channels instead of 32 channels if it were implemented in a
typical 1-channel-processing method.

Figure 1. Implementation Technique

The above graph shows the number of channels supported by one-channel and two-channel implemen-
tation respectively. The x-axis represents the implementation technique and y-axis represents the number
of channels supported on a 200 MHz processor. From the above graph, it is shown that one-channel
implementation supports 32 channels approximately; whereas, two-channel implementation supports 62
channels approximately on the same 200 MHz processor.

Adaptive differential pulse code modulation (ADPCM) is a widely used voice-coding standard for
communications links within the worldwide telecommunications network. Within the International Telecom-
munication Union (ITU), several standards are defined and the most commonly used speech codec is
G.726.

ADPCM is a voice-compression algorithm that works in the time domain by predicting the next time
sample based on the spectrum and amplitude of the previous data. The block diagram shown below
shows the principal of an ADPCM voice coder. The adaptive predictor is used to predict the spectral
quantities of the next sample. The difference between this prediction and the real signal is then quantized
using an adaptive filter, which bases it quantization levels on the past accuracy of recent previous
samples. This value is then used to update both the predictor and the quantizer for the next sample.
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3 Why C64x?

Why C64x?

The decoder works in a similar manner, except that there is an additional stage at the end called
synchronous coding adjustment. This mimics the effects of tandeming several voice vocoders in sequence
and adjusts the output to reduce the risk of an ADPCM voice coder further down the line to make a
different decision as to which ADPCM value to compress.

Figure 2. ADPCM Voice Coder

G.726 is a standard ADPCM algorithm specified by the ITU to reduce the 64-KBps A-law or m-law
logarithmic data of a normal telephone line to any of 16 Kbps, 24 Kbps, 32 Kbps, or 40 Kbps. The full
mathematical specification is ITU copyright and can be found in the G.726 specification published by the
ITU. G.721 is an older ITU standard for ADPCM that only supports 32 Kbps. G.721 (1988) is a full
bit-compatible G.726.

The TMS320C64x™ digital signal processors (DSPs) architecture is a very long instruction word (VLIW)
architecture with multiple execution units. In C64x device, there are eight independent functional units
such as: L1, M1, S1, D1, L2, M2, D2, and S2. Each of these units perform independent operations in the
same cycle. These functional units are used in parallel to execute up to eight instructions in a single clock
cycle. This opens the door for a n-channel implementation of any algorithm on this (C64x) device.

SPRAA83–August 2005 A Novel Approach For Increasing Voice Channel Density Exploiting VLIW DSP 3
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4 Implementation Of G.726 On C64x Architecture

File 1

First sample

Second sample

Nth sample

File 2 File N

Arr[N]

L1 S1 M1 D1 L2D2 M2 S2

Implementation Of G.726 On C64x Architecture

One-channel, two-channel implementation of G.726 algorithm have been done on C64x device. N-channel
implementation of G.726 requires reading of n input samples from n different files and for each function we
have passed a buffer along with functional arguments to pass the inputs to the functions as shown in the
figure below. The same buffer is used to collect the outputs of n channels. C64x can return only one
value, but two values are required. At the end of each function, the address of buffer and assigning to a
pointer variable are returned. Finally, these different n outputs are written to n different files. The output is
verified by using ‘bit exact matching’ rule.

Figure 3. Channel Implementation

In one-channel implementation, all of the functional units cannot be used to execute eight instructions in
parallel due to data dependency. Thus, most of the functional units are left unused. In n-channel
implementation, most of these functional units can be in parallel. Thus in n-channel implementation we
can efficiently utilize the architecture. However, n-channel implementation may leads to consume more
CPU clock cycles. This overhead may be due to both architectural constraints and algorithmic constraints.
For example, one-channel implementation on C64x consumes 5.6 Mega cycles; two-channel implemen-
tation consumes 6.1 Mega cycles (effective consumption of cycles for one-channel is 3.05 Mega cycles);
and four-channel implementation consumes 10 Mega cycles (effective consumption of cycles for
one-channel is 2.5 Mega cycles).

Figure 4. Functional Units of C64x

Above shown units are the functional units of C64x. Each unit can perform independent operation. So we
can execute unto eight instructions in parallel in a single clock cycle as shown in the example below.
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4.1 One Channel Implementation Technique

.L1 .S1 .D1.M1 .L2.M2.D2 .S2

Implementation Of G.726 On C64x Architecture

For example:

ADD .L1 A16, A17, A16;
|| ADD .L2 B18, B17, B18;
|| SHL .S1 A18, 3, A19;
|| SHR .S2 B29, 4, B19;
|| MPY .M1 A22, A24, A23;
|| MPY .M2 B23, B27, B28;
|| LDH .D1 *A4, A31;
|| LDDW .D2 *B4, B31:B30;

For example consider a C function,

int reconstruct (
int sign, /* 0 for non-negative value */
int dqln, /* G.72x codeword */
int y, /* Step size multiplier */
{
short dql; /* Log of 'dq' magnitude */
short dex; /* Integer part of log */
short dqt;
short dq; /* Reconstructed difference signal sample */
dql = dqln + (y >> 2); /* ADDA */
if (dql < 0)
{
return ((sign) ? -0x8000 : 0);
}
else
{ /*ANTILOG */
dex = (dql >> 7) & 15;

dqt = 128 + (dql & 127);
dq = (dqt << 7) >> (14 - dex);
return ((sign)? (dq - 0x8000) : dq);

}
}

The above function is a reconstruct module taken from the G.726 algorithm. This function reconstructs the
original signal back

Function has three parameters, the function prototype is not changed, It is as shown below.

Initially the C statement for one channel would look like
int reconstruct (int sign, int dqln, int y) ;

The assembly code for the 1 channel implementation of the above reconstruct function is as given below.

.global _reconstruct;

.text
_reconstruct:

SHR .S1 A6, 2, A16 ;Y1>>2
|| ZERO .L2 B7 ;cycle
|| MPY .M2 0,B9, B9 ;
|| MV .L1 B8, A31 ;address of an array

Figure 5. First Cycle
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.L1 .S1 .D1.M1 .L2.M2.D2 .S2

    ADD   .D1 B4,A16,A16    ;DQL1    1st CH
|| CMPEQ .L1 A4,0,A0       ;SIGN1   1st CH 

|| MVK   .S2 128,B17       ;128 

|| MVK   .S1 127,A17       ;27 cycle

Single

clock

cycle

.L1 .S1 .D1.M1 .L2.M2.D2 .S2

    SHR    .S1 A16,7,A18   ;DQL1 >> 7     1st CH
|| AND   .D1 A16,A17,A19 ;DQL1 & 127    1st CH 

|| CMPLT .L1 A16,0,A1    ;DQL1 < 0      1st CH 

|| MVKL  .S2 −0X8000,B20 ;

Single

clock

cycle

.L1 .S1 .D1.M1 .L2.M2.D2 .S2

    AND  .L1   A18,15,A18    ;DEX1 1st CH
|| ADD  .D1  B17,A19,A19    ;DQT1 1st CH

|| MVKL .S1  0X8000,A20     ;

|| B     .S2  B3            ;RETURN

Single

clock

cycle

Implementation Of G.726 On C64x Architecture

Here in the first cycle we right shift the value of Y1 of the first channel by 2. Address of the array is passed
from B8 to A31, and B7 and B9 are set to zero.

Figure 6. Second Cycle

In the second cycle, the value of the sign1 of the first channel is compared equal to zero and result is kept
in A0. Addition of dqln1 and y>>2 is done in the same cycle. Constants 127 and 128 are moved to the
A17 and B17 registers.

Figure 7. Third Cycle

In the third cycle, the value of DQL1 is compared with 0. If it is less than zero, then the value is returned
else it proceeds for the further computations. Comparison of DQL1 is done in the same cycle. ANDing of
the DQL1 127 is done in this cycle only and also shifting operations are also done here.

Figure 8. Fourth Cycle

A Novel Approach For Increasing Voice Channel Density Exploiting VLIW DSP6 SPRAA83–August 2005
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.L1 .S1 .D1.M1 .L2.M2.D2 .S2

   SHL    .S1 A19,7,A19    ;DQT1 << 7

|| SUB    .L1 14,A18,A18   ;14 − DEX1

|| [!A0]MV .D2 B20,B7      ;

Single

clock

cycle

.L1 .S1 .D1.M1 .L2.M2.D2 .S2

.L1 .S1 .D1.M1 .L2.M2.D2 .S2

.L1 .S1 .D1.M1 .L2.M2.D2 .S2

.L1 .S1 .D1.M1 .L2.M2.D2 .S2

Implementation Of G.726 On C64x Architecture

The value of DEX1is computed in this cycle, and DQT1 of the single channel. We also move constant
values to the A20 and B20 registers which can be used in next coming cycles. Branch operation is also
done in this cycle.

Figure 9. Fifth Cycle

In this cycle, we shift left the value of DQT1 of 1st channel also subtract the DEX1 of 1st channel from
constant 14.

SHR .S1 A19, A18, A18 ;DQ1
|| [A1]MV .D2 B7, A4 ;OUTPUT

Figure 10. Sixth Cycle

Here we shift right DQ1 of first channel by the value resulted from 14-DEX1 besides storing the first
channel output (only if DQL1 < 0) .
SUB .S1 A18, A20, A24 ;DQ1-0x8000

Figure 11. Seventh Cycle

In this clock cycle, values of DQ1-0x8000 are computed.
[!A0]MV .D1 A24,A18 ;1st CH Single Clock Cycle

Figure 12. Eighth Cycle

Here content of A24 is moved to A18 if the condition holds good.
[!A1]MV .D1 A18,A4 ; OUTPUT 1st CH Single Clock Cycle

Figure 13. Ninth Cycle

Finally, the output of one channel is stored in the A4 register.

SPRAA83–August 2005 A Novel Approach For Increasing Voice Channel Density Exploiting VLIW DSP 7
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4.2 Two Channel Implementation Technique

.L1 .S1 .D1.M1 .L2.M2.D2 .S2

.global _reconstruct      ;

.text

_reconstruct:

   SHR  .S1 A6,2, A16    ;Y1>>2    1st CH

|| SHR  .S2 B6,2, B16    ;Y2>>2    2nd CH 

|| LDW  .D2 *+B8[0], B30 ;LD SIGN2 2nd CH 

|| ZERO  .L2 B7          ; 

|| MPY  .M2 0,B9, B9     ;

|| MV   .L1 B8, A31      ;address of an array

Single

clock

cycle

.L1 .S1 .D1.M1 .L2.M2.D2 .S2

    ADD   .D1 B4, A16, A16  ;DQL1    1st CH
|| CMPEQ .L1 A4, 0, A0     ;SIGN1   1st CH

|| ADD   .D2 A8, B16, B16  ;DQL2    2nd CH

|| MVK   .S2 128, B17      ;128

|| MVK   .S1 127, A17      ;127

Single

clock

cycle

Implementation Of G.726 On C64x Architecture

For 2-channel implementation on C64x, the same function operations is performed on two different input
samples in parallel. There are eight independent functional units on C64x. Those eight can exploit the
parallelism efficiently with very negligible overhead in terms of cycles. This negligible overhead is due to
either architectural constraints or algorithmic constraints.

C function prototype for two channel implementation is as shown below.
int reconstruct(int sign, int dqln, int y, int dqln2, int y2, int *);

For two channel implementation, two return values (i.e. one from each channel) are required. C64x can
only return one value through A4 register, but the two return values are required. To resolve this, the
address of an array is passed to write the required number of return values into the array and address of
the array is returned into the A4 register.

The number of arguments passed in the function is also increased because the required values for both
first and second channel are passed.

The assembly code for the two channel implementation of the above reconstruct function is as given
below.

Figure 14. First Cycle

Here in the first cycle we right shift the value of Y1 of the first channel by 2 in parallel with the Y2 of the
second channel by 2.Address of the array is passed from B8 to A31, and B7 and B9 are set to zero.

Figure 15. Second Cycle

In the second cycle, the value of the sign1 of the first channel is compared equal to zero and result is kept
in A0.In the same cycle we cannot compare the Sign2 because we are loading the value of Sign2, the
value of Sign2 will be available later. Addition of dqln1 and y>>2 is done for both the channel in the same
cycle. Constants 127 and 128 are moved to the A17 and B17 registers.

A Novel Approach For Increasing Voice Channel Density Exploiting VLIW DSP8 SPRAA83–August 2005
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.L1 .S1 .D1.M1 .L2.M2.D2 .S2

      SHR    .S1 A16, 7, A18   ;DQL1 >> 7  1st CH
||  AND   .D1 A16, A17, A19 ;DQL1 & 127 1st CH

||  CMPLT .L1 A16, 0, A1    ;DQL1 < 0   1st CH

||  AND   .D2 B16, A17, B19 ;DQL2 & 127 2nd CH

||  SHR   .S2 B16, 7, B18   ;DQL2 >> 7  2nd CH

||  CMPLT .L2 B16, 0, B1    ;DQL2 < 0   2nd CH

Single

clock

cycle

.L1 .S1 .D1.M1 .L2.M2.D2 .S2

     AND  .L1 A18,15, A18     ;DEX1     1st CH
|| ADD  .D1 B17, A19, A19   ;DQT1     1st CH 

|| AND  .L2 B18,15, B18     ;DEX2     2nd CH

|| ADD  .D2 B17, B19, B19   ;DQT2     2nd CH

|| MVKL .S1 0X8000, A20     ;

|| MVKL .S2 −0X8000, B20    ;

Single

clock

cycle

.L1 .S1 .D1.M1 .L2.M2.D2 .S2

Implementation Of G.726 On C64x Architecture

Figure 16. Third Cycle

In the third cycle, we are comparing the value of DQL1 with 0. If it is less than zero, then the value is
returned else it proceeds for the further computations. Both the comparisons DQL1 and DQL2 are done in
the same cycle. ANDing of the DQL1 and DQL2 with 127 is done in this cycle only and also shifting
operations are also done here. In this cycle, out of 8 units we have used only six because we cannot use
M units, as there are no multiplication operations present.

Figure 17. Fourth Cycle

The value of DEX1 and DEX2 is computed in this cycle. DQT1 and DQT2 of both the channels
simultaneously. The constant values to the A20 and B20 registers are moved so that they can be used in
next coming cycles.
B .S2 B3 ;RETURN

Figure 18. Fifth Cycle

Branch operation is done in this cycle. This operation is only done in this cycle because it cannot be
performed in the previous cycle as we have used S2 unit for other purpose.

SPRAA83–August 2005 A Novel Approach For Increasing Voice Channel Density Exploiting VLIW DSP 9
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.L1 .S1 .D1.M1 .L2.M2.D2 .S2

    SHL    .S1 A19,7, A19   ;DQT1 << 7    1st CH
|| SUB    .L1 14,A18, A18  ;14−DEX1      1st CH 

|| [!A0]MV .D2 B20, B7     ;             1st CH

|| SHL    .S2 B19,7, B19  ;DQT2 << 7     2nd CH

|| SUB    .L2 14,B18, B18 ;14−DEX2       2nd CH

Single

clock

cycle

.L1 .S1 .D1.M1 .L2.M2.D2 .S2

     SHR      .S1 A19, A18, A18 ;DQ1      1st CH
||  [A1]STW  .D2 B7,*+B8[2]    ;OUTPUT   1st CH 

||  SHR      .S2 B19, B18, B18 ;DQ2      2nd CH 

||  CMPEQ    .L2 B30,0, B0    ;SIGN2 = 0 2nd CH

Single

clock

cycle

.L1 .S1 .D1.M1 .L2.M2.D2 .S2

    SUB    .S1 A18, A20, A24  ;DQ1−0X8000    1st CH 
|| SUB    .S2 B18, A20, B24  ;DQ2−0X8000   2nd CH

|| [!B0]MV .L2 B20, B9        ;            2nd CH

Single

clock

cycle

.L1 .S1 .D1.M1 .L2.M2.D2 .S2

    [!A0]MV    .D1 A24, A18    ;       1st CH
|| [!B0]MV    .S2 B24, B18    ;       2nd CH

|| [B1]STW    .D2 B9,*+B8[3]  ;OUTPUT 2nd CH

Single

clock

cycle

Implementation Of G.726 On C64x Architecture

Figure 19. Sixth Cycle

In this cycle, the value of DQT1 of 1st channel and value of DQT2 of 2nd channel is shifted to the left in
parallel and also subtract the DEX1 and DEX2 of 1st and 2nd channel respectively from constant 14
simultaneously.

Figure 20. Seventh Cycle

Here we shift right DQ1 of first channel by the value resulted from 14-DEX1 and DQ2 of second by the
value of 14-DEX2 in parallel besides storing the first channel output (only if DQL1 < 0) and comparing
SIGN2 of second channel with constant 0.

Figure 21. Eighth Cycle

In this clock cycle, values of DQ1-0x8000 and DQ2-0x8000 are computed and contents of B20 register
are moved to register B9.

Figure 22. Ninth Cycle

A Novel Approach For Increasing Voice Channel Density Exploiting VLIW DSP10 SPRAA83–August 2005
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.L1 .S1 .D1.M1 .L2.M2.D2 .S2

   [!A1]STW  .D2 A18,*+B8[2]  ;OUTPUT  1st CH 
|| [!B1]STW  .D1 B18,*+A31[3] ;OUTPUT  2nd CH

Single

clock

cycle

5 Comparing Cycles Consumed By Reconstruct Function
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Comparing Cycles Consumed By Reconstruct Function

Here, content of A24 and content of B24 are moved to A18 and B18 respectively. The output of second
channel is stored into the array (only if DQl2 < 0 ).

Figure 23. Tenth Cycle

Finally, the output of two different channels is stored in the array.

Figure 24. Comparing Cycles

TMS320C64x can execute up to eight 32-bit instructions per cycle. The core C64x CPU has eight
independent functional units namely .L1, .M1, .S1, .D1, .D2, .S2, .M2, .L2. These eight functional units
contain:

• Two multipliers
• Six ALU's

The above graph shows the functional units active in each cycle and number of cycles taken by 1-channel,
2-channel of reconstruct function of G.726. From the above graph, it is clear that both 1-channel and
2-channel implementations take the same number of cycles but 2-channel implementation utilizes more
functional units (i.e., architecture utilization factor (AUF)) are more. Thus, when any application requires
more number of channels to be opened, two-channel implementation effectively reduces the consumption
of CPU clock cycles.
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6 Conclusion

Conclusion

In this application report, a new method is proposed for utilizing the architectural features of a VLIW DSP
such as the C6416 processor. The implementation simultaneously processes two channels at a given
time. This significantly reduces the per-channel cycles consumed by a given algorithm. The G.726 speech
compression algorithm was taken as an example in the study. We demonstrate a 2x improvement in the
channel density using this novel technique with minimal overhead. A 200MHz, C64x device can process
64 channels instead of 32 by using this novel approach.

In the future, other benefits of processing will be explored in three or more channels simultaneously.

A Novel Approach For Increasing Voice Channel Density Exploiting VLIW DSP12 SPRAA83–August 2005
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