
Trademarks

1 Introduction

Application Report
SPRAAB5–August 2005

The Impact of DWARF on TI Object Files
Don Darling .. Software Development Systems

ABSTRACT

This document identifies the differences in object file content when DWARF replaces
COFF as the primary debug information format. Please refer to DWARF Debugging
Information Format Specification Version 2.0 for a description of this format.

Contents
Trademarks.. 1

1 Introduction .. 1
2 Changes to the COFF Object File.. 2
3 TI-Specific Features of the DWARF2 Format... 2
4 TI Extensions to DWARF .. 4
5 References .. 6

C54x, C62x, C28x are trademarks of Texas Instruments.

The DWARF debug information format provides a much more expressive representation of symbolic
debugging information than COFF debug, and overcomes many of COFF debug’s limitations. The
following benefits are obtained by making DWARF the primary debug format used by the TI compiler:

• Support for C++
• Support for stepping through inline functions
• Support for stepping through #include files
• Support for source files with more than 65535 lines
• Support for arrays with more than four dimensions
• Support for source column information

This document identifies the differences in object file content when DWARF replaces COFF debug. It is
also intended to supplement the DWARF Debugging Information Format Specification Version 2.0
(hereinafter referred to as the DWARF2 specification) listed in Section 5, giving specific details about the
debug information generated by the TI compiler.

SPRAAB5–August 2005 The Impact of DWARF on TI Object Files 1

www.ti.com

2 Changes to the COFF Object File

2.1 A Single-Purpose Symbol Table

2.2 Line Number Entries

3 TI-Specific Features of the DWARF2 Format

3.1 Scope of DWARF Support

3.2 Endianness of DWARF Sections

3.3 Void Pointers

3.4 Call Frame Conventions

Changes to the COFF Object File

In the past, the symbol table has served two purposes:

1. Provide name and address pairs to the linker, so it can resolve external references and perform
symbol-relative relocation.

2. Provide additional debug information about a symbol (i.e., function parameters and local variables,
variable type information, etc.)

In object files compiled with DWARF, the symbol table exists only for the first purpose listed. Any and all
debug information about a symbol must now be retrieved from the DWARF sections. The compiler will not
generate redundant debug information in the symbol table when it is generating DWARF. This would lead
to confusion in object file consumers, and may result in conflicting information since DWARF is a more
expressive format.

If an object file compiled with DWARF debug is linked with an object file compiled with COFF debug, the
resulting object file will have a mix of COFF and DWARF debug in it. In such cases, DWARF information
should be checked first when looking for information about a symbol, as its entry in the symbol table will
not contain debug information.

DWARF object files will not have any COFF line number entries. All source correspondence information
must be retrieved from the DWARF .debug_line section.

The TI compiler currently generates these DWARF sections:

.debug_abbrev

.debug_info

.debug_line

.debug_frame

The endianness of the DWARF information always reflects the endianness of the target data in the object
file. To the linker, DWARF sections appear as copy sections, and the endianness must be consistent with
the target for relocation to be performed correctly.

No base type is given in the DWARF2 specification documentation that can accurately represent the C
and C++ void type. To represent void pointers, a DW_TAG pointer_type type modifier is used without a
DW_AT_type attribute to reference any base type. For qualified void pointers, the
DW_TAG_pointer_type may point to a qualifier type that does not have a DW_AT_type attribute. This
follows the convention described in section 3.3.2, Subroutine and Entry Point Return Types of the
DWARF2 specification for specifying the return type of void functions.

To standardize the generation of call frame information among the different architectures, some
conventions are established that may not seem natural to a given architecture, but do not violate the
DWARF2 specification.

The Impact of DWARF on TI Object Files2 SPRAAB5–August 2005

www.ti.com

3.5 Locations of Function Parameters

TI-Specific Features of the DWARF2 Format

3.4.1 Frame Boundaries

A function’s call frame as defined in the .debug_frame section is not necessarily the same as the one
defined by the compiler's calling convention. For example, a program running on a C54x™ pushes a
return value onto the stack during a function call, but the compiler does not consider that return value to
be part of any function’s frame.

The .debug_frame section calculates the canonical frame address (CFA) for the current frame to be
value of the stack pointer just before the current function was called. By this definition, a function’s frame
would then include the return address on a C54x. Therefore, it should not be assumed that the CFA value
is the same as the frame pointer (if a frame pointer exists).

3.4.2 Return Address Location

Since some architectures push return addresses on the stack and others pass them in registers, the
following abstract method for specifying the location of the return address is used.

The header of a function will always show that the return address is being passed in a register named
"CIE_RETA". The CIE or FDE entry will then show that CIE_RETA is saved to the correct location prior to
reaching the first instruction of the function.

Here are two examples for a “Hello World!” program, one for C62x™ DSP, and one for C54x™ DSP:

C62x:

FDE ENTRY FOR FUNCTION main (0x00000000)
Return Reg: CIE_RETA
0x00000000 CIE_RETA -> B3
0x00000008 CIE_RETA -> B3, B3 -> [SP]+16
0x0000002c CIE_RETA -> B3

C54x:

FDE ENTRY FOR FUNCTION main (0x00000000)
Return Reg: CIE_RETA
0x00000000 CIE_RETA -> [SP]+0
0x00000002 CIE_RETA -> [SP]+3
0x00000008 CIE_RETA -> [SP]+0

As shown above, CIE_RETA is saved to register B3 on C62x, and to SP+0 on C54x before reaching the
first instruction of main.

3.4.3 The DW_CFA_def_cfa and DW_CFA_def_cfa_offset Instructions

Section 6.4.1, Structure of Call Frame Information of the DWARF2 specification states that the
data_alignment_factor is to be factored out of all offset instructions. The descriptions of
DW_CFA_offset and DW_CFA_offset_extended explicitly show the offset being multiplied by
data_alignment_factor, where the definitions of DW_CFA_def_cfa and DW_CFA_def_cfa_offset
do not. The TI compiler does not divide the offsets for DW_CFA_def_cfa and
DW_CFA_def_cfa_offset by data_alignment_factor.

Without support for the .debug_loc section, there is no way to track the location of local variable values
if they change during the execution of a function. However, a method is provided to find the locations of
function parameters that are copied to the stack during the execution of the function prologue. A function
contains both a DW_TAG_formal_parameter as well as a DW_TAG_variable entry for parameters of
this kind.

SPRAAB5–August 2005 The Impact of DWARF on TI Object Files 3

www.ti.com

4 TI Extensions to DWARF

TI Extensions to DWARF

Example Function:

int func(register int a, int b)
{

int c;
/* function body */
return c;

}

For the above function, the DWARF information would look something like the following textual
representation, with indentation indicating parent/child relationships:

DW_TAG_subprogram (0x19 bytes)
DW_AT_name func
DW_AT_low_pc 0x0000
DW_AT_high_pc 0x0020
DW_AT_external true
DW_AT_type 0x306 (int)
DW_AT_TI_symbol_name _func
DW_TAG_formal_parameter (0xc bytes)
DW_AT_location { DW_OP_reg4 }
DW_AT_name a
DW_AT_type 0x306 (int)
DW_AT_TI_symbol_name _a

DW_TAG_formal_parameter (0xc bytes)
DW_AT_location { DW_OP_reg20 }
DW_AT_name b
DW_AT_type 0x306 (int)
DW_AT_TI_symbol_name _b

DW_TAG_variable (0xd bytes)
DW_AT_location { DW_OP_breg31 0x00000004 }
DW_AT_name b
DW_AT_type 0x306 (int)
DW_AT_TI_symbol_name _b

DW_TAG_variable (0xd bytes)
DW_AT_location { DW_OP_breg31 0x00000008 }
DW_AT_name c
DW_AT_type 0x306 (int)
DW_AT_TI_symbol_name _c

The above variable b has two entries:
• one for its location when it was passed in as a parameter
• one for the location it is stored on the stack during the execution of the function

Note:

The variable a only has one entry. In this case, the compiler decided not to copy a to the
stack, and it will live in DW_OP_reg4 for the duration of the function.

There is not enough information to determine when the location of a parameter changes, so that the
debugger knows when it should switch from using the location specified by the
DW_TAG_formal_parameter to that of the DW_TAG_variable. TI's recommendation is to use the
former only on the first instruction of the function, or if possible, detect the copy at runtime.

To comply with the vendor extensibility requirements of the DWARF2 specification (section 7.1), some
extensions to DWARF have been added to satisfy the needs of TI DSP architectures that were not
accounted for by the TIS committee. A document describing the complete list of extensions is not
available at the time of this writing, but most can be safely ignored.

This section briefly documents the extensions that are the most useful to TI object file consumers.

The Impact of DWARF on TI Object Files4 SPRAAB5–August 2005

www.ti.com

4.1 Tag Definitions

4.2 Attribute Definitions

TI Extensions to DWARF

Type Modifiers

These additional type modifiers are used in the same manner as those described in section 5.2, Type
Modifier Entries of DWARF2 specification.

Tag Name Value

DW_TAG_TI_far_type 0x4080

DW_TAG_TI_near_type 0x4081

DW_TAG_TI_ioport_type 0x4083

DW_TAG_TI_restrict_type 0x4084

DW_TAG_TI_onchip_type 0x4085

Pointer sizes should not be inferred from the existence of far or near qualifiers. They will only exist in the
DWARF information if they exist in the source code. For example, when compiling code for C28x™ using
the large memory model, all pointer values are 32-bits regardless of whether the far qualifier was
specified. Pointer sizes are determined using the address class of a pointer as described in Section 4.3.

Register Mapping

The DWARF specification refers to registers using register name operators such as DW_OP_reg0, DW_OP
reg1, etc., and assumes that the DWARF producers and consumers have agreed upon a mapping of
these operators to actual machine registers.

This method of mapping is not suitable in our environment, since our compilers generate debug
information for a variety of architectures that all have different register sets. Further, we do not control the
source code for consumers written by customers. To solve this problem, we extended DWARF to provide
a register map that is not fixed, rather, is determined at compile time. This extension requires the following
new tag:

Tag Name Value

DW_TAG_TI_assign_register 0x4082

A series of DW_TAG_TI_assign_register DIEs will appear within the immediate scope of each
compile unit in the program. Each DIE will have a DW_AT_name attribute that will be a string indicating the
name of a machine register, and a DW_AT_location attribute that indicates the DWARF register name
operator that represents it.

You may also notice some registers in this map that do not correspond to any known machine register. All
of these can be safely ignored, with the exception of the one named "CIE_RETA". Refer to Section 3.4.2,
for more information about the use of this register.

The following attribute definitions were added:

Attribute Name Value Classes

flagDW_AT_TI_veneer 0x2000

stringDW_AT_TI_symbol_name 0x2001

constantDW_AT_TI_version 0x200b

flagDW_AT_TI_asm 0x200c

flagDW_AT_TI_skeletal 0x200e

flagDW_AT_TI_interrupt 0x2011

DW_AT_TI_veneer indicates that the current function DIE is a veneer function. This attribute is unique to
the TMS470.

DW_AT_TI_symbol_name provides the linkage name of the current DIE. This provides more information
than the DW_AT_name attribute, which is always the simple, unqualified name of the symbol as it appears
in the source code.

SPRAAB5–August 2005 The Impact of DWARF on TI Object Files 5

www.ti.com

4.3 Address Class Definitions

4.4 Call Frame Instructions

5 References

References

DW_AT_TI_version is a compile unit attribute that indicates TI’s internal version stamp for the DWARF
information in the current compile unit. In the future, this version number will allow for backwards
compatibility with old object files. At the time of this writing, we are always generating a value of 0x1 for
this attribute.

DW_AT_TI_asm is a function attribute indicating that we are describing a range of assembly code that was
manually marked as a function by the assembly programmer. Functions with this attribute will always
appear to have empty parameter lists, and the return type will always appear to be void. Further, there will
be no call frame information for these functions in the .debug_frame section. A stack size may be
indicated using the DW_AT_frame_base attribute, but its correctness is also determined by the assembly
programmer.

DW_AT_TI_skeletal is a function attribute that is reserved for internal use. If a function DIE contains
this attribute, it should be assumed that the debug information for that function is incomplete, and should
not be used.

DW_AT_TI_interrupt is a function attribute that indicates when a function was declared using the
interrupt qualifier.

The following address classes were defined:

Address Class Name Value Definition

8-bit pointer valueDW_ADDR_TI_PTR8 0x0008

16-bit pointer valueDW_ADDR_TI_PTR16 0x0010

22-bit pointer valueDW_ADDR_TI_PTR22 0x0016

23-bit pointer valueDW_ADDR_TI_PTR23 0x0017

24-bit pointer valueDW_ADDR_TI_PTR24 0x0018

32-bit pointer valueDW_ADDR_TI_PTR32 0x0020

The following call frame instructions were added:

Call Frame Instruction High 2 Bits Low 6 Bits Operand 1 Operand 2

ULEB128 register SLEB128 offsetDW_CFA_TI_soffset_extended 0 0x1c
SLEB128 offsetDW_CFA_TI_def_cfa_soffset 0 0x1d

These instructions are similar to DW_CFA_offset_extended and DW_CFA_def_cfa_offset, but take
signed offset values. These instructions were needed to support architectures such as C28x™ that have a
stack that grows from low memory to high memory.

1. TIS Committee. DWARF Debugging Information Format Specification Version 2.0, May 1995.

The Impact of DWARF on TI Object Files6 SPRAAB5–August 2005

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2005, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	Trademarks
	1 Introduction
	2 Changes to the COFF Object File
	2.1 A Single-Purpose Symbol Table
	2.2 Line Number Entries

	3 TI-Specific Features of the DWARF2 Format
	3.1 Scope of DWARF Support
	3.2 Endianness of DWARF Sections
	3.3 Void Pointers
	3.4 Call Frame Conventions
	3.5 Locations of Function Parameters

	4 TI Extensions to DWARF
	4.1 Tag Definitions
	4.2 Attribute Definitions
	4.3 Address Class Definitions
	4.4 Call Frame Instructions

	5 References

