
1 Introduction

2 The Test Application and its I2C Image

Application Report
SPRAAF0–September 2006

Preparing a TMS320TCI648x Application for I2C Boot Load
.. DSP Applications

ABSTRACT

This application report describes how to prepare a TCI648x application for the I2C boot
load process.

The enclosed .zip archive contains all utilities and examples necessary to build a test
application, program it into DSKTCI6482's I2C ROM, change the boot mode to I2C boot
load, and verify that the test application has been loaded from the I2C and is running
correctly.

This application report contains project code that can be downloaded from this link.
http://www-s.ti.com/sc/psheets/spraaf0/spraaf0.zip

The on-chip ROM-based boot loader on TCI648x devices supports various modes for loading the
application image into the DSP. These modes include boot via EMIF, I2C, PCI, HPI or SRIO (see device
datasheet for a complete list). This application note describes how to prepare an application image for an
I2C bootload, how to program it into DSKTCI6482's I2C ROM device and how to verify that the application
has been loaded successfully into the DSP by the on chip bootloader.

The following components are included:

• A test application which causes the LEDs on the TCI648xDSK to blink. The enclosed project includes a
final build step which converts the resulting .out file into the I2C image.

• I2C Programmer. The utility runs on the DSP. The previously generated I2C image of the test
application is loaded into CCS via Load Data feature and programmed into the I2C ROM by
DSP-based I2C programmer.

• Utilities needed to convert an .out file into the I2C image suitable for the use by the I2C programmer.

The development environment consists of CCS3.2, compiler release 6.0.4 and DSKTCI648x using
on-board emulation and a USB connection.

The test application is the LED example from the TCI648x DSK board support package (v1) from
Spectrum Digital. When it runs successfully, LED0 blinks and LED3 is turned on or off depending on the
value of SW1-3.

The test application project file is located in directory \led_tci6482. It generates the COFF file
\led_tci6482\Debug\led.out. A final build step (see Project ->Build Options -> General) consists of running
a batch file \led_tci6482\i2c_convert.bat which generates \led_tci6482\Debug\I2C_image\i2cromdsp.ccs.
This file can be then used by the I2C programmer (see the next section).

This batch file first runs the hex6x utility, followed by a number of utilities located in /Utilities. It requires
two input files:

SPRAAF0–September 2006 Preparing a TMS320TCI648x Application for I2C Boot Load 1
Submit Documentation Feedback

http://www-s.ti.com/sc/psheets/spraaf0/spraaf0.zip
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF0

www.ti.com

3 I2C Layout and Programming

I2C Layout and Programming

• \led_tci6482\Debug\I2C_image\led.rmd: This is the input command file for the hex6x utility. If the
application project is modified, this file may need to be manually modified such that the “length”
parameter in the ROMS section matches or exceeds the length of initialized sections in
\led_tci6482\Debug\led.map. Currently the length is set to 0xC000.

• \led_tci6482\Debug\I2C_image\i2cparamtable.sec: This file tells one of the I2C utilities how to program
the I2C parameter table (see [1]) for the primary I2C boot. For example, with the contents shown in the
code example below, the I2C parameter entry at offset 0x0 is configured (param_index=0), the boot
mode is programmed to I2C boot mode (boot_mode=5) and boot table load (options=1); the actual
boot table will be stored starting at an fixed offset of 0x420 (which translates to Device Address (LSW)
= 0x420) and the contents of the boot table will be retrieved from file led.i2c.ccs (which is an
intermediate output file generated based on led.out).

section
{
param_index = 0
boot_mode = 5
options = 1

core_freq_mhz = 33
i2c_clk_freq_khz = 50

multi_i2c_id = 0
my_i2c_id = 1
address_delay = 0
exe_file = "led.i2c.ccs"

}

The I2C ROM needs to contain a set of I2C boot parameters for the primary I2C boot and the actual test
application boot table. The location of the I2C boot parameters for the primary I2C boot depends on the
value of CFG[2:0] pins. This parameter table will further point to the location of the application code. The
I2C boot parameter table format is described in [1].

With CFG[2:0] = 000b, one possible I2C ROM layout is shown in Figure 1. The I2C bootloader reads the
I2C boot parameter table at offset 0x0, which points to the test application (starting at address 0x420).
When the I2C bootloader completes, it starts executing the test application.

The I2C programming utility which programs the I2C runs on the DSP. The corresponding CCS project is
located in /I2C_Programmer.

The utility programs data located at DSP memory address 0x900000 into I2C ROM on the DSK. It relies
on the CCS’ Data->Load feature to download data from a file into DSP memory address starting at
0x900000 prior to running the I2C Programmer.

The 32-bit value at address 0x900000 is the actual number of bytes to be programmed into I2C. The
32-bit value at the next word address, 0x900004, is the I2C address offset where the programming starts.
The remaining locations are the actual data to be written to the I2C ROM.

The file led_tci6482/Debug/I2C_Image /i2cromdsp.ccs, generated as the final build step when the test
application is built (see the previous section), is already formatted for the use by the I2C programmer.

The I2C ROM layout is shown in Figure 1.

2 Preparing a TMS320TCI648x Application for I2C Boot Load SPRAAF0–September 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF0

www.ti.com

Byte Address

0x0000

0x0420

Boot
Parameter
Table for
I2C boot

(see [1] for
format)

CFG=000b

Application
boot table

CCS Data File

I2chimrom.ccs 0x00007d1c length for I2C
0x00000000 offset for I2C
0x001a0000 length =26, no crc

0x00050001 I2C boot; boottable mode

0x04200050 devaddr=0x420

0x00000001
0x00210032
0x00000000
0x00000000

…

…

…

0x0080d966 block length=128;checksum
0x00809160 entry point _c_int00

0x00000020 .. code ...
0x009f7900

0x00065010

I2C Layout and Programming

Figure 1. I2C ROM Layout and the Corresponding I2C Programmer Input File

To facilitate the I2C programming process, a GEL script is provided which loads the .out file, loads the
.ccs file into memory and runs the program until the I2C programming has succeeded. A screenshot of the
CCS session showing the GEL menu is shown in FIGURE 2.

In case that the I2C programming fails, the application continues to run. If the GEL script runs for more
than a couple of minutes, the value of variable “status” should be observed in the Watch window and
checked against failure codes from i2cprog.c.

Figure 2. GEL Menu for I2C Programming

SPRAAF0–September 2006 Preparing a TMS320TCI648x Application for I2C Boot Load 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF0

www.ti.com

4 Test Procedure

5 Endianess

6 References

Test Procedure

Given the directory structure and files provided in the enclosed archive, following procedure can be
followed to program the test application to the I2C ROM, run it, and verify its operation:

1. Configure DSK’s SW3 for Little Endian, no boot, CFG[2:0]=000b (SW3-1, 2,3,4,5 off, SW3-6,7,8 on).
2. Create test application image (the original image is included in the enclosed archive).

• Open the CCS project in /led_tci6482.
• Build. The output file is /led_tci6482/Debug/I2C_image/i2cromdsp.ccs
• Verify that the length parameter in the ROMS directive in

/test_application/Debug/I2C_image/led.rmd matches or exceeds the length of all initialized sections
from /led_tci6482/Debug/led.map. If this is not the case, modify .rmd file according to the .map file
and re-build the project.

3. Program I2C
• Open I2C CCS Project in /I2C_Programmer.
• Rebuild (optional since the .out is included in the enclosed archive).
• Debug -> Connect.
• File->Load GEL -> /led_tci6482/Debug/I2C_Image/programi2c.gel.
• Open the GEL file and verify that the length parameter for the GEL_MemoryLoad() command

matches the length parameter in the first line of /led_tci6482/Debug/I2C_image/i2cromdsp.ccs. If
this is not the case, modify the length parameter in the GEL file according to the .ccs file and
reload the GEL.

• GEL -> I2C Image -> write_image_to_i2C (may take a couple of minutes until the execution halts).
• Close CCS

4. Run the application
• Power down DSK; change boot mode to I2C boot (SW3-2 on, SW3-4 on).
• Power up DSK. The LED should start blinking after the I2C boot process completes (may take

40-50 seconds).

The source code for the test harness is provided in little endian although a quick test in big endian has
been performed.

To change endianess:
• Change build options in CCS projects.
• Change the global endian setting in the DSP/BIOS config file, where applicable.
• Change options in the .rmd command files from –order M to –order L.
• Change options in the batch and make files from –le to –be.

TCI648x Bootloader User's Guide (SPRUEC7)

4 Preparing a TMS320TCI648x Application for I2C Boot Load SPRAAF0–September 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2006, Texas Instruments Incorporated

	1 Introduction
	2 The Test Application and its I2C Image
	3 I2C Layout and Programming
	4 Test Procedure
	5 Endianess
	6 References

