
1SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

Application Report
SPRABH8–December 2014

Migrating From AIF1 to AIF2 for KeyStone Devices

... High-Performance Multicore Processors

ABSTRACT
This application report describes the main differences between AIF1 and AIF2 and how to migrate the AIF
configuration to work seamlessly in various usage scenarios.

Contents
1 Introduction ... 3
2 Differences in Physical Level... 4
3 Frame Sync Module vs. AIF2 Timer... 8
4 Transmission Rule (Modulo, DBMR, Channel LUT) ... 12
5 DMA Methodology.. 22
6 Dynamic Configuration .. 30
7 References .. 32

List of Figures

1 Scrambling Training Patterns .. 5
2 Data Format and Line Coding.. 6
3 AIF2 Reset Strategy (Software Reset and Reset Isolation).. 6
4 Top-Level Frame Synchronization Block Diagram .. 8
5 AIF2 Timer Chip IO.. 9
6 AT Event Generator.. 10
7 Internal Events Pair Working Mechanism for Direct IO ... 12
8 PE: OBSAI Transmission Rules.. 14
9 OBSAI Channel Lookup Table ... 14
10 OBSAI WCDMA Example ... 15
11 OBSAI LTE Option 1 Example ... 16
12 OBSAI LTE Option 2 Example ... 16
13 OBSAI Generic Packet Mode Example ... 16
14 CPRI WCDMA Example... 17
15 CPRI LTE 20 MHz Example .. 17
16 CPRI TD-SCDMA Option 1 Example .. 17
17 CPRI TD-SCDMA Option 2 Example .. 18
18 AIF2 Core, PKTDMA, and QM Connectivity .. 24
19 Ingress LTE Data Flow (Direct DMA to FFTC) ... 27
20 Ingress LTE Data Flow (CorePac Intervention Model) .. 27
21 Egress LTE Data Flow .. 28
22 RAC Example... 29
23 TAC Example ... 30

List of Tables

1 Acronyms Used in This Document .. 3
2 OBSAI RP3 SerDes rates .. 4

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

www.ti.com

2 SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

3 OBSAI Data/Control Message Grouping ... 5
4 Table 1 – AIF2 Supported FIFO Buffer Sizes ... 7
5 Use of Timer Fields for Different Radio Standards .. 11
6 On-the-fly Update Requirements ... 31

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

www.ti.com Introduction

3SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

(1) All trademarks are the property of their respective owners.

(1)

1 Introduction
There are many differences between AIF1 and AIF2. AIF2 was designed to support multiple radio
standards like WCDMA, LTE, WiMAX, TD-SCDMA, and GSM/EDGE. The ultimate limitation of AIF1 was
that the basic design concept of AIF1 was only for WCDMA; however, the 4G market is growing along
with the requirements for higher speed and increased bandwidth for next-generation interfaces. AIF2 will
be the best solution for these requirements. This document describes the main differences between AIF1
and AIF2 and the AIF2 features that have evolved from the previous version.

1.1 Acronyms

Table 1. Acronyms Used in This Document

Term Definition
AD AIF2 DMA (submodule)
AIF Antenna Interface
AT AIF2 Timers (submodule) previously called Frame Sync module
AxC Antenna Carrier (stream)
Basic Frame A CPRI basic frame consists of 16 words
CorePac A specific DSP core
CPPI Common Port Programming Interface (now called Multicore Navigator)
CPRI Common Public Radio Interface
CRC Cyclic Redundancy Check
CSL Code Support Library
CW Control Word (CPRI)
DB AIF2 Data Buffer (submodule)
DL Downlink
DMA Direct Memory Access
DSP Digital Signal Processor
EE AIF2 Error Event handler (submodule)
FDD Frequency Division Duplexing
FIFO First In First Out queue memory structure
HW Hardware
Hyperframe 1 CPRI Hyperframe = 256 CPRI basic frames
K Character 7-bit line codes representing 8b10b control characters
L2 CorePac DSP Level 2 SRAM
LTE Long Term Evolution
LUT Look Up Table
MAC Media Access Control
MMR Memory Mapped Register
MOD Modulo
Multicore Navigator previously called CPPI
OBSAI Open Base Station Architecture Initiative
OFDM Orthogonal Frequency Division Multiplexing
Packet DMA previously called CPPI DMA
PD AIF2 Protocol Decoder (submodule)
PE AIF2 Protocol Encoder (submodule)
RAC Receive Accelerator Co-processor
RAM Random Access Memory
RM AIF2 Receive MAC (submodule)
RP1 Reference Point 1 (OBSAI)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

Differences in Physical Level www.ti.com

4 SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

Table 1. Acronyms Used in This Document (continued)
Term Definition
RP3 Reference Point 3 (OBSAI)
RT AIF2 Re-Transmitter (AIF2 submodule)
SerDes SERializer / DESerializer
TDD Time Division Duplexing
TD-SCDMA Time Division-Synchronous Code Division Multiple Access
TI Texas Instruments
TM AIF2 Transmit MAC (submodule)
UL Uplink
UMTS Universal Mobile Telecommunication System
VBUSM Virtual Bus Multi-issue
VBUSP Virtual Bus Pipeline
WCDMA Wideband Code Division Multiple Access
WiMax Worldwide Interoperability for Microwave Access

2 Differences in Physical Level

2.1 Clock Strategy
AIF1 has two clock inputs. One is AI_REF_CLK (the source clock for input to SerDes PLLs with variable
rate, SYSCLK clock) and the other one is VBUS_CLK (the main processing clock of the AIF1 modules and
it is core clock divided by 3) and the maximum WCDMA link rate was 4x, which uses 307.2 MHz as a Tx-
byte clock rate (245.76 MHz for CPRI) .

Clocking of the AIF2 processing occurs in the Tx dual-byte clock domain, which will typically be 307.2
MHz (OBSAI) or 245.76 MHz (CPRI). While the one-byte clock processes only 8 bits per clock, the dual-
byte clock handles two-byte data at one-clock time. This allows AIF2 to achieve a maximum link rate of 8x
and process maximum 32 WCDMA AxC data per link with the same reference clock.

The VBUS clock of the system is in the CPU clock/3 clock domain and is the same rate as AIF1.

In AIF1, TM modules use theTx byte clock and the RM module uses the VBUS clock for Pi calculation, so
it calculates Pi and Delta with different clock rates. This can cause confusion when calculating Pi and
Delta. AIF2 uses the same clock domain (dual-byte clock) for the TM and RM modules, so Pi and Delta
can be set with the same domain clock value.

Table 2 shows the OBSAI RP3 SerDes rate and message grouping. The 1x link rate was supported by
AIF1 but is not supported in AIF2. Instead, the 8x link rate is supported in AIF2. To support the 8x link
speed, SerDes does special data scrambling to avoid crosstalk. Section 2.2 shows how this is
implemented in AIF2.

Table 2. OBSAI RP3 SerDes rates

Link Rate Line Rate (Gbps) Data Msg Payload Rate (Gbps) Control Msg Payload Rate (Gbps)
1x (AIF1 only) 0.768 0.49152 0.024576

2x 1.536 0.98304 0.049152
4x 3.072 1.96608 0.098304

8x (AIF2 only) 6.144 3.93216 0.196608

Data messages are grouped with control messages. First there are i20 Data messages, then i Control
Messages (where i depends on link rate i={1x, 2x, 4x, 8x}).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

IDLE_REQ

IDLE_ACK

K28.5Byte0Byte15K28.5 Byte15

K28.5Byte0K28.5K28.5 K28.5Byte15

www.ti.com Differences in Physical Level

5SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

Table 3. OBSAI Data/Control Message Grouping

Link Rate Message Groups Data Messages Control Messages
1x 1 20 1
2x 2 40 2
4x 4 80 4
8x 8 160 8

The position of the control slot can easily be changed in AIF1, which makes the transmission rule and
policy very flexible; however, this is not supported in AIF2 and a fixed control-slot position must be used
because the dual bit-map rule of theOFDM radio standard does not allow a flexible control-slot position.
DBMR supports a very flexible and strong transmission rule for both OBSAI and CPRI. For more
information, see Section 4.

2.2 6 GHz SerDes
AIF2 supports 6 GHz SerDes to get larger data bandwidth; however, controlling crosstalk is the key issue
for safe data transmission.

The main concern is crosstalk between transmitters through the local SerDes power supply. With all
transmitters having different scrambling offsets, randomness between transmitting lanes is achieved. The
assignment of unique scrambler offsets for receivers is optional as crosstalk between receivers and
transmitters is non-critical.

The RP3 transmitter is configured by higher layers with a starting value of the seven-degree-polynomial
scrambling code generator. Higher layers should configure unique seed values for adjacent RP3 Tx links.
The RP3 receiver is a slave to the transmitter; it receives the seed value during a training sequence.

Figure 1. Scrambling Training Patterns

The scrambling code generator increments by one bit position for each bit of every byte. In each bit
position of the scrambling code generator, one scrambling bit is created that is XOR with each single bit of
a data byte. The bits of a byte are processed in order from MSB to LSB according to the order the
scrambling bit sequence is generated. On every K28.5 or K28.7 character, the scrambling code generator
is reset to the starting seed value.

The seed value and checking sequence is transmitted as training patterns from the RP3 transmitter to the
receiver during the IDLE period of the transmit state machine. Only 8x-rate links use these special
patterns during the IDLE period. There are two substates in the IDLE state: IDLE_REQ and IDLE_ACK;
two different training patterns are transmitted in the two substates:
• IDLE_REQ: K28.5, byte0, …, byte15… repeat
• IDLE_ACK: K28.5, K28.5, byte0, …, byte15… repeat

Bit-level scrambling is performed on 8x-rate links to reduce crosstalk between links and reduce
intersymbol interference (ISI). The RP3 transmitter applies a seven-degree polynomial to data bytes and
the inverse operation is performed by the RP3 receiver. Scrambling applies only to 6-GHz operation (8x
link rate). Link rates {1x, 2x, 4x} are backward compatible with no scrambling applied.

The scrambler is a seven-degree polynomial, linear-feedback shift register (LFSR). The polynomial is X7+
X6+1. K28.5 or K28.7 characters reset the LFSR to the seed value. The bit pattern repeats every 127 bits.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

PHYProtocolDMA

RxPHY
Vbus_clk

SW Rst
MMR

Core RTL +
Other MMRs

Protocol RTL
+ MMRs

Sys_clk
domain PHY
RTL & MMRs

Rx_clk
PHY
RTL

VBUS &
internal
SCRs

Bridge
& SCR

Global

Isolated to

local vbus

vbus_scr_rst_n

vbus_rst_n

vbus_phy_rst_n
aif2_rst_iso_mod_g_rst_n

aif2_rst_mod_g_rst_n

Serialized

Data

Phy

Rx

8b 10

Decode

Data

Link

Layer

Transport and

Application Layers Serialized

Data

Phy

Rx

8b10

Encode

Data

Link

Layer

Serialized

Data

Phy

Rx

8b 10

Decode

Data

Link

Layer

Transport and

Application Layers Serialized

Data

Phy

Rx

8b 10

Encode

Data

Link

Layer

De

Scrbl
Scrbl

1x , 2x , 4x Data Format and Line Coding

8 x Data Format and Line Coding

Differences in Physical Level www.ti.com

6 SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

The RP3 physical layer provides coding and serialization of the transmission path. An LFSR scrambling
algorithm, applied to 8x links only, smooths the data stream before 8b10b encoding. The data link layer
provides a method for creating messages of the bit stream. The transport layer uses the address field
messages to control message routing for processing the application layer. The application layer terminates
the payload of messages into packets.

Figure 2. Data Format and Line Coding

2.3 AIF2 Reset
AIF works in continuous mode and this means that you cannot easily sense when it is turned off or reset
while running; this creates some problematic situations when you attempt to debug or test the AIF
application or try to reconfigure one or all links during runtime. That is why AIF2 supports dynamic
configuration and an easier Reset function.

AIF2 supports three levels of reset methodology. Figure 3 shows the reset methodologies and the brief
concept of software reset and reset Isolation.

Figure 3. AIF2 Reset Strategy (Software Reset and Reset Isolation)

The SerDes reset is driven by vbus_phy_rst_n, which means that it will be driven by the “or” of the
aif2_rst_iso_mod_g_rst_n (global hard reset) or the MMR driven software reset.

Circuitry that is not reset for Reset Isolation includes:
• PHY submodules: RM, CI, RT, CO, TM
• PHY SerDes: SD
• All MMRs in the PHY
• EE : Masks and configurations of EE

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

www.ti.com Differences in Physical Level

7SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

The PE and PD submodule interfaces are in the sys_clk domain and interface to the PHY modules. PD
has PHY inputs only, and has no sensitivity to reset isolation. Once reset, PD will disregard any inputs so
PHY operation will have no ill effect. The PE outputs signals that drive the PHY. After the PE is reset, the
links are disabled. PE ceases all data output. The fact that the PE is disabled is also communicated to the
RT. RT automatically switches into a mode that no longer requires PE inputs.

AIF2 has a special single MMR that contains a bit that is used to reset the hardware by software control.
This bit is OR’ed with the hardware reset pins coming from the core. With the exception of the VBUS
infrastructure, all AIF2 hardware is reset when the software reset pin is activated

The VBUSP infrastructure is exempt from software reset, as resetting this logic could result in crashing the
VBUS.

Circuitry that is not reset during software reset includes:
• Config VBUS
• VBUSP Interface
• internal SCR circuits.
• vbus_clk to sys_clk re-timing bridge

Software reset is pulsed a minimum of 16 clock cycles. VBUSP write ready is held off (wait-stated) for
these 16 cycles and is then released. This prevents MMR access during software reset.

2.4 Internal Memory for DMA
AIF1 has 32 WCDMA chip size (2 Kbytes) CSRAM per link and it is a circular buffer, so the data could be
overwritten after transferring 32 chips per AxC. This RAM size was adequate for WCDMA DMA (for both
DL, UL) and AIF1 also has four FIFOs to cover packet traffic. But there are some problems and limitations
from that kind of CS memory RAM structure, as listed:
• CSRAM structure makes EDMA scheme too complex
• This is good for continuous data stream but not good for packet type data
• AIF1 has only 4 FIFOs for packet traffic but it is not enough to cover User’s requirement.

To resolve these kinds of problems, AIF2 chose a full FIFO structure instead of CS RAM. The AIF2 data
buffer consists of two independent subsystems: the Ingress DB (IDB) and the Egress DB (EDB). Data in
the IDB is transferred to other DSP resources via the VBUSM interface. Data from other DSP resources is
transferred into the EDB via the VBUSM interface. Each DB supports a 128 FIFO-type buffer for each 128
AxC or packet channels. The basic data transaction size is 16 bytes or “Quad Word” (QW) and is fully
flexible for both AxC data and pure packet-mode data.

To support WCDMA more efficiently, AIF2 also uses a special simple Direct DMA mode, which is called
“DirectIO” and uses FIFOs like circular buffers as in AIF1. This special mode supports only two buffer
sizes for WCDMA: (128 byte) and LTE (256 byte). The 128-byte circular buffer size is large enough to
cover any WCDMA data rate because each buffer for each AxC channel is separated. For example, to
transfer 16 AxC data, 16 128-byte buffers can be assigned for each channel and each buffer can hold a
maximum of 32 chips of WCDMA data inside like AIF1.

The size of each Ingress and Egress FIFO is programmable but only a limited number of sizes will be
supported. The minimum size is eight quad words or 128 bytes. All of the other sizes are power-of-two
multiples of eight quad words up to a maximum of 256 quad words or 4K bytes. Table 4 shows the AIF2
supported FIFO buffer sizes.

Table 4. Table 1 – AIF2 Supported FIFO Buffer Sizes

Supported FIFO Buffer Sizes (Quad-Words)
Max Number of Buffer Channels

Supported BUF_DEPTH[2:0]
8 128 0

16 64 1
32 32 2
64 16 3
128 8 4

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

Frame Sync
(Interface)

Error/Alarm
handling

Event Generators
- Trigger Condition

- Offset Delay

Watch Dog S
ys

te
m

e
v

e
n

ts

SM_FRAME_CLK

(external)

VBUS

RP3 timer

System timer

TOD

FRAME_BURST & FSYNC_CLOCK

TRT & TRT_CLOCK

UMTS_SYNC & UMTS_CLOCK

E
x
te

rn
a

l
Frame Sync Module vs. AIF2 Timer www.ti.com

8 SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

Table 4. Table 1 – AIF2 Supported FIFO Buffer Sizes (continued)

Supported FIFO Buffer Sizes (Quad-Words)
Max Number of Buffer Channels

Supported BUF_DEPTH[2:0]
256 4 5,6,7

The size and starting location of each FIFO and the starting location of each circular buffer are
programmable by DB MMR. This variable buffer size is applied only in non- DIO cases. DIO only supports
128 bytes or 256 bytes as described above.

3 Frame Sync Module vs. AIF2 Timer
The AIF2 Timer (AT) does the same job as the Frame sync module in TCI6488. It generates the heartbeat
for several IPs. The AT generates a frame-boundary or symbol-boundary signal so that external events or
internal events can be synchronized. There are two basic timer types used as a reference for PHY and
radio timers (PHYT and RADT).

The PHY timer (PHYT) is used as a reference for link-based event generation and it is the same concept
as the RP3 timer or system timer in the Frame sync module. This timer is closely associated with timing of
received and transmitted link-data traffic. It is used to direct link traffic and is used as a reference to set
transmit Delta time and to check receive Pi time.

The radio timer (RADT) is used as a reference for radio-standard event generation. This timer is
synchronized to a selected standard and works identically to the PHY timer. It provides great flexibility to
support multiple radio standards and radio frame sizes.

The RADT timer has two offset versions: ULRADT and DLRADT; These are used to mark uplink and
downlink radio standard time. These times are offset from the referenced RADT.

3.1 Interface and Architecture Changes

3.1.1 Interface
The Frame synchronization module for AIF1 is intended to generate controllable timed events. The system
clock control module sends synchronization and clock inputs to the FS. Figure 4 shows the functional
block diagram.

Figure 4. Top-Level Frame Synchronization Block Diagram

The Frame synchronization module has UMTS sync and clock and also has TRT sync and clock external
pins. Internally, it has an RP3 timer and System timer, either of which can be selected as an output event
generator.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

AT

EXT_FRAME_EVENT

PHYSYNC

RP1CLK LVDS

External inputs External outputs

LVCMOS

RP1FB

RADSYNC

LVDS

LVCMOS

www.ti.com Frame Sync Module vs. AIF2 Timer

9SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

There are many changes in the AIF2 AT. The AT has a PHY timer and RAD timer instead of RP3 and
System timers; the two timers work simultaneously but operate independently. There are PHY and RAD
sync input pins for each timer instead of UMTS sync, but the clock input pin was removed. The AIF2 dual-
byte clock is used to run the timers.

TRT sync input and clock were also removed but RP1 frame burst and clock are the same as in the AIF1.
Figure 5 shows the AIF2 Timer chip IO.

Figure 5. AIF2 Timer Chip IO

Physync and Radsync could be triggered at the same time or different times. AIF2 allows several sync-
trigger-select options for both timers.

3.1.2 General Architecture
The AIF1 and Frame sync module are required to synchronize to the external UMTS frame or standard-
specific alignment. Optionally, differential signals {FSYNC_BURST, FSYNC_CLOCK} or single-ended
input signals {UMTS_SYNC, UMTS_CLOCK} for the RP3 UMTS timer and the system timer selects
between {UMTS_SYNC, UMTS_CLOCK} and {TRT, TRT_CLOCK} for the non-OBSAI supported standard
can be chosen.

AIF2 AT removed all non-RP1 clock and sync from the frame-sync module. Instead, it uses the PHY timer
and RAD timer for RP3 timing and other general purpose timing. PHY or RAD sync can activate one or
both timers.

Below is the frame-sync option field in the AT control 1 register:

phy_syncsel READ_WRITE PHY sync selection
0 Use RP1 interface for synchronizing the PHYT frame boundary
1 Use PHYTSYNC chip input for synchronizing the PHYT frame boundary
2 Use software MMR at_sw_sync for synchronizing the PHYT frame boundary
3 Use Received frame boundary for synchronizing the PHYT frame boundary

rad_syncsel READ_WRITE RAD sync selection
0 Use RP1 interface for synchronizing the RADT frame boundary
1 Use RADTSYNC chip input for synchronizing the RADT frame boundary
2 Use software MMR at_sw_sync for synchronizing the RADT frame boundary
3 Use Received frame boundary for synchronizing the RADT frame boundary
4 Use compared PHYT value for synchronizing the RADT frame boundary

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

Event terminal count

register 22 bit ,10mS

Event_#

Event counter

timer_boundary_strobe

from selected timer

Select symbol boundary

or frame boundary from

one of 3 Radio Timers

Force_event_#

Event_disable[n]

0

mask value

64 bit6
3

Event counter

06
3 mask shift

Event modulo

counter 22 bit

Event count

compare 22 bit

(start at strobe , reload

on stobe or TC)

count compare

pulse gen .

load

shift

RADT_SB
RADT_FB

ULRADT_SB
ULRADT _FB
DLRADT_SB
DLRADT _FB

Event strobe

select 3bit

Mask is meant to be

used in GSM when 64

events per symbol are

generated

Frame Sync Module vs. AIF2 Timer www.ti.com

10 SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

Rad sync has one more selections. It is “Use compared PHYT value for synchronizing the RADT frame
boundary” option. The PHY and RAD timers can be activated together using only the PHYSYNC input and
the RAD timer will be synchronized after the value of time clock, which is selected on the
at_phyt_cmp_radsync register.

The major event generation mechanisms of the Frame sync module were mask-based event generator,
counter-based event generator, and trigger offset. The AIF2 AT has a different mechanism to generate
events. The AT does not use mask-based event generation and all external and internal events use
counter-based event generation, however, it has the same trigger offset mechanism as the Frame sync
module. AT has various event input strobes like RADT_SB, RADT_FB, ULRADT_SB, ULRADT_FB,
DLRADT_SB, DLRADT_FB. The frame boundary strobe concept is the same as what the frame sync
module was doing but the symbol boundary strobe concept gives more flexibility when generating symbol
boundary events for multiple sizes of symbols.

The AT event generator adjusted trigger offset delay before making real output events. The event modulo
counter can also create additional periodic events between symbol boundary input or frame boundary
input. This technique enables the generation of a short period of events like a four-chip DMA event for
WCDMA. Figure 6 shows the concept of an AT event generator.

Figure 6. AT Event Generator

3.2 AIF2 11 External Event
AIF2 AT has a total of 11 external events for user application programming. Event 0 ~ 7 is used for
general purpose applications like EDMA trigger, WCDMA timestamp, DMA trigger, or general packet
transfer trigger. The AIF1 and Frame sync module used its event 0 ~ 17 for these purposes but many of
them should be used to trigger four-chip or eight-chip EDMA triggers for WCDMA. AT has a special
internal Direct IO event for WCDMA, so these eight external events could be used only by a pure
application layer program.

Events 8, 9, and 10 are very special. They are used to generate the heartbeat for TAC and RAC (RACA,
RACB).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

www.ti.com Frame Sync Module vs. AIF2 Timer

11SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

Event 8 is directly connected to the TAC module and TAC will receive a four-chip event from the AT to get
the correct operation timing for transmission. Events 9 and 10 are used for RAC by generating a 32-chip
operation event for the RAC front-end interface.

Events can be disabled or enabled on the fly while events are being generated. Disabling an event will
remove the event at the next available selected timer frame boundary (frame or symbol). An event that is
enabled during event generation will start generation upon its programmed offset after the next detected
boundary.

The following code snippet shows how to program an external event using AIF2 CSL:

AIF2 AT external event setup

//AT Event setup (Event 7)
AtEventSetup.AtRadEvent[7].EventSelect = CSL_AIF2_EVENT_7;//Select Event 7
AtEventSetup.AtRadEvent[7].EventOffset = 0; //no offset
AtEventSetup.AtRadEvent[7].EvtStrobeSel = CSL_AIF2_RADT_SYMBOL;
AtEventSetup.AtRadEvent[7].EventModulo = 307199; //LTE 14 symbol time (1ms)
AtEventSetup.AtRadEvent[7].EventMaskLsb = 0xFFFFFFFF; //used for GSM
AtEventSetup.AtRadEvent[7].EventMaskMsb = 0xFFFFFFFF;
AtEventSetup.bEnableRadEvent[7] = TRUE;//Enable Event 7

AT external events could be used for several radio standards and that means it might support different
frame sizes, symbol counts, and clock counts. Table 5 shows to set timer terminal count fields for different
radio standards.

Table 5. Use of Timer Fields for Different Radio Standards

Radio Standard Frame Count Symbol Count Clock Count
WCDMA 10ms Frames Time Slots Clocks per Slot
LTE 10ms Frames 1ms Sub-Frames Clocks per Sub-Frame
WiMax (TDD/FDD) Frames Symbol Count Clocks per Symbol
TD-SCDMA (TDD) Frames Symbol Count Clocks per Symbol
GSM 60ms Time Slots per 60ms Clocks per Time Slot

3.3 AIF2 Internal Event
The AIF2 AT has three kinds of Phy timing internal events per link: PE1, PE2, and Delta event.

These three events work only with Phy timing and independent with Radio timing. PE1 and PE2 events
are very similar in concept to events 18 ~ 23 and 24 ~ 29 in the Frame sync module. The PE1 event lets
the Protocol Encoder know the RT preparation timing for redirection or aggregation. The PE 2 event gives
channel enable timing info to PE and is helpful in calculating egress AxC offset.

The event offset value needs to be set by using the AT link configuration below and the modulo is
automatically set by AIF2 CSL. Strobe selection is fixed to the frame boundary. The following code snippet
shows the AIF2 AT internal physical event setup:

//AT link setup
AtLinkSetup.PE1Offset = 600;
AtLinkSetup.PE2Offset = 610;
AtLinkSetup.DeltaOffset = 670;
AtLinkSetup.PiMin = 670;
AtLinkSetup.PiMax = 690;
AtLinkSetup.IsNegativeDelta = FALSE;//positive delta

The AIF2 AT also has a special internal DMA event for Direct IO engine in the AD module. The AD is the
AIF2 DMA module that communicates with the AIF2 PKTDMA module. The AD has three DIO engines for
both Ingress and Egress and each engine require its own DMA event to trigger four-chip or eight-chip data
chunks to transfer between PKTDMA and memory in the DSP.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

RadT start

Junk 4 chip events Activated 4 chip Events

4chip iteration

event offset

Max 320 clk

Frame rate event offset
2400clk

DIO Frame event

and Iteration event

Transmission Rule (Modulo, DBMR, Channel LUT) www.ti.com

12 SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

Each engine has a DIO DMA event (four-chip or eight-chip) and a DIO Frame event. Those two events
work together to get the optimal amount of event offset and modulo. The DIO Frame event is used to
generate a large event offset because the maximum offset size cannot be larger than the modulo size (if
modulo is four-chip, the max offset value should be smaller than four-chip). If the DIO DMA event offset
value could be smaller than its modulo, the DIO frame event offset (set zero) does not need to be used,
but for an uplink event configuration, it is required to have a very large DMA event offset.

Figure 7 shows the mechanism for those two events working together.

Figure 7. Internal Events Pair Working Mechanism for Direct IO

The following code snippet shows how to configure a DIO event. The CSL merges the DIO event pair
configuration into one to make it look simpler. The Frame event modulo is set to normal WCDMA and LTE
Radio frame size (10 ms) by CSL.

//AT Event setup (In DIO 4chip Event and frame event)
AtEventSetup.AtIngrDioEvent[0].EventSelect = CSL_AIF2_IN_DIO_EVENT_0;
AtEventSetup.AtIngrDioEvent[0].EventOffset = 0;
AtEventSetup.AtIngrDioEvent[0].EvtStrobeSel = CSL_AIF2_RADT_FRAME;
AtEventSetup.AtIngrDioEvent[0].EventModulo = 319; //WCDMA 4 chip time
AtEventSetup.AtIngrDioEvent[0].DioFrameEventOffset = 1190;//for UL DMA timing
AtEventSetup.AtIngrDioEvent[0].DioFrameStrobeSel = CSL_AIF2_RADT_FRAME;
AtEventSetup.bEnableIngrDioEvent[0] = TRUE;//Enable In DIO Event for engine 0

4 Transmission Rule (Modulo, DBMR, Channel LUT)
The AIF1 was designed primarily to support WCDMA and the frame size is exactly 10 ms to transfer
38400 chip data per AxC, so 84 and 21 Look up table was adequate for OBSAI and the data packing
system per link for CPRI was suitable as a transmission method. But it is hard to support several radio
standards that have different sample rates from WCDMA. The AIF2 protocol encoder and decoder had to
be modified for the transmission mechanism to transfer AxC data with some bubble data to enable data
rate adjustment for other radio standards.

This section describes the difference between transmission rules for AIF1 and AIF2 and how to setup PD
and PE registers to include AxC offset.

4.1 AIF1 Transmission Rule
This section describes how the AIF1 transmission rule works and its limitations. The number of bytes in an
OBSAI RP3 message group for 1x, 2x, and 4x links is 400. This consists of 20 data slots (each has 19
bytes), 1 control slot (19 bytes), and 1 IDLE byte. Every (10 ms/1,920) the bus manager provides detailed
rules for message transmission for each slot. Rules for data and control messages are provided
separately. The physical layer of the bus provides counter values for the data and control message slots.
Transmission of messages is done with respect to these counters.

Circuit-switched slots normally support modulos of 4, 8, or 16 for 1x, 2x, or 4x link. Packet-ssswitched
message in data slots can have modulos of 1, 2, 4, 5, 8, 10, 16, 20, 40, 80 and any 2N*80 multiple.
Packet-switched slots support a once-per-frame modulo: 1920 for 1x, 3840 for 2x, and 7680 for 4x link
rate. The control slot can occur at any place in a message group.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

www.ti.com Transmission Rule (Modulo, DBMR, Channel LUT)

13SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

To support this rule, AIF1 supports two basic look-up tables. It is 84 CNT LUT and 21 ID LUT. 84 count
LUT decides the characteristic of each data slot within the max 84 number of the slot map. The 21 ID LUT
decides several OBSAI header info matching and data type for each basic 20 data slots and 1 control slot.
For CPRI, any combination of data type and packing are already defined by hardware and there is no
flexibility to change it into a different style. Even though this scheme fully supports any kind of UMTS
requirement, it is not adequate to cover non-UMTS radio standards (LTE, WiMAX, TD-SCDMA, GSM) and
generic packet-mode data transmission.

To support those kinds of radio standards, the following restrictions had to be changed:
• AIF1 is basically designed for UMTS and can not fully match with other radio standard data rate.
• The current 84 LUT and 21 ID LUT cannot handle various data rate and bubble data slot
• The CPRI packing mechanism for AIF1 has fixed position and no flexibility to cover special usage for

other radio data rate and pure packet data mode.
• UMTS frame timing can not-support different sizes of radio frames.

4.2 AIF2 Transmission Rule (Modulo, DBMR, Channel LUT)
To overcome the restrictions and limitations of AIF1, AIF2 introduced a new transmission mechanism into
the Protocol Encoder. For OBSAI, three kinds of rules have been grouped together in sequential order: the
Modulo rule, the Dual-bitmap rule, and channel-lookup table.

For CPRI, the fixed-position-data-packing mechanism is disappeared. The OBSAI standard has specified
a very powerful control data or packet data approach. AIF2 fully supports OBSAI requirements and
overlays some of the supporting hardware with CPRI usage. In particular, CPRI also allows for very high
bandwidth by allowing unused AxC slots to pass control data or generic packet data with a specially
modified Dual-bitmap rule and DBMX ID LUT.

4.2.1 OBSAI Transmission Rules
OBSAI supports 64 modulo rules and each modulo rule is connected to each Dual-bitmap rule (DBMR);
these 64 modulo rules are shareable among all six links. In AIF1, the AxC number of modulo rules has to
be set up to configure each data slot. In AIF2, each link requires only two modulo rules: one for AxC data
and the other for control data. It is possible to assign additional modulo rules for special cases, but
normally one modulo and one DBMR pair can handle most AxC data or control data transfers for the
specific link.

The basic concept of DBMR looks like the following:
• AIF2 extends some of the Dual-Bitmap FSM fields to extend the capabilities of this feature
• AIF2 allows the “Bubble” output of the Dual-Bitmap FSM to be mapped to packet-switched traffic
• Dual Bitmap Rules can map to either CirSw or PktSw streams and can even support a mixture
• Max X (AxC number)

– Normal use, may not exceed 64. (May not exceed 63 if bubble bandwidth is being used)
– Paired, two bitmaps can be concatenated to form a 128 LUT, consumes two adjacent rules (starting

at an even indexed rule)

Normally, X means the number of AxC or number of packets supported by the link. The key concept of
DBMR is usinga “Bubble” OBSAI slot to adjust the data rates of several radio standards. The bitmap detail
is described in OBSAI spec 4.0, especially about LTE and WiMAX.

The output index of DBMR goes into the Channel LUT to assign specific DB channel to each dedicated
OBSAI data slot. These three parts are the key of OBSAI transmission rule implementation; Figure 8
shows the how those three rules are connected.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

DBMR0 Indexes
0

63

DBMR1 Indexes
64

127

DBMR7 Indexes
480

511

DBM Indexes[0]

-or- Modulo-Only 0

DBM Indexes[1]
1

DBM Indexes[63]

-or- bubble LUT 63

Modulo

Rule

Dual

Bit

Map

Rule

Chan

Lut

Index
Chan_Prim

Frame

FSM

Tx Rules

Index

Transmission Rule (Modulo, DBMR, Channel LUT) www.ti.com

14 SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

Figure 8. PE: OBSAI Transmission Rules

The Dual-Bitmap Rules (DBMR) circuit is basically a counter that circularly TDMs X channels. Every time
the Modulo Rule fires, the next channel is serviced. At the end of round-robin TDM servicing of X
channels, a gap of one message is added by the programmed MMR. The gap is controlled by the
“Bitmaps”.

The Bubble FSM consists of a state machine following the Dual Bitmap algorithm. In every state, one bit
of either of the two “Bitmaps” indicates:
• 1’b1: after the “X” count, one additional count prior to rewinding X count
• 1’b0: after the “X” count, simple start over again

The extra “count” is referred to here as a “Bubble”. During this phase of the count, the output reflects this
“Bubble” condition and will be padded with zero or other type of data if you wants to use the bandwidth for
other packet data transfer.

The channel LUT uses mapping transmission rule indexes from the 64 rules into DB channels, is split
across eight different RAMs. The partition of this function facilitates the reuse of the LUT for CPRI mode
where a LUT is dedicated per link. Figure 9 shows how eight pieces separated DBMR is matched with the
Channel LUT.

Figure 9. OBSAI Channel Lookup Table

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

A
x
C

0

A
x
C

1

A
x
C

2

A
x
C

3

A
x
C

4

A
x
C

5

A
x
C

6

A
x
C

7

A
x
C

8

A
x
C

9

A
x
C

1
0

A
x
C

1
1

A
x
C

1
2

A
x
C

1
3

A
x
C

1
4

A
x
C

1
5

A
x
C

1

A
x
C

2

A
x
C

3

A
x
C

4

A
x
C

5

A
x
C

6

A
x
C

7

A
x
C

9

A
x
C

1
0

4X Rate

OBSAI WCDMA4 Chip 16 AxC, X = 16

A
x
C

0

A
x
C

8

www.ti.com Transmission Rule (Modulo, DBMR, Channel LUT)

15SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

4.2.2 CPRI Transmission Rules
AIF2 uses the OBSAI Dual Bitmap FSM (DBMF) concept for configuring the use of CPRI BW between
AxC. This is a very special use case that is not specified in CPRI protocol specification. The DBMF is
essentially a simple round robin TDM of AxC with the addition of a programmable bubble insertion at the
end of each cycle of round robin. CPRI DBM has one clear difference to the OBSAI DBM. CPRI DBM
uses a 32-bit or 30-bit sample (16-bit or 15-bit I, Q) as X value instead of a 16-byte OBSAI data slot and
this is also applied to bubble data size.

The DBMF algorithm calculates values through the bitmaps—one bit per burst of AxC samples. If the bit is
0x1, a burst of bubbles (zeros) is inserted before the next burst of AxC samples. Bitmap1 will repeat
several programmable times, followed by one sequence of Bitmap 2. The used length of map1 and map2
is programmable. If map2 is programmed to a length of 0, map2 goes unused.

The CPRI transmission rule does not use the Modulo rule, which is used for OBSAI as a base rule of
DBMR; instead, CPRI uses a packet data pattern and each link has its own DBM rule, so it does not need
to use an index or link number setup like the OBSAI Modulo rule. CPRI also uses channel LUT 0 ~ 5 for
each link and uses only 128 rules from each LUT instead of using 512 rules for OBSAI.

The channel LUT used mapping transmission rule indexes from the 64 rules into DB channels is split
across eight different RAMs. The partition of this function facilitates the reuse of the LUT for CPRI mode
where a LUT is dedicated per link.

CPRI RAM usage:
• Link0: Ram0, 0-127 (address 128-511 unused)
• Link1: Ram1, 0-127
• …
• Link5 Ram5, 0-127
• Ram 6 and 7 are unused in CPRI

4.2.3 Transmission Rule Setup Example
This section describes how to configure PE, PD to transfer different data combinations of the DMA
Channel, DBMR, and Channel LUT setup for both OBSAI and CPRI.

4.2.3.1 OBSAI
Example 1
4x link rate, WCDMA 16 AxC channel, X = 16 (X means DBM X value)

Figure 10. OBSAI WCDMA Example

Use only one modulo rule for all 16 AxC channels and 16 for X value, so each AxC channel four-chip data
is matched with the X number. For OBSAI, the X number means the number of OBSAI message slots for
the connected modulo rule. AIF2 Channel LUT has a total of 4096 tables. This example consumes 16 of
those tables and does not show control word slot usage.

Example 2
4x link rate, 20 MHz LTE Option 1 for 2 AxC channel, X = 2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

Packet Channel0

A
x
C

0

A
x
C

1

A
x
C

2

A
x
C

3

A
x
C

4

A
x
C

5

A
x
C

6

A
x
C

7

A
x
C

8

A
x
C

9

A
x
C

1
0

A
x
C

1
1

A
x
C

1
2

A
x
C

1
3

A
x
C

1
4

A
x
C

1
5

4X Rate

OBSAI Generic Packet1 Channel, X = 1 or 16

AxC0 AxC1 AxC0 AxC1

A
x
C

0

A
x
C

1

A
x
C

2

A
x
C

3

A
x
C

4

A
x
C

5

A
x
C

6

A
x
C

7

A
x
C

8

A
x
C

9

A
x
C

1
0

A
x
C

1
1

A
x
C

1
2

A
x
C

1
3

A
x
C

1
4

A
x
C

1
5

A
x
C

1

A
x
C

2

A
x
C

3

A
x
C

4

A
x
C

5

A
x
C

6

A
x
C

7

A
x
C

9

A
x
C

1
0

4X Rate

OBSAI LTE20MHz 2 AxC, X = 16

A
x
C

0

A
x
C

8

A
x
C

0

A
x
C

1

A
x
C

2

A
x
C

3

A
x
C

4

A
x
C

5

A
x
C

6

A
x
C

7

A
x
C

8

A
x
C

9

A
x
C

1
0

A
x
C

1
1

A
x
C

1
2

A
x
C

1
3

A
x
C

1
4

A
x
C

1
5

4X Rate

OBSAI LTE 20MHz 2 AxC, X = 2

A
x
C

1

A
x
C

0

A
x
C

0

A
x
C

0

A
x
C

0

A
x
C

0

A
x
C

0

A
x
C

0

A
x
C

0

A
x
C

1

A
x
C

1

A
x
C

1

A
x
C

1

A
x
C

1

A
x
C

1

A
x
C

1

Transmission Rule (Modulo, DBMR, Channel LUT) www.ti.com

16 SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

Figure 11. OBSAI LTE Option 1 Example

This example shows 20 MHz LTE usage with two AxCs and X = 2 condition. Only two channel LUT tables
could be set for AxC channel 0 and 1. In this case, four samples of each AxC data is transferred
alternately and that allows smooth data transmission without showing much time gap between channels.

Example 3
4x link rate, 20 MHz LTE Option 2 for 2 AxC channel, X = 16

Figure 12. OBSAI LTE Option 2 Example

This example shows 20 MHz LTE usage with two AxCs and X = 16 condition. In this case, the first seven
OBSAI slots transfer AxC0 data and the other seven OBSAI slots transfer AxC1 data. The first seven
Channel LUT tables set the channel to zero and the next seven channel LUT tables set the channel to
one.

This option demonstrates the flexibility of the AIF2 transmission methodology.

Example 4
4x link rate Generic Packet data transmission for one packet channel

Figure 13. OBSAI Generic Packet Mode Example

This example shows the OBSAI generic-packet mode, which uses full bandwidth for only one channel. To
split the bandwidth into multiple channels, channel LUT can be configured to use multiple DB channels.
For Packet mode, full data bandwidth is not required. The AIF2 PE does not care about AxC offset and
radio timing when the channel mode is set to packet mode. Only valid packet data marked by SOP and
EOP signal will be transferred.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

A
x
C

0

A
x
C

1

A
x
C

2

A
x
C

3

A
x
C

4

A
x
C

5

A
x
C

6

A
x
C

7

A
x
C

8

A
x
C

9

A
x
C

1
0

A
x
C

1
1

A
x
C

1
2

A
x
C

1
3

A
x
C

1
4

A
x
C

1
5

A
x
C

1
6

A
x
C

1
7

A
x
C

1
8

A
x
C

1
9

A
x
C

2
0

A
x
C

2
1

A
x
C

2
2

A
x
C

2
3

A
x
C

2
4

A
x
C

2
5

A
x
C

2
6

A
x
C

2
7

A
x
C

2
8

A
x
C

2
9

A
x
C

3
0

A
x
C

3
1

A
x
C

3
2

A
x
C

3
3

A
x
C

3
4

A
x
C

3
5

A
x
C

3
6

A
x
C

3
7

A
x
C

3
8

A
x
C

3
9

A
x
C

4
0

A
x
C

4
1

A
x
C

4
2

A
x
C

4
3

A
x
C

4
4

4X Rate

CPRI Basic Frame0 CPRI Basic Frame1 CPRI Basic Frame2

C
0

A
0

C
1

A
0

C
2

A
0

C
3

A
0

C
4

A
0

C
0

A
1

C
1

A
1

C
2

A
1

C
3

A
1

C
4

A
1

C
0

A
2

C
1

A
2

C
2

A
2

C
3

A
2

C
4

A
2

C
0

A
3

C
1

A
3

C
2

A
3

C
3

A
3

C
4

A
3

C
0

A
4

C
1

A
4

C
2

A
4

C
3

A
4

C
4

A
4

C
0

A
5

C
1

A
5

C
2

A
5

C
3

A
5

C
4

A
5

C
0

A
6

C
1

A
6

C
2

A
6

C
3

A
6

C
4

A
6

C
0

A
7

C
1

A
7

C
2

A
7

C
3

A
7

C
4

A
7

D
u

m
m

y

D
u

m
m

y

D
u

m
m

y

D
u

m
m

y

D
u

m
m

y

TD-SCDMA 16 bit IQ 5 AxC, X = 40 Option1

A
x
C

0

A
x
C

1

A
x
C

2

A
x
C

3

A
x
C

4

A
x
C

5

A
x
C

6

A
x
C

7

A
x
C

8

A
x
C

9

A
x
C

1
0

A
x
C

1
1

A
x
C

1
2

A
x
C

1
3

A
x
C

1
4

CPRI Basic Frame

LTE 20 MHz 16bit IQ, 2 AxC, X = 2

A
x
C

0

A
x
C

1

A
x
C

2

A
x
C

3

A
x
C

4

A
x
C

5

A
x
C

6

A
x
C

7

A
x
C

8

A
x
C

9

A
x
C

1
0

A
x
C

1
1

A
x
C

1
2

A
x
C

1
3

A
x
C

1
4

A
x
C

0

A
x
C

1

A
x
C

0

A
x
C

1

A
x
C

0

A
x
C

1

A
x
C

0

A
x
C

1

A
x
C

0

A
x
C

1

A
x
C

0

A
x
C

1

A
x
C

0

A
x
C

1

A
x
C

0

A
x
C

1
3

A
x
C

1
4

A
x
C

1

A
x
C

0

A
x
C

0

A
x
C

1

A
x
C

2

A
x
C

3

A
x
C

4

A
x
C

5

A
x
C

6

A
x
C

7

A
x
C

8

A
x
C

9

A
x
C

1
0

A
x
C

1
1

A
x
C

1
2

A
x
C

1
3

A
x
C

1
4

A
x
C

0

A
x
C

1

A
x
C

2

A
x
C

3

A
x
C

4

A
x
C

5

A
x
C

6

A
x
C

7

A
x
C

8

A
x
C

9

A
x
C

1
0

A
x
C

1
1

A
x
C

1
2

A
x
C

1
3

A
x
C

1
4

CPRI Basic Frame

WCDMA 16bit IQ, 15 AxC, X = 15

A
x
C

0

A
x
C

1

A
x
C

2

A
x
C

3

A
x
C

4

A
x
C

5

A
x
C

6

A
x
C

7

A
x
C

8

A
x
C

9

A
x

C
1
0

A
x

C
1
1

A
x

C
1
2

A
x

C
1
3

A
x

C
1
4

www.ti.com Transmission Rule (Modulo, DBMR, Channel LUT)

17SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

4.2.3.2 CPRI
Example 1
4x link rate WCDMA 16 bit IQ, 15 AxC channel, X = 15

Figure 14. CPRI WCDMA Example

X means the number of message slots in OBSAI, but CPRI uses the X value as sample iteration count.
There are four kinds of sample sizes in CPRI (7-bit, 8-bit, 15-bit, 16-bit IQ sample). This example shows
16-bit IQ sample case, so the total 15 AxC channels sample data (one chip) could be packed within one
CPRI basic frame in case of 4x link speed. CPRI does not use the modulo rule but DBMR is supported
per link and CPRI ID LUT is applied to each link to configure each X sample slot. Channel LUT usage is
the same as OBSAI.

Example 2
4x link rate LTE 20 MHz 16 bit IQ, 2 AxC channel, X = 2

Figure 15. CPRI LTE 20 MHz Example

This example uses X = 2 (like OBSAI example Option 1), so the CPRI ID LUT [0 ~ 1] register should be
set for each AxC0 slot and AxC1 slot.

Example 3
4x link rate TD-SCDMA 16 bit IQ, 5 AxC channel, X = 40 Option 1

Figure 16. CPRI TD-SCDMA Option 1 Example

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

C
0

A
0

C
0

A
1

C
0

A
2

C
0

A
3

C
0

A
4

C
0

A
5

C
0

A
6

C
0

A
7

C
1

A
0

C
1

A
1

C
1

A
2

C
1

A
3

C
1

A
4

C
1

A
5

C
1

A
6

C
1

A
7

C
2

A
0

C
2

A
1

C
2

A
2

C
2

A
3

C
2

A
4

C
2

A
5

C
2

A
6

C
2

A
7

C
3

A
0

C
3

A
1

C
3

A
2

C
3

A
3

C
3

A
4

C
3

A
5

C
3

A
6

C
3

A
7

C
4

A
0

C
4

A
1

C
4

A
2

C
4

A
3

C
4

A
4

C
4

A
5

C
4

A
6

C
4

A
7

D
u
m

m
y

D
u
m

m
y

D
u
m

m
y

D
u
m

m
y

D
u
m

m
y

A
x
C

0

A
x
C

1

A
x
C

2

A
x
C

3

A
x
C

4

A
x
C

5

A
x
C

6

A
x
C

7

A
x
C

8

A
x
C

9

A
x
C

1
0

A
x
C

1
1

A
x
C

1
2

A
x
C

1
3

A
x
C

1
4

A
x
C

1
5

A
x
C

1
6

A
x
C

1
7

A
x
C

1
8

A
x
C

1
9

A
x
C

2
0

A
x
C

2
1

A
x
C

2
2

A
x
C

2
3

A
x
C

2
4

A
x
C

2
5

A
x
C

2
6

A
x
C

2
7

A
x
C

2
8

A
x
C

2
9

A
x
C

3
0

A
x
C

3
1

A
x
C

3
2

A
x
C

3
3

A
x
C

3
4

A
x
C

3
5

A
x
C

3
6

A
x
C

3
7

A
x
C

3
8

A
x
C

3
9

A
x
C

4
0

A
x
C

4
1

A
x
C

4
2

A
x
C

4
3

A
x
C

4
4

4X Rate

CPRI Basic Frame 0 CPRI Basic Frame1 CPRI Basic Frame2

TD-SCDMA 16 bit IQ 5 AxC, X = 40 Option2

Transmission Rule (Modulo, DBMR, Channel LUT) www.ti.com

18 SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

This example shows a special configuration for the TD-SCDMA five-AxC channel case. TD-SCDMA
consumes three CPRI basic frames to transfer eight samples per AxC and it has five dummy samples at
the end. The dummy samples are considered bubble data slot and configured by DBMR registers. Option
1 is sample level interleaved model and that can be set by using the PE channel LUT and CPRI ID LUT
for the link.

Example 4
4x link rate TD-SCDMA 16 bit IQ, 5 AxC channel, X = 40 Option 2

Figure 17. CPRI TD-SCDMA Option 2 Example

Option 2 is a non-sample level interleaving model. It transfers all eight samples for AxC0 first, then eight
samples for AxC1, and so on. PE channel LUT and CPRI ID LUT configuration is different from Option 1.

4.3 PE, PD setup (OBSAI)
The AIF2 PD, PE configuration has three major parts: link setup, global setup, and channel setup. Each
link might have a different setup like PD OBSAI type LUT and PE_DB delay. For CPRI, DBMR and most
transmission-rule setup is done in the link setup, but OBSAI does this in a common setup (global setup
and channel setup). The following code snippet shows how to setup each part for OBSAI.

4.3.1 PD Link Setup

//PD link setup
PdLinkSetup.Crc8Poly = CRC8_POLY;
PdLinkSetup.Crc8Seed = CRC8_SEED;
PdLinkSetup.PdTypeLut[OBSAI_TYPE_WCDMA_FDD].ObsaiTsFormat = CSL_AIF2_TSTAMP_FORMAT_NORM_TS;
PdLinkSetup.PdTypeLut[OBSAI_TYPE_WCDMA_FDD].PdCrcType = CSL_AIF2_CRC_16BIT;
PdLinkSetup.PdTypeLut[OBSAI_TYPE_WCDMA_FDD].bEnableCrc = FALSE;
PdLinkSetup.PdTypeLut[OBSAI_TYPE_WCDMA_FDD].PdObsaiMode = CSL_AIF2_PD_DATA_AXC;
PdLinkSetup.PdTypeLut[OBSAI_TYPE_WCDMA_FDD].bEnableEnetStrip = FALSE;
PdLinkSetup.PdTypeLut[OBSAI_TYPE_WCDMA_FDD].bEnableCrcHeader = FALSE;

The CRC 8 poly and seed is only used when the CRC 8 mode is enabled. The OBSAI type LUT is
important for PD to differentiate radio standard.

4.3.2 PE Link Setup

//PE link setup
PeLinkSetup.PeCppiDioSel = CSL_AIF2_DIO;
PeLinkSetup.Crc8Poly = CRC8_POLY;
PeLinkSetup.Crc8Seed = CRC8_SEED;
PeLinkSetup.bEnObsaiBubbleBW = FALSE;
PeLinkSetup.PeDelay = DB_PE_DELAY_OBSAI;//28 sys_clks delay between DB and PE

4.3.3 PD Global Setup

//PD global setup
PdCommonSetup.PdCppiDioSel = CSL_AIF2_DIO;//DIO
PdCommonSetup.AxCOffsetWin = AXC_OFFSET_WIN;//AxC offset window
PdCommonSetup.PdRadtTC = 3071999;// Radio frame size for OBSAI

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

www.ti.com Transmission Rule (Modulo, DBMR, Channel LUT)

19SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

PdCommonSetup.PdFrameTC[0].FrameIndexSc = 0;//start index
PdCommonSetup.PdFrameTC[0].FrameIndexTc = 0;//termical index
PdCommonSetup.PdFrameTC[0].FrameSymbolTc = 14;//15 slots for WCDMA
PdCommonSetup.PdFrameMsgTc[0] = 639;

PD and PE has its own framing timer inside. It is mainly used to check frame and symbol timing for
several radio standards. PdRadtTC means the total radio frame size and FrameMsgTc is used to count
OBSAI message number within one slot or symbol. This counter works independently to AT Radio timing.

4.3.4 PE Global Setup

//PE global setup
PeCommonSetup.PeTokenPhase = 0;
PeCommonSetup.EnetHeaderSelect = 1;//bit order for Ethernet preamble and SOF
PeCommonSetup.GlobalDioLen = CSL_AIF2_DB_DIO_LEN_128;
PeCommonSetup.PeFrameTC[0].FrameIndexSc = 0;//start index
PeCommonSetup.PeFrameTC[0].FrameIndexTc = 0;//termical index
PeCommonSetup.PeFrameTC[0].FrameSymbolTc = 14;//Set 14 for PeCommonSetup.PeFrameMsgTc[0] = 639;

//modulo rule 0 setup
PeCommonSetup.PeModuloTc[0].bEnableRule = TRUE;
PeCommonSetup.PeModuloTc[0].RuleModulo = 0;//modulo termical count (Modulo -1)
PeCommonSetup.PeModuloTc[0].bRuleObsaiCtlMsg = FALSE;
PeCommonSetup.PeModuloTc[0].RuleIndex = 0;
PeCommonSetup.PeModuloTc[0].RuleLink = CSL_AIF2_LINK_0;

//DBM rule 0 setup
PeCommonSetup.PeObsaiDualBitMap[0].DbmX = 31;//DbmX number. set X-1 value
PeCommonSetup.PeObsaiDualBitMap[0].DbmXBubble = 0;
PeCommonSetup.PeObsaiDualBitMap[0].Dbm1Mult = 0;//Dbm1 repetition number
PeCommonSetup.PeObsaiDualBitMap[0].Dbm1Size = 0;//Dbm1 size (1 ~ 100)
PeCommonSetup.PeObsaiDualBitMap[0].Dbm1Map[0] = 0x0;// no bubble
PeCommonSetup.PeObsaiDualBitMap[0].Dbm2Size = 0; //Dbm2 size (0 ~ 70)
PeCommonSetup.PeObsaiDualBitMap[0].Dbm2Map[0] = 0x0;

PE global setup includes PE frame timer setup and modulo, DBMR setup.

4.3.5 PD Channel Setup

//PD channel setup
PdCommonSetup.PdRoute[i].RouteTs = 0;//Route OBSAI time stamp
PdCommonSetup.PdRoute[i].RouteType = OBSAI_TYPE_WCDMA_FDD;//Route OBSAI type
PdCommonSetup.PdRoute[i].RouteAddr = i;//Route OBSAI address
PdCommonSetup.PdRoute[i].RouteLink = CSL_AIF2_LINK_0;//Route link
PdCommonSetup.PdRoute[i].RouteMask = CSL_AIF2_ROUTE_MASK_NONE;//Route TS mask
PdCommonSetup.PdChConfig[i].bChannelEn = TRUE;//Channel enable
PdCommonSetup.PdChConfig[i].DataFormat = CSL_AIF2_LINK_DATA_TYPE_NORMAL;
PdCommonSetup.AxCOffset[i] = 610; //same offset like Egress
PdCommonSetup.PdChConfig1[i].bTsWatchDogEn = FALSE;//disable watchdog
PdCommonSetup.PdChConfig1[i].DataFormat = CSL_AIF2_GSM_DATA_OTHER;
PdCommonSetup.PdChConfig1[i].FrameCounter = 0;//framing counter group number
PdCommonSetup.PdChConfig1[i].DioOffset = 0;//Use zero offset for simple test
PdCommonSetup.PdChConfig1[i].TddEnable = 0xFFFF;//enables all symbols (FDD)
PdCommonSetup.TddEnable1[i] = 0xFFFFFFFF;//enables all symbols (FDD)
PdCommonSetup.TddEnable2[i] = 0xFFFFFFFF;//enables all symbols (FDD)
PdCommonSetup.TddEnable3[i] = 0xFFFFFFFF;//enables all symbols (FDD)
PdCommonSetup.TddEnable4[i] = 0xFFFFFFFF;//enables all symbols (FDD)

PD channel setup has special characteristics of each PD channel include OBSAI routing data like
timestamp, address, type, and link number. PD compares all value and routes the data payload to the
dedicated DB channel.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

Transmission Rule (Modulo, DBMR, Channel LUT) www.ti.com

20 SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

4.3.6 PE Channel Setup

//PE channel setup
PeCommonSetup.bEnableCh[i] = TRUE;//Enable PE channel
PeCommonSetup.PeDmaCh0[i].bCrcEn = FALSE;//disable CRC
PeCommonSetup.PeDmaCh0[i].FrameTC = 0;//use framing terminal count 0
PeCommonSetup.PeDmaCh0[i].RtControl = CSL_AIF2_PE_RT_INSERT;
PeCommonSetup.PeDmaCh0[i].CrcType = CSL_AIF2_CRC_8BIT;//CRC type
PeCommonSetup.PeDmaCh0[i].isEthernet = FALSE;//AxC data
PeCommonSetup.PeDmaCh0[i].CrcObsaiHeader = FALSE;
PeCommonSetup.PeInFifo[i].SyncSymbol = 0;//Sync symbol offset
PeCommonSetup.PeInFifo[i].MFifoWmark = 2;//Message FIFO water mark
PeCommonSetup.PeInFifo[i].MFifoFullLevel = 3;//Message FIFO full level
PeCommonSetup.PeAxcOffset[i] = 611;
PeCommonSetup.PeChObsaiType[i] = OBSAI_TYPE_WCDMA_FDD;//OBSAI header type
PeCommonSetup.PeChObsaiTS[i] = 0;//OBSAI header Time Stamp
PeCommonSetup.PeChObsaiAddr[i] = i;//OBSAI header address
PeCommonSetup.PeChObsaiTsMask[i] = CSL_AIF2_ROUTE_MASK_NONE;
PeCommonSetup.PeChObsaiTsfomat[i] = CSL_AIF2_TSTAMP_FORMAT_NORM_TS;
PeCommonSetup.PeObsaiPkt[i] = FALSE;//Select OBSAI AxC or packet mode
PeCommonSetup.PeBbHop[i] = FALSE;

//channel rule LUT setup
PeCommonSetup.ChIndex0[i] = i; //channel 0 ~ 3
PeCommonSetup.bEnableChIndex0[i] = TRUE;//Route egress channel 0 ~ 3 dbm rule to modulo rule 0

PE channel setup works opposite to the way that PD does. It configures the OBSAI channel route data
and channel specific data for transmission.

AxC offset is a new concept for AIF2 only. AxC offset means that the coaxial cable time delay as an
extension of the air propagation delay where the sampling at the RF card is considered to be time zero.
AxC offset also decides the PD,PE channel data on/off timing. PE frame data generation for that channel
cannot be done if the PE channel is not enabled and AxC offset is the enable/disable switch for each
channel. Even though the external delay is zero, the AxC offset could be bigger than zero because PE,
PD requires some delay for DMA and PHY-level operation timing like PE event, Delta, and Pi.

The programming of AxC offset is a fixed value. For each hop of the daisy chain, the AxC offset is
programmed as a different value to compensate for the time propagation through each daisy chain node.
If Ingress AxC offset is zero, PD will start processing when it detects the first AxC data within the AxC
offset window boundary. If PD failed to find the first correct AxC data within the window, the PD link will
not work until it meets the next radio frame boundary. On the Egress side, the minimum AxC offset can
not normally be zero because the PE channel should be turned on after the channel data transfer is ready;
so the min AxC offset will be the PE2 Event offset plus one and additional fiber delay (four-chip, eight-
chip, …) would be added based on that value.

4.4 PE, PD setup (CPRI)
CPRI also has three major PD, PE configuration parts but link configuration has DBMR, which is different
to OBSAI that has its DBMR in global configuration part. The following code snippet shows how to setup
each part for CPRI.

4.4.1 PD Link Setup

//PD link setup
PdLinkSetup.CpriEnetStrip = 1;//enable ethernet strip
PdLinkSetup.Crc8Poly = CRC8_POLY;
PdLinkSetup.Crc8Seed = CRC8_SEED;
PdLinkSetup.CpriCwNullDelimitor = 0xFB;//K 27.7 character
PdLinkSetup.CpriCwPktDelimitor[0] = CSL_AIF2_CW_DELIM_NULLDELM;//4
PdLinkSetup.PdCpriCrcType[0] = CSL_AIF2_CRC_16BIT;
PdLinkSetup.bEnableCpriCrc[0] = TRUE;//enable CPRI CRC
PdLinkSetup.PdPackDmaCh[0] = 124;//Set DB channel 124 as a DMA channel PdLinkSetup.bEnablePack[0]
= FALSE;//enable CPRI control channel 0 packing

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

www.ti.com Transmission Rule (Modulo, DBMR, Channel LUT)

21SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

//set DBMR for link
PdLinkSetup.PdCpriDualBitMap.DbmX = 15;//set X-1
PdLinkSetup.PdCpriDualBitMap.DbmXBubble = 1;//2 bubbles of 1 AxC sample
PdLinkSetup.PdCpriDualBitMap.Dbm1Mult = 0;//set n-1
PdLinkSetup.PdCpriDualBitMap.Dbm1Size = 0;//set n-1
PdLinkSetup.PdCpriDualBitMap.Dbm1Map[0] = 0x0;
PdLinkSetup.PdCpriDualBitMap.Dbm2Size = 0;
PdLinkSetup.PdCpriDualBitMap.Dbm2Map[0] = 0x0;

//DbmX ID LUT setup
PdLinkSetup.CpriDmaCh[i]= i; //match Dbm X to PD channel num
PdLinkSetup.bEnableCpriX[i]= TRUE; //enable CPRI Dbm X slot
PdLinkSetup.bEnableCpriPkt[i]= FALSE;//use AxC data mode
PdLinkSetup.Cpri8WordOffset[i]= 0;//more detailed CPRI AxC offset

For packet-switched data transfer like Ethernet, the Control word and generic packet mode use four DB
channels per link. Any four of 128 channels can be assigned, but four is the maximum.

4.4.2 PE Link Setup

//PE link setup
PeLinkSetup.PeCppiDioSel = CSL_AIF2_DIO;
PeLinkSetup.Crc8Poly = CRC8_POLY;
PeLinkSetup.Crc8Seed = CRC8_SEED;
PeLinkSetup.PeDelay = DB_PE_DELAY_CPRI;
//set DBMR for link
PeLinkSetup.PeCpriDualBitMap.DbmX = 15;//16 set X-1
PeLinkSetup.PeCpriDualBitMap.DbmXBubble = 1;//2 bubbles of 1 AxC sample
PeLinkSetup.PeCpriDualBitMap.Dbm1Mult = 0;//set n-1
PeLinkSetup.PeCpriDualBitMap.Dbm1Size = 0;//set n-1
PeLinkSetup.PeCpriDualBitMap.Dbm1Map[0] = 0x0;
PeLinkSetup.PeCpriDualBitMap.Dbm2Size = 0;
PeLinkSetup.PeCpriDualBitMap.Dbm2Map[0] = 0x0;
...
PeLinkSetup.CpriAxCPack = CSL_AIF2_CPRI_15BIT_SAMPLE;
PeLinkSetup.CpriCwNullDelimitor = 0xFB;//K 27.7 character
PeLinkSetup.CpriCwPktDelimitor[0] = CSL_AIF2_CW_DELIM_NULLDELM;
PeLinkSetup.PePackDmaCh[0] = 124;
PeLinkSetup.bEnablePack[0] = FALSE;

PE link setup looks very similar to PD link setup.

4.4.3 PD Global Setup

//PD global setup
PdCommonSetup.PdCppiDioSel = CSL_AIF2_DIO;//DIO
PdCommonSetup.AxCOffsetWin = AXC_OFFSET_WIN;//AxC offset window
PdCommonSetup.PdRadtTC = 2457599;// Radio frame size for CPRI
PdCommonSetup.PdFrameTC[0].FrameIndexSc = 0;//start index
PdCommonSetup.PdFrameTC[0].FrameIndexTc = 0;//teminal index
PdCommonSetup.PdFrameTC[0].FrameSymbolTc = 14;//15 slots for WCDMA
PdCommonSetup.PdFrameMsgTc[0] = 639; // 640 CPRI quad samples (16 byte) are in WCDMA slot time

CPRI PD, PE setup also has its own framing timer inside. In OBSAI, FrameMsgTc was the count of
OBSAI message slot (16 byte payload) but CPRI frameMsgTc counts the number of samples (30-bit or
32-bit data). The PD count unit is quad samples but the PE count unit is just sample, so frameMsgTc
value for PD and PE will be different. (For OBSAI, it uses same unit for both sides.)

4.4.4 PE Global Setup

//PE global setup
PeCommonSetup.PeTokenPhase = 0;//Phase alignment for scheduling DMA
PeCommonSetup.EnetHeaderSelect = 1;//bit order for Ethernet preamble and SOF

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

DMA Methodology www.ti.com

22 SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

PeCommonSetup.GlobalDioLen = CSL_AIF2_DB_DIO_LEN_128;
PeCommonSetup.PeFrameTC[0].FrameIndexSc = 0;//start index
PeCommonSetup.PeFrameTC[0].FrameIndexTc = 0;//teminal index
PeCommonSetup.PeFrameTC[0].FrameSymbolTc = 14;//Set 14 for WCDMA
PeCommonSetup.PeFrameMsgTc[0] = 2559;//2560 CPRI samples (4 byte) are in WCDMA slot time

4.4.5 PD Channel Setup

//PD channel setup
PdCommonSetup.PdChConfig[i].bChannelEn = TRUE;//Channel enable
PdCommonSetup.PdChConfig[i].DataFormat = CSL_AIF2_LINK_DATA_TYPE_NORMAL;
PdCommonSetup.AxCOffset[i] = 0;// same to Egress AxC offset
PdCommonSetup.PdChConfig1[i].bTsWatchDogEn = FALSE;//disable watchdog
PdCommonSetup.PdChConfig1[i].DataFormat = CSL_AIF2_GSM_DATA_OTHER;
PdCommonSetup.PdChConfig1[i].FrameCounter = 0;//framing counter group number
PdCommonSetup.PdChConfig1[i].DioOffset = 0;//Use zero offset for simple test
PdCommonSetup.PdChConfig1[i].TddEnable = 0xFFFF;//enables all symbols(FDD)
PdCommonSetup.TddEnable1[i] = 0xFFFFFFFF;//enables all symbols (FDD
PdCommonSetup.TddEnable2[i] = 0xFFFFFFFF;//enables all symbols(FDD
PdCommonSetup.TddEnable3[i] = 0xFFFFFFFF;//enables all symbols(FDD
PdCommonSetup.TddEnable4[i] = 0xFFFFFFFF;//enables all symbols(FDD

Channel setup is much simpler than the OBSAI case because CPRI gets routing info from the link setup.

4.4.6 PE Channel Setup

//PE channel setup
PeCommonSetup.bEnableCh[i] = TRUE;//Enable PE channel
PeCommonSetup.PeDmaCh0[i].bCrcEn = FALSE;//disable CRC
PeCommonSetup.PeDmaCh0[i].FrameTC = 0;//use framing terminal count 0
PeCommonSetup.PeDmaCh0[i].RtControl = CSL_AIF2_PE_RT_INSERT;
PeCommonSetup.PeDmaCh0[i].CrcType = CSL_AIF2_CRC_8BIT;//CRC type
PeCommonSetup.PeDmaCh0[i].isEthernet = FALSE;//AxC data
PeCommonSetup.PeInFifo[i].SyncSymbol = 0;//Sync symbol offset
PeCommonSetup.PeInFifo[i].MFifoWmark = 2;//Message FIFO water mark
PeCommonSetup.PeInFifo[i].MFifoFullLevel = 3;//Message FIFO full level
PeCommonSetup.PeAxcOffset[i] = 0;// No external AxC offset
// PE channel LUT setup
PeCommonSetup.ChIndex0[i] = i;
PeCommonSetup.bEnableChIndex0[i] = TRUE;
PeCommonSetup.CpriPktEn0[i] = FALSE;

For OBSAI AxC offset, the basic unit was the dual-byte clock and the counter starts from radio frame time,
but CPRI AxC offset uses the sample number as the basic unit and the counter starts from PHY frame
time. For more information about how to calculate AxC offset, see the KeyStone I Architecture Antenna
Interface 2 (AIF2) User's Guide (SPRUGV7) and KeyStone II Architecture Antenna Interface 2 (AIF2)
User's Guide (SPRUHL2).

5 DMA Methodology
There is a basic difference in the requirements and handling for WCDMA data versus all other kinds of
data transport. WCDMA uses antenna data in a streaming manner with little demarcation between
timeslots of frames, however, OFDM standards do processing based on groups of samples and are
therefore handled as packet data. This comprises the main differences between DMA methodologies for
AIF1 and AIF2. AIF1 supported circuit-switched data transport based on the WCDMA data rate and timing
but AIF2 has extended features to support packet-type data streams with SOP (start of packet) and EOP
(end of stream) marks. These requirements allow use of the concept of Multicore Navigator and DirectIO.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8
http://www.ti.com/lit/pdf/SPRUGV7
http://www.ti.com/lit/pdf/SPRUHL2

www.ti.com DMA Methodology

23SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

Multicore Navigator transfers data based on packet or symbol but AIF2 uses the 64-byte chunk as a basic
burst size between the PKTDMA and AD module. The Packet DMA (PKTDMA) scheme is used mainly for
the OFDM radio standard like LTE, WiMAX, TD-SCDMA, and GSM/Edge and it is also used for pure
packet-mode data like Ethernet, control word, and generic packet transfer on OBSAI or CPRI AxC data
slots. WCDMA does not use Multicore Navigator to avoid unnecessary internal processing delay; instead,
it uses a DirectIO scheme, which is very close to the legacy EDMA style of AIF1.

The following sections show how AIF2 can handle packet data and circuit data efficiently by using these
two new DMA methodologies.

5.1 Multicore Navigator
Multicore Navigator is a methodology and a series of hardware accelerator modules, which allow DSP
cores and peripherals to transfer packets effectively. It is a safe and managed way that memory can be
used to pass data. The DSP host allocates blocks of memory and configures the Multicore Navigator
hardware to utilize the memory region. A key aspect of the Multicore Navigator is that the memory is
broken up into small grain buffers that are link-listed together via the Multicore Navigator hardware,
creating virtually any size packets.

Multicore Navigator has a large degree of flexibility. Some applications are not tolerant to breaking up
packets into multiple buffers. For these applications, Multicore Navigator has an alternate operation where
only a single fixed-size buffer is used per packet. Clearly the buffer size needs to be chosen in advance to
handle the largest possible packet size. (Each memory region supports only one buffer size.)

5.1.1 Multicore Navigator Descriptors
Multicore Navigator has the concept of descriptors, which are a form of packet header or buffer that
contains information specific to Multicore Navigator. Pointers to buffers are contained in descriptors as
well as many other useful fields for both software and the PKTDMA engine. Descriptor fields vary
according to the Multicore Navigator packet type being supported.

5.1.1.1 Host Mode Descriptor
As well as other information, holds an additional pointer to the “next” Host Mode Descriptor in the packet
(forming a linked list). The Descriptor and Buffer are separate entities stored in separate areas of memory.

5.1.1.2 Monolithic and Monolithic Descriptor
Descriptor and Buffer are merged into one contiguous portion of memory (basically, the Buffer contains
the Descriptors in the first n words). PKTDMA is aware of the offset between the descriptor and beginning
of the payload.

5.1.2 Multicore Navigator Queues
Queues are at the heart of the Multicore Navigator concept. There are several types of Multicore
Navigator Queues. Queues can represent either individual Descriptor/Buffer pairs or “Packets”. The Free
Queue is a queue of Descriptors/Buffers, while all other queues are queues of packets. The queues of
packets are a linked list of SOP Descriptor pointers only. If more than one Descriptor/Buffer Pair is used to
store a packet, the linked list within the packet is contained in the Descriptors. In other words (for Host
Mode), packet queues can be thought of as a double-linked list where the first order linking is contained in
the queue and the second-order linking is contained in the Descriptors.

5.1.3 Multicore Navigator Scheduler
Normally QM and PKTDMA schedule the data transfer for themselves; but for AIF2, scheduling is done by
the AIF2 core. As data comes into the AIF2 core, the PD aggregates the data into quad words and writes
the quad words into the DB buffers. For Multicore Navigator packet data, the PD is aware of packet
boundaries and identifies the end (EOP). The DB Multicore Navigator scheduling circuitry counts the Quad
words. For every four Qwords or EOP, a transfer token is scheduled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

Config

SCR

SD

SERDES Mem

AIF2 (Mega-Module)

AIF2

core CPPI

DMA

CPPI

QM

SCR

DMA

SCR

M
QM I/F

RX Streaming I/F

TX Streaming I/F

TX Sched I/F

TX ACK I/F

DMA Methodology www.ti.com

24 SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

AIF2 normally performs 64-byte transfers over the VBUS and therefore accummulates four Qwords before
making a transfer. Transfer requests are scheduled “first come- first served” into the token FIFO. Transfer
request tokens are passed to the PKTDMA block one at a time. PKTDMA performs the appropriate DMA
activity.

For Egress, PE requests Qword-size chunks of data based on the potential for data consumption. PE is
constantly counting through the transmission rules. When transmission rules have dictated that PE had
the potential to consume two Qwords, PE requests a DMA burst. The DB is qualifying PE DMA requests
with the availability of space in the input FIFO. If DB does not have sufficient space for the transfer, the
request is simply dropped. The PKTDMA performs DMA transfers only for channels that have data to be
transported. PKTDMA gets a dedicated signal from the Multicore Navigator QM when a channel has data
to be transported.

5.1.4 Multicore Navigator Interfaces to AIF2
Figure 18 shows the interfaces from the AIF2 core to the PKTDMA and from the PKTDMA to the Queue
Manager.

Figure 18. AIF2 Core, PKTDMA, and QM Connectivity

The PKTDMA, QM interface is simply a FIFO not empty flag per transmit DMA channel. The Queue
manager supplies a bit per PKTDMA channel queue to indicate whether there is a new packet available to
transmit. The transmit portion of the PKTDMA uses the QM queue status when the AIF2 Tx Scheduler
issues a read request for a queue.

In the Tx Scheduler Interface, the AIF2 core controls the rate of data flow and the order in which DMA
channels are serviced by supplying “requests” to the PKTDMA engine. A “request” tells the PKTDMA to
move x number of bytes for DMA channel y. The PKTDMA engine actually counts through the packet,
determining packet boundaries based on the Length field in the descriptor.

The data path connection between the AIF2 core and PKTDMA is the “Streaming Interface”. Ingress and
Egress are independent operations with their own dedicated streaming interface. AIF2 uses 128-bit
streaming interfaces. The 128-data bus is used to pass the Multicore Navigator packet payload.

5.1.5 Multicore Navigator Packet Types
Multicore Navigator is extremely general and flexible. The intended use of AIF2 is to use Multicore
Navigator in a specific and limited way with only two Multicore Navigator packet types:
• Monolithic—Mainly used for {LTE, WiMax, TD-SCDMA, GSM} antenna data
• Host—Mainly used for {control, generic packet, Ethernet} traffic

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

www.ti.com DMA Methodology

25SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

Host mode has considerable performance overhead with all the descriptor and pointer operations. In Host
mode, the first descriptor is known as the packet descriptor and only this descriptor is placed on a
transport queue in the QM. It is not recommended to use host mode for CPRI, because CPRI needs to
pack the data in a short time and it cannot withstand a long DMA time delay when compared to OBSAI.
Therefore, Mono mode is highly recommended, even for Ethernet or generic packet traffic.

Multicore Navigator Monolithic packet types have the descriptor and buffer concatenated in one
contiguous memory buffer. Because the descriptor and buffer are in contiguous memory, the PKTDMA
operations are simplified when addressing memory. The Monolithic packet descriptor is exactly 16 bytes.
Many of the fields are required by Multicore Navigator, but four bytes are allocated for protocol-specific
use. The Monolithic packet type uses some of the protocol-specific bits for Radio Standardinformation like:
• Ingress/Egress
• AxC number
• Symbol Number

In the special case of GSM Baseband Hopping, where application software assigns an OBSAI address to
Control Packets, the protocol-specific word contains the OBSAI address (13 bits).

If Monolithic is used for non-AxC data, AIF2 fills the Egress protocol-specific fields with zeros and the
Ingress protocol-specific fields can be disabled.

5.2 Direct IO
The term DirectIO means that a peripheral has dedicated custom logic, which implements data movement.
For AIF2, custom circuitry is built to handle data movement requirements unique to WCDMA. The
PKTDMA module has DirectIO support features that allow AIF2 to pass VBUS reads/writes to the VBUS,
using the 128-bit VBUSM master port on the PKTDMA. The AIF2 Multicore Navigator Scheduler gives
DirectIO accesses higher priority than Multicore Navigator packet transfers.

DirectIO is a state machine that is triggered to transfer data when internal AT system events fire. Example
transfer times could be every 4, 8, or 32 chips of time. The time granularity of the data transfer depends
on UL/DL and the preferred packing at the destination. For AIF1 EDMA, dedicated AxC number of data
was packed together in one of the eight parts of the Circular RAM; but AIF2 has 128 FIFOs for each AxC
channel and it is delivered by the DIO engine, which could be set up by AD MMR. (AxC num, block num,
burst stride, and block stride instead of A, B, C count of EDMA.)

5.2.1 Direct IO for WCDMA
• Circular Buffers

– 32 –or- 64 chips (128 or 256 bytes)
• Ingress Destinations

– RAC—UL data
– DDR3—UL data for delay
– L2—UL data for RSA processing

• Egress Source
– TAC—DL data
– DDR3—Delayed DL data
– L2—RSA generated DL data

DirectIO is legacy support for WCDMA traffic. Because of the nature of WCDMA, the DMA does more
circular buffering, particularly with the legacy support of the RAC hardware accelerator module that has a
predefined interface. The concept of a FIFO for WCDMA data does not work very well. DirectIO uses the
DB RAM as a set of circular memory regions, one for each of the required WCDMA AxC. DirectIO only
supports two AIF2 DB internal buffer sizes:
• 128 byte: intended for WCDMA use
• 256 byte: intended for higher rate LTE uses

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

DMA Methodology www.ti.com

26 SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

DirectIO is a precisely-timed event relative to Multicore Navigator that is a data-arrival-driven event. The
AT creates internal system events that control the timing. Two separate system events control the
DirectIO DMA:
• Frame rate strobe
• Iteration strobe

– Four chips for TAC DL
– Eight chips and 32 chips for RAC UL
– Flexible for other burst sizes

5.2.2 DIO engine control MMRs in AD
DirectIO is fully controlled by configuring the AD registers below.

Register Description
num_qw Number of Qword per AxC (DL : 1 qw, UL : 2 qw)
num_axc Number of AxCs for the specific DIO engine.
dma_base_addr VBUS source or destination base address
dma_brst_ln Maximum DMA burst length. Normally set to four QW
dma_ch_en DMA channel enable/disable
rsa_en Egress DIO data type selection (DL, UL RSA)
dma_num_blks Number of data blocks to transfer before wrapping back to dma_base_addr
dma_brst_addr_stride DMA burst address stride (in multiples of 0x10 internally) after each DMA burst (64 bytes or less),

the DMA address will increment by this amount
dma_blk_addr_stride DMA block address stride (in multiples of 0x10 internally) after transferring each DMA block (every

event time), the DMA address will increment by this amount
dbcn0 ~ 63 Match dbcn order to each DB channel number

The legacy mode EDMA methodology has A, B, and C count and source, destination B index, and C index
concepts and these counters and indexes are matched to the AIF2 registers below.

Register Description
DirectIO ACnt num_qw
DirectIO BCnt num_axc
DirectIO CCnt dma_num_blks
DirectIO SBIDX dma_brst_addr_stride (Egress), No need for Ingress
DirectIO DBIDX dma_brst_addr_stride (Ingress), No need for Egress
DirectIO SCIDX dma_blk_addr_stride (Egress), No need for Ingress
DirectIO DCIDX dma_blk_addr_stride (Ingress), No need for Egress

5.3 Example Multicore Navigator Usage
This section shows how to configure Ingress and Egress Multicore Navigator configurations for LTE.

5.3.1 Ingress (DMA to FFTC)
When antenna data arrives at the AIF2 Ingress side, the Rx PKTDMA of AIF2 will pop a packet descriptor
from the Rx free descriptor queue (FDQ) for the antenna carrier, fill the data in the buffer, and push the
packet descriptor in the output queue when data is complete for the packet.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

AIF2

AIF2 Rx
FDQ

CDMA

FFTC

FFTC Rx
FDQ

CDMA
FFTC

Output Q

AIF 2
Output Q

FFTC
Input Q

CorePac

FFTC Tx
FDQ

CorePac

AIF2

AIF2 Rx
FDQ

CDMA

FFTC

FFTC Rx
FDQ

CDMA
FFTC

Output Q

AIF2

Output Q (Rx Q)

FFTC
Input Q

CorePac

Incoming
Data

www.ti.com DMA Methodology

27SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

Because FFTC is also a peripheral using Multicore Navigator, it is possible to connect the AIF2 and FFTC
directly through queues. In this case, the output queue of AIF2 can be specified as one of the input
queues of FFTC. When AIF2 pushes the packet descriptor into the queue, it triggers the QPEND status of
the corresponding queue. The Tx PKTDMA of FFTC will pop the descriptor from the input queue and start
DMA the data. When the processing is done, the Rx PKTDMA will pop a descriptor from FFTC Rx FDQ,
fill the results in the buffer and push the packet descriptor to the FFTC output queue. The output queue of
FFTC can be further processed by other Multicore Navigator modules or CorePac.

Figure 19 shows the process. The blue curved arrows indicate the possible routes for recycling. If, after
the packet in the input queue of FFTC is retrieved by FFTC Tx PKTDMA, there are no other modules that
need to use the same data, the packet can be set to return to the FDQ for AIF2 Rx, which is done
automatically by FFTC Tx PKTDMA. Depending on the next stage of processing after the FFTC, either
CorePac needs to recycle the FFTC output queue back to the FFTC Rx FDQ or the next Multicore
Navigator module can do it automatically.

Figure 19. Ingress LTE Data Flow (Direct DMA to FFTC)

Because it is not always desirable to have the output queue of the AIF2 to be the same as the input queue
of FFTC, they can be set to use different queues. (Figure 20). In this case, when a packet descriptor is
pushed into the AIF2 output queue, the packet must be reconstructed by popping a descriptor from the
FFTC Tx FDQ, linking the data buffer to the received antenna data, then the packet can be pushed into an
FFTC input queue. This can be done using CorePac or other methods, which will be described later.
When it comes to recycling, the AIF2 output queue, FFTC input queue, and FFTC output queue all need
to be recycled. In this figure, only the FFTC input queue can be recycled automatically by FFTC Tx
PKTDMA. The other two need to be recycled by CorePac or other methods.

Figure 20. Ingress LTE Data Flow (CorePac Intervention Model)

5.3.2 Egress (DMA to AIF2)
On the Egress side, it is the responsibility of the host to feed the input queue of FFTC. For example, the
host needs to pop a packet descriptor from Tx FDQ, configure all the fields of the packet descriptor,
prepare the payload data, and push the packet descriptor into one of the input queues of FFTC. The Tx
PKTDMA of FFTC will pop the descriptor, stream the data in, and recycle the packet descriptor to the
queue specified in the packet descriptor.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

FFTC

FFTC Rx
FDQ

CDMAFFTC
Input Q

CorePac

FFTC Tx

FDQ

AIF2

CDMA

FFTC
Output Q

AIF2 Tx Q

DMA Methodology www.ti.com

28 SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

When FFTC is done processing, it pops a packet descriptor from Rx FDQ, fills in the data, and deposits
the packet descriptor into the output queue specified. If no other processing is needed before the data
goes out to antenna interface, the output queue of FFTC can be one of the input queues of AIF2. After the
Tx PKTDMA of AIF2 pops the packet from its input queue, it will stream the data out and recycle the
packet descriptor to the queue specified in the packet descriptor. Figure 21 shows the data flow.

Figure 21. Egress LTE Data Flow

5.4 Example Direct IO Usage
This section shows how to configure Ingress and Egress AD DirectIO configurations for WCDMA.

5.4.1 RAC Example
Figure 22 shows an example of how the DIO is programmed for RAC. The DMA Event period is eight
chips.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

0x0000

0x0800

0x1000

0x1800 0
x1

F
F
F

A
xC

0
_
S

0

A
xC

0
_
S

1

A
xC

1
_
S

0

A
xC

1
_
S

1

A
xC

2
_
S

0

A
xC

2
_
S

1

DMA burst

Samples 0-to-7

Samples 8-to-15

Samples 16-to-27

Samples 28-to-31

VBUS

AIF2
RAC

FEI RAM
OBSAI
/CPRI

1
6

b
y
te

s

A
x
C

0

A
x
C

1

A
x
C

2

0 1db_addr[3:0]

dbcn[6:0] 2

00

00

1

211

burst_sz 4

1

2

2 3 2

00

3

11

4

2

2

2

3

2

AxC0 AxC1AxC0AxC2AxC1 AxC2

4 5 4

00

5

11

4

2

4

2

5

2

AxC1AxC0 AxC2

6 7 6

00

7

11

4

2

6

2

7

2

AxC1AxC0 AxC2

0 1

2

00

00

1

211

4

1

2

AxC0 AxC2AxC1

...

...

...

...0x0000

_0000
dma_addr[31:0] 0x0000

_0040

0x0000

_0800

0x0000

_0840

0x0000

_1000

0x0000

_1040

0x0000

_1800

0x0000

_1840

0x0000

_0000

0x0000

_0040

bcnt loop

RAC loop

Trig TrigTrigTrigTrig

wrap1 wrap1 wrap1

wrap2

wrap1
bcnt loop bcnt loop bcnt loop bcnt loop

dma_brst_ln = 4

wrap2 = num_qw x num_axc x dma_num_blks

num_qw = 2 Qwords / AxC

num_axc = 3 AxCs (up to 54)

dma_num_blks = 4 blocks

wrap1 = num_qw x num_axc

dma_base_addr = 0x0000_0000
dma_brst_addr_stride = 0x004
dma_blk_addr_stride = 0x080

x 0x10
x 0x10

www.ti.com DMA Methodology

29SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

Figure 22. RAC Example

Register Description
num_qw Two Qwords for UL
num_axc Three AxCs
dma_base_addr VBUS destination base address is RAC front end interface
dma_brst_ln Four QWords
dma_ch_en Enable for three channels
rsa_en Enabled for UL RSA data
dma_num_blks Four blocks (fixed value for RAC)
dma_brst_addr_stride Four QWords
dma_blk_addr_stride 0x80 QWords
dbcn0 ~ 63 dbcn0 ~ 2 should be set for three channels

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

dma_brst_ln = 4

dma_base_addr = 0x0000_0000
dma_brst_addr_stride = 0x004
dma_blk_addr_stride = 0x000

x 0x10
x 0x10

num_qw = 1 Qwords / AxC

num_axc = 32/64 AxCs

Dma_num_blks = 8 or 16 blocks

wrap1 = num_qw x num_axc
wrap2 = num_qw x num_axc x dma_num_blks

16bytes AxC0

VBUS

TAC

OBSAI

/CPRI
AxC1
AxC2
AxC3
AxC4

AIF2

A
xC

0

A
xC

1

A
xC

2

...

...

0 0db_addr[3:0] 0

10

0

32

burst_sz 4

0 0 0

54

0

76

4

Ax

C0

1 1 1

10

1

32

4

1 1

6160

4

0x0000

_0000
dma_addr[31:0] 0x0000

_0040

0x0000

_0000

0x0000

_03C0

0 0 0

6160

0

6362

4

0x0000

_03C0

1 1 2

6362

2

10

4

0x0000

_0000

DB loop

Ax

C1

Ax

C2

Ax

C3

Ax

C4

Ax

C5

Ax

C6

Ax

C7

Ax
C60

Ax
C61

Ax
C62

Ax
C63

Ax

C0

Ax

C1

Ax

C2

Ax

C3

...

...

...

...

Ax
C60

Ax
C61

Ax
C62

Ax
C63

2 2

2 3

Ax

C0

Ax

C1

Ax

C2

Ax

C3

TrigTrig Trig

wrap1 wrap1

wrap2?

bcnt loop bcnt loop

...

...

...

...

...

...

...

...

dbcn[6:0]

Dynamic Configuration www.ti.com

30 SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

5.4.2 TAC Example:
Figure 23 shows an example of how the DIO is programmed for TAC. The DMA Event period is four chips.

Figure 23. TAC Example

Register Description
num_qw One Qwords for DL
num_axc 64 AxCs
dma_base_addr VBUS source base address is TAC back end interface
dma_brst_ln Four QWords
dma_ch_en Enable for 64 channels
rsa_en Disabled
dma_num_blks 8 blocks or 16 blocks
dma_brst_addr_stride Four QWords
dma_blk_addr_stride Zero Qwords (No block stride for TAC)
dbcn0 ~ 63 dbcn0 ~ 63 should be set for each channel

6 Dynamic Configuration
AIF1 could only support static configuration at initialization time, so it was necessary to stop all links and
reconfigure all modules again to add or delete an AxC or link. The Frame sync module also had limited
functionality about event reconfiguration. AIF2 supports several forms of dynamic changes intended to
support changes to the base station radio configuration. These types of changes are split into two basic
categories:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

www.ti.com Dynamic Configuration

31SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

• On-the-fly: Change occurs from one frame to the next without any “off” or error period of time. Requires
special ping/pong buffering of configuration data where the ping/pong will toggle on the next frame
boundary

• Normal Changes: An antenna carrier is torn down, later rebuilt to accomplish a change. There is the
expectation that some small amount of time of no transmission will elapse.

The major functionalities of AIF2 dynamic configuration are as follows:
• Link Add/Delete (add link without resetting AIF2 timer)
• AxC Add/Delete (add or delete AxC channel)
• GSM Base Band Hopping
• LTE (TDD) and WiMax (TDD)—change UL/DL ratio (On the fly)
• AT Timing

– System Event Add/Delete (On the fly)
– RadT re-synchronization

Basic operation of links and antenna carriers allow Add/Delete support. On-the-fly modification is generally
not supported. To perform a modify operation, delete the link/AxC followed by an add with the new desired
characteristics.

When adding or deleting a Channel, there are three levels of configuration required:
• PHY level: AIF2 Links need to be enabled and preferably up and running
• Protocol level: OBSAI address, type, transmission rules setup should be properly done
• DMA level: DMA channels should be assigned and turned on (by DB, AD, PKTDMA modules)

For WCMA, AxC channel Add/Delete should incorporate with the Add/Delete of the assigned DirectIO
DMA configuration. The DirectIO times the application of configuration data to the RadT frame boundary.
With the PKTDMA module, you have a choice to Add/Delete Multicore Navigator Channels when
performing Add/Delete of AxC, or keeping the Multicore Navigator channel always active.

The GSM Baseband hopping special requirements are not handled as reconfiguration, but rather by
allowing software to direct where data goes. For AxC data, all DMA channels are allocated and software
steers data into the appropriate DMA channel FIFO. For control data, software writes the destination
OBSAI addressing into the Multicore Navigator packet (in protocol-specific fields).

The standards that support TDD have separate UL and DL regions. On-the-fly update of the DL/UL ration
is required. On-the-fly update requires AIF2 to ping-pong buffer control information and transition to new
control information at a precise timing (on frame boundary).

Table 6. On-the-fly Update Requirements

Radio Standard
On-the-Fly Update

UL/DL Ratio Symbol Size Sample Freq-or- BW
LTE FDD N/A No No
LTE TDD Yes No No
WiMax (TDD) Yes No No
TD-SCDMA (TDD) No N/A No

LTE supports extended and normal cyclic prefix length in symbols and multiple bandwidth. LTE bandwidth
change (for example from 20 MHz to 10 MHz) or change of cyclic prefix length is a radical reconfiguration
of an antenna carrier. For this change, the antenna carrier is deleted and later added with the new
parameters. This is not considered on-the-fly as it requires a short period of downtime (10 ms frame time)
before it is reactivated. You have a choice of handling Multicore Navigator when supporting multiple LTE
bandwidths simultaneously. The easiest solution is to allocate the Multicore Navigator buffer size to
accommodate the largest symbol size supported. When an antenna of lesser bandwidth accesses these
buffers, only a fraction of the memory is actually used.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8

References www.ti.com

32 SPRABH8–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Migrating From AIF1 to AIF2 for KeyStone Devices

Changes in system-event generation are supported by first turning a system event off by AT-event
enable/disable registers, reconfiguring the system event, then turning it on. It is envisioned that system
events are mainly used by application software and that having an “off” period is required for the software
to re-sync to the difference in system-event timing. Each system event is independent of the others and it
gives the flexibility to change one without corrupting any others. The AT radio timer is synchronized at
startup to an external timing source or internal software timing source. Dynamic synchronization is also
supported to re-synchronize the radio timer. In this operation, the radio timer is synchronized to the next
frame boundary.

7 References
• KeyStone I Architecture Antenna Interface 2 (AIF2) User's Guide (SPRUGV7)
• KeyStone II Architecture Antenna Interface 2 (AIF2) User's Guide (SPRUHL2)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABH8
http://www.ti.com/lit/pdf/SPRUGV7
http://www.ti.com/lit/pdf/SPRUHL2

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Migrating From AIF1 to AIF2 for KeyStone Devices
	1 Introduction
	1.1 Acronyms

	2 Differences in Physical Level
	2.1 Clock Strategy
	2.2 6 GHz SerDes
	2.3 AIF2 Reset
	2.4 Internal Memory for DMA

	3 Frame Sync Module vs. AIF2 Timer
	3.1 Interface and Architecture Changes
	3.1.1 Interface
	3.1.2 General Architecture

	3.2 AIF2 11 External Event
	3.3 AIF2 Internal Event

	4 Transmission Rule (Modulo, DBMR, Channel LUT)
	4.1 AIF1 Transmission Rule
	4.2 AIF2 Transmission Rule (Modulo, DBMR, Channel LUT)
	4.2.1 OBSAI Transmission Rules
	4.2.2 CPRI Transmission Rules
	4.2.3 Transmission Rule Setup Example
	4.2.3.1 OBSAI
	4.2.3.2 CPRI

	4.3 PE, PD setup (OBSAI)
	4.3.1 PD Link Setup
	4.3.2 PE Link Setup
	4.3.3 PD Global Setup
	4.3.4 PE Global Setup
	4.3.5 PD Channel Setup
	4.3.6 PE Channel Setup

	4.4 PE, PD setup (CPRI)
	4.4.1 PD Link Setup
	4.4.2 PE Link Setup
	4.4.3 PD Global Setup
	4.4.4 PE Global Setup
	4.4.5 PD Channel Setup
	4.4.6 PE Channel Setup

	5 DMA Methodology
	5.1 Multicore Navigator
	5.1.1 Multicore Navigator Descriptors
	5.1.1.1 Host Mode Descriptor
	5.1.1.2 Monolithic and Monolithic Descriptor

	5.1.2 Multicore Navigator Queues
	5.1.3 Multicore Navigator Scheduler
	5.1.4 Multicore Navigator Interfaces to AIF2
	5.1.5 Multicore Navigator Packet Types

	5.2 Direct IO
	5.2.1 Direct IO for WCDMA
	5.2.2 DIO engine control MMRs in AD

	5.3 Example Multicore Navigator Usage
	5.3.1 Ingress (DMA to FFTC)
	5.3.2 Egress (DMA to AIF2)

	5.4 Example Direct IO Usage
	5.4.1 RAC Example
	5.4.2 TAC Example

	6 Dynamic Configuration
	7 References

	Important Notice

