
 1

Sensorless Field Oriented Control of 3-Phase
Permanent Magnet Synchronous Motors

Bilal Akin C2000 Systems and Applications Team
Manish Bhardwaj
Jon Warriner D3 Engineering

Abstract

This application note presents a solution to control a permanent magnet synchronous motor (PMSM)
using the TMS320F2803x microcontrollers. TMS320F2803x devices are part of the family of C2000
microcontrollers which enable cost-effective design of intelligent controllers for three phase motors by
reducing the system components and increasing efficiency. With these devices it is possible to realize
far more precise digital vector control algorithms like Field Orientated Control (FOC). This algorithm’s
implementation is discussed in this document. The FOC algorithm maintains efficiency in a wide range
of speeds and takes into consideration torque changes with transient phases by processing a dynamic
model of the motor. Among the solutions proposed are ways to eliminate the phase current sensors and
use an observer for speed sensorless control. The DMC Library uses TI’s IQ math library, which
supports both fixed and floating point maths. This makes migrating from floating to fixed point devices
easy. A configuration for TMS320F2806x, which is a floating point microcontroller, is available in the
project to highlight this.

This application note covers the following:

 A theoretical background on field oriented motor control principle.
 Incremental build levels based on modular software blocks.
 Experimental results

Table of Contents

Introduction ... 2
Permanent Magnet Motors ... 2
Field OrientedControl.. 4
Benefits of 32-bit C2000 Controllers for Digital Motor Control ... 10
TI Motor Control Literature and DMC Library.. 11
System Overview.. 12
Hardware Configuration .. 16
Generic Steps to Load and Build PM_Sensorless Project.. 18
Incremental System Build ... 19

Version 1.0 – Mar 2011 - SPRABZ2

 2

Introduction

A brushless Permanent Magnet Synchronous Motor (PMSM) has a wound stator, a permanent magnet
rotor assembly and internal or external devices to sense rotor position. The sensing devices provide
position feedback for adjusting frequency and amplitude of stator voltage reference properly to maintain
rotation of the magnet assembly. The combination of an inner permanent magnet rotor and outer
windings offers the advantages of low rotor inertia, efficient heat dissipation, and reduction of the motor
size. Moreover, the elimination of brushes reduces noise, EMI generation and suppresses the need of
brushes maintenance.

This document presents a solution to control a permanent magnet synchronous motor using the
TMS320F2803x and TMS320F2806x. These controllers enable cost-effective design of intelligent
controllers for PM motors which can fulfill enhanced operations, consisting of fewer system components,
lower system cost and increased performances. The control method presented relies on the field
orientated control (FOC). This algorithm maintains efficiency in a wide range of speeds and takes into
consideration torque changes with transient phases by controlling the flux directly from the rotor
coordinates. This application report presents the implementation of a control for sinusoidal PMSM
motor. The sinusoidal voltage waveform applied to this motor is created by using the Space Vector
modulation technique. Minimum amount of torque ripple appears when driving this sinusoidal BEMF
motor with sinusoidal currents.

Permanent Magnet Motors

There are primarily two types of three-phase permanent magnet synchronous motors (PMSM). One
uses rotor windings fed from the stator and the other uses permanent magnets. A motor fitted with rotor
windings, requires brushes to obtain its current supply and generate rotor flux. The contacts are made
of rings and have any commutator segments. The drawbacks of this type of structure are maintenance
needs and lower reliability.

Replacing the common rotor field windings and pole structure with permanent magnets puts the motor
into the category of brushless motors. It is possible to build brushless permanent magnet motors with
any even number of magnet poles. The use of magnets enables an efficient use of the radial space and
replaces the rotor windings, therefore suppressing the rotor copper losses. Advanced magnet materials
permit a considerable reduction in motor dimensions while maintaining a very high power density.

Figure 1 A three-phase synchronous motor with a one permanent magnet pair pole rotor

 3

Synchronous Motor Operation

 Synchronous motor construction: Permanent magnets are rigidly fixed to the rotating axis to create a
constant rotor flux. This rotor flux usually has a constant magnitude. The stator windings when
energized create a rotating electromagnetic field. To control the rotating magnetic field, it is
necessary to control the stator currents.

 The actual structure of the rotor varies depending on the power range and rated speed of the
machine. Permanent magnets are suitable for synchronous machines ranging up-to a few Kilowatts.
For higher power ratings the rotor usually consists of windings in which a DC current circulates. The
mechanical structure of the rotor is designed for number of poles desired, and the desired flux
gradients desired.

 The interaction between the stator and rotor fluxes produces a torque. Since the stator is firmly
mounted to the frame, and the rotor is free to rotate, the rotor will rotate, producing a useful
mechanical output.

 The angle between the rotor magnetic field and stator field must be carefully controlled to produce
maximum torque and achieve high electromechanical conversion efficiency. For this purpose a fine
tuning is needed after closing the speed loop using sensorless algorithm in order to draw minimum
amount of current under the same speed and torque conditions.

 The rotating stator field must rotate at the same frequency as the rotor permanent magnetic field;
otherwise the rotor will experience rapidly alternating positive and negative torque. This will result in
less than optimal torque production, and excessive mechanical vibration, noise, and mechanical
stresses on the machine parts. In addition, if the rotor inertia prevents the rotor from being able to
respond to these oscillations, the rotor will stop rotating at the synchronous frequency, and respond
to the average torque as seen by the stationary rotor: Zero. This means that the machine experiences
a phenomenon known as ‘pull-out’. This is also the reason why the synchronous machine is not self
starting.

 The angle between the rotor field and the stator field must be equal to 90º to obtain the highest
mutual torque production. This synchronization requires knowing the rotor position in order to
generate the right stator field.

 The stator magnetic field can be made to have any direction and magnitude by combining the
contribution of different stator phases to produce the resulting stator flux.

Figure 2 The interaction between the rotating stator flux, and the rotor flux produces a torque which will

cause the motor to rotate.

 4

Field Oriented Control

Introduction

In order to achieve better dynamic performance, a more complex control scheme needs to be applied,
to control the PM motor. With the mathematical processing power offered by the microcontrollers, we
can implement advanced control strategies, which use mathematical transformations in order to
decouple the torque generation and the magnetization functions in PM motors. Such de-coupled torque
and magnetization control is commonly called rotor flux oriented control, or simply Field Oriented
Control (FOC).

The main philosophy behind the FOC

In order to understand the spirit of the Field Oriented Control technique, let us start with an overview of
the separately excited direct current (DC) Motor. In this type of motor, the excitation for the stator and
rotor is independently controlled. Electrical study of the DC motor shows that the produced torque
and the flux can be independently tuned. The strength of the field excitation (i.e. the magnitude of
the field excitation current) sets the value of the flux. The current through the rotor windings determines
how much torque is produced. The commutator on the rotor plays an interesting part in the torque
production. The commutator is in contact with the brushes, and the mechanical construction is designed
to switch into the circuit the windings that are mechanically aligned to produce the maximum torque.
This arrangement then means that the torque production of the machine is fairly near optimal all the
time. The key point here is that the windings are managed to keep the flux produced by the rotor
windings orthogonal to the stator field.

Figure 3 Separated excitation DC motor model, flux and torque are independently controlled and the

current through the rotor windings determines how much torque is produced.

AC machines do not have the same key features as the DC motor. In both cases we have only one
source that can be controlled which is the stator currents. On the synchronous machine, the rotor
excitation is given by the permanent magnets mounted onto the shaft. On the synchronous motor, the
only source of power and magnetic field is the stator phase voltage. Obviously, as opposed to the DC
motor, flux and torque depend on each other.

The goal of the FOC (also called vector control) on synchronous and asynchronous machine is to be
able to separately control the torque producing and magnetizing flux components. The control
technique goal is to (in a sense), imitate the DC motor’s operation. FOC control will allow us to
decouple the torque and the magnetizing flux components of stator current. With decoupled control of
the magnetization, the torque producing component of the stator flux can now be thought of as
independent torque control. To decouple the torque and flux, it is necessary to engage several
mathematical transforms, and this is where the microcontrollers add the most value. The processing
capability provided by the microcontrollers enables these mathematical transformations to be carried
out very quickly. This in turn implies that the entire algorithm controlling the motor can be executed at a
fast rate, enabling higher dynamic performance. In addition to the decoupling, a dynamic model of the

)(
..

..

e

em

If
KE

IKT

=Φ
ΩΦ=
Φ=

Inductor (field
excitation)

Armature Circuit

 5

motor is now used for the computation of many quantities such as rotor flux angle and rotor speed. This
means that their effect is accounted for, and the overall quality of control is better.
According to the electromagnetic laws, the torque produced in the synchronous machine is equal to
vector cross product of the two existing magnetic fields:

rotorstatorem BBT
rr

×=

This expression shows that the torque is maximum if stator and rotor magnetic fields are orthogonal
meaning if we are to maintain the load at 90 degrees. If we are able to ensure this condition all the time,
if we are able to orient the flux correctly, we reduce the torque ripple and we ensure a better dynamic
response. However, the constraint is to know the rotor position: this can be achieved with a position
sensor such as incremental encoder. For low-cost application where the rotor is not accessible,
different rotor position observer strategies are applied to get rid of position sensor.

In brief, the goal is to maintain the rotor and stator flux in quadrature: the goal is to align the stator flux
with the q axis of the rotor flux, i.e. orthogonal to the rotor flux. To do this the stator current component
in quadrature with the rotor flux is controlled to generate the commanded torque, and the direct
component is set to zero. The direct component of the stator current can be used in some cases for
field weakening, which has the effect of opposing the rotor flux, and reducing the back-emf, which
allows for operation at higher speeds.

 Technical Background

The Field Orientated Control consists of controlling the stator currents represented by a vector. This
control is based on projections which transform a three phase time and speed dependent system into a
two co-ordinate (d and q co-ordinates) time invariant system. These projections lead to a structure
similar to that of a DC machine control. Field orientated controlled machines need two constants as
input references: the torque component (aligned with the q co-ordinate) and the flux component
(aligned with d co-ordinate). As Field Orientated Control is simply based on projections the control
structure handles instantaneous electrical quantities. This makes the control accurate in every working
operation (steady state and transient) and independent of the limited bandwidth mathematical model.
The FOC thus solves the classic scheme problems, in the following ways:

 The ease of reaching constant reference (torque component and flux component of the stator current)

 The ease of applying direct torque control because in the (d,q) reference frame the expression of the
torque is:

SqR im ψ∝

By maintaining the amplitude of the rotor flux (Rψ) at a fixed value we have a linear relationship
between torque and torque component (iSq). We can then control the torque by controlling the torque
component of stator current vector.

Space Vector Definition and Projection

The three-phase voltages, currents and fluxes of AC-motors can be analyzed in terms of complex
space vectors. With regard to the currents, the space vector can be defined as follows. Assuming that ia,
ib, ic are the instantaneous currents in the stator phases, then the complex stator current vector si is
defined by:

cbas iiii 2αα ++=

 6

where
π

α 3
2j

e= and
π

α 3
4

2 j
e= , represent the spatial operators. The following diagram shows the stator

current complex space vector:

Figure 4 Stator current space vector and its component in (a,b,c)

where (a,b,c) are the three phase system axes. This current space vector depicts the three phase
sinusoidal system. It still needs to be transformed into a two time invariant co-ordinate system. This
transformation can be split into two steps:

 (a,b,c)),(βα⇒ (the Clarke transformation) which outputs a two co-ordinate time variant system
 ⇒),(βα (d,q) (the Park transformation) which outputs a two co-ordinate time invariant system

The (a,b,c)),(βα⇒ Projection (Clarke transformation)

The space vector can be reported in another reference frame with only two orthogonal axis called),(βα .
Assuming that the axis a and the axis α are in the same direction we have the following vector diagram:

Figure 5 Stator current space vector and its components in the stationary reference frame

The projection that modifies the three phase system into the),(βα two dimension orthogonal system is
presented below.

 7

⎪⎩

⎪
⎨
⎧

+=

=

bas

as

iii

ii

3
2

3
1

β

α

The two phase),(βα currents are still depends on time and speed.

 The ⇒),(βα (d,q) Projection (Park Transformation)

This is the most important transformation in the FOC. In fact, this projection modifies a two phase
orthogonal system),(βα in the d,q rotating reference frame. If we consider the d axis aligned with the
rotor flux, the next diagram shows, for the current vector, the relationship from the two reference frame:

Figure 6 Stator current space vector and its component in (α,β) and in the d,q rotating reference frame

where θ is the rotor flux position. The flux and torque components of the current vector
are determined by the following equations:

⎪⎩

⎪
⎨
⎧

+−=

+=

θθ

θθ

βα

βα

cossin

sincos

sssq

sssd

iii

iii

These components depend on the current vector),(βα components and on the rotor flux position; if we
know the right rotor flux position then, by this projection, the d,q component becomes a constant. Two
phase currents now turn into dc quantity (time-invariant). At this point the torque control becomes easier
where constant isd (flux component) and isq (torque component) current components controlled
independently.

 8

The Basic Scheme for the FOC

The following diagram summarizes the basic scheme of torque control with FOC:

Figure 7 Basic scheme of FOC for AC motor

Two motor phase currents are measured. These measurements feed the Clarke transformation module.
The outputs of this projection are designated isα and isβ. These two components of the current are the
inputs of the Park transformation that gives the current in the d,q rotating reference frame. The isd and
isq components are compared to the references isdref (the flux reference) and isqref (the torque reference).
At this point, this control structure shows an interesting advantage: it can be used to control either
synchronous or HVPM machines by simply changing the flux reference and obtaining rotor flux position.
As in synchronous permanent magnet a motor, the rotor flux is fixed determined by the magnets; there
is no need to create one. Hence, when controlling a PMSM, isdref should be set to zero. As HVPM
motors need a rotor flux creation in order to operate, the flux reference must not be zero. This
conveniently solves one of the major drawbacks of the “classic” control structures: the portability from
asynchronous to synchronous drives. The torque command isqref could be the output of the speed
regulator when we use a speed FOC. The outputs of the current regulators are Vsdref and Vsqref; they are
applied to the inverse Park transformation. The outputs of this projection are Vsαref and Vsβref which are
the components of the stator vector voltage in the),(βα stationary orthogonal reference frame. These
are the inputs of the Space Vector PWM. The outputs of this block are the signals that drive the inverter.
Note that both Park and inverse Park transformations need the rotor flux position. Obtaining this rotor
flux position depends on the AC machine type (synchronous or asynchronous machine). Rotor flux
position considerations are made in a following paragraph.

Rotor Flux Position

Knowledge of the rotor flux position is the core of the FOC. In fact if there is an error in this variable the
rotor flux is not aligned with d-axis and isd and isq are incorrect flux and torque components of the stator
current. The following diagram shows the (a,b,c),),(βα and (d,q) reference frames, and the correct
position of the rotor flux, the stator current and stator voltage space vector that rotates with d,q
reference at synchronous speed.

 9

Figure 8 Current, voltage and rotor flux space vectors in the d,q rotating reference frame and their

relationship with a,b,c and (α,β) stationary reference frame

The measure of the rotor flux position is different if we consider synchronous or asynchronous motor:

 In the synchronous machine the rotor speed is equal to the rotor flux speed. Then θ (rotor flux
position) is directly measured by position sensor or by integration of rotor speed.

 In the asynchronous machine the rotor speed is not equal to the rotor flux speed (there is a slip
speed), then it needs a particular method to calculate θ. The basic method is the use of the current
model which needs two equations of the motor model in d,q reference frame.

Theoretically, the field oriented control for the PMSM drive allows the motor torque be controlled
independently with the flux like DC motor operation. In other words, the torque and flux are decoupled
from each other. The rotor position is required for variable transformation from stationary reference
frame to synchronously rotating reference frame. As a result of this transformation (so called Park
transformation), q-axis current will be controlling torque while d-axis current is forced to zero. Therefore,
the key module of this system is the estimation of rotor position using Sliding-mode observer. The
overall block diagram of this project is depicted in Figure 9.

Figure 9 Overall block diagram of sensorless field oriented control of PMSM

 10

Benefits of 32-bit C2000 Controllers for Digital Motor Control (DMC)

C2000 family of devices posses the desired computation power to execute complex control algorithms
along with the right mix of peripherals to interface with the various components of the DMC hardware
like the ADC, ePWM, QEP, eCAP etc. These peripherals have all the necessary hooks for
implementing systems which meet safety requirements, like the trip zones for PWMs and comparators.
Along with this the C2000 ecosystem of software (libraries and application software) and hardware
(application kits) help in reducing the time and effort needed to develop a Digital Motor Control solution.
The DMC Library provides configurable blocks that can be reused to implement new control strategies.
IQMath Library enables easy migration from floating point algorithms to fixed point thus accelerating the
development cycle.

Thus, with C2000 family of devices it is easy and quick to implement complex control algorithms
(sensored and sensorless) for motor control. The use of C2000 devices and advanced control schemes
provides the following system improvements

 Favors system cost reduction by an efficient control in all speed range implying right dimensioning of
power device circuits

 Use of advanced control algorithms it is possible to reduce torque ripple, thus resulting in lower
vibration and longer life time of the motor

 Advanced control algorithms reduce harmonics generated by the inverter thus reducing filter cost.

 Use of sensorless algorithms eliminates the need for speed or position sensor.

 Decreases the number of look-up tables which reduces the amount of memory required

 The Real-time generation of smooth near-optimal reference profiles and move trajectories, results in
better-performance

 Generation of high resolution PWM’s is possible with the use of ePWM peripheral for controlling the
power switching inverters

 Provides single chip control system

For advanced controls, C2000 controllers can also perform the following:

 Enables control of multi-variable and complex systems using modern intelligent methods such as
neural networks and fuzzy logic.

 Performs adaptive control. C2000 controllers have the speed capabilities to concurrently monitor the
system and control it. A dynamic control algorithm adapts itself in real time to variations in system
behaviour.

 Performs parameter identification for sensorless control algorithms, self commissioning, and online
parameter estimation update.

 Performs advanced torque ripple and acoustic noise reduction.

 Provides diagnostic monitoring with spectrum analysis. By observing the frequency spectrum of
mechanical vibrations, failure modes can be predicted in early stages.

 Produces sharp-cut-off notch filters that eliminate narrow-band mechanical resonance. Notch filters
remove energy that would otherwise excite resonant modes and possibly make the system unstable.

 11

TI Literature and Digital Motor Control (DMC) Library

The Digital Motor Control (DMC) library is composed of functions represented as blocks. These blocks
are categorized as Transforms & Estimators (Clarke, Park, Sliding Mode Observer, Phase Voltage
Calculation, and Resolver, Flux, and Speed Calculators and Estimators), Control (Signal Generation,
PID, BEMF Commutation, Space Vector Generation), and Peripheral Drivers (PWM abstraction for
multiple topologies and techniques, ADC drivers, and motor sensor interfaces). Each block is a modular
software macro is separately documented with source code, use, and technical theory. Check the
folders below for the source codes and explanations of macro blocks:

 C:\TI\controlSUITE\libs\app_libs\motor_control\math_blocks\fixedv1.1
 C:\TI\controlSUITE\libs\app_libs\motor_control\math_blocks\v3.1
 C:\TI\controlSUITE\libs\app_libs\motor_control\drivers\f2806x
 C:\TI\controlSUITE\libs\app_libs\motor_control\drivers\f2803x

These modules allow users to quickly build, or customize, their own systems. The Library supports the
three motor types: ACI, BLDC, PMSM, and comprises both peripheral dependent (software drivers) and
target dependent modules.

The DMC Library components have been used by TI to provide system examples. At initialization all
DMC Library variables are defined and inter-connected. At run-time the macro functions are called in
order. Each system is built using an incremental build approach, which allows some sections of the
code to be built at a time, so that the developer can verify each section of their application one step at a
time. This is critical in real-time control applications where so many different variables can affect the
system and many different motor parameters need to be tuned.

Note: TI DMC modules are written in form of macros for optimization purposes (refer to application
note SPRAAK2 for more details at TI website). The macros are defined in the header files. The user
can open the respective header file and change the macro definition, if needed. In the macro definitions,
there should be a backslash ”\” at the end of each line as shown below which means that the code
continue in the next line. Any character including invisible ones like “space” after the backslash will
cause compilation error. Therefore, make sure that the backslash is the last character in the line. In
terms of code development, the macros are almost identical to C function, and the user can easily
convert the macro definition to a C functions.

#define PARK_MACRO(v) \
 \

v.Ds = _IQmpy(v.Alpha,v.Cosine) + _IQmpy(v.Beta,v.Sine); \
v.Qs = _IQmpy(v.Beta,v.Cosine) - _IQmpy(v.Alpha,v.Sine);

A typical DMC macro definition

 12

System Overview

This document describes the “C” real-time control framework used to demonstrate the sensorless field
oriented control of PM motors. The “C” framework is designed to run both on TMS320C2803x and
TMS320C2806x controllers on Code Composer Studio. The framework uses the following modules1:

Macro Names Explanation
CLARKE Clarke Transformation
PARK / IPARK Park and Inverse Park Transformation
PID_GRANDO PID Regulators
RC Ramp Controller (slew rate limiter)
RG Ramp / Sawtooth Generator
QEP / CAP QEP and CAP Drives (optional for speed loop tuning with a speed sensor)
SE Speed Estimation (based on sensorless position estimation)
SPEED_FR Speed Measurement (based on sensor signal frequency)
SMO Sliding Mode Observer for Sensorless Applications
SVGEN Space Vector PWM with Quadrature Control (includes IClarke Trans.)
VOLT Phase Voltage Calculator
PWM / PWMDAC PWM and PWMDAC Drives
1 Please refer to pdf documents in motor control folder explaining the details and theoretical background of each macro

In this system, the sensorless Field Oriented Control (FOC) of Permanent Magnet Synchronous
Motor (PMSM) will be experimented with and will explore the performance of speed control. The PM
motor is driven by a DRV8312 Three Phase PWM Motor Driver. The TMS320x2803x or TMS320x2806x
control cards can be used to generate three pulse width modulation (PWM) signals. The motor is driven
by an integrated power module by means of space vector PWM technique. Two phase currents of PM
motor (ia and ib) are measured from the inverter and sent to the controller via two analog-to-digital
converters (ADCs). In addition, the DC-bus voltage in the inverter is measured and sent to the
TMS320x2803x or TMS320x2806x via an ADC. This DC-bus voltage is necessary to calculate the three
phase voltages when the switching functions are known.

PM_Sensorless project has the following properties:

C Framework

System Name
Program Memory

Usage
2806x

Data Memory
Usage1

2806x

Program Memory
Usage
2803x

Data Memory
Usage1

2803x
PM_Sensorless 5000 words3 1384 words 5360 words2 1400 words

1 Excluding the stack size
2 Excluding “IQmath” Look-up Tables
3Excluding “FPUmath” Look-up Tables

 13

CPU Utilization of Sensorless FOC of PMSM
Name of Modules * Number of Cycles

Ramp Controller 29
Clarke Tr. 28
Park Tr. 142
I_Park Tr. 41
Sliding Mode Obs. 273
Speed Estimator 72
Phase Volt Calc. 115
3 x Pid Grando 167
Space Vector Gen. 137
Pwm Drv 74
Contxt Save etc. 53
Pwm Dac (optional)
DataLog (optional)
Ramp Gen (optional)

Total Number of Cycles 1227 **
CPU Utilization @ 60 Mhz 20.4% ***
CPU Utilization @ 40 Mhz 30.7% ***

* The modules are defined in the header files as “macros”
** 1555 including the optional modules
*** At 10 kHz ISR freq.

System Features
Development /Emulation Code Composer Studio V.4.1 (or above) with Real Time debugging
Target Controller TMS320F2803x or TMS320F2806x
PWM Frequency 10kHz PWM (Default), 60kHz PWMDAC
PWM Mode Symmetrical with a programmable dead band
Interrupts EPWM1 Time Base CNT_Zero – Implements 10 kHz ISR execution rate
Peripherals Used PWM 1 / 2 / 3 for motor control

PWM 5A, 6A & 6B for DAC outputs
QEP1 A,B, I (optional for tuning the speed loop)
ADC B2 for DC Bus voltage sensing, A1 & B1 for phase current sensing

 14

The overall system implementing a 3-ph PM motor control is depicted in Figure 10. The PM motor is
driven by the DRV8312 Three Phase PWM Motor Driver. The TMS320F2803x or TMS320F2806x is
being used to generate the three pulse width modulation (PWM) signals using a space vector PWM
technique, for six power switching devices in the DRV8312 Three Phase PWM Motor Driver. Two input
currents of the PM motor (ia and ib) are measured from the inverter and they are sent to the controller
via two analog-to-digital converters (ADCs). In addition, the DC-bus voltage in the inverter is measured
and sent to the TMS320F2803x or TMS320F2806x via an ADC as well. This DC-bus voltage is
necessary in order to calculate three phase voltages of PM motor when the switching functions are
known.

Figure 10 A 3-ph PM motor drive implementation

The software flow is described in the Figure 11 below.

 15

Figure 11 System software flowchart

Interrupt INT3

ePWM1_ INT_ ISR

Save contexts and clear
interrupt flags

Execute the ADC
conversion (phase
currents and dc bus

voltage)

Execute the clarke / park
transformations

Execute the PID
modules (iq , id and

speed)

Execute the ipark and
svgen _ dq modules

Execute the pwm
 modules

Execute the sliding mode
and speed estimation

modules

Execute the voltage
calculation modules

Restore context Return

c_ int0

Initialize S / W
modules

Initialize time
bases

Enable ePWM time
base CNT _ zero
and core interrupt

Initialize other
system and

module parameters

Background
loop INT 3

 16

Hardware Configuration (DRV8312-EVM)

Please refer to the DRV8312-EVM How to Run Guide and HW Reference Guide found:

C:\TI\controlSUITE\development_kits\DRV8312-EVM\~Docs

for an overview of the kit’s hardware and steps on how to setup this kit. Some of the hardware setup
instructions are captured below for quick reference.

HW Setup Instructions

1. Unpack the DIMM style controlCARD and verify that the DIP switch settings match Figure 12

Figure 12 controlCARD DIP Switch Settings

2. Place the controlCARD in the connector slot of J1. Push vertically down using even pressure from
both ends of the card until the clips snap and lock. (to remove the card simply spread open the
retaining clip with thumbs)

3. Make sure DRV8312 mode jumpers and +12V source jumper are set according to Figure 13.

4. Connect a USB cable to connector J1 on the controlCARD. This will enable isolated JTAG
emulation to the C2000 device. LD4 should turn on. If the included Code Composer Studio is
installed, the drivers for the onboard JTAG emulation will automatically be installed. If a windows
installation window appears try to automatically install drivers from those already on your computer.
The emulation drivers are found at http://www.ftdichip.com/Drivers/D2XX.htm. The correct driver is
the one listed to support the FT2232.

5. Connect a 24V power supply to the PVDD and GND terminals of the DRV8312-EVM. Now LED1,
LED2 and LED3 should turn on. Notice the control card LED would light up as well indicating the
control card is receiving power from the board.

6. Note that the motor should be connected to the MOA, MOB and MOC terminals after you finish with
the first incremental build step. For more details on motor wiring please refer to the datasheet
provided with your motor.

 17

 CAUTION: The inverter bus capacitors remain charged for a long time after the high
power line supply is switched off/disconnected. Proceed with caution!

For reference the pictures below show the jumper and connectors that need to be connected for this
lab.

Figure 13 EVM Connections

 18

Software Setup Instructions to Run PM_Sensorless Project

Please refer to the “Software Setup for DRV8312-EVM Projects” section in the DRV8312-EVM How to
Run Guide which can be found at

C:\TI\controlSUITE\development_kits\DRV8312-EVM\~Docs

This section goes over how to install CCS and set it up to run with this project.

Select PM_Sensorless as the active project. Select the active build configuration to be set as
F2803x_RAM (This is important as this is not the default build configuration upon opening
CCS.). Verify that the build level is set to 1, and then right click on the project name and select “Rebuild
Project”. Once build completes, launch a debug session to load the code into the controller. Now open
a watch window and add the critical variables as shown in the table below and select the appropriate
format for them.

Figure 14 Watch Window Variables

Setup time graph windows by importing Graph1.graphProp and Graph2.graphProp from the following
location C:\TI\ControlSUITE\developement_kits\DRV8312-EVM\PM_Sensorless\ . Click on Continuous
Refresh button on the top left corner of the graph tab to enable periodic capture of data from the
microcontroller.

 19

Incremental System Build

The system is gradually built up in order for the final system to be confidently operated. Seven phases
of the incremental system build are designed to verify the major software modules used in the system.
Table 1 summarizes the modules testing and using in each incremental system build.

Software Module Phase
1

Phase
2

Phase
3

Phase
4

Phase
5

Phase
6

Phase
7

PWMDAC_MACRO √ √ √ √ √ √
RC_MACRO √ √ √ √ √ √
RG_MACRO √ √ √ √ √ √
IPARK_MACRO √√ √ √ √ √ √
SVGEN_MACRO √√ √ √ √ √ √
PWM_MACRO √√ √ √ √ √ √
CLARKE_MACRO √√ √ √ √ √
PARK_MACRO √√ √ √ √ √
VOLT_MACRO √√ √ √ √ √
Current Sensor Offset
Calibration √√ √ √ √ √

QEP_MACRO √√ √ √ √
SPEED_FR_MACRO √√ √ √ √
PID_GRANDO_MACRO (IQ) √√ √ √ √
PID_GRANDO_MACRO (ID) √√ √ √ √
SMO_MACRO √√ √√ √
SE_MACRO √√ √
PID_GRANDO_MACRO
(SPD) √√ √√

Note: the symbol √ means this module is using and the symbol √√ means this module is testing in this phase.

Table 1: Testing modules in each incremental system build

 20

Level 1 Incremental Build

At this step keep the motor disconnected. Assuming the load and build steps described in the
“DRV8312-EVM How To Run Guide” are completed successfully, this section describes the steps for a
“minimum” system check-out which confirms operation of system interrupt, the peripheral & target
independent I_PARK_MACRO (inverse park transformation) and SVGEN_MACRO (space vector
generator) modules and the peripheral dependent PWM_MACRO (PWM initializations and update)
modules. Open PM_Sensorless-Settings.h and select level 1 incremental build option by setting the
BUILDLEVEL to LEVEL1 (#define BUILDLEVEL LEVEL1). Now right click on the project name and
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will now
keep on increasing, confirm this by watching the variable in the watch window. This confirms that the
system interrupt is working properly.

In the software, the key variables to be adjusted are summarized below.
 SpeedRef: for changing the rotor speed in per-unit.
 VdTesting: for changing the d-qxis voltage in per-unit.
 VqTesting: for changing the q-axis voltage in per-unit.
 DRV_RESET: for holding the DRV8312 chip in reset.

Level 1A (SVGEN_MACRO Test)

The SpeedRef value is specified to the RG_MACRO module via RC_MACRO module. The
IPARK_MACRO module is generating the outputs to the SVGEN_MACRO module. Three outputs from
SVGEN_MACRO module are monitored via the graph window as shown in Figure 15 where Ta, Tb,
and Tc waveform are 120o apart from each other. Specifically, Tb lags Ta by 120o and Tc leads Ta by
120o. Check the PWM test points on the board to observe PWM pulses (PWMA, PWMB and PWMC)
and make sure that the PWM module is running properly.

Figure 15 Output of SVGEN, Ta, Tb, Tc and Tb-Tc waveforms

 21

Level 1B (testing The PWMDAC Macro)

To monitor internal signal values in real time PWM DACs are very useful tools. Present on the
DRV8312-EVM are PWM DAC’s which use an external low pass filter to generate the waveforms (J6,
DAC-1 to 3). A simple 1st–order low-pass filter RC circuit is placed on the board to filter out the high
frequency components. The selection of R and C value (or the time constant, τ) is based on the cut-off
frequency (fc), for this type of filter the relation is as follows:

cf
RC

π
τ

2
1

==

For example, R=1.8kΩ and C=100nF, it gives fc = 884.2 Hz. This cut-off frequency has to be below the
PWM frequency. Using the formula above, one can customize low pass filters used for signal being
monitored. The DAC circuit low pass filters (R15, R14 and R65 & C18, C17 and C40) is shipped with
470Ω and 0.47μF on the board. Refer to application note SPRAA88A for more details at TI website.

Figure 16 DAC 1-3 outputs showing Ta, Tb and Tb-Tc waveforms

Level 1C (PWM_MACRO and INVERTER Test)

After verifying SVGEN_MACRO module in level 1a, the PWM_MACRO software module and the
DRV8312 3-phase inverter hardware are tested by looking at the low pass filter outputs. For this purpose,
set the variable DRV_RESET to 0 through the watch window and check the ADC_Vhb1, ADC_Vhb2 and
ADC_Vhb3 schematic nodes using an oscilloscope. You will observe that the phase voltage dividers and
waveform monitoring filters (R38, R39 and R42 to R45 & C50, C55 and C56) enable the generation of the
waveform and ensure that the DRV8312 is working appropriately.

After verifying this, set the variable DRV_RESET to 1, take the controller out of real time mode
(disable), reset the processor (see “DRV8312-EVM How To Run Guide” for details). Note
that after each test, this step needs to be repeated for safety purposes. Also note that improper

shutdown might halt the PWMs at some certain states where high currents can be drawn, hence
caution needs to be taken while doing

 22

IPARK
MACRO

ipark_Q

ipark_D

theta_ip

ipark_q

ipark_d

PWM
MACRO

Q0 / HW

Mfunc_c1

PWM1A

Mfunc_c2

Mfunc_c3

Mfunc_p

SVGEN
MACRO

Ubeta

Ualfa

Ta

Tb

Tc

EV

HW

RG
MACRO

rmp_freq

rmp_offset

rmp_gain

RC
MACROtrgt_value

set_value

set_eq_trgt

Graph Window

VdTesting

R

C

Scope

rmp_out

Level 1 - Incremental System Build Block Diagram

VqTesting

SpeedRef

Level 1 verifies the target independent modules, duty cycles and PWM update. The motor is disconnected at this level.

ADC-Vhb1, 2, 3 test points
or DAC1 to 3

PWM2A

PWM3A

Inverter Phase
Outputs A,B or C

or

PWMDAC channels
PWM 5A, 6A, 6B

DLOG

Dlog 1

Dlog 2

Dlog 3

Dlog 4

svgen._Ta

svgen._Tb

svgen._Tc
svgen._Ta-svgen._Tb

PWMDAC
MACROScope

PwmDacPointer0
Low
Pass
Filter
Cct

PwmDacPointer1

PwmDacPointer2

DAC 1

DAC 2

DAC 3

Pwm5A

Pwm6A

Pwm6B

 23

Level 2 Incremental Build
Assuming section BUILD 1 is completed successfully, this section verifies the analog-to-digital
conversion, Clarke / Park transformations and phase voltage calculations. Now the motor can be
connected to DRV8312-EVM since the PWM signals are successfully proven through level 1
incremental build. Note that the open loop experiments are meant to test the ADCs, inverter stage, sw
modules etc. Therefore running motor under load or at various operating points is not recommended.

Open PM_Sensorless-Settings.h and select level 2 incremental build option by setting the
BUILDLEVEL to LEVEL2 (#define BUILDLEVEL LEVEL2). Now right click on the project name and
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable
real time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker”
will now keep on increasing, confirm this by watching the variable in the watch window. This confirms
that the system interrupt is working properly.

In the software, the key variables to be adjusted are summarized below.

 SpeedRef: for changing the rotor speed in per-unit.
 VdTesting: for changing the d-qxis voltage in per-unit.
 VqTesting: for changing the q-axis voltage in per-unit.

During the open loop tests, VqTesting, SpeedRef and DC Bus voltages should be adjusted carefully
for PM motors so that the generated Bemf is lower than the average voltage applied to motor winding.
This will prevent the motor from stalling or vibrating.

Level 2A – Testing the Phase Voltage module

In this part, the phase voltage calculation module, VOLT_MACRO, will be tested. The outputs of this
module can be checked via the graph window as follows:

Figure 17 The waveforms of volt1.Phase A&B and volt1.Aplha & Beta

 The VphaseA, VphaseB, and VphaseC waveforms should be 120o apart from each other.
Specifically, VphaseB lags VphaseA by120o and VphaseC leads VphaseA by 120.

 The Valpha waveform should be same as the VphaseA waveform.

 The Valpha waveform should be leading the Vbeta waveform by 90o at the same magnitude.

 24

Phase 2B – Testing the Clarke module

In this part the Clarke module will be tested. The three measured line currents are transformed to two
phase dq currents in a stationary reference frame. The outputs of this module can be checked from
graph window.

 The clark1.Alpha waveform should be same as the clark1.As waveform.

 The clark1.Alpha waveform should be leading the clark1.Beta waveform by 90o at the same
magnitude.

It is important that the measured line current must be lagging with the reconstructing phase voltage
because of the nature of the AC motor. This can be easily checked as follows:

 The clark1.Alpha waveform should be lagging the Valpha waveform at an angle by nature of the
reactive load of motor.

 The clark1.Beta waveform should be lagging the Vbeta waveform at the same angle.

If the clark1.Alpha and Valpha or clark1.Beta and Vbeta waveforms in the previous step are not truly
affecting the lagging relationship, then set OutofPhase to 1 at the beginning of the VOLT_MACRO
module. The outputs of this test can be checked via the graph window.

Figure 18 The waveforms of volt1.Valpha, clarke1.Alpha and

 25

DRV8312

Inverter

PM

Motor

IPARK
MACRO

ipark_Q

ipark_D

theta_ip

ipark_q

ipark_d

CLARKE
MACRO

clark_a

clark_b

clark_d

clark_q

PARK
MACRO

park_d

park_q

theta_p

park_D

park_Q

PWM
MACRO

Q0 / HW

Mfunc_c1

PWM1A

PWM2A

PWM3AMfunc_c2

Mfunc_c3

Mfunc_p

AdcResult 1 ADCINx (Ia)

ADCINy (Ib)

SVGEN
MACRO

Ubeta

Ualfa

Ta

Tb

Tc

EV

HW

ADC

HW

RG
MACRO

rmp_freq

rmp_offset

rmp_gain

RC
MACROtrgt_value

set_value

set_eq_trgt

VdTesting

rmp_out

Level 2 - Incremental System Build Block Diagram

SpeedRef

AdcResult 2 ADC

CONV

VOLT
MACRO

Mfunc_V1

Mfunc_V1

Mfunc_V1

DcBusVolt

Tb

Ta

Tc

AdcResult 2

ADCINz (Vdc)AdcResult 3

VPhase_ABC

Valpha

Vbeta

VqTesting

DLOG
Dlog 1

Dlog 2Graph
Window Dlog 3

Dlog 4

Level 2 verifies the analog-to-digital conversion, offset compensation, clarke / park transformations, phase voltage calculations

PWMDAC
MACROScope

PwmDacPointer0
Low
Pass
Filter
Cct

PwmDacPointer1

PwmDacPointer2

DAC 1

DAC 2

DAC 3

Pwm5A

Pwm6A

Pwm6B

 26

Level 3 Incremental Build

Assuming the previous section is completed successfully, this section performs automatic calibration of
the current sensor offsets.

Open PM_Sensorless-Settings.h and select level 3 incremental build option by setting the
BUILDLEVEL to LEVEL3 (#define BUILDLEVEL LEVEL3). Now right click on the project name and
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will now
keep on increasing, confirm this by watching the variable in the watch window. This confirms that the
system interrupt is working properly.

In the software, the key variables to be adjusted are summarized below.

 cal_offset_A: for changing the A phase current sensor offset in per-unit.
 cal_offset_B: for changing the B phase current sensor offset in per-unit.

Note that especially the low power motors draw low amplitude current after closing the speed loop
under no-load. The performance of the sensorless control algorithm becomes prone to phase current
offset which might stop the motors or cause unstable operation. Therefore, the phase current offset
values need to be minimized at this step. The offsets will be automatically calculated by passing the
measured currents through a low-pass filter to obtain the average value when zero current is flowing
through the sensors.

Initialize cal_offset_A and cal_offset_B to 0.5 in the code, recompile and run the system and watch the
cal_offset_A & cal_offset_B from watch window. Ideally the measured phase current offsets should be
0.5 in this case. Note the value of cal_offset_A and cal_offset_B in the watch window and change their
values in the code by going to:

_iq cal_offset_A = _IQ15(0.5000);
_iq cal_offset_B = _IQ15(0.5000);

and changing IQ15(0.5000) offset value (e.g. IQ15(0.5087) or IQ15(0.4988)
depending on the value observed in the watch window). Try to enter an offset with 4 significant digits.

These offset values will now be used for the remaining build levels.

Note: Piccolo devices have 12-bit ADC and 16-bit ADC registers. The AdcResult.ADCRESULT
registers are right justified for Piccolo devices; therefore, the measured phase current value is firstly left
shifted by three to convert into Q15 format (0 to 1.0), and then converted to ac quantity (± 0.5) following
the offset subtraction. Finally, it is left shifted by one (multiplied by two) to normalize the measured
phase current to ± 1.0 pu.

Bring the system to a safe stop as described at the end of build 1 by setting DRV_RESET to 1, taking
the controller out of realtime mode and reset.

 27

Level 4 Incremental Build
Assuming the previous section is completed successfully, this section verifies the dq-axis current
regulation performed by PID_GRANDO_CONTROLLER modules and speed measurement modules
(optional). To confirm the operation of current regulation, the gains of these two PID controllers are
necessarily tuned for proper operation.

Open PM_Sensorless-Settings.h and select level 4 incremental build option by setting the
BUILDLEVEL to LEVEL4 (#define BUILDLEVEL LEVEL4). Now right click on the project name and
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable
real time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker”
will now keep on increasing, confirm this by watching the variable in the watch window. This confirms
that the system interrupt is working properly.

In the software, the key variables to be adjusted are summarized below.

 SpeedRef: for changing the rotor speed in per-unit.
 IdRef: for changing the d-qxis voltage in per-unit.
 IqRef: for changing the q-axis voltage in per-unit.

In this build, the motor is supplied by AC input voltage and the (AC) motor current is dynamically
regulated by using PID_GRANDO_CONTROLLER module through the park transformation on the
motor currents.

The steps are explained as follows:

 Compile/load/run program with real time mode.

 Set SpeedRef to 0.25 pu (or another suitable value if the base speed is different), Idref to zero and
Iqref to 0.2 pu.

 Add the soft-switch variable “lsw” to the watch window in order to switch from current loop to
speed loop. In the code lsw manages the loop setting as follows:

- lsw=0, lock the rotor of the motor.
- lsw=1, run the motor with closed current loop.

 Check pid1_id.Fdb in the watch windows with continuous refresh feature whether or not it should be
keeping track pid1_id.Ref for PID_GRANDO_CONTROLLER module. If not, adjust its PID gains
properly.

 Check pid1_iq.Fdb in the watch windows with continuous refresh feature whether or not it should be
keeping track pid1_iq.Ref for PID_GRANDO_CONTROLLER module. If not, adjust its PID gains
properly.

 To confirm these two PID modules, try different values of pid1_id.Ref and pid1_iq.Ref or SpeedRef.

 For both PID controllers, the proportional, integral, derivative and integral correction gains may be
re-tuned to have the satisfied responses.

 Bring the system to a safe stop as described at the end of build 1 by setting DRV_RESET to 1,
taking the controller out of realtime mode and reset.

 28

During running this build, the current waveforms in the CCS graphs should appear as follows:

Figure 19 rg1.Out,svgen_dq1.Ta and Phase A & B current waveforms.

Level 4B – QEP / SPEED_FR test

This section verifies the QEP1 driver and its speed calculation. Qep drive macro determines the rotor
position and generates a direction (of rotation) signal from the shaft position encoder pulses. Make
sure that the output of the incremental encoder is connected to J4 and QEP/SPEED_FR macros are
initialized properly in the PM_Sensorless.c file depending on the features of the speed sensor. Refer
to the pdf files regarding the details of related macros in motor control folder
(C:\TI\controlSUITE\libs\app_libs\motor_control). The steps to verify these two software modules
related to the speed measurement can be described as follows:

 Set SpeedRef to 0.25 pu (or another suitable value if the base speed is different).

 Compile/load/run program with real time mode.

 Add the soft-switch variable “lsw” to the watch window in order to switch from current loop
to speed loop. In the code lsw manages the loop setting as follows:

- lsw=0, lock the rotor of the motor.
- lsw=1, close the current loop.

 Set lsw to 1. Now the motor is running close to reference speed.Check the “speed1.Speed” in the
watch windows with continuous refresh feature whether or not the measured speed is around the
speed reference.

 To confirm these modules, try different values of SpeedRef to test the Speed.

 Use oscilloscope to view the electrical angle output, qep1.ElecTheta, from QEP_MACRO module
and the emulated rotor angle, rg1.Out, from RG_MACRO at PWMDAC outputs with external low-
pass filters.

 Check that both qep1.ElecTheta and rg1.Out are of saw-tooth wave shape and have the same
period. If the measured angle is in opposite direction, then change the order of motor cables
connected to inverter output.

 29

 Qep1.ElecTheta should be slightly lagging rg1.out, if not adjust the calibration angle.

 Check from Watch Window that qep1.IndexSyncFlag is set back to 0xF0 every time it reset to 0 by
hand. Add the variable to the watch window if it is not already in the watch window.

 Bring the system to a safe stop as described at the end of build 1 by setting DRV_RESET to 1,
taking the controller out of realtime mode and reset.

 The calibration angle of the encoder is detected in the code as detailed below. Note that this is an
optional procedure for sensorless FOC speed loop tuning. If the user prefers to use encoder to tune
the speed loop and apply the schemes given in level 6A then exact rotor position is not needed.
However if the user tune the speed loop as in level 6C, then exact rotor position information is
needed, thus the calibration angle has to be detected.

Next, the following steps are to verify and or perform calibration angle of the encoder. The steps are
as follows:

 Make sure EQep1Regs.QPOSCNT, EQep1Regs.QPOSILAT, Init_IFlag, qep1.CalibratedAngle, and
lsw are displayed in watch window.

 Set SpeedRef to 0.25 pu (or another suitable value if the base speed is different).

 Compile/load/run program with real time mode.

 Now the rotor should be locked. Set lsw to 1 to spin the motor. When the first index signal is
detected by QEP, the EQep1Regs.QPOSILAT register latches the angle offset in between initial
rotor position and encoder index in the code. Later, EQep1Regs.QPOSILAT is set to maximum of
EQep1Regs.QPOSCNT as it latches the counter value for each index signal. In the code
qep1.CalibratedAngle keeps the initial offset value. This value can be recorded to initialize
qep1.CalibratedAngle at the initialization section in PM_Sensorless.c or it can be detected in the
code each time the motor is restarted. The calibration angle might be different for different start-ups
and can be formulated as follows:

Calibration Angle = Offset Angle ± n . Line Encoder

 30

PM

IPARK
MACRO

ipark_Q

ipark_D

theta_ip

ipark_q

ipark_d

CLARKE
MACRO

clark_a

clark_b

clark_d

clark_q

PARK
MACRO

park_d

park_q

theta_p

park_D

park_Q

PID MACRO
Iq reg.

i_ref_q

i_fdb_q

u_out_q

i_ref_d

i_fdb_d

u_out_d
IdRef

PWM
MACRO

Q0 / HW

Mfunc_c1

Mfunc_c2

Mfunc_c3

Mfunc_p

SVGEN
MACRO

Ubeta

Ualfa

Ta

Tb

Tc

EV

HW

RG
MACRO

rmp_freq

rmp_offset

rmp_gain

RC
MACROtrgt_value

set_value

set_eq_trgt

rmp_out

Level 4- Incremental System Build Block Diagram

SpeedRef

AdcResult 1 ADCINx (Ia)

ADCINy (Ib)ADC

HW

AdcResult 2 ADC

CONV
ADCINz (Vdc)AdcResult 3

Level 4verifies the dq-axis current regulation performed by pid_id, pid_iq and speed measurement modules

VOLT
MACRO

Mfunc_V1

Mfunc_V2

Mfunc_V3

DcBusVolt

Tb

Ta

Tc

VPhase_ABC

Valpha

Vbeta

IqRef

DLOG

Dlog 1

Dlog 2Graph
Window

clarke.Bs
clarke.AsDlog 3

Dlog 4

rg1.out

svgen.Ta

PID MACRO
Id reg.

PWM1A

PWM2A

PWM3A

QEP

HW

QEP

MACRO

SPEED FR
MACRO

Motor

QEP A
QEP B
IndexDirection

Elec
ThetaSpeed

Speed
Rpm

DRV8312

Inverter

 31

Level 5 Incremental Build

Assuming the previous section is completed successfully; this section verifies the estimated rotor position
and speed estimation performed by SMOPOS (sliding mode observer) and SPEED_EST modules,
respectively.

Open PM_Sensorless-Settings.h and select level 5 incremental build option by setting the BUILDLEVEL to
LEVEL5 (#define BUILDLEVEL LEVEL5). Now right click on the project name and click Rebuild Project.
Once the build is complete click on debug button, reset CPU, restart, enable real time mode and run. Set
“EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will now keep on increasing, confirm
this by watching the variable in the watch window. This confirms that the system interrupt is working
properly.
In the software, the key variables to be adjusted are summarized below.

 SpeedRef: for changing the rotor speed in per-unit.
 IdRef: for changing the d-qxis voltage in per-unit.
 IqRef: for changing the q-axis voltage in per-unit.

The tuning of sliding-mode and low-pass filter gains (Kslide and Kslf) inside the rotor position estimator
may be critical for low speed operation. The key steps can be explained as follows:

 Set SpeedRef to 0.25 pu (or another suitable value if the base speed is different).

 Compile/load/run program with real time mode.

 Add the soft-switch variable “lsw” to the watch window in order to switch from current loop to speed
loop. In the code lsw manages the loop setting as follows:

- lsw=0, lock the rotor of the motor.
- lsw=1, close the current loop.

 Set lsw to 1. Now the motor is running close to reference speed. Compare smo1.Theta with rg1.Out via
PWMDAC with external low-pass filter and an oscilloscope. They should be identical with a small phase
shift.

 If smo1.Theta does not give the sawtooth waveform, the Kslide and Kslf inside the sliding mode
observer are required to be re-tuned.

 To confirm rotor position estimation, try different values of SpeedRef.

 Compare speed3.EstimatedSpeed (estimated speed) with reference speed or measured speed in the
watch windows with continuous refresh feature whether or not it should be nearly the same.

 To confirm this open-loop speed estimator, try different values of SpeedRef.

 Bring the system to a safe stop as described at the end of build 1 by setting DRV_RESET to 1, taking
the controller out of realtime mode and reset.

 32

During running this build, the current waveforms in the CCS graphs should appear as follows *:

Figure 20 Estimated theta (SMO), rg1. Out and Phase A&B currents

 33

rmp_out

PM
Motor

IPARK
MACRO

ipark_Q

ipark_D

theta_ip

ipark_q

ipark_d

CLARKE
MACRO

clark_a

clark_b

clark_d

clark_q

PARK
MACRO

park_d

park_q

theta_p

park_D

park_Q

PID MACRO
Iq reg.

i_ref_q

i_fdb_q

u_out_q

PID MACRO
Id reg.

i_ref_d

i_fdb_d

u_out_d

IqRef

IdRef
PWM

MACRO

Q0 / HW

Mfunc_c1

Mfunc_c2

Mfunc_c3

Mfunc_p

SVGEN
MACRO

Ubeta

Ualfa

Ta

Tb

Tc

EV

HW

vsalfa

vsbeta

isalfa

isbeta

RG
MACRO

rmp_freq

rmp_offset

rmp_gain

RC
MACROtrgt_value

set_value

set_eq_trgt

Level 5 - Incremental System Build Block Diagram

SpeedRef

AdcResult 1 ADCINx (Ia)

ADCINy (Ib)ADC

HW
AdcResult 2 ADC

CONV
ADCINz (Vdc)AdcResult 3

DRV8312

Inverter

Mfunc_V1

Mfunc_V2

Mfunc_V3

DcBusVolt

Valpha

Vbeta

Level 5 verifies the rotor position and speed estimation performed by SMO and speed estimation modules.

PWM1A

PWM2A

PWM3A

QEP

HW

QEP

MACRO

SPEED FR
MACRO

QEP A
QEP B
Index

Direction

Elec
ThetaSpeed

Speed
RpmVOLT

MACRO

SMO
MACRO

(sliding
mode

rotor angle
estimator)

Theta

Estimated
Speed

Estimated
SpeedRpm

SE
MACRO

(sliding
mode

rotor speed
estimator)

 34

Level 6 Incremental Build

Assuming the previous section is completed successfully, this section verifies the speed regulator
performed by PID_GRANDO_CONTROLLER module. The system speed loop is closed by using the
measured speed as a feedback.

Open PM_Sensorless-Settings.h and select level 6 incremental build option by setting the BUILDLEVEL to
LEVEL6 (#define BUILDLEVEL LEVEL6). Now right click on the project name and click Rebuild Project.
Once the build is complete click on debug button, reset CPU, restart, enable real time mode and run. Set
“EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will now keep on increasing, confirm
this by watching the variable in the watch window. This confirms that the system interrupt is working properly.
In the software, the key variables to be adjusted are summarized below.

 SpeedRef: for changing the rotor speed in per-unit.
 IdRef: for changing the d-qxis voltage in per-unit.

Level 6A

 The speed loop is closed by using measured speed. The key steps can be explained as follows:

 Compile/load/run program with real time mode.

 Set SpeedRef to 0.25 pu (or another suitable value if the base speed is different).

 Add the soft-switch variable “lsw” to the watch window in order to switch from current loop to speed
loop. In the code lsw1 manages the loop setting as follows:

- lsw=0, lock the rotor of the motor.
- lsw=1, close the current loop.
- lsw=2, close the speed loop.

 Set lsw to 1, now the motor is running around the reference speed (0.25 pu). Next, set lsw to 2 and
close the speed loop.

 Compare Speed with SpeedRef in the watch windows with continuous refresh feature whether or not it
should be nearly the same.

 To confirm this speed PID module, try different values of SpeedRef .

 For speed PID controller, the proportional, integral, derivative and integral correction gains may be re-
tuned to have the satisfied responses.

 At very low speed range, the performance of speed response relies heavily on the good rotor flux angle
computed by flux estimator.

 Bring the system to a safe stop as described at the end of build 1 by setting DRV_RESET to 1, taking
the controller out of realtime mode and reset.

 Note that the IdRef is set to be zero all the times.

 35

Level 6B (Alternative method)

Tuning both speed PID and SMO at the same time may not be easy for some applications. In order to test
the SMO only without speed PID in the loop, disconnect the speed PID and Iq PID modules in the code
as shown in 6B block diagram, and apply constant “Iqref” as the reference for Iq PID. After tuning SMO
(Kslide), the motor should spin smoothly and the estimated angle should be clear sawtooth.

Note that, in this scheme the speed is not controlled, therefore a non-zero torque reference (Iqref) will
spin the motor very fast unless loaded. Therefore keep the Iqref low initially, and load the motor using a
brake, generator etc (or manually if the motor is small enough). If the motor speed is too low or the
generated torque by the motor is not enough to handle the applied load, increase Iqref or reduce the
amount of load. After tuning the SMO, add speed PID into the system as shown in the block diagram 7
and tune the PI coefficients, if needed. This method will help the user tune SMO and speed PID
separately.

If the test is implemented on a custom inverter or a different motor is used, then

- Check the parameters in PM_Sensorless-Settings.h. Make sure that the base (pu) quantities are set to
maximum measurable current, voltage etc., and motor electrical parameters are correct.

- The DC bus voltage should be high enough in order not to saturate the PID outputs.

- Run the same experiment again and keep tuning SMO gains.

 36

PMSM
Motor

IPARK
MACRO

ipark_Q

ipark_D

theta_ip

ipark_q

ipark_d

CLARKE
MACRO

clark_a

clark_b

clark_d

clark_q

PARK
MACRO

park_d

park_q

theta_p

park_D

park_Q

PID MACRO
Iq reg.

i_ref_q

i_fdb_q

u_out_q

PID MACRO
Id reg.

i_ref_d

i_fdb_d

u_out_d

Constant 0 (lsw=0)

IdRef

PWM
MACRO

Q0 / HW

Mfunc_c1

Mfunc_c2

Mfunc_c3

Mfunc_p

SVGEN
MACRO

Ubeta

Ualfa

Ta

Tb

Tc

EV

HW

SMO
MACRO

(sliding
mode

rotor angle
estimator)

vsalfa

Theta

vsbeta

isalfa

isbeta

RC
MACRO

Level 6A - Incremental System Build Block Diagram

AdcResult 1 ADCINx (Ia)

ADCINy (Ib)ADC

HW
AdcResult 2

ADCINz (Vdc)AdcResult 3

VOLT
MACRO

Mfunc_V1

Mfunc_V2

Mfunc_V3

DcBusVolt

Valpha

Vbeta

SE MACRO

(sliding
mode

rotor speed
estimator)

Estimated
Speed

PID MACRO
Spd reg.

RG
MACRO

rmp_freq

rmp_offset

rmp_gain

trgt_value

set_value

set_eq_trgt
rmp_out
(lsw=1)

SpeedRef

Switched manually
in CC watch

window

spd_fbd

IqRef (lsw=1)

(lsw=2)

Constant 0
(lsw=0)

(lsw=2)

u_out_spd

ADC

CONV

PWM1A

PWM2A

PWM3A

QEP

MACRO

SPEED FR
MACRO

QEP A
QEP B
Index

Direction

Elec
Theta

Speed QEP

HW

SpeedRef

DRV8312

Inverter

 37

PMSM
Motor

IPARK
MACRO

ipark_Q

ipark_D

theta_ip

ipark_q

ipark_d

CLARKE
MACRO

clark_a

clark_b

clark_d

clark_q

PARK
MACRO

park_d

park_q

theta_p

park_D

park_Q

PID MACRO
Iq reg.

i_ref_q

i_fdb_q

u_out_q

PID MACRO
Id reg.

i_ref_d

i_fdb_d

u_out_d

Constant 0 (lsw=0)

IdRef

PWM
MACRO

Q0 / HW

Mfunc_c1

Mfunc_c2

Mfunc_c3

Mfunc_p

SVGEN
MACRO

Ubeta

Ualfa

Ta

Tb

Tc

EV

HW

SMO
MACRO

(sliding
mode

rotor angle
estimator)

vsalfa

Theta

vsbeta

isalfa

isbeta

RC
MACRO

Level 6B - Incremental System Build Block Diagram

AdcResult 1 ADCINx (Ia)

ADCINy (Ib)ADC

HW
AdcResult 2

ADCINz (Vdc)AdcResult 3

VOLT
MACRO

Mfunc_V1

Mfunc_V2

Mfunc_V3

DcBusVolt

Valpha

Vbeta

SE MACRO

(sliding
mode

rotor speed
estimator)

Estimated
Speed

RG
MACRO

rmp_freq

rmp_offset

rmp_gain

trgt_value

set_value

set_eq_trgt
rmp_out
(lsw=1)

SpeedRef

Switched manually
in CC watch

window

IqRef (lsw=1,2)

Constant 0
(lsw=0)

(lsw=2)

ADC

CONV

PWM1A

PWM2A

PWM3A

QEP

MACRO

SPEED FR
MACRO

QEP A
QEP B
Index

Direction

Elec
Theta

Speed QEP

HW

DRV8312

Inverter

 38

Level 7 Incremental Build
Assuming the previous section is completed successfully, this section verifies the speed regulator
performed by PID_GRANDO_CONTROLLER module. The system speed loop is closed by using the
estimated speed as a feedback.

Open PM_Sensorless-Settings.h and select level 7 incremental build option by setting the BUILDLEVEL to
LEVEL7 (#define BUILDLEVEL LEVEL7). Now right click on the project name and click Rebuild Project.
Once the build is complete click on debug button, reset CPU, restart, enable real time mode and run. Set
“EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will now keep on increasing, confirm
this by watching the variable in the watch window. This confirms that the system interrupt is working properly.
In the software, the key variables to be adjusted are summarized below.

 SpeedRef: for changing the rotor speed in per-unit.
 IdRef: for changing the d-qxis voltage in per-unit.

The speed loop is closed by using estimated speed. The key steps can be explained as follows:

 Compile/load/run program with real time mode.

 Set SpeedRef to 0.25 pu (or another suitable value if the base speed is different) and Iqref to 0.2 pu.

 Add the soft-switch variable“lsw” to the watch window in order to switch from current loop to speed loop. In
the code lsw manages the loop setting as follows:

- lsw=0, lock the rotor of the motor.
- lsw=1, close the current loop.
- lsw=2, close the speed loop.

 Set lsw to 1, the motor is running with this reference speed (0.25 pu). Then, set lsw to 2 to close the
speed loop. After a few tests, the user can determine the best time to close the speed loop depending
on the load-speed profile and then close the speed loop in the code. For most of the applications, the
speed loop can be closed before the motor speed reaches to SpeedRef.

 Compare speed3.EstimatedSpeed with SpeedRef in the watch windows with continuous refresh feature
whether or not it should be nearly the same.

 To confirm this speed PID module, try different values of SpeedRef.

 For speed PID controller, the proportional, integral, derivative and integral correction gains may be re-
tuned to have the satisfied responses.

 At very low speed range, the performance of speed response relies heavily on the good rotor flux angle
computed by flux estimator.

 Bring the system to a safe stop as described at the end of build 1 by setting DRV_RESET to 1, taking
the controller out of realtime mode and reset.

Note: The first order low-pass filter inside the SMO module causes small amount of estimated angle
delay. In order to achieve accurate field orientation, it is recommended to compensate this delay. Once
the delays are detected for different operating points, they can be interpolated by means of a simple
second or third order equation and this equation can be added to the code. Please refer to the
smopos.pdf for the details of SMO: ..controlSUITE\libs\app_libs\motor_control\math_blocks\fixed\~Docs.

 39

During running this build, the current waveforms in the CCS graphs should appear as follows *:

Figure 21 Waveforms of Phase A&B currents, calculated Phase A voltage, and estimated theta by SMO under no-load

and 0.3pu speed

Figure 22 Waveforms of Phase A&B currents, calculated Phase A voltage, and estimated theta by SMO under 0.33pu-

load and 0.5pu speed

 40

Figure 23 Flux and torque components of the stator current in the synchronous reference frame under 0.33pu step-

load and 0.5pu speed monitored from PWMDAC output

 41

PMSM

Motor

IPARK
MACRO

ipark_Q

ipark_D

theta_ip

ipark_q

ipark_d

CLARKE
MACRO

clark_a

clark_b

clark_d

clark_q

PARK
MACRO

park_d

park_q

theta_p

park_D

park_Q

PID MACRO
Iq reg.

i_ref_q

i_fdb_q

u_out_q

PID MACRO
Id reg.

i_ref_d

i_fdb_d

u_out_d
IdRef

PWM
MACRO

Q0 / HW

Mfunc_c1

Mfunc_c2

Mfunc_c3

Mfunc_p

SVGEN
MACRO

Ubeta

Ualfa

Ta

Tb

Tc

EV

HW

SMO
MACRO

vsalfa

vsbeta

isalfa

isbeta

RC
MACRO

Level 7 Incremental System Build Block Diagram

AdcResult 1 ADCINx (Ia)

ADCINy (Ib)ADC

HW

AdcResult 2

ADCINz (Vdc)AdcResult 3

VOLT
MACRO

Mfunc_V1

Mfunc_V2

Mfunc_V3

DcBusVolt

Valpha

Vbeta

Level 7 verifies the complete system.

PID MACRO
Spd reg

RG
MACRO

rmp_freq

rmp_offset

rmp_gain

trgt_value

set_value

set_eq_trgt

rmp_out
(lsw=1)

SpeedRef

Switched manually
in CC watch

window

Fbd

IqRef (lsw=1)

(lsw=2)

(lsw=2)

u_out_spd

ADC

CONV

SpeedRef

ThetaFluxSpeed

SpeedRpm
SE

MACRO

PWM1A

PWM2A

PWM3A

DRV8312

Inverter

Constant 0 (lsw=0)

Constant 0
(lsw=0)

 42

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

