
TMS320C6000
Technical Brief

Literature Number: SPRU197D
February 1999

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgement, including those pertaining to warranty, patent
infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR
USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY
AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI’s publication of information regarding any third party’s products or services does
not constitute TI’s approval, warranty or endorsement thereof.

Copyright  1999, Texas Instruments Incorporated

iiiRead This First

Preface

Read This First

About This Manual

This book is an introduction to the TMS320C6000 platform of digital signal
processor (DSP) devices. This book describes the CPU architecture, periph-
erals, and development tools for the TMS320C6000 DSPs. Unless otherwise
specified, all references to the ’C6000 refer to the TMS320C6000 platform of
DSPs, ’C62x refers to the TMS320C62x fixed-point DSPs in the ’C6000 plat-
form, and ’C67x refers to the TMS320C67x floating-point DSPs in the ’C6000
platform.

How to Use This Manual

The following table summarizes the information in this technical brief:

If you are looking for
information about: Turn to these chapters:

Code generation tools Chapter 5, Development Support

CPU architecture Chapter 2, CPU Architecture

Development support tools Chapter 5, Development Support

Direct-memory access (DMA) Chapter 4, Peripherals

Evaluation tools Chapter 5, Development Support

External memory interface Chapter 3, Memory

Chapter 4, Peripherals

Host-port interface Chapter 4, Peripherals

Memory map Chapter 3, Memory

Multichannel buffered serial
port (McBSP)

Chapter 4, Peripherals

Peripherals Chapter 4, Peripherals

Timers Chapter 4, Peripherals

Related Documentation From Texas Instruments

iv

Related Documentation From Texas Instruments

The following books describe the TMS320C62x/C67x devices and related
support tools. To obtain a copy of any of these TI documents, call the Texas
Instruments Literature Response Center at (800) 477–8924. When ordering,
please identify the book by its title and literature number.

TMS320C6201 Digital Signal Processor Data Sheet (literature number
SPRS051) describes the features of the TMS320C6201 and provides
pinouts, electrical specifications, and timings for the device.

TMS320C6202 Digital Signal Processor Data Sheet (literature number
SPRS072) describes the features of the TMS320C6202 and provides
pinouts, electrical specifications, and timings for the device.

TMS320C6211 Digital Signal Processor Data Sheet (literature number
SPRS073) describes the features of the TMS320C6211 and provides
pinouts, electrical specifications, and timings for the device.

TMS320C6701 Digital Signal Processor Data Sheet (literature number
SPRS067) describes the features of the TMS320C6701 and provides
pinouts, electrical specifications, and timings for the device.

TMS320C62x/C67x CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the ’C62x/C67x CPU architecture, instruc-
tion set, pipeline, and interrupts for these digital signal processors.

TMS320C6201/C6701 Peripherals Reference Guide (literature number
SPRU190) describes common peripherals available on the
TMS320C6201/C6701 digital signal processors. This book includes in-
formation on the internal data and program memories, the external
memory interface (EMIF), the host port, multichannel buffered serial
ports, direct memory access (DMA), clocking and phase-locked loop
(PLL), and the power-down modes.

TMS320C6202/C6211 Peripheral Addendum to the TMS320C6201/C6701
Peripherals Reference Guide (literature number SPRU290) describes
common peripherals available on the TMS320C6202/C6211 digital
signal processors. This book includes information on the internal data
and program memories, the external memory interface (EMIF), the host
port, multichannel buffered serial ports, direct memory access (DMA),
clocking and phase-locked loop (PLL), and the power-down modes.

TMS320C62x/C67x Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the
TMS320C62x/C67x DSPs and includes application program examples.

vRead This First

TMS320C6x Assembly Language Tools User’s Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the ’C6x generation of devices.

TMS320C6x Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the ’C6x C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces as-
sembly language source code for the ’C6x generation of devices. The as-
sembly optimizer helps you optimize your assembly code.

TMS320C6x C Source Debugger User’s Guide (literature number
SPRU188) tells you how to invoke the ’C6x simulator and emulator
versions of the C source debugger interface. This book discusses
various aspects of the debugger, including command entry, code
execution, data management, breakpoints, profiling, and analysis.

TMS320 DSP Development Support Reference Guide (literature number
SPRU011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

Trademarks

Classico, MicroLite, and Virtuoso Nano are trademarks of Eonic Systems, Inc.

Code Composer and Code Maestro are trademarks of GO DSP Corporation.

EVP is a trademark of D2 Technologies.

InvisiLink is a trademark of ViaDSP, Inc.

PC is a trademark of International Business Machines Corporation.

Solaris, SunOS, and Sun-3 are trademarks of Sun Microsystems, Inc.

SPI is a trademark of Motorola, Inc.

320 Hotline On-line, TI, VelociTI, XDS510, and XDS510WS are trademarks of
Texas Instruments Incorporated.

Windows and Windows NT are registered trademarks of Microsoft
Corporation.

Related Documentation From Texas Instruments / Trademarks

If You Need Assistance

vi

If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32
Email: epic@ti.com

Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: dsph@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

Contents

vii

Contents

1 Introduction 1�1.
Describes the main features of the TMS320C62x/C67x devices, the history of TI DSPs, and
typical applications.

1.1 The TMS320 Family of Digital Signal Processors 1�2.
1.1.1 History, Development, and Advantages of TMS320 DSPs 1�2.
1.1.2 Typical Applications for the TMS320 Family 1�3.

1.2 Introduction to the TMS320C6000 Platform of Digital Signal Processors 1�5.
1.3 Features and Options of the TMS320C62x/C67x Devices 1�6.

2 CPU Architecture 2�1.
Describes the CPU architecture of the TMS320C62x/C67x devices; includes a block diagram
and a brief introduction to the parts of the device.

2.1 TMS320C62x/C67x Block Diagram 2�2.
2.2 Central Processing Unit (CPU) 2�3.
2.3 CPU Data Paths 2�4.

2.3.1 General-Purpose Register Files 2�4.
2.3.2 Functional Units 2�7.
2.3.3 TMS320C62x/C67x Control Register Files 2�8.
2.3.4 TMS320C67x Control Register File Extensions 2�9.
2.3.5 Register File Cross Paths 2�9.
2.3.6 Memory, Load, and Store Paths 2�10.
2.3.7 Data-Address Paths 2�10.

2.4 Mapping Between Instructions and Functional Units 2�11.
2.5 Addressing Modes 2�18.
2.6 Interrupts 2�19.

Contents

viii

3 Memory 3�1.
Describes the on-chip memory and external memory access.

3.1 Memory Maps 3�2.
3.2 Internal Memory 3�4.

3.2.1 TMS320C6201 (Revision 2) 3�4.
3.2.2 TMS320C6201B (Revision 3) 3�5.
3.2.3 TMS320C6701 3�5.
3.2.4 TMS320C6202 3�6.
3.2.5 TMS320C6211 3�6.
3.2.6 Data Memory Access 3�7.
3.2.7 TMS320C6201, ’C6202, ’C6701 3�8.
3.2.8 TMS320C6211 3�9.
3.2.9 Peripheral Bus 3�10.
3.2.10 Expansion Bus 3�10.

3.3 External Memory Interface (EMIF) 3�11.

4 Peripherals 4�1.
Describes the peripherals available for the TMS320C62x/C67x devices, such as various
memory configurations, ports, timers, direct-memory access, and power-down logic.

4.1 Direct Memory Access (DMA) Controller 4�3.
4.2 Enhanced Direct Memory Access (EDMA) 4�5.
4.3 Host-Port Interface (HPI) 4�6.
4.4 Expansion Bus (XB) 4�8.
4.5 External Memory Interface (EMIF) 4�11.

4.5.1 SDRAM Interface 4�13.
4.5.2 SBSRAM Interface 4�13.
4.5.3 Asynchronous Interface 4�14.

4.6 Boot Configuration Logic 4�16.
4.6.1 Device Reset 4�16.
4.6.2 Boot Configuration 4�16.

4.7 Multichannel Buffered Serial Port (McBSP) 4�18.
4.8 Timers 4�21.
4.9 Interrupt Selector 4�22.
4.10 Power-Down Logic 4�23.

5 Development Support 5 �1.
Describes the tools, third-party support web site, documentation, and workshops available.

5.1 Code Generation Tools 5�2.
5.2 Evaluation Tools 5�6.
5.3 Third-Party Support 5�8.
5.4 Web Site and Documentation 5�10.

A Glossary A�1.
Explains terms, abbreviations, and acronyms used throughout this technical brief.

Figures

ixContents

Figures

1–1 The TMS320 Family of Digital Signal Processors (DSPs) 1�3.
2–1 TMS320C62x/C67x Block Diagram 2�2.
2–2 TMS320C62x CPU Data Paths 2�5.
2–3 TMS320C67x CPU and Data Paths 2�6.
3–1 TMS320C6201/C6202/C6701 Memory Maps 3�2.
3–2 TMS320C6211 Memory Map 3�3.
3–3 TMS320C6201/C6202/C6701 Data Memory Controller Interconnect 3�8.
3–4 TMS320C6211 Data Memory Controller Interconnect 3�9.
4–1 Host-port Interface (HPI) Block Diagram 4�6.
4–2 Expansion Bus 4�8.
4–3 Synchronous Interface 4�10.
4–4 External Memory Interface (EMIF) Block Diagram 4�12.
4–5 EMIF to SDRAM Interface 4�13.
4–6 EMIF to SBSRAM Interface 4�14.
4–7 EMIF to SRAM Interface 4�14.
4–8 EMIF to FIFO Interface 4�15.
4–9 EMIF to ROM Interface 4�15.
4–10 Multichannel Buffered Serial Port (McBSP) Internal Block Diagram 4�19.
5–1 Code Development Flow Chart 5�3.
5–2 Windows C Debugger Interface 5�6.
5–3 An Example of the Profile Window 5�7.

Tables

x

Tables

1–1 Typical Applications for the TMS320 Family of Digital Signal Processors (DSPs) 1�4.
2–1 Functional Units and Operations Performed 2�7.
2–2 Control Registers 2�8.
2–3 TMS320C67x Control Register File Extensions 2�9.
2–4 Fixed-Point Instruction to Functional Unit Mapping 2�11.
2–5 Functional Unit to Fixed-Point Instruction Mapping 2�12.
2–6 Floating-Point Instruction to Functional Unit Mapping 2�15.
2–7 Functional Unit to Floating-Point Instruction Mapping 2�16.
2–8 Indirect Address Generation for Load/Store 2�18.
3–1 TMS320C6000 Internal Memory Configurations 3�4.
3–2 TMS320C6000 Cache Architectures 3�4.
3–3 L2 Operation Modes 3�7.
4–1 TMS320C6000 Peripherals 4�2.
4–2 Multichannel Buffered Serial Port (McBSP) Registers 4�20.
4–3 Multichannel Buffered Serial Port (McBSP) CPU Interrupts and

DMA Event Synchronization 4�20.
4–4 Peripheral Interrupts 4�22.
5–1 Selected TMS320C6000 C Compiler Intrinsics 5�4.
5–2 Contacts for Third-Party Support 5�8.

1-1

Introduction

The TMS320C6000 platform of digital signal processors (DSPs) is part of the
TMS320 family of DSPs. The TMS320C62x (’C62x) devices are fixed-point
DSPs in the TMS320C6000 platform. The TMS320C67x (’C67x) devices are
floating-point DSPs in the TMS320C6000 platform.

The TMS320C62x and TMS320C67x are code compatible and both feature
the VelociTI architecture. The VelociTI architecture is a high-performance,
advanced, very-long-instruction-word (VLIW) architecture developed by Texas
Instruments, making these DSPs excellent choices for multichannel and multi-
function applications. VelociTI, together with the development tool set and evalu-
ation tools, provides faster development time and higher performance for
embedded DSP applications through increased instruction-level parallelism.

Topic Page

1.1 The TMS320 Family of Digital Signal Processors 1-2.

1.2 Introduction to the TMS320C6000 Platform of
Digital Signal Processors 1-5.

1.3 Features and Options of the TMS320C62x/C67x Devices 1-6.

Chapter 1

The TMS320 Family of Digital Signal Processors

 1-2

1.1 The TMS320 Family of Digital Signal Processors

The TMS320 family consists of 16-bit and 32-bit fixed- and floating-point devices.
These DSPs possess the operational flexibility of high-speed controllers and the
numerical capability of array processors. The following characteristics make this
family the ideal choice for a wide range of processing applications:

� Very flexible instruction set
� Inherent operational flexibility
� High-speed performance
� Innovative, parallel architectural design
� Cost-effectiveness

1.1.1 History, Development, and Advantages of TMS320 DSPs

In 1982, Texas Instruments introduced the TMS32010 — the first fixed-point
DSP in the TMS320 family. Before the end of the year, the Electronic Products
magazine awarded the TMS32010 the title “Product of the Year”. The
TMS32010 became the model for future TMS320 generations.

Today, the TMS320 family consists of three supported platforms including the
TMS320C2000, TMS320C5000, and TMS320C6000. Within the ’C6000 plat-
form there are two generations, the TMS320C62x and TMS320C67x, with per-
formance and features that are reflective of Texas Instruments’ commitment
to lead the world in DSP solutions.

Each generation of TMS320 devices uses a core central processing unit (CPU)
that is combined with a variety of on-chip memory and peripheral configurations.
These various configurations satisfy a wide range of needs in the worldwide elec-
tronics market. When memory and peripherals are integrated with a CPU into one
chip, the overall system cost is greatly reduced, and circuit board space is
reduced. Figure 1–1 shows the progression of the TMS320 family of devices.

The TMS320 Family of Digital Signal Processors

1-3Introduction

Figure 1–1. The TMS320 Family of Digital Signal Processors (DSPs)

’C2000
(’C20x, ’C24x)

’C1x ’C2x
Control Optimized

’C5000
(’C54x)

’C5x
Power Efficient
Performance

’C6000
(’C62x, ’C67x)

’C3x ’C4x ’C8x
High Performance

1.1.2 Typical Applications for the TMS320 Family

The TMS320 family of DSPs offers adaptable approaches to traditional signal-
processing problems, such as vocoding, filtering, and error coding. Further-
more, the TMS320 family supports complex applications that often require
multiple operations to be performed simultaneously. Table 1–1 lists many of
the typical applications of the TMS320 family.

The TMS320 Family of Digital Signal Processors

 1-4

Table 1–1. Typical Applications for the TMS320 Family of Digital Signal Processors (DSPs)

Automotive Consumer Control

Adaptive ride control
Antiskid brakes
Cellular telephones
Digital radios
Engine control
Global positioning
Navigation
Vibration analysis
Voice commands

Digital radios/TVs
Educational toys
Music synthesizers
Pagers
Power tools
Radar detectors
Solid-state answering machines

Disk drive control
Engine control
Laser printer control
Motor control
Robotics control
Servo control

General-Purpose Graphics/Imaging Industrial

Adaptive filtering
Convolution
Correlation
Digital filtering
Fast Fourier transforms
Hilbert transforms
Waveform generation
Windowing

3-D computing
Animation/digital maps
Homomorphic processing
Image compression/transmission
Image enhancement
Pattern recognition
Robot vision
Workstations

Numeric control
Power-line monitoring
Robotics
Security access

Instrumentation Medical Military

Digital filtering
Function generation
Pattern matching
Phase-locked loops
Seismic processing
Spectrum analysis
Transient analysis

Diagnostic equipment
Fetal monitoring
Hearing aids
Patient monitoring
Prosthetics
Ultrasound equipment

Image processing
Missile guidance
Navigation
Radar processing
Radio frequency modems
Secure communications
Sonar processing

Telecommunications Voice/Speech

1200- to 56 600-bps modems
Adaptive equalizers
ADPCM transcoders
Base stations
Cellular telephones
Channel multiplexing
Data encryption
Digital PBXs
Digital speech interpolation (DSI)
DTMF encoding/decoding
Echo cancellation

Faxing
Future terminals
Line repeaters
Personal communications

systems (PCS)
Personal digital assistants (PDA)
Speaker phones
Spread spectrum communications
Digital subscriber loop (xDSL)
Video conferencing
X.25 packet switching

Speaker verification
Speech enhancement
Speech recognition
Speech synthesis
Speech vocoding
Text-to-speech
Voice mail

Introduction to the TMS320C6000 Platform of Digital Signal Processors

1-5Introduction

1.2 Introduction to the TMS320C6000 Platform of Digital Signal Processors

With performance of up to 2000 million instructions per second (MIPS) at 250
MHz and a complete set of development tools, the TMS320C6000 DSPs offer
cost-effective solutions to high-performance DSP programming challenges. The
TMS320C6000 development tools include a new C compiler, an assembly
optimizer that simplifies programming and scheduling, and a Windows
debugger interface.

The TMS320C6000 DSPs give system architects unlimited possibilities to dif-
ferentiate their products. High performance, ease of use, and affordable pric-
ing make the TMS320C6000 platform the ideal solution for multichannel, mul-
tifunction applications, such as:

� Pooled modems
� Wireless local loop base stations
� Beam-forming base stations
� Remote access servers (RAS)
� Digital subscriber loop (DSL) systems
� Cable modems
� Multichannel telephony systems
� Virtual reality 3-D graphics
� Speech recognition
� Audio
� Radar
� Atmospheric modeling
� Finite element analysis
� Imaging (examples: fingerprint recognition, ultrasound, and MRI)

The TMS320C6000 platform is also an ideal solution for exciting new applica-
tions; for example:

� Personalized home security with face and hand/fingerprint recognition

� Advanced cruise control with global positioning systems (GPS) navigation
and accident avoidance

� Remote medical diagnostics

Features and Options of the TMS320C62x/C67x Devices

 1-6

1.3 Features and Options of the TMS320C62x/C67x Devices

The ’C6211, ’C6701, ’C6201, and ’C6202 devices operate at 150, 167, 200,
and 250 MHz respectively (6.67-, 6-, 5-, and 4-ns cycle times). All of these
DSPs execute up to eight 32-bit instructions every cycle. The core CPU con-
sists of 32 general-purpose registers of 32-bit word length and eight functional
units:

� Two multipliers
� Six ALUs

The ’C62x/C67x devices have a complete set of optimized development tools,
including an efficient C compiler, an assembly optimizer for simplified assem-
bly-language programming and scheduling, and a Windows-based debugger
interface for visibility into source code execution characteristics. A hardware
emulation board, compatible with the TI XDS510 emulator interface, is also
available. This tool complies with IEEE Standard 1149.1–1990, IEEE Stan-
dard Test Access Port and Boundary-Scan Architecture.

Features of the ’C62x/C67x include:

� Advanced VLIW CPU with eight functional units, including two multipliers
and six arithmetic units

� Executes up to eight instructions per cycle for up to ten times the
performance of typical DSPs

� Allows designers to develop highly effective RISC-like code for fast
development time

� Instruction packing

� Gives code size equivalence for eight instructions executed serially or
in parallel

� Reduces code size, program fetches, and power consumption

� All instructions execute conditionally.

� Reduces costly branching

� Increases parallelism for higher sustained performance

� Code executes as programmed on independent functional units.

� Industry’s most efficient C compiler on DSP benchmark suite

� Industry’s first assembly optimizer for fast development and improved
parallelization

� 8/16/32-bit data support, providing efficient memory support for a variety
of applications

Features and Options of the TMS320C62x/C67x Devices

1-7Introduction

� 40-bit arithmetic options that add extra precision for vocoders and other
computationally intensive applications

� Saturation and normalization provide support for key arithmetic opera-
tions.

� Field manipulation and instruction extract, set, clear, and bit counting
support common operation found in control and data manipulation
applications.

The ’C67x has the following features:

� Peak 1336 MIPS at 167 MHz

� Peak 1G FLOPS at 167 MHz for single-precision operations

� Peak 250M FLOPS at 167 MHz for double-precision operations

� Peak 688M FLOPS at 167 MHz for multiply and accumulate operations

� Hardware support for single-precision (32-bit) and double-precision
(64-bit) IEEE floating-point operations.

� 32 � 32-bit integer multiply with 32- or 64-bit result.

A variety of memory and peripheral options are available for the ’C62x/C67x:

� Large on-chip RAM for fast algorithm execution

� 32-bit external memory interface supports SDRAM, SBSRAM, SRAM,
and other asynchronous memories, for a broad range of external memory
requirements and maximum system performance

� Host port access to ’C62x/C67x memory and peripherals

� Multichannel DMA controller

� Multichannel serial port(s)

� 32-bit timer(s)

2-1

CPU Architecture

The VelociTI architecture makes the ’C6000 DSPs the first off-the-shelf DSPs
to use an enhancement of traditional VLIW to achieve high performance
through increased instruction-level parallelism. A traditional VLIW architecture
consists of multiple execution units running in parallel that perform multiple
instructions during a single clock cycle. Parallelism is the key to extremely high
performance and takes these next-generation DSPs well beyond the perfor-
mance capabilities of traditional superscalar designs. VelociTI is a highly
deterministic architecture, with few restrictions on how or when instructions
are fetched, executed, or stored. This architectural flexibility is key to the
breakthrough efficiency levels of the ’C6000 compiler.

Topic Page

2.1 TMS320C62x/C67x Block Diagram 2-2.

2.2 Central Processing Unit (CPU) 2-3.

2.3 CPU Data Paths 2-4.

2.4 Mapping Between Instructions and Functional Units 2-11.

2.5 Addressing Modes 2-18.

2.6 Interrupts 2-19.

Chapter 2

TMS320C62x/C67x Block Diagram

 2-2

2.1 TMS320C62x/C67x Block Diagram

The ’C62x/C67x processor consists of three main parts: CPU (or the core),
peripherals, and memory. Eight functional units operate in parallel, with two
similar sets of the basic four functional units. The units communicate using a
cross path between two register files, each of which contains 16 32-bit
registers. Program parallelism is defined at compile time because there is no
data dependency checking done in hardware during run time. The
256-bit-wide program memory fetches eight 32-bit instructions every single
cycle.

Figure 2–1 is the block diagram for the TMS320C62x/C67x devices. The
’C62x/C67x devices come with on-chip program and data memory, which may
be configured as cache on some devices. Peripherals include a direct memory
access (DMA) controller, power-down logic, external memory interface
(EMIF), serial port(s), expansion bus or host port, and timer(s). Check the data
sheet for your device to determine the specific peripheral configurations you
have.

Figure 2–1. TMS320C62x/C67x Block Diagram

Program/data buses

EMIF

32
D

A

control
emulation
JTAG test/

Data RAM
32-bit address

8-, 16-, 32-bit data
512K bits RAM512K bits RAM

256-bit data
32-bit address

Program RAM/cache

generator
PLL clock

Timer

Timer

serial port
(T1/E1) buffered

Multichannel

serial port
(T1/E1) buffered

Multichannel

Power management
port
Host

DMA
(four

channel)
or

’C6000 CPU core

Interrupts

Emulation

Test

logic
Control

registers
Control

Data path 2

.D2.S2 .M2

B register file

.L2.D1.M1.S1.L1

A register file
Data path 1

Instruction decode

Instruction dispatch

Program fetch

EDMA
(16

channel)

EXB
or

Central Processing Unit (CPU)

2-3CPU Architecture

2.2 Central Processing Unit (CPU)

The ’C62x/C67x CPU, in Figure 2–1, is common to all the ’C62x/C67x devices.
The CPU contains:

� Program fetch unit
� Instruction dispatch unit
� Instruction decode unit
� 32 32-bit registers
� Two data paths, each with four functional units
� Control registers
� Control logic
� Test, emulation, and interrupt logic

The CPU has two data paths (A and B) in which processing occurs. Each data
path has four functional units (.L, .S, .M, and .D) and a register file containing
16 32-bit registers. The functional units execute logic, shifting, multiply, and
data address operations. All instructions except loads and stores operate on
the registers. The two data-addressing units (.D1 and .D2) are exclusively
responsible for all data transfers between the register files and memory.

The four functional units of a data path have a single data bus connected to
registers on the other side of the CPU so that the units can exchange data with
the register file on the opposite side. Register access across the CPU supports
one read and write operation per cycle.

The two sets of functional units include the following items:

� Two multipliers
� Six arithmetic logic units (ALUs)
� Two register files, each containing 16 32-bit registers

Each functional unit is controlled by a 32-bit instruction. The instruction fetch,
instruction dispatch, and instruction decode blocks can deliver up to eight 32-bit
instructions from the program memory to the functional units every cycle. The
control register file provides methods to configure and control various aspects
of processor operation. Access to the control registers is provided from data-
path B.

The VLIW processing flow begins when a 256-bit-wide instruction fetch packet
(IFP) is fetched from the internal program memory. The instructions linked
together for simultaneous execution (up to eight instructions) form an execute
packet. For more details on the processing, see the data sheet for your particu-
lar device.

CPU Data Paths

 2-4

2.3 CPU Data Paths

Figure 2–2 shows the ’C62x CPU data paths and Figure 2–3 shows the ’C67x
CPU data paths, which consist of:

� Two general-purpose register files (A and B)
� Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2)
� Two load-from-memory paths (LD1 and LD2)
� Two store-to-memory paths (ST1 and ST2)
� Two register file cross paths (1X and 2X)
� Two data address paths (DA1 and DA2)

2.3.1 General-Purpose Register Files

There are two general-purpose register files (A and B) in the ’C62x/C67x data
paths. Each of these files contains 16 32-bit registers (A0–A15 for file A and
B0–B15 for file B). The general-purpose registers can be used for data or data-
address pointers. Registers A1, A2, B0, B1, and B2 can be used for condition
registers. Registers A4–A7 and B4–B7 can be used for circular addressing.

The general-purpose register files support 32- and 40-bit fixed-point data.
32-bit data can be contained in any general-purpose register. 40-bit data is
contained across two registers; the 32 LSBs of the data are placed in an even
register and the remaining eight MSBs are placed in the eight LSBs of the next
upper register (which is always an odd register). The ’C67x also uses these
register pairs to hold 64-bit double-precision floating-point values.

CPU Data Paths

2-5CPU Architecture

Figure 2–2. TMS320C62x CPU Data Paths

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

2X

1X

.L2

.S2

.M2

.D2

(B0–B15)

(A0–A15)

ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ

ÁÁ
ÁÁÁÁ

Á
Á
Á

Á
Á

Á
Á

Á
Á

Á

Á
Á
Á

Á

Á

Á

Á
Á
Á

Á
Á
Á

Á
Á

Á
ÁÁ

Á .D1

.M1

Á
Á
Á

ÁÁ
ÁÁ
ÁÁ

Á
ÁÁ
Á
ÁÁÁ

Á

.S1

Á
Á
ÁÁ
Á

ÁÁ

.L1

long src

dst

src2

src1

Á
Á
Á

ÁÁ
ÁÁÁ

Á
Á
Á
Á

src1

src1

src1

src1

src1

src1

src1

8

8

8

8

8
8

long dst

long dst
dst

dst

dst

dst

dst

dst

dst

src2

src2

src2

src2

src2

src2

src2

long src

Control
register

fileÁÁ

DA1

DA2

ST1

LD1

LD2

ST2

32

32

Data path A

Data path B

Register
 file A

Register
 file B

long src
long dst

long dst
long src

CPU Data Paths

 2-6

Figure 2–3. TMS320C67x CPU and Data Paths

8

8

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

2X

1X

.L2

.S2

.M2

.D2

(B0–B15)

(A0–A15)

ÁÁ

Á

Á
Á

Á

ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ

ÁÁ

ÁÁ

ÁÁ

ÁÁ

ÁÁ

Á
Á
ÁÁ

Á
ÁÁ

ÁÁ
Á

ÁÁ
.D1

.M1

ÁÁ
ÁÁ
ÁÁ

Á
Á

ÁÁÁ
Á
Á

Á
ÁÁÁ

.S1

ÁÁ
ÁÁ
Á
Á

ÁÁ
ÁÁ

Á

.L1

long src

dst

src2

src1

ÁÁ
ÁÁ

ÁÁ

ÁÁ
Á
Á

ÁÁ
ÁÁ

src1

src1

src1

src1

src1

src1

src1

8

8

long dst

long dst
dst

dst

dst

dst

dst

dst

dst

src2

src2

src2

src2

src2

src2

src2

long src

Control
register

fileÁ

DA1

DA2

ST1

LD1 32 LSB

LD2 32 LSB

LD2 32 MSB

32

32

Data path A

Data path B

Register
 file A

Register
 file B

long src
long dst

long dst
long src

ÁÁ
LD1 32 MSB

32

ST2

32

8

8

8

8

Á
Á

Á

CPU Data Paths

2-7CPU Architecture

2.3.2 Functional Units

The eight functional units in the ’C62x/C67x data paths can be divided into two
groups of four; each functional unit in one data path is almost identical to the
corresponding unit in the other data path. The functional units are described
in Table 2–1.

Most data lines in the CPU support 32-bit operands, and some support long
(40-bit) operands. Each functional unit has its own 32-bit write port into a
general-purpose register file. All units ending in 1 (for example, .L1) write to
register file A and all units ending in 2 write to register file B. Each functional
unit has two 32-bit read ports for source operands src1 and src2. Four units
(.L1, .L2, .S1, and .S2) have an extra 8-bit-wide port for 40-bit long writes as
well as an 8-bit input for 40-bit long reads. Because each unit has its own 32-bit
write port, all eight units can be used in parallel every cycle.

Table 2–1. Functional Units and Operations Performed

Functional Unit Fixed-Point Operations Floating-Point Operations

.L unit (.L1,.L2) 32/40-bit arithmetic and compare operations
Leftmost 1 or 0 bit counting for 32 bits
Normalization count for 32 and 40 bits
32-bit logical operations

Arithmetic operations
Conversion operations:
DP → SP, INT → DP, INT → SP

.S unit (.S1, .S2) 32-bit arithmetic operations
32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations
Branches
Constant generation
Register transfers to/from the control register file
(.S2 only)

Compare reciprocal and reciprocal
square-root operations
Absolute value operations
SP to DP conversion operations

.M unit (.M1, .M2) 16 � 16 bit multiply operations 32 � 32 bit multiply operations
Floating-point multiply operations

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular address
calculation
Loads and stores with a 5-bit constant offset
Loads and stores with a 15-bit constant offset
(.D2 only)

Load double word with a 5-bit
constant offset

CPU Data Paths

 2-8

2.3.3 TMS320C62x/C67x Control Register Files

One unit (.S2) can read from and write to the control register file, shown in
Figure 2–2 and Figure 2–3. Table 2–2 lists the control registers contained in
the control register file and describes each. Each control register is accessed
by the MVC instruction.

Table 2–2. Control Registers

Register

Abbreviation Name Description

AMR Addressing mode register Specifies whether to use linear or circular addressing for
each of eight registers; also contains sizes for circular ad-
dressing

CSR Control status register Contains the global interrupt enable bit, cache control bits,
and other miscellaneous control and status bits

IFR Interrupt flag register Displays status of interrupts

ISR Interrupt set register Allows you to set pending interrupts manually

ICR Interrupt clear register Allows you to clear pending interrupts manually

IER Interrupt enable register Allows enabling/disabling of individual interrupts

ISTP Interrupt service table pointer Points to the beginning of the interrupt service table

IRP Interrupt return pointer Contains the address to be used to return from a maskable
interrupt

NRP Nonmaskable interrupt return
pointer

Contains the address to be used to return from a nonmask-
able interrupt

PCE1 Program counter, E1 phase Contains the address of the fetch packet that contains the
execute packet in the E1 pipeline stage

CPU Data Paths

2-9CPU Architecture

2.3.4 TMS320C67x Control Register File Extensions

The ’C67x has three additional configuration registers to support floating point
operations (see Table 2–3). The registers specify the desired floating-point
rounding mode for the .L and .M units. They also contain bit fields to warn if
src1 and src2 are NaN (not a number) or denormal numbers, and if the result
overflows, underflows, is inexact, infinite, or invalid. There are also fields to
warn if a divide by 0 was performed, or if a compare was attempted with a NaN
source.

Table 2–3. TMS320C67x Control Register File Extensions

Register

Abbreviation Name Description

FADCR Floating-point adder configura-
tion register

Specifies underflow mode, rounding mode, NaNs, and other
exceptions for the .L unit.

FAUCR Floating-point auxiliary configu-
ration register

Specifies underflow mode, rounding mode, NaNs, and other
exceptions for the .S unit.

FMCR Floating-point multiplier configu-
ration register

Specifies underflow mode, rounding mode, NaNs, and other
exceptions for the .M unit.

2.3.5 Register File Cross Paths

Each functional unit reads directly from and writes directly to the register file
within its own data path. That is, the .L1, .S1, .D1, and .M1 units write to register
file A and the .L2, .S2, .D2, and .M2 units write to register file B. The register
files are connected to the opposite-side register file’s functional units via the
1X and 2X cross paths. These cross paths allow functional units from one data
path to access a 32-bit operand from the opposite side’s register file. The 1X
cross path allows data path A’s functional units to read their source from regis-
ter file B and the 2X cross path allows data path B’s functional units to read their
source from register file A.

Six of the functional units have access to the opposite side’s register file via
a cross path. The .M1, .M2, .S1, and .S2 units’ src2 inputs are multiplex-select-
able between the cross path and the same side register file. The .L1 and .L2
units’ src1 and src2 inputs are also multiplex-selectable between the cross
path and the same side register file.

Only two cross paths, 1X and 2X, exist in the ’C62x/C67x CPUs. This limits one
source read from each data path’s opposite register file per cycle, or two cross-
path source reads per cycle.

CPU Data Paths

 2-10

2.3.6 Memory, Load, and Store Paths

There are two 32-bit paths for loading data from memory to the register file:
LD1 for register file A, and LD2 for register file B. The ’C67x also has a second
32-bit load path for both register files A and B, which allows the LDDW
instruction to simultaneously load two 32-bit registers into side A and two
32-bit registers into side B. There are also two 32-bit paths, ST1 and ST2, for
storing register values to memory from each register file. The store paths are
shared with the .L and .S long read paths.

2.3.7 Data-Address Paths

The data-address paths (DA1 and DA2) shown in Figure 2–2 and Figure 2–3
coming out of the .D units allow data addresses generated from one register
file to support loads and stores to memory from the other register file. However,
loads and stores executed in parallel must load to and from the same register
file or both use a crosspath to the opposite register.

Mapping Between Instructions and Functional Units

2-11CPU Architecture

2.4 Mapping Between Instructions and Functional Units

Table 2–4 shows the mapping between instructions and functional units and
Table 2–5 shows the mapping between functional units and instructions for the
TMS320C62x/C67x fixed-point instructions.

Table 2–4. Fixed-Point Instruction to Functional Unit Mapping

.L Unit .M Unit .S Unit .D Unit

ABS MPY ADD SET ADD STB (15-bit offset)‡

ADD MPYU ADDK SHL ADDAB STH (15-bit offset)‡

ADDU MPYUS ADD2 SHR ADDAH STW (15-bit offset)‡

AND MPYSU AND SHRU ADDAW SUB

CMPEQ MPYH B disp SHRL LDB SUBAB

CMPGT MPYHU B IRP† SUB LDBU SUBAH

CMPGTU MPYHUS B NRP† SUBU LDH SUBAW

CMPLT MPYHSU B reg SUB2 LDHU ZERO

CMPLTU MPYHL CLR XOR LDW

LMBD MPYHLU EXT ZERO LDB (15-bit offset)‡

MV MPYHULS EXTU LDBU (15-bit offset)‡

NEG MPYHSLU MV LDH (15-bit offset)‡

NORM MPYLH MVC† LDHU (15-bit offset)‡

NOT MPYLHU MVK LDW (15-bit offset)‡

OR MPYLUHS MVKH MV

SADD MPYLSHU MVKLH STB

SAT SMPY NEG STH

SSUB SMPYHL NOT STW

SUB SMPYLH OR

SUBU SMPYH

SUBC

XOR

ZERO

† S2 only
‡ D2 only

Mapping Between Instructions and Functional Units

 2-12

Table 2–5. Functional Unit to Fixed-Point Instruction Mapping

Functional Units

Instruction .L Unit .M Unit .S Unit .D Unit

ABS �

ADD � � �

ADDU �

ADDAB �

ADDAH �

ADDAW �

ADDK �

ADD2 �

AND � �

B �

B IRP �†

B NRP �†

B reg �†

CLR �

CMPEQ �

CMPGT �

CMPGTU �

CMPLT �

CMPLTU �

EXT �

EXTU �

IDLE

LDB mem �

LDBU mem �

LDH mem �

LDHU mem �

† S2 only
‡ D2 only

Mapping Between Instructions and Functional Units

2-13CPU Architecture

Table 2–5. Functional Unit to Fixed-Point Instruction Mapping (Continued)

Functional Units

Instruction .D Unit.S Unit.M Unit.L Unit

LDW mem �

LDB mem (15-bit offset) �‡

LDBU mem (15-bit offset) �‡

LDH mem (15-bit offset) �‡

LDHU mem (15-bit offset) �‡

LDW mem (15-bit offset) �‡

LMBD �

MPY �

MPYU �

MPYUS �

MPYSU �

MPYH �

MPYHU �

MPYHUS �

MPYHSU �

MPYHL �

MPYHLU �

MPYHULS �

MPYHSLU �

MPYLH �

MPYLHU �

MPYLUHS �

MPYLSHU �

MV � � �

MVC† �

MVK �

† S2 only
‡ D2 only

Mapping Between Instructions and Functional Units

 2-14

Table 2–5. Functional Unit to Fixed-Point Instruction Mapping (Continued)

Functional Units

Instruction .D Unit.S Unit.M Unit.L Unit

MVKH �

MVKLH �

NEG � �

NOP

NORM �

NOT � �

OR � �

SADD �

SAT �

SET �

SHL �

SHR �

SHRU �

SMPY �

SMPYH �

SMPYHL �

SMPYLH �

SSHL �

SSUB �

STB mem �

STH mem �

STW mem �

STB mem (15-bit offset) �‡

STH mem (15-bit offset) �‡

STW mem (15-bit offset) �‡

SUB � � �

† S2 only
‡ D2 only

Mapping Between Instructions and Functional Units

2-15CPU Architecture

Table 2–5. Functional Unit to Fixed-Point Instruction Mapping (Continued)

Functional Units

Instruction .D Unit.S Unit.M Unit.L Unit

SUBU � �

SUBAB �

SUBAH �

SUBAW �

SUBC �

SUB2 �

XOR � �

ZERO � � �

† S2 only
‡ D2 only

Table 2–6 shows the mapping between instructions and functional units and
Table 2–7 shows the mapping between functional units and instructions for the
TMS320C67x floating-point instructions.

Table 2–6. Floating-Point Instruction to Functional Unit Mapping

.L Unit .M Unit .S Unit .D Unit

ADDDP MPYDP ABSDP ADDAD

ADDSP MPYI ABSSP LDDW

DPINT MPYID CMPEQDP

DPSP MPYSP CMPEQSP

INTDP CMPGTDP

INTDPU CMPGTSP

INTSP CMPLTDP

INTSPU CMPLTSP

SPINT RCPDP

SPTRUNC RCPSP

SUBDP RSQRDP

SUBSP RSQRSP

SPDP

Mapping Between Instructions and Functional Units

 2-16

Table 2–7. Functional Unit to Floating-Point Instruction Mapping

Functional Units

Instruction .L Unit .M Unit .S Unit .D Unit Type

ABSDP � 2-cycle DP

ABSSP � Single cycle

ADDAD � Single cycle

ADDDP � ADDDP/
SUBDP

ADDSP � Four cycle

CMPEQDP � DP compare

CMPEQSP � Single cycle

CMPGTDP � DP compare

CMPGTSP � Single cycle

CMPLTDP � DP compare

CMPLTSP � Single cycle

DPINT � 4-cycle

DPSP � 4-cycle

DPTRUNC � 4-cycle

INTDP � INTDP

INTDPU � INTDP

INTSP � 4-cycle

INTSPU � 4-cycle

LDDW � Load

MPYDP � MPYDP

MPYI � MPYI

MPYID � MPYID

MPYSP � 4-cycle

RCPDP � 2-cycle DP

RCPSP � Single cycle

RSQRDP � 2-cycle DP

RSQRSP � Single cycle

Mapping Between Instructions and Functional Units

2-17CPU Architecture

Table 2–7. Functional Unit to Floating-Point Instruction Mapping(Continued)

Instruction Type

Functional Units

Instruction Type.D Unit.S Unit.M Unit.L Unit

SPDP � 2-cycle DP

SPINT � 4-cycle

SPTRUNC � 4-cycle

SUBDP � ADDDP/
SUBDP

SUBSP � 4-cycle

Addressing Modes

 2-18

2.5 Addressing Modes

The addressing modes on the ’C62x and ’C67x are linear by default, but circu-
lar addressing is available. The mode is specified by the addressing mode reg-
ister (AMR).

All registers can perform linear addressing. Only eight registers can perform
circular addressing: A4–A7 are used by the .D1 unit and B4–B7 are used by
the .D2 unit. No other units can perform circular addressing. LDB/LDH/LDW ,
STB/STH/STW, ADDAB/ADDAH/ADDAW , and SUBAB/SUBAH/SUBAW
instructions all use the AMR to determine what type of address calculations
are performed for these registers.

The ’C62x/C67x CPU has a load/store architecture, which means that the only
way to access data in memory is with a load or store instruction. Table 2–8
shows the syntax of an indirect address to a memory location.

Table 2–8. Indirect Address Generation for Load/Store

Addressing Type
No Modification of
Address Register

Preincrement or
Predecrement of
Address Register

Postincrement or
Postdecrement of
Address Register

Register indirect *R *++R
*– –R

*R++
*R– –

Register relative *+R[ucst5]
*–R[ucst5]

*++R[ucst5]
*– –R[ucst5]

*R++[ucst5]
*R– –[ucst5]

Base + index *+R[offsetR]
*–R[offsetR]

*++R[offsetR]
*– –R[offsetR]

*R++[offsetR]
*R– –[offsetR]

For more information on addressing modes, see the TMS320C62x/C67x CPU
and Instruction Set Reference Guide.

Interrupts

2-19CPU Architecture

2.6 Interrupts

The ’C62x/C67x CPU has 14 interrupts. These are reset, the nonmaskable
interrupt (NMI), and interrupts 4–15. These interrupts correspond to the
RESET, NMI, and INT4–INT15 signals on the CPU boundary. In some
’C62x/C67x devices, these signals may be tied directly to pins on the device,
connected to on-chip peripherals, or may be disabled permanently by being
tied inactive on chip. Generally, RESET and NMI are connected directly to pins
on the device. Characteristics of interrupt servicing include:

� The IACK pin from the CPU is used to acknowledge an interrupt request.

� The INUM0–INUM3 pins indicate which interrupt vector is being serviced.

� Interrupt vectors are relocatable.

� Interrupt vectors consist of one fetch packet which provides for quick
servicing.

For more information on interrupts, see the TMS320C62x/C67x CPU and
Instruction Set Reference Guide, the TMS320C6201/C6701 Peripherals Ref-
erence Guide, and the TMS320C6202/C6211 Peripherals Reference Guide
Addendum.

3-1

Memory

The TMS320C6000 platform of devices includes on-chip memory for both pro-
gram and data, some of which may be selected as cache. In addition, an exter-
nal memory interface (EMIF) may be used to include external memories in a
’C6000 system.

Topic Page

3.1 Memory Maps 3-2.

3.2 Internal Memory 3-4.

3.3 External Memory Interface (EMIF) 3-11.

Chapter 3

Memory Maps

 3-2

3.1 Memory Maps

The memory maps of the ’C6000 platform of devices are shown in Figure 3–1
and Figure 3–2. The total memory address range of the ’C6000 devices is
4Gbytes (corresponding to 32-bit internal address representation). Each
memory map is divided into the internal program memory, internal data
memory, external memory spaces, and internal peripheral space.

Figure 3–1. TMS320C6201/C6202/C6701 Memory Maps
Starting address Memory map 0

(Direct execution)
Block size

(bytes)
Starting address Memory map 1

(Boot mode)
Block size

(bytes)

0000 0000h External memory space
CE0

16M 0000 0000h Internal program RAM 64K/(256K
on ’C6202)

0100 0000h External memory space
CE1

4M 0001 0000h
(0004 0000h
on ’C6202)

Reserved
4M–64K

(4M–256K
on ’C6202)

0140 0000h Internal program RAM 64K/(256K
on ’C6202)

0040 0000h External memory space
CE0

16M

0141 0000h
(0144 0000h
on ’C6202)

Reserved
4M–64K

(4M–256K
on ’C6202)

0140 0000h External memory space
CE1

4M

0180 0000h Internal peripherals 8M 0180 0000h Internal peripherals 8M

0200 0000h External memory space
CE2

16M 0200 0000h External memory space
CE2

16M

0300 0000h External memory space
CE3

16M 0300 0000h External memory space
CE3

16M

0400 0000h Reserved 1G–64M 0400 0000h Reserved 1G–64M

4000 0000h Expansion bus
(on ’C6202)

1G 4000 0000h Expansion bus
(on ’C6202)

1G

8000 0000h Internal Data RAM 64K/(128K
on ’C6202)

8000 0000h Internal data RAM 64K/(128K
on ’C6202)

8001 0000h
8002 0000h Reserved

2G–64K
(2G–128K
on ’C6202)

8001 0000h
8002 0000h Reserved

2G–64K
(2G–128K
on ’C6202)

Memory Maps

3-3Memory

Figure 3–2. TMS320C6211 Memory Map

Starting Address Memory Block Block Size
(Bytes)

0000 0000h Internal RAM (L2) 64K

0001 0000h Reserved 24M–64K

0180 0000h Configuration and peripherals 8M

0200 0000h Reserved 224M

1000 0000h External memory 512M

3000 0000h Reserved 256M

4000 0000h McBSP 0/1 Data 256M

5000 0000h Reserved 256M

6000 0000h HPI expansion bus 256M

7000 0000h Reserved 2G + 256M

For the ’C6201 and ’C6701, five BOOTMODE pins determine which memory
map and boot process are used.The ’C6202 has these five pins removed, and
instead latches the expansion bus data lines XD[4:0] on the rising edge of
RESET. These pins should be pulled high or low through resistors to select the
boot process and memory map. The ’C6211 has only one memory map, but
selects the boot process in similar fashion to the ’C6202. HD[4:3] are sampled
from the host-port interface on the rising edge of RESET to determine which
boot process will be used.

The two modes of operation for these devices are direct execution and boot
mode. In direct execution, the program starts loading from external address
0, whereas in boot mode, the program is loaded either from external memory
or from an external host before starting execution at internal address 0.

Internal Memory

 3-4

3.2 Internal Memory

The amount and location of internal memory depends on the particular device.
The ’C6201, ’C6202, and ’C6701 have separate program and data memories
(Harvard architecture), while the ’C6211 has a portion of its internal memory
that may be used for either program or data. Table 3–1 shows the internal
memory configurations of the ’C6000 devices. Descriptions of the different
cache architectures are given in Table 3–2.

Table 3–1. TMS320C6000 Internal Memory Configurations

Device CPU

Internal
Memory
Architecture

Total Memory
(Bytes)

Program Memory
(Bytes)

Data Memory
(Bytes)

Unified Memory
(Bytes)

’C6201 6200 Harvard 128K 64K (map/cache) 64K (map) None

’C6701 6700 Harvard 128K 64K (map/cache) 64K (map) None

’C6202 6200 Harvard 384K 128K (map)
128K (map/cache)

128K (map) None

’C6211 6200 Harvard (L1)
Unified (L2)

72K 4K (cache) 4K (cache) 64K (map/cache)

Table 3–2. TMS320C6000 Cache Architectures

Cache Space Size (Bytes) Associativity Line Size (Bytes)

’C6201 program 64K Direct mapped 32

’C6701 program 64K Direct mapped 32

’C6202 program 128K Direct mapped 32

’C6211 L1P 4K Direct mapped 64

’C6211 L1D 4K 2-way 32

’C6211 L2 64K 1- to 4-way 128

3.2.1 TMS320C6201 (Revision 2)

The TMS320C6201 has 64K bytes of internal program memory and 64K bytes
of internal data memory. The program memory space may be selected as a
program cache, to be used while running from an external memory space. The
program memory is 256 bits wide, having one fetch packet per line. On each
cache miss, one line is fetched from external memory.

Internal Memory

3-5Memory

The internal data memory is made up of four 16-bit wide banks. The DMA or
CPU may access each bank once per cycle, and multiple banks may be ac-
cessed in the same cycle. Since the CPU has two sides (A and B), the data
memory may be accessed by the CPU and DMA up to three times each cycle.

3.2.2 TMS320C6201B (Revision 3)

The TMS320C6201B has 64K bytes of internal program memory and 64K by-
tes of internal data memory, like the ’C6201. The program memory space is
identical, and may be selected as a program cache. The program memory is
256 bytes wide, having one fetch packet per line. On each cache miss, one line
is fetched from external memory.

The internal data memory is slightly different, modified to maximize the data
accesses that may be performed each cycle by the three possible sources.
Instead of four banks, the ’C6201B is made up of eight 16-bit wide banks.
These are divided into two blocks of four banks, with the first four in the lower
half of data memory, and the last four in the upper half. The DMA or CPU may
access each bank once per cycle, and multiple banks may be accessed in the
same cycle. With this memory configuration, the maximum data access each
cycle is three 32-bit accesses; two CPU accesses and one DMA access.

3.2.3 TMS320C6701

The TMS320C6701 memory configuration is almost identical to that of the
’C6201B. It also has 64K bytes of internal program memory and 64K bytes of
internal data memory, and the program may be selected as a program cache.
The program memory line size is 32 bytes, having one fetch packet per line.
On each cache miss, one line is fetched from external memory.

The internal data memory consists of two blocks of eight 16-bit banks, rather
than four 16-bit banks. This feature allows parallel double-precision loads by
the CPU in the same cycle as a data access by the DMA. With the new memory
configuration, the maximum data access each cycle is two 64-bit CPU ac-
cesses (LDDW only) and 32-bit DMA access.

Internal Memory

 3-6

3.2.4 TMS320C6202

The TMS320C6202 has 256K bytes of internal program memory and 128K by-
tes of internal data memory. The program memory space consists of two 128K-
byte banks, with one bank selectable as a program cache. This can effectively
provide 128K bytes of program memory and 128K bytes of program cache, if
selected. The program memory line size is 32 bytes, having one fetch packet
per line. On each cache miss, one line is fetched from external memory.

The internal data memory is configured identically to the ’C6201B, with eight
16-bit wide banks. These are divided into two blocks of four banks, with the first
four in the lower half of data memory, and the last four in the upper half. The
DMA or CPU may access each bank once per cycle, and multiple banks may
be accessed in the same cycle. With this memory configuration, the maximum
data access is three 32-bit accesses.

3.2.5 TMS320C6211

The TMS320C6211 has a 4K-byte level-one program cache (L1P) and 4K-
byte level-one data cache (L1D). These cache memories are always active
and are not included in the memory map. The L1P line size is 64 bytes (two
fetch packets), while the L1D line size is 32 bytes (eight data words). On a miss
to either cache space, the entire line of the miss is fetched. For the instruction
cache, this provides one pre-fetched instruction packet, while the data fetch
will receive adjacent data elements. The level-one caches are transparent to
the user.

The internal memory at address 0 is a unified 64K-byte data and instruction
RAM. This memory may be configured in one of five modes to provide a level-
two cache (both instruction and data), as shown in Table 3–3. The L2 SRAM
space always begins at address zero, regardless of the cache mode selected.
The length will vary.

Internal Memory

3-7Memory

Table 3–3. L2 Operation Modes

L2 Mode Cache Size SRAM size

000 0K 64K

001 16K 1-way 48K

010 32K 2-way 32K

011 48K 3-way 16K

100 Reserved

101 Reserved

110 Reserved

111 64K 4-way 0K

The L2 memory is made up of four 64-bit-wide banks. On an L2 miss, 128 bytes
of new data will be requested of the EDMA. The data is always aligned on a
32-word boundary.

3.2.6 Data Memory Access

For the ’C6201, ’C6202, and ’C6701 the data memory controller services all
requests to internal data memory by either the CPU or DMA. The ’C6211 has
a level-one data cache (L1D) controller and a level-two cache (L2) controller.
The L1D controller services the requests by the CPU and sends them to the
L2 controller on a read or a write miss. Data requests by the EDMA go directly
to the L2 controller.

Internal Memory

 3-8

3.2.7 TMS320C6201, ’C6202, ’C6701

The CPU sends requests to the data memory controller through the two ad-
dress buses (DA1 and DA2). The data to be stored is transmitted through the
CPU data store buses (ST1 and ST2). Load data is received through the CPU
data load buses (LD1 and LD2). The CPU data requests are mapped based
on the requested data’s memory address range to the internal data memory,
internal peripheral space (through the peripheral bus controller), or the exter-
nal memory interface. The data memory controller also connects to the inter-
nal data memory and performs CPU/DMA arbitration for the on-chip data
RAM. Figure 3–3 shows the CPU, data memory controller, and peripheral bus
connections.

Figure 3–3. TMS320C6201/C6202/C6701 Data Memory Controller Interconnect

Data memory controller

Data

Memory

CPU

EMIF DMA PBUS

Bank 1

Bank 3

Bank 2

...

...

Bank n

DA1 address

ST1 store data

LD1 load data

DA2 address

ST2 store data

LD2 load data

Solid line indicates data

Dashed line indicates request

Arrowheads indicate direction of data or request

Internal Memory

3-9Memory

3.2.8 TMS320C6211

In the TMS320C6211, the CPU sends requests to the L1D controller in the
same fashion as the ’C6201, ’C6202, and ’C6701 request data from the data
memory controller. On a read data miss or a data write, the L1D controller
sends a request to the L2 controller to complete the action. The L2 controller
may then access the L2 cache/memory space, or send the request to the
EDMA.

Figure 3–4. TMS320C6211 Data Memory Controller Interconnect

L1 data
cache

CPU

EDMA

DA1 address

ST1 store data

LD1 load data

DA2 address

ST2 store data

LD2 load data

Solid line indicates data

Dashed line indicates request

Arrowheads indicate direction of data or request

L1D
cache

controller

L2 cache
controller

L2 data
cache/
memory

Internal Memory

 3-10

3.2.9 Peripheral Bus

The peripherals are configured via a set of memory-mapped control registers.
The peripheral bus controller arbitrates all accesses to the control registers.
On the ’C6201, ’C6202, and ’C6701, the DMA accesses the peripheral bus
controller directly, while the CPU accesses it through the data memory
controller.

On the ’C6211, the peripheral bus controller is incorporated into the L2 control-
ler. The EDMA accesses this directly, while the CPU accesses it through the
L1D controller.

The peripheral bus controller converts all peripheral bus accesses to word ac-
cesses. This affects all writes to a control register, as a byte or halfword will be
treated as an unsigned 32-bit word. On reads, individual bytes may be ac-
cessed.

3.2.10 Expansion Bus

The expansion bus on the ’C6202 is a 32-bit-wide bus that supports a glueless
synchronous FIFO interface, asynchronous interface, and two host modes.
The two host modes are synchronous master/slave mode or asynchronous
host mode. Mode selection is performed during boot using pull-up/down resis-
tors. The expansion bus replaces the HPI and expands the memory options
available to the user.

External Memory Interface (EMIF)

3-11Memory

3.3 External Memory Interface (EMIF)

The external memory interface (EMIF) connects the CPU and external
memory, such as synchronous dynamic RAM (SDRAM), synchronous burst
static RAM (SBSRAM), and asynchronous memory. The EMIF also provides
8-bit-wide and 16-bit-wide memory read capability to support low-cost boot
ROM memories (flash, EEPROM, EPROM, and PROM). The EMIF supports
high throughput interfaces to SDRAM, including burst capability.

For more information on the EMIF, see section 4.5 of this book and the
TMS320C6000 Peripherals Reference Guide. For more information on the ex-
pansion bus, see section 4.4. For more information on internal memory, see
the TMS320C6000 Peripherals Reference Guide.

4-1

Peripherals

In addition to on-chip memory, the TMS320C62x and TMS320C67x devices
contain peripherals for communication with off-chip memory, coprocessors,
host processors, and serial devices. These peripherals are briefly described
here, but each ’C6000 device has only a specific subset of them. The peripher-
als available for each device in the ’C6000 platform are listed in Table 4–1. All
peripherals are explained in detail in the TMS320C6201/C6701 Peripherals
User’s Guide and/or the TMS320C6202/C6211 Peripherals User’s Guide Ad-
dendum.

Topic Page

4.1 Direct Memory Access (DMA) Controller 4-3.

4.2 Enhanced Direct Memory Access (EDMA) 4-5.

4.3 Host-Port Interface (HPI) 4-6.

4.4 Expansion Bus (XB) 4-8.

4.5 External Memory Interface (EMIF) 4-11.

4.6 Boot Configuration Logic 4-16.

4.7 Multichannel Buffered Serial Port (McBSP) 4-18.

4.8 Timers 4-21.

4.9 Interrupt Selector 4-22.

4.10 Power-Down Logic 4-23.

Chapter 4

 4-2

Table 4–1. TMS320C6000 Peripherals

Device EMIF HPI XB McBSPs Timers PD Modes Interrupt
Select

External
Interrupt

’C6201 � � 2 2 (3)† 3 � 4 (8)‡

’C6701 � � 2 2 (3)† 3 � 4 (8)‡

’C6202 � � 2 2 (3)† 3 � 4 (8)‡

’C6211 � � 2 2 (3)† 3 � 4 (8)‡

† If SDRAM is not used, the SDRAM refresh period timer may be used as a general purpose timer.
‡ If unused for serial port operation, the McBSP frame sync signals (FSX,FSR) on each McBSP may be configured as interrupts.

Peripherals

Direct Memory Access (DMA) Controller

4-3Peripherals

4.1 Direct Memory Access (DMA) Controller

Devices: ’C6201, ’C6202, and ’C6701

The direct memory access (DMA) controller transfers data between regions
in the memory map without intervention by the CPU. The DMA allows move-
ment of data to and from internal memory, internal peripherals, or external de-
vices to occur in the background of CPU operation. The DMA has four inde-
pendently programmable channels allowing four different contexts for opera-
tion. In addition, a fifth (auxiliary) channel allows the DMA to service requests
from the host-port interface (HPI) or the Expansion Bus (XB). In discussing
DMA operations, the following terms are important:

� Read transfer: The DMA reads the data element from a source location
in memory.

� Write transfer: The DMA writes the data element that was read during a
read transfer to its destination location in memory.

� Element transfer: The combined read and write transfer for a single data
element.

� Frame transfer: Each DMA channel has an independently programmable
number of elements per frame. In completing a frame transfer, the DMA
moves all elements in a single frame.

� Block transfer: Each DMA channel also has an independently program-
mable number of frames per block. In completing a block transfer, the
DMA moves all frames it has been programmed to move.

The DMA has the following features:

� Background operation: The DMA operates independently of the CPU.

� High throughput: Elements can be transferred at the CPU clock rate.

� Four channels: The DMA can keep track of the contexts of four indepen-
dent block transfers.

� Auxiliary channel: This channel allows the host port to make requests
into the CPU’s memory space. This chapter discusses how the auxiliary
channel requests are prioritized relative to other channels and the CPU.
Detailed explanation of how it is used in conjunction with a peripheral is
found in that peripheral’s documentation.

� Split operation: A single channel may be used to simultaneously perform
both the receive and transmit element transfers to or from two peripherals
and memory, effectively acting like two DMAs.

Direct Memory Access (DMA) Controller

 4-4

� Multi-frame transfer: Each block transfer can consist of multiple frames
of a programmable size.

� Programmable priority: Each channel has independently program-
mable priorities versus the CPU.

� Programmable address generation: Each channel’s source and des-
tination address registers can have configurable indexes for each read
and write transfer. The address may remain constant, increment, decre-
ment, or be adjusted by a programmable value. The programmable value
allows a distinct index for the last transfer in a frame and for the preceding
transfers. This feature is used for multichannel sorting.

� Full-address 32-bit address range: The DMA can access any region in
the memory map:

� The on-chip data memory.

� The on-chip program memory when mapped into memory space.

� The on-chip peripherals.

� The external memory interface (EMIF).

� Programmable-width transfers: Each channel can be independently
configured to transfer either bytes, 16-bit halfwords, or 32-bit words.

� Autoinitialization: Once a block transfer is complete, a DMA channel
may automatically reinitialize itself for the next block transfer.

� Event synchronization: Each read, write, or frame transfer may be initi-
ated by selected events.

� Interrupt generation : On completion of each frame transfer or of an entire
block transfer, as well as on various error conditions, each DMA channel
may send an interrupt to the CPU.

Enhanced Direct Memory Access (EDMA)

4-5Peripherals

4.2 Enhanced Direct Memory Access (EDMA)

Device: ’C6211

The enhanced direct memory access (EDMA) controller, like the DMA control-
ler, transfers data between regions in the memory map without intervention by
the CPU. The EDMA allows movement of data to and from internal memory,
internal peripherals, or external devices to occur in the background of CPU op-
eration. The EDMA has sixteen independently programmable channels
allowing sixteen different contexts for operation.

In addition to the features of the DMA controller, the EDMA also has the
following features:

� Sixteen channels: The EDMA can keep track of the contexts of sixteen
independent transfers.

� Linking: Each EDMA channel can be linked to a subsequent transfer to
perform after completion.

� Event synchronization: Each channel is initiated by a specific event.
Transfers may be either synchronized by element or by frame.

Host-Port Interface (HPI)

 4-6

4.3 Host-Port Interface (HPI)

Devices: ’C6201, ’C6211, and ’C6701

The Host-Port Interface (HPI) is a 16-bit wide parallel port through which a host
processor can directly access the CPU’s memory space. The host device func-
tions as a master to the interface, which increases ease of access. The host
and CPU can exchange information via internal or external memory. The host
also has direct access to memory-mapped peripherals.

The HPI is connected to the internal memory via a set of registers. Either the
host or the CPU may use the HPI Control register (HPIC) to configure the inter-
face. The host can access the host address register (HPIA) and the host data
register (HPID) to access the internal memory space of the device. The host
accesses these registers using external data and interface control signals.
The HPIC is a memory-mapped register, which allows the CPU access.

Connectivity to the CPU’s memory space is provided through the DMA control-
ler for the ’C6201 and ’C6701. An auxiliary channel exists which performs data
transfers to and from the host interface. On the ’C6211 the data transactions
are performed within the EDMA, and are invisible to the user. Figure 4–1 is a
simplified diagram of the interface between the host and the ’C62x/C67x HPI.

Figure 4–1. Host-port Interface (HPI) Block Diagram

INTERRUPT

Ready

BE
(if used)

ALE

Host

DATASTROBE

Data[15:0]

Address

HINT

HRDY

HBE[1:0]

HAS

HCS

HDS2

HDS1

HD[15:0]

HR/W

HHWIL

HCNTL[1:0]

bus
peripheral
controller
memory

Data

(HPIC)
register
control

HPI

latches
Data

latches
address

HPIA

’C62x/C67x

DMA
auxiliary
channel

-or-

Address
generation
hardware

Host-Port Interface (HPI)

4-7Peripherals

The HPI provides 32-bit data to the CPU with an economical 16-bit external
interface by automatically combining successive 16-bit transfers. The 16-bit
data bus, HD[15:0], exchanges information with the host. On host data (HPID)
write accesses, the HBE[1:0] byte enables select the bytes in a 16-bit halfword
are being written. For HPIA, HPIC, and HPID read accesses the byte enables
are not used. The dedicated HHWIL pin indicates whether the first or second
halfword is being transferred. An internal control register bit determines wheth-
er the first or second halfword is placed into the most significant halfword of
a word.

The two data strobes (HDS1 and HDS2), the read/write select (HR/W), and the
address strobe (HAS) enable the HPI to interface to a variety of industry-stan-
dard host devices with little or no additional logic required. The HPI can easily
interface to hosts with either multiplexed or dedicated address and data lines.

The host can access HPID with an optional automatic address increment of
HPIA. This feature facilitates reading or writing to sequential word locations.

The HPI ready pin (HRDY) allows insertion of host wait states. Wait states may
be necessary depending on the latency of the memory accessed via the HPI,
as well as on the rate of host access.

Expansion Bus (XB)

 4-8

4.4 Expansion Bus (XB)

Device: ’C6202

The expansion bus on the ’C6202 serves as a replacement for the HPI and a
complement of the external memory interface (EMIF). With the second bus for
I/O devices, the EMIF loading may be reduced and data throughput may be
increased. Allowing a 32-bit asynchronous host interface, as well as a syn-
chronous interface to several bus types expands the HPI capability. The ex-
pansion bus is illustrated in Figure 4–2.

Figure 4–2. Expansion Bus

Expansion bus

XCLKIN

Expansion bus host channel

XFCLK

XD[31:0]
XCE[3:0]

XBE[3:0]/XA[5:2]

XOE
XRE
XWE

XCS

XAS
XCNTL
XW/R
XRDY
XBLAST
XBOFF

XHOLD
XHOLDA

Shared signals

Asynchronous
peripheral/
FIFO interface

Host port interface

Bus arbitration signals

The expansion bus provides the device with an increased data throughput.
The EMIF and the expansion bus are independant of one another, allowing
concurrent accesses to both ports. An example of this would be the CPU run-
ning from SDRAM (EMIF) in cache mode, with the DMA servicing a host and
I/O peripherals (expansion bus).

Allowing a second bus for I/O devices reduces the EMIF loading by splitting
the number of external devices between two ports. The total bandwidth of the

Expansion Bus (XB)

4-9Peripherals

memory interfaces is increased, as transfers to and from the EMIF will not
need to be interrupted by peripheral or host servicing. The expansion bus also
allows high-speed memories to be decoupled from lower speed devices.

The host-interface capability of the device is improved over the HPI. The ex-
pansion bus offers two modes of operation: synchronous host and asynchro-
nous host. The asynchronous host mode is a 32-bit version of the HPI. The
synchronous mode allows an interface to several protocols:

� Master/slave PCI bridge interface

� Master/slave synchronous industry-standard host bus protocol

The expansion bus is serviced by the auxiliary channel of the DMA, and pro-
vides a high data-transfer rate.

An example of a synchronous master/slave interface is shown in Figure 4–3,
in which the device is interfaced to a i80960Jx chip.

Expansion Bus (XB)

 4-10

Figure 4–3. Synchronous Interface

HOLD

HOLDA

CLKIN

XINT

BE_[3:0]

ADS_

AD[31:0]

READY

BLAST

W/R

i80960Jx

XHOLD

XHOLDA

XCLK

TOUT

XBE_[3:0]

XAS

XD[31:0]

XCNTL

XRDY

XBLAST

XW/R

XCS

TMS320C6202

32

4

CLOCK

Address

decoder

32

1

External Memory Interface (EMIF)

4-11Peripherals

4.5 External Memory Interface (EMIF)

Devices: all

The external memory interface (EMIF) supports a glueless interface to several
external devices, allowing additional data and program memory space beyond
that which is included on-chip. The types of memories supported include:

� Synchronous burst SRAM (SBSRAM)

� Synchronous DRAM (SDRAM)

� Asynchronous devices, including asynchronous SRAM, ROM, and
FIFOs. The EMIF provides highly programmable timings to these inter-
faces.

� External shared-memory devices

The EMIF is illustrated in Figure 4–4. Note that different devices of the ’C6000
platform may combine some signals, and that you should consult the data
sheet for a specific pin listing of the EMIF.

External Memory Interface (EMIF)

 4-12

Figure 4–4. External Memory Interface (EMIF) Block Diagram

interface
Bus hold

interface
SDRAM

interface
SBSRAM

interface
Asynchronous

interfaces
all external
Shared by

Program memory controller

Data memory controller

DMA

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

(EMIF)
interface
memory
External

HOLDA

HOLD

SDCLK

SDA10

SDWE

SDCAS

SDRAS

SSCLK

SSWE

SSOE

SSADS

ARE

AWE

AOE

ARDY

BE[3:0]

CE[3:0]

EA[21:2]

ED[31:0]

CLKOUT2

CLKOUT1

Internal peripheral bus

Control
registers

External Memory Interface (EMIF)

4-13Peripherals

4.5.1 SDRAM Interface

The EMIF supports several different SDRAM configurations, which offers sys-
tem designers an interface to high-speed and high-density memory.
Figure 4–5 illustrates the EMIF to SDRAM interface. The EA pins starting from
pin13 connect to the SDRAM address pins starting at pin 11. The symbol m
is 0 for a 16M-bit interface and 2 for 64M-bit interface.

The SDRAM control pins are latched by the SDRAM on the rising SDCLK edge
to determine the current operation. These signals are valid only if the chip se-
lect line for the SDRAM is low.

Figure 4–5. EMIF to SDRAM Interface

VCC

SDRAM

D[31:0]

A[9:0]

A[10]

A[11+m:11]

DQM[3:0]

CKE

WE

CAS

RAS

CLK

CS

(EMIF)
interface
memory
External

ED[31:0]

EA[11:2]

SDA10 or EA[12]

EA[13+m:13]

BE[3:0]

SDWE

SDCAS

SDRAS

SDCLK

CEn

4.5.2 SBSRAM Interface

The EMIF interfaces directly to industry-standard synchronous burst SRAMs,
as shown in Figure 4–6. This memory interface allows a high-speed memory
interface without some of the limitations of SDRAM. Since SBSRAMs are
SRAM devices, random accesses are possible during burst reads or writes.
The SBSRAM interface can run at either the CPU clock speed or at half of this
rate.

The four SBSRAM control pins are latched by the SBSRAM on the rising
SSCLK edge to determine the current operation. These signals are valid only
if the chip select line for the SBSRAM is low.

External Memory Interface (EMIF)

 4-14

Figure 4–6. EMIF to SBSRAM Interface

SBSRAM
SSRAM/

BE[3:0]BE[3:0]

D[31:0]

A[N:0]

WE

OE

ADSC

CLK

CS

(EMIF)
interface
memory
External

ED[31:0]

EA[N+2:2]

SSWE

SSOE

SSADS

SSCLK

CEn

VCC

VCC

ADSP

ADV

4.5.3 Asynchronous Interface

The asynchronous interface offers configurable cycle types, which can be
used to interface to a variety of memory and peripheral types, including SRAM,
EPROM, and flash memory, as well as FPGA and ASIC devices.

The following three figures show interfaces to SRAM (Figure 4–7), to FIFOs
(Figure 4–8), and to ROM (Figure 4–9).

Figure 4–7. EMIF to SRAM Interface

ARDY

ARE

SRAM

UB[1:0], LB[1:0]BE[3:0]

D[31:0]

A[N:0]

R/W

OE

CS

(EMIF)
interface
memory
External

ED[31:0]

EA[N+2:2]

AWE

AOE

CEn

VDD

External Memory Interface (EMIF)

4-15Peripherals

Figure 4–8. EMIF to FIFO Interface

Tx FIFO

EN

D[31:0]

WRCLK/WRSTRB

Rx FIFO

AWE

RDCLK/RDSTRB

D[31:0]

OE

EN

(EMIF)
interface
memory
External

ARE

ED[31:0]

EA[21:2]

AOE

CEn

ARDY

VDD

Figure 4–9. EMIF to ROM Interface

A[N:0]

ROM

ARDY

D[W-1:0]

OE

CS

(EMIF)
interface
memory
External

ARE

ED[W-1:0]

EA[N+2:2]

AOE

CE1

VDD

The EMIF supports 8-, 16-, and 32-bit wide ROMs. In Figure 4–8, the W de-
notes the number of data bits of the ROM. The memory-type field in the CE
space control register selects the access modes. In reading data from these
narrow-width memory spaces, the EMIF packs multiple reads into one 32-bit
wide value. This mode is primarily intended for word access to 8-bit and 16-bit
ROM devices.

For more specific memory interface descriptions, see the data sheet for the
particular ’C6000 device, as well as the TMS320C6201/C6701 Peripherals
Reference Guide and the TMS320C6202/C6211 Peripherals Reference
Guide Addendum.

Boot Configuration Logic

 4-16

4.6 Boot Configuration Logic

Devices: all

The ’C62x and ’C67x devices provide a variety of boot configurations for prop-
er device initialization. These configurations determine what actions the
’C62x/C67x performs after device reset to prepare for initialization. These boot
configurations, which are set by external input pins, determine:

� The memory map the device selects. The memory map determines
whether internal or external memory is mapped at address 0.

� The type of external memory at address 0 (if external memory is mapped
at address 0)

� The boot process used to initialize the memory at address 0 before the
CPU is allowed to run

4.6.1 Device Reset

The external device reset is the active-low RESET signal. While RESET is low,
the device is held in reset. During this period the device is initialized to the pre-
scribed reset state. All 3-state outputs are placed into the high-impedance
state. All other outputs are returned to their default state. RESET is latched
with the device CLKIN signal, as well as with the CPU clock. Thus, RESET has
minimum low time in terms of CLKIN as well as CPU clock (CLKOUT1) cycles.
The precise timing requirements for device reset are described in the data
sheet for each particular device. The rising edge of RESET starts the proces-
sor running with the prescribed boot configuration.

4.6.2 Boot Configuration

External signals BOOTMODE[4:0] determine the boot configuration. The val-
ues of BOOTMODE[4:0] are latched with the rising edge of RESET. Some
’C6000 devices provide separate pins for BOOTMODE[4:0], while some de-
vices sample host port data lines HD[4:0] or expansion bus data lines XD[4:0].
These data lines are required to be pulled high or low using resistors to power/
ground. The data sheet for the specific device will specifically state which sig-
nals determine the boot mode.

Three types of boot processes are available:

� No boot process (direct-execution startup): The CPU simply starts
running from the memory located at address 0. When this memory loca-
tion resides on SDRAM, the CPU is held until SDRAM initialization finish-
es. This mode is not supported on all ’C6000 devices.

Boot Configuration Logic

4-17Peripherals

� ROM boot process: A section of external memory is copied to address
0 by the DMA/EDMA controller. Although the boot process begins when
the device is released from external reset, this transfer occurs while the
CPU is held in reset internally. The amount of memory copied is 16K words
of 32 bits each. The width of the ROM is selected by BOOTMODE[4:3].
In the case of ROM less than 32-bits wide, the EMIF can automatically
pack consecutive 8-bit bytes or 16-bit halfwords to form the 32-bit instruc-
tion words to be moved. These values are expected to be stored in little-
endian format in the external memory.

� Host-boot process: In the host-boot process, the CPU is held in reset
while the remainder of the device is released from reset. During this peri-
od, an external host can initialize the CPU’s memory space as necessary
through the HPI or expansion bus, including external memory configura-
tion registers. Once the necessary external memory has been configured,
the host can access any external sections it needs to complete initializa-
tion. After all necessary initialization, the host writes a 1 to the DSPINT bit
in the HPI control register (HPIC). This write causes an active transition
on the DSPINT signal. In turn, this transition causes the boot configuration
logic to remove the CPU from its reset state. The CPU then begins running
from address 0. The CPU does not latch the DSPINT condition, because
it occurs while the CPU is still in reset. Therefore the assertion will not reg-
ister as an interrupt. Also, DSPINT wakes up the CPU from internal reset
only if the HPI boot process is selected.

Multichannel Buffered Serial Port (McBSP)

 4-18

4.7 Multichannel Buffered Serial Port (McBSP)

Devices: all

The ’C62x/C67x multichannel buffered serial port (McBSP) is based on the
standard serial port interface found on the TMS320C2000 and ’C5000 plat-
forms. The standard serial port interface provides:

� Full-duplex communication

� Double-buffered data registers, which allow a continuous data stream

� Independent framing and clocking for reception and transmission

� Direct interface to industry-standard codecs, analog interface chips
(AICs), and other serially connected A/D and D/A devices

� External shift clock generation or an internal programmable frequency
shift clock

In addition, the McBSP has the following capabilities:

� Direct interface to:

� T1/E1 framers
� MVIP and ST-BUS compliant devices
� IOM-2 compliant devices
� AC97 compliant devices
� IIS compliant devices
� SPI devices

� Multichannel transmission and reception of up to 128 channels.

� A wider selection of element sizes including 8-, 12-, 16-, 20-, 24-, or 32-bit

� µ-Law and A-Law companding

� 8-bit data transfers with LSB or MSB first

� Programmable polarity for both frame synchronization and data clocks

� Highly programmable internal clock and frame generation

The McBSP consists of a data path and control path. Seven pins connect the
control and data paths to external devices as shown in Figure 4–10.

Multichannel Buffered Serial Port (McBSP)

4-19Peripherals

Figure 4–10. Multichannel Buffered Serial Port (McBSP) Internal Block Diagram

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

SRGR

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁ

ÁÁÁ
ÁÁÁ

RBRÁÁÁ
ÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CLKS

FSR

FSX

CLKR

CLKX

DX

DR

XEVT

REVT

XINT

RINT

events to DMA
Synchronization

Interrupts to CPU

bus
peripheral
32-bit

McBSP

Compand

XSR

RSR

Compress

Expand DRR

DXR

Multichannel
selection

and control
generation,
frame sync
generation,

Clock

PCR

XCER

RCER

MCR

XCR

SPCR

RCR

Data is communicated to devices interfacing to the McBSP via the data trans-
mit (DX) pin for transmission and the data receive (DR) pin for reception. Con-
trol information in the form of clocking and frame synchronization is communi-
cated via CLKX, CLKR, FSX, and FSR. The peripheral device communicates
to the McBSP via 32-bit-wide control registers accessible via the internal pe-
ripheral bus. The CPU or DMA controller reads the received data from the data
receive register (DRR) and writes the data to be transmitted to the data trans-
mit register (DXR). Data written to the DXR is shifted out to DX via the transmit
shift register (XSR). Similarly, receive data on the DR pin is shifted into the re-
ceive shift register (RSR) and copied into the receive buffer register (RBR).
RBR is then copied to DRR, which can be read by the CPU or the DMA control-
ler. This allows internal data movement and external data communications si-
multaneously. The remaining registers accessible to the CPU configure the
control mechanism of the McBSP. These registers are listed in Table 4–2. The

Multichannel Buffered Serial Port (McBSP)

 4-20

control block consists of internal clock generation, frame synchronization sig-
nal generation, control for both of these, and multichannel selection. This con-
trol block sends notification of important events to the CPU and the DMA con-
troller via four signals as shown in Table 4–3.

Table 4–2. Multichannel Buffered Serial Port (McBSP) Registers

Abbreviation Register Name

RBR McBSP receive buffer register

RSR McBSP receive shift register

XSR McBSP transmit shift register

DRR McBSP data receive register

DXR McBSP data transmit register

SPCR McBSP serial port control register

RCR McBSP receive control register

XCR McBSP transmit control register

SRGR McBSP sample rate generator register

MCR McBSP multichannel register

RCER McBSP receive channel enable register

XCER McBSP transmit channel enable register

PCR McBSP pin control register

Table 4–3. Multichannel Buffered Serial Port (McBSP) CPU Interrupts and
DMA Event Synchronization

Interrupt Name Description

RINT Receive interrupt to CPU

XINT Transmit Interrupt to CPU

REVT Receive synchronization event to DMA/EDMA

XEVT Transmit synchronization event to DMA/EDMA

Timers

4-21Peripherals

4.8 Timers

Devices: all

The ’C62x/C67x has two 32-bit general-purpose timers that you can use to:

� Time events
� Count events
� Generate pulses
� Interrupt the CPU
� Send synchronization events to the DMA controller

The timer has two signaling modes and can be clocked by an internal or an
external source. The timer has an input pin (TINP) and an output pin (TOUT).
The TINP pin can be used as a general-purpose input, and the TOUT pin can
be used as a general-purpose output.

With an internal clock, the timer can signal an external A/D converter to start
a conversion, or it can trigger the DMA controller to begin a data transfer. With
an external clock, the timer can count external events and interrupt the CPU
after a specified number of events.

Interrupt Selector

 4-22

4.9 Interrupt Selector

Devices: all

The ’C62x/C67x peripheral set produces 16 interrupt sources. The CPU has
12 interrupts available for use. The interrupt selector allows you to choose
which 12 of the 16 your system needs to use. The interrupt selector also allows
you to effectively change the polarity of external interrupt inputs.

Table 4–4 lists the available interrupts.

Table 4–4. Peripheral Interrupts

Interrupt
Selection
Number

Interrupt
Abbreviation

Interrupt Description

0000b DSPINT Host port host to DSP interrupt

0001b TINT0 Timer 0 interrupt

0010b TINT1 Timer 1 interrupt

0011b SD_INT EMIF SDRAM timer interrupt

0100b EXT_INT4 External interrupt pin 4

0101b EXT_INT5 External interrupt pin 5

0110b EXT_INT6 External interrupt pin 6

0111b EXT_INT7 External interrupt pin 7

1000b DMA_INT0/EDMA_INT DMA Ch0 interrupt / EDMA interrupt

1001b DMA_INT1 DMA Ch1 interrupt

1010b DMA_INT2 DMA Ch2 interrupt

1011b DMA_INT3 DMA Ch3 interrupt

1100b XINT0 McBSP 0 transmit interrupt

1101b RINT0 McBSP 0 receive Interrupt

1110b XINT1 McBSP 1 transmit interrupt

1111b RINT1 McBSP 1 receive interrupt

Power-Down Logic

4-23Peripherals

4.10 Power-Down Logic

Devices: all

Most of the operating power of CMOS logic is dissipated during circuit switch-
ing, from one logic state to another. By preventing some or all of the chip’s logic
from switching, significant power savings can be realized without losing any
data or operational context. Power-down mode PD1 blocks the internal clock
inputs at the boundary of the CPU, preventing most of its logic from switching,
effectively shutting down the CPU. Additional power savings are accom-
plished in power-down mode PD2, in which the entire on-chip clock structure
(including multiple buffers) is halted at the output of the PLL. Power-down
mode PD3 shuts down the entire internal clock tree (like PD2) and also discon-
nects the external clock source (CLKIN) from reaching the PLL. Wake-up from
PD3 takes longer than wake-up from PD2 because the PLL needs to be re-
locked, just as it does following power up.

PD2 and PD3 assert the PD pin for external recognition of these two power-
down modes. In addition to power-down modes, the IDLE instruction provides
lower CPU power consumption by executing multiple NOPs. The IDLE instruc-
tion terminates only upon servicing an interrupt.

5-1

Development Support

The TMS320C62x and TMS320C67x design environment reflects the unique
nature of the advanced VLIW architecture. The environment includes code
generation tools, evaluation tools, documentation, online help with various
tools, and a web site on the Internet (http://www.ti.com/sc/docs/dsps/products/
C6000) with complete technical documentation.

Topic Page

5.1 Code Generation Tools 5-2.

5.2 Evaluation Tools 5-6.

5.3 Third-Party Support 5-8.

5.4 Web Site and Documentation 5-10.

Chapter 5

Code Generation Tools

 5-2

5.1 Code Generation Tools

A complete development tool set for both the PC and Sun workstations
includes the following:

� C compiler
� Assembly optimizer
� Assembler
� Linker
� Evaluation tools

The environment is founded on the generation’s highly advanced C compiler
and TI’s revolutionary assembly optimizer. Figure 5–1 shows a flow of the
process to develop code.

The ’C6000 platform’s C compiler eliminates the need for extensive
knowledge of DSP architecture, allowing you to take full advantage of the
world’s most powerful DSP. This highly-structured, architecture-independent
C code development environment dramatically reduces development time for
new products. At the same time, it maintains the inherent performance
benefits of the advanced VLIW architecture. The ’C6000 compiler offers up to
a 3X improvement in efficiency over existing fixed-point C compilers for DSP.

For application code sections that require the fine-tuning of assembly code,
the ’C6000 platform’s unique assembly optimizer provides the same transpar-
ent programming capability as the C compiler. The tool supports automatic
scheduling, optimizing, and separation of fine-grained parallel tasks from lin-
ear assembly code, delivering a level of simplicity and power that is unprece-
dented in assembly-level tools.

The tools take C or assembly source code and implement many different opti-
mizations, including software pipelining, to intelligently find and exploit the
unique instruction-level parallelism of the ’C6000. After each step in the pro-
cess, the ’C6000 tools allow you to evaluate their results and take appropriate
steps to achieve the highest level of parallelism in your code.

Initially, all C code –– new or reused from other applications –– is run through
the C compiler for the ’C6000. Using the evaluation tools described in the
following section, you can evaluate the code for efficiency. If the performance
is sufficient for the particular application, then the application has been
completed, achieving the fastest possible time-to-market and incurring
minimal engineering cost.

Code Generation Tools

5-3Development Support

Figure 5–1. Code Development Flow Chart

Yes

No

Complete

Yes

No

Efficient?

Write C codePhase 1

Phase 2

Phase 3

More C
optimizations?

No

Yes

No

Yes

Complete

Compile

Profile

Refine C code

Compile

Profile

Complete

Write linear assembly

Profile

Assembly optimize

Efficient?

Efficient?

Code Generation Tools

 5-4

A designer who needs to improve code efficiency can use intrinsics, com-
mand-line options, and source-code enhancements:

� The ’C6000 design tools feature two sets of intrinsics. The first set includes
intrinsics that perform DSP-specific operations that are not supported
directly in C. The second set is designed to facilitate 16-bit operation on
a 32-bit machine. These intrinsic functions can be invoked to tune the
performance of the C code. Some of the most commonly used intrinsics
are described in Table 5–1.

Table 5–1. Selected TMS320C6000 C Compiler Intrinsics

C Compiler Intrinsic
Assembly
Instruction Description

uint _clr(uint src2, uint csta, uint cstb); CLR Clears the specified field in src2. The beginning and
ending bits of the field to be cleared are specified by
csta and cstb, respectively.

int _ext(uint src2, uint csta, int cstb); EXT Extracts the specified field in src2, sign-extended to
32 bits. The extract is performed by a shift left followed
by a signed shift right; csta and cstb are the shift left
and shift right amounts, respectively.

uint _lmbd(uint src1, uint src2); LMBD Searches for a leftmost 1 or 0 of src2 determined by
the LSB of src1. Returns the number of bits up to the
value change.

int _mpy(int src1, int src2); MPY Multiplies the 16 LSBs of src1 by the 16 LSBs of src2
and returns the result. Values can be signed or
unsigned.

int _sadd(int src1, int src2); SADD Adds src1 to src2 and saturates the result. Returns
the result.

uint _set(uint src2, uint csta, uint cstb); SET Sets the specified field in src2 to all 1s and returns the
src2 value. The beginning and ending bits of the field
to be set are specified by csta and cstb, respectively.

uint _subc(uint src1, uint src2); SUBC Conditional subtract divide step

Code Generation Tools

5-5Development Support

� You can experiment with several command-line options that cause the
compiler to perform more aggressive optimization. One particularly useful
option instructs the compiler to compile an entire application at once,
giving the compiler visibility across program sections and more knowledge
of the way in which variables and functions are used. Another option
causes the compiler to perform global optimizations across an entire ap-
plication.

� Source-code enhancements can be made to exploit specific features of
the ’C6000 architecture. For example, the ’C62x has support for operating
on words containing two 16-bit quantities; therefore, you can use 32-bit
loads and stores when operating on arrays containing 16-bit data and eas-
ily achieve a 2X performance improvement.

Taken together, these actions result in a large amount of parallelism in C code.

For ultra-high performance applications, extracting every last bit of throughput
from the application code may be necessary. The profiler can identify critical
code segments that might benefit most from being generated in assembly
language.

For these program sections, you write simple, linear ’C6000 assembly code
that is input to the assembly optimizer. This assembly code is ’C6000 instruc-
tions written without concern for parallel instructions, instruction latencies, or
register usage.

The assembly optimizer tool schedules the instructions, taking into account
the architectural parallelism. The tool honors ’C6000 latency requirements,
maximizes parallel code, and performs register allocation.

Evaluation Tools

 5-6

5.2 Evaluation Tools

The evaluation tools include the following items:

� Windows debugger interface
� Simulator
� Hardware emulation board

The ’C6000 development environment provides a new, intuitive Windows-
based graphical user interface (GUI) for debugging. The debugger interface
features windows for source, assembly, the call stack, memory, registers, and
watch expressions, as well as menu and tool bars. The debugger offers one-
click breakpoint setting and dialogs for editing breakpoints. The debugger also
incorporates a dynamic profiler to help you find bottlenecks and improve code
efficiency. Figure 5–2 shows the C debugger’s basic Windows interface.

Figure 5–2. Windows C Debugger Interface

Evaluation Tools

5-7Development Support

TI provides ’C6000 scan-based emulation systems that support hardware and
software debugging of target systems via a JTAG-emulation cable. Scan-
based emulation is a unique, nonintrusive approach to system emulation,
integration, and debugging.

Initially, TI is offering a PC plug-in evaluation module (EVM) board, a low-cost
PC-based board that is well-suited for software algorithm development. The
EVM interfaces with a host platform through the XDS510 and XDS510WS
emulators through the IEEE Standard 1149.1 (JTAG)-compliant port. The
board features a prototyping area for adding user-defined peripherals. With
the addition of other ’C6000 platform members, TI will continually add function-
ality to the common development environment.

The dynamic profiler integrated into the ’C6000 debugger creates cycle histo-
grams that are continuously updated as the code runs. It can show graphically
which functions, ranges, and lines in an application are performance bottle-
necks.

The statistics collected during a profiling session are displayed in the Profile
window. Figure 5–3 shows an example of this window.

Figure 5–3. An Example of the Profile Window

Profile data
from profiling
session

Areas profiled

You can modify the Profile window to display selected profile areas or different
data; you can also sort the data differently.

A timing display can be built into the application by inserting a few function calls
in the code. The resulting simple cycle counts, obtained without using the pro-
filer or the debugger, can be printed automatically to allow you to track the
changes in execution speed of an algorithm over time. This output, while less
sophisticated, is continuously available with no further action.

Third-Party Support

 5-8

5.3 Third-Party Support

TI has a long history of strong third-party support and this continues with the
’C62x/C67x devices. Table 5–2 lists the third-party contacts supporting the
’C62x/C67x devices and their product areas with telephone numbers and elec-
tronic mail addresses. For other contacts see out web site http://www.ti.com/
sc/docs/dsps/develop/3party.htm

Table 5–2. Contacts for Third-Party Support

Third-Party Contact Product Area Phone Number e-mail Address

Ariel Corporation High-performance VME64 plat-
form and computer telephony
products

609 860–2900 ariel@ariel.com

Cheops GmbH & Co
KG

Industrial and medical imaging
and high speed/high resolution
video conferencing

49 8861 2369 0 email@cheops-bv.de

Commetrex DSP-resource boards and
media-processing software

770 449–7775
x310

mcoffee@commetrex.com

D2 Technologies, Inc. Embedded Voice Processing
(EVP) computer telephony
software

805 564–3424 blandon@d2tech.com

DNA Enterprises, Inc. DSP and telecom experience
products and design services

972 644–3301 info@dnaent.com

D.SignT Standard credit-card-sized
DSP modules, development
tools, system integration ser-
vices

49 283 357 0977 adolf.klemenz@t–online.de

DSP Research, Inc. TIGER development boards
and OEM systems

408 773–1042 info@dspr.com

DSP Software
Engineering, Inc.

Multichannel V.34bis modem
and telecom software

617 275–3733 info@dspse.com

Eonic Systems, Inc. Real-time operating systems —
Virtuoso Nano , Classico ,
and MicroLite

301 572–5000 info@eonic.com

GO DSP Corporation Code Composer support and
next generation development
tool, Code Maestro

416 599–6868 gdasilva@go–dsp.com

HotHaus Technologies,
Inc.

HausWare — DSP software
architecture for embedded tele-
communications applications

604 278–4300 info@hothaus.com

Third-Party Support

5-9Development Support

Table 5–2. Contacts for Third-Party Support (Continued)

Third-Party Contact e-mail AddressPhone NumberProduct Area

Information Systems
Corporation

DSP boards based on the
’C3x, ’C4x, ’C5x and ’C620x
devices for PC/AT ISA, PCI
and VME bus

7–095 232–1994 insys@instrum.msk.su

Innovative Integration,
Inc.

PCI6201 DSP coprocessor for
telecom, communications, and
data acquisition applications

818 865–6150 techsprt@innovative-dsp.com

Loughborough Sound
Images

PCI/C6200 — signal proces-
sing platform and PCI/C6220
telecommunications/high den-
sity DSP telephony platform

+44 0 1509 634444

Ncore Technology

Pentek, Inc

DSP based technology for
Modems and Speech
Coders.

Scalable multiprocessor board
for the VMEbus (model 9134)

201 818–5900

91–80–5588257

info@ncore.soft.net

info@pentek.com

Radisys, Inc.

Signals & Software
Ltd. (SASL)

SPIRIT-6000 series of high-
performance board-level plat-
forms and software develop-
ment tools

Very high density ISP modem
solution

617 244–0406

44 181 426 9533

info@radisys.com

davem@sasl.demon.co.uk

Spectrum Signal
Processing

Hardware, interface silicon,
and CTI software for DSPs

604 421–5422 sales@spectrumsignal.com

Spectron
Microsystems

Real-time SPOX operating-
systems

805 968–5100 info@spectron.com

ViaDSP, Inc. InvisiLink line of software
and firmware for high density
computer telephony boards

508 369–0048 dpenny@viadsp.com

Tranbon Co., Ltd. Telephone, PBX, pager and
C&C applications

886 2–22407761
ext. 501

jasonkao@ms14.hinet.net

White Mountain DSP,
Inc.

Emulation and multiplatform
debug support. Mountain-510,
Mountain-510/WS and Moun-
tain-510/LT PCMCIA Card

603 883–2430 info@wmdsp.com

Web Site and Documentation

 5-10

5.4 Web Site and Documentation

Visit the web site at http://www.ti.com/sc/docs/dsps/products/C6000 for
information, an interactive multimedia technical overview (MeTO),
documentation, and a schedule of ’C6000 design workshops. MeTO
describes features of the devices in a visual way, with graphics in a
point-and-click display for ease of navigation. The web site offers a complete
training schedule of design workshops and seminars. Applications assistance
and frequently asked questions (FAQ) are also on the web site.

Documentation is available directly from the web site in downloadable files for
printing. There is a complete list of documentation available in this book’s
Preface under Related Documentation From Texas Instruments.

A-1

Appendix A

Glossary

A

address: The location of program code or data stored; an individually acces-
sible memory location.

ALU: See arithmetic logic unit.

application-specific integrated circuit (ASIC): A custom chip designed for
a specific application. It is designed by integrating standard cells from a
library.

arithmetic logic unit (ALU): The hardware of the CPU that performs arith-
metic and logic functions.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions, direc-
tives, and macro definitions. The assembler substitutes absolute opera-
tion codes or relocatable codes for symbolic addresses.

assembly optimizer: A software program that optimizes linear assembly
code, which is assembly code that has not been register-allocated or
scheduled. The assembly optimizer is automatically invoked with the
shell program, cl6x, when one of the input files has an .sa extension.

ASIC: See application-specific integrated circuit.

B

boot: The process of loading a program into memory.

boot configuration: A set of parameters defining how a device is booted.

boot loader: A built-in segment of code that transfers code from an external
source to program memory at power up.

Appendix A

Glossary

A-2

C
cache: A fast storage buffer in the central processing unit of a computer.

central processing unit (CPU): The unit that coordinates the functions of
a processor.

circular addressing: An address mode in which a finite set of addresses is
reused by linking the largest address back to the smallest address.

clock cycles: A periodic or sequence of events based on the input from the
external clock.

code: A set of instructions written to perform a task; a computer program or
part of a program.

compiler: A computer program that translates programs in a high-level lan-
guage into their assembly-language equivalents.

control register: A register that contains bit fields which define the way a
device operates.

control register file: A set of control registers.

CPU: See central processing unit.

crosspath: A link between register files to provide communication between
the CPU units.

D
data memory: A region of memory used for storing or manipulating data,

separate from the region used for storing program code.

direct memory access (DMA): Memory access that does not use the CPU;
used for data transfer directly between memory and a peripheral.

direct memory access (DMA) controller: Specialized circuitry that trans-
fers data from memory to memory without using the CPU.

DMA: See direct-memory access.

DRAM: See dynamic random-access memory.

dynamic random-access memory (DRAM): Memory that can be read and
written by the microprocessor and whose storage locations can be
accessed in any order but must be refreshed (recharged) periodically to
retain data or program code.

 Glossary

A-3 Glossary

E

E1: A European high-speed network communication service that operates
at 2.048M bits per second and uses A-law companding.

erasable programmable read-only memory (EPROM): A memory device
whose contents are erasable (usually via UV light) and programmable.

execute packet: A group of instructions that execute in parallel.

external interrupt: A hardware interrupt triggered by a pin.

external memory interface (EMIF): Microprocessor hardware which is
used to read from and write to off-chip memory.

F

field programmable gate array (FPGA): An integrated circuit that contains
an array of gates that can be programmed after manufacture, typically
at the time of installation.

first-in, first-out (FIFO): A method for managing a set of items to which
additions and deletions are made; items are added to one end of the list
and removed from the other.

fixed-point processor: A processor which does arithmetic operations
using integer arithmetic with no exponents.

flash memory: Electronically erasable, programmable nonvolatile (read-
only) memory.

floating-point processor: A processor capable of handling floating-point
arithmetic where real operands are represented using exponents.

G

global interrupt enable bit (GIE): A bit in the control status register (CSR)
that is used to enable or disable maskable interrupts.

Glossary

A-4

H

halfword: For this device, a halfword is defined as a 16-bit data item taken
as a unit.

hardware interrupt: An interrupt triggered through physical connections
with on-chip peripherals or external devices.

host port interface (HPI): A parallel interface that the CPU uses to commu-
nicate with a host processor.

I

indirect addressing: An addressing mode in which an address points to
another pointer rather than to the actual data; this mode is prohibited in
RISC architecture.

instruction fetch packet: A group of up to eight instructions held in memory
for execution by the CPU.

interrupt: A signal sent by hardware or software to request a processor’s
attention. An interrupt tells the processor to suspend its current opera-
tion, save the current task status, and perform a particular set of instruc-
tions. Interrupts communicate with the operating system and prioritize
tasks to be performed.

interrupt service fetch packet (ISFP): A fetch packet used to service inter-
rupts. If eight instructions are insufficient, the user must branch out of this
block for additional interrupt servicing. If the delay slots of the branch do
not reside within the ISFP, execution continues from execute packets in
the next fetch packet (the next ISFP).

L

latency: The delay between the occurrence of a condition and the reaction
of the device. Also, in a pipeline, the necessary delay between the execu-
tion of two potentially conflicting instructions to ensure that the values
used by the second instruction are correct.

least significant bit (LSB): The lowest order bit in a word.

 Glossary

A-5 Glossary

M

maskable interrupt : A hardware interrupt that can be enabled or disabled
through software.

million instructions per second (MIPS): A measure of the execution
speed of a computer.

most significant bit (MSB): The highest order bit in a word.

multichannel buffered serial port (McBSP): An on-chip full-duplex circuit
that provides direct serial communication through several channels to
external serial devices.

multiplexer: A device for selecting one of several available signals.

multiplier: A CPU component that multiplies the contents of two registers.

multivendor internet protocol: A standard network protocol supported by
several major network communication vendors.

N

nonmaskable interrupt (NMI): An interrupt that can be neither masked nor
disabled.

normalization: The reduction of a complex data structure to its simplest
form or of a circuit to its lowest number of gates.

O

overflow: A condition in which the result of an arithmetic operation exceeds
the capacity of the register used to hold that result.

Glossary

A-6

P

packing: Minimizing the space occupied by data or memory through the
elimination of discontinuous spaces between segments.

parallelism: Sequencing events to occur simultaneously. Parallelism is
achieved in a CPU by using instruction pipelining.

peripheral: A device connected to and usually controlled by a host device.

pipeline: A method of executing instructions in which the output of one pro-
cess serves as the input to another, much like an assembly line. These
processes become the stages or phases of the pipeline.

pipeline processing: A technique that provides simultaneous, or parallel,
processing within the computer. It refers to overlapping operations by
moving data or instructions into a conceptual pipe with all stages of the
pipe processing simultaneously.

phase-locked loop (PLL): A circuit for synchronizing a variable oscillator
with the phase of the transmitted signal.

program cache: A fast memory cache for storing program instructions
allowing for quick execution.

program fetch unit: The CPU hardware that retrieves program instructions.

program memory: A memory region used for storing and executing
programs, separate from the region used for storing data.

 Glossary

A-7 Glossary

R

random-access memory (RAM): A type of memory device in which the
individual locations can be accessed in any order.

register: A small area of high speed memory, located within a processor or
electronic device, that is used for temporarily storing data or instructions.
Each register is given a name, contains a few bytes of information, and
is referenced by programs.

reduced-instruction set computer (RISC): A computer whose instruction
set and related decode mechanism are much simpler than those of
microprogrammed complex instruction set computers. The result is a
higher instruction throughput and a faster real-time interrupt service
response from a smaller, cost-effective chip.

reset: A means of bringing the CPU to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at a specified address.

S

saturation: A state where any further input no longer results in the expected
output.

synchronous burst static random-access memory (SBSRAM): RAM
whose content does not have to be refreshed periodically. Transfer of
data is at a fixed rate relative to the clock speed of the device.

synchronous dynamic random-access memory (SDRAM): RAM whose
content is refreshed periodically to prevent loss of the data. Transfer of
data is at a fixed rate relative to the clock speed of the device.

shifter: A hardware unit that shifts bits in a word to the left or to the right.

T

T1: An American high-speed network communication service that runs at
1.544M bits per second and uses µ-law companding.

Glossary

A-8

V

VelociTI: Architecture developed by TI that features very long instruction
words.

VLIW: Very long instruction word.

W

word: A set of bits (32 bits for the ’C6000 devices) that is stored, addressed,
transmitted, or operated on as a unit.

Index

Index-1

Index

A
address paths 2-10

addressing mode register (AMR) 2-8, 2-18

addressing modes
circular mode 2-18
linear mode 2-18

applications 1-3
assistance 5-8
digital signal processors (DSPs) 1-3
for the TMS320C6x 1-5
TMS320 family 1-3

architecture
CPU 2-1 to 2-13
VelociTI 2-1

arithmetic logic unit (ALU) 2-3

auto mode
typical C display 5-6

B
block diagram

CPU core with peripherals 2-2
external memory interface (EMIF) 4-12
host port interface (HPI) 4-6
multichannel buffered serial port (McBSP) 4-19
TMS320C62x 2-2
TMS320C67x 2-2

boot configuration 4-16 to 4-17

C
central processing unit (CPU) 1-2

addressing modes 2-18
architecture 2-3

central processing unit (CPU) (continued)
control register file 2-8
control register file extensions 2-9
core with peripherals 2-2
data paths 2-4 to 2-10
data paths figure

TMS320C62x 2-5
TMS320C67x 2-6

data-address paths 2-10
functional units 2-3, 2-7
interrupts 2-19
load and store paths 2-10
memory paths 2-10
register files 2-4

circular addressing 2-18
block size specification 2-18

code
definition A-2

code development flow chart 5-3
code generation tools 5-2
control registers

file extensions 2-9
list of 2-8

control status register (CSR) 2-8
CPU. See central processing unit
cross paths 2-9

D
.D functional units 2-7
data paths 2-4

relationship to register files 2-9
TMS320C62x 2-5
TMS320C67x 2-6

data-address paths 2-10
development support 5-2

Index

Index-2

development tools
C compiler 5-3
code development flow 5-3

digital signal processors (DSPs) 1-1
applications 1-3 to 1-4
history 1-2
performance progression 1-3

direct memory access (DMA) 2-2, 4-3 to 4-4, 4-21

DMA controller 4-3

E
EMIF. See external memory interface (EMIF)

evaluation module (EVM) 5-7

evaluation tools 5-6

EVM. See evaluation module

Expansion Bus
block diagram 4-8

external memory 3-11

external memory interface (EMIF) 2-2, 4-11 to 4-15
asynchronous interface 4-14
block diagram 4-12
described 3-11
in memory map 3-2
interface to FIFO 4-15
interface to ROM 4-15
interface to SBSRAM 4-13
interface to SDRAM 4-13
interface to SRAM 4-14

F
floating-point adder configuration register

(FADCR) 2-9

floating-point auxiliary configuration register
(FAUCR) 2-9

floating-point multiplier configuration register
(FMCR) 2-9

functional unit to instruction mapping 2-12

functional units 2-3, 2-7
fixed-point operations 2-7
floating-point operations 2-7
list of 2-7
mapping of instructions 2-11 to 2-17
operations performed on 2-7

G
general-purpose register files 2-4

cross paths 2-9
data-address paths 2-10
memory, load, and store paths 2-10

graphical user interface (GUI) 5-6

H
host port interface (HPI) 4-6 to 4-7

block diagram 4-6
boot process 4-6

I
instruction fetch packet (IFP) 2-3

instruction to functional unit mapping 2-11

internal memory 3-4

interrupt clear register (ICR) 2-8

interrupt enable register (IER) 2-8

interrupt flag register (IFR) 2-8

interrupt return pointer (IRP) 2-8

interrupt selector 4-22

interrupt service table pointer (ISTP) 2-8

interrupt set register (ISR) 2-8

interrupts 2-19

intrinsics 5-4

introduction
TMS320 family overview 1-2
TMS320C62x 1-5
TMS320C67x 1-5

L
.L functional units 2-7, 2-9

linear addressing mode 2-18

load address generation
syntax 2-18

load and store paths
CPU 2-10

load instructions
syntax for indirect addressing 2-18

load paths 2-10

Index

Index-3

M
.M functional units 2-7, 2-9
mapping

functional unit to instruction 2-12
instruction to functional unit 2-11

memory
external 3-11
external memory interface (EMIF) 3-11, 4-11
internal 3-4
map 3-2, 3-3
paths 2-10

memory map 3-2
memory paths 2-10
multichannel buffered serial port (McBSP) 4-18 to

4-20
block diagram 4-19
CPU interrupts 4-20
DMA events 4-20
registers 4-20

N
nonmaskable interrupt (NMI) 2-19
nonmaskable interrupt return pointer (NRP) 2-8

O
overview

TMS320 family 1-2

P
PD1–PD3 4-23
performance progression of DSPs 1-3
peripherals 4-1

direct-memory access (DMA) 4-3
external memory interface (EMIF) 4-11
host port interface (HPI) 4-6
interrupts 4-22
multichannel buffered serial port (McBSP) 4-18
timers 4-21

pipeline
definition A-6

pipeline processing
definition A-6

power-down logic 4-23
power-down modes 4-23
program counter (PCE1) 2-8

R
register files 2-4

cross paths 2-9
data-address paths 2-10
memory, load, and store paths 2-10
relationship to data paths 2-9

reset
and boot configuration 4-16
definition A-7

ROM modes for external memory interface 4-11

S
.S functional units 2-7
store address generation

syntax 2-18
store instructions

syntax for indirect addressing 2-18
store paths 2-10
synchronous burst static RAM 3-11
Synchronous interface

block diagram 4-10

T
third-party support

contacts 5-8
TMS320 family

advantages 1-2
applications 1-3 to 1-4
characteristics 1-2
development 1-2
history 1-2
introduction to the ’C6x 1-5
overview 1-2
performance progression 1-3

TMS320C62x devices
block diagram 2-2
CPU data paths 2-5
features 1-6
options 1-6 to 1-8
performance 1-5

TMS320C67x devices
block diagram 2-2
CPU data paths 2-6
features 1-6
options 1-6 to 1-8
performance 1-5

Index

Index-4

tools
assembler 5-2
assembly optimizer 5-2
C compiler 5-2
debugger 5-6
evaluation 5-6
evaluation tools 5-2
hardware emulation board 5-6
linker 5-2
simulator 5-6
tool set 5-2

U
using the C compiler 5-3

V
VelociTI architecture 1-1, 2-1
VLIW (very long instruction word) architecture 1-1

W
web site 5-10

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Related Documentation From Texas Instruments
	Trademarks
	If You Need Assistance

	Contents
	Figures
	Tables
	Introduction
	The TMS320 Family of Digital Signal Processors
	History, Development, and Advantages of TMS320 DSPs
	Typical Applications for the TMS320 Family

	Introduction to the TMS320C6000 Platform of Digital Signal Processors
	Features and Options of the TMS320C62x/C67x Devices

	CPU Architecture
	TMS320C62x/C67x Block Diagram
	Central Processing Unit (CPU)
	CPU Data Paths
	General-Purpose Register Files
	Functional Units
	TMS320C62x/C67x Control Register Files
	TMS320C67x Control Register File Extensions
	Register File Cross Paths
	Memory, Load, and Store Paths
	Data-Address Paths

	Mapping Between Instructions and Functional Units
	Addressing Modes
	Interrupts

	Memory
	Memory Maps
	Internal Memory
	TMS320C6201 (Revision 2)
	TMS320C6201B (Revision 3)
	TMS320C6701
	TMS320C6202
	TMS320C6211
	Data Memory Access
	TMS320C6201, ’C6202, ’C6701
	TMS320C6211
	Peripheral Bus
	Expansion Bus

	External Memory Interface (EMIF)

	Peripherals
	Direct Memory Access (DMA) Controller
	Enhanced Direct Memory Access (EDMA)
	Host-Port Interface (HPI)
	Expansion Bus (XB)
	External Memory Interface (EMIF)
	SDRAM Interface
	SBSRAM Interface
	Asynchronous Interface

	Boot Configuration Logic
	Device Reset
	Boot Configuration

	Multichannel Buffered Serial Port (McBSP)
	Timers
	Interrupt Selector
	Power-Down Logic

	Development Support
	Code Generation Tools
	Evaluation Tools
	Third-Party Support
	Web Site and Documentation

	Glossary
	Index

