
xDAIS DSKT2 User’s Guide

Literature Number: SPRUEV5A
September 2007

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improve-
ments, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers
should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applica-
tions using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate
design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work
right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services
or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids
all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may
be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products
in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely
at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
Low Power Wireless www.ti.com/lpw Video & Imaging www.ti.com/video
 Wireless www.ti.com/wireless

iii

This is a draft version printed from file: pref.fm on 9/25/07

Preface

About This Guide
The purpose of this document is to describe DSKT2 module xDAIS
algorithm support and configuration APIs.

Additional Documents and Resources
You can use the following sources to supplement this user’s guide.
❏ Techniques for Implementing Shared Relocatable Buffers Using the

TMS320 DSP Algorithm Standard (SPRA790)
❏ TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)
❏ TMS320 DSP Algorithm Standard API Reference (SPRU360)
❏ Reference Framework RF5 Channel Infrastructure Design

Document, Version 0.9
❏ Reference Frameworks for eXpressDSP Software: API Reference

(SPRA147A)

Notational Conventions
This document uses the following conventions:

❏ Program listings, program examples, and interactive displays are
shown in a mono-spaced font. Examples use bold for emphasis,
and interactive displays use bold to distinguish commands that you
enter from items that the system displays (such as prompts,
command output, error messages, etc.).

❏ Square brackets ([and]) identify an optional parameter. If you use
an optional parameter, you specify the information within the
brackets. Unless the square brackets are in a bold typeface, do not
enter the brackets themselves.

iv

 Acronyms and Definitions

Acronyms and Definitions
❏ DSKT2 – a new module that exports functions that automate the

operations necessary for instantiating, activating, and controlling
xDAIS algorithms within the framework.

❏ IALG Interface – a set of standard interface functions exported by an
xDAIS algorithm (algAlloc, algActivate, algControl, algDeactivate,
algFree, algInit, algMoved, algNumAlloc).

❏ Scratch Memory – an xDAIS-defined scheme for sharing memory
between xDAIS algorithms. Typically the framework does the
following:

a) Calls the algorithm’s algActivate function to allow it to initialize
scratch memory buffers from persistent memory.

b) Calls the algorithm’s processing function(s).

c) Calls the algorithm’s algDeactivate function to allow it to save the
appropriate scratch memory contents back to persistent
memory.

Once this cycle is complete, the framework can repeat the cycle for
another algorithm, which may use the same physical scratch memory
during its processing.

v

This is a draft version printed from file: dskt2TOC.fm on 9/25/07

Contents

1 Using the DSKT2 Interface .1-1
This chapter describes the DSKT2 interface.
1.1 Introducing the DSKT2 Interfaces .1-2
1.2 DSKT2 Calling Sequence. .1-3
1.3 Configuring DSKT2 to Map Algorithm Data Memory Segments.1-4

1.3.1 RTSC Configuration of DSKT2. .1-4
1.3.2 RTSC Configuration Example .1-7
1.3.3 Non-RTSC Configuration of DSKT2. .1-9

1.4 DSKT2 Support for Shared Algorithm Scratch Memory .1-11
1.4.1 xDAIS Scratch Memory Support Overview .1-11
1.4.2 Scratch Groups for Arranged Sharing of Scratch Memory.1-12

1.5 Hardware Dependencies .1-14
1.6 Runtime Optimization of Algorithm Activation and Deactivation.1-15
1.7 Context Switching During xDAIS Callback Functions. .1-15
1.8 DSKT2 IALG Extension: Providing Information to Algorithms 1-16

2 The DSKT2 API .2-1
This chapter provides additional information about the DSKT2 API.
2.1 Memory Requirements .2-2
2.2 Mandated Calling Sequences. .2-2
2.3 DSKT2 APIs .2-3

2.3.1 DSKT2_createAlg. .2-4
2.3.2 DSKT2_createAlg2. .2-6
2.3.3 DSKT2_createAlgExt .2-8
2.3.4 DSKT2_activateAlg .2-9
2.3.5 DSKT2_deactivateAlg .2-10
2.3.6 DSKT2_deactivateAll .2-12
2.3.7 DSKT2_freeAlg .2-12
2.3.8 DSKT2_controlAlg .2-13

vi

1-1

Chapter 1

Using the DSKT2 Interface

This chapter describes the DSKT2 interface.

1.1 Introducing the DSKT2 Interfaces . 1–2

1.2 DSKT2 Calling Sequence . 1–3

1.3 Configuring DSKT2 to Map Algorithm Data Memory Segments . . . 1–4

1.4 DSKT2 Support for Shared Algorithm Scratch Memory 1–11

1.5 Hardware Dependencies. 1–14

1.6 Runtime Optimization of Algorithm Activation and Deactivation. 1–15

1.7 Context Switching During xDAIS Callback Functions 1–15

1.8 DSKT2 IALG Extension: Providing Information to Algorithms . . . 1–16

Topic Page

Introducing the DSKT2 Interfaces

1-2

1.1 Introducing the DSKT2 Interfaces

The xDAIS library provides services to support the creation, initialization,
control, and deletion of xDAIS algorithm instance objects.

The primary purpose of the DSKT2 library is to automate the standard
algorithm operations that use an algorithm’s IALG methods. A significant
part of the work required to instantiate and use an algorithm is algorithm-
independent. This work includes using an algorithm’s IALG methods to
instantiate the algorithm, get its memory requests, allocate memory for
the algorithm, and activate/deactivate scratch memory. DSKT2 provides
API interfaces (described in Section 2.3, DSKT2 APIs) to perform these
and other tasks.

DSKT2 also introduces two primary features that result in fine-grained
memory configuration and optimized memory management and use:

❏ You can define multiple memory heap segments and configure a
mapping from an algorithm’s memory requests to a preferred heap
segment designated for the request’s memory-space attribute.

❏ You can transparently share scratch memory assignments of
algorithm instances that belong to the same scratch-group ID.

By adopting DSKT2, you can realize the following benefits:

❏ You can reduce the DSP application footprint by not duplicating
functionality that is provided by DSKT2.

❏ Having all algorithm memory allocation performed inside DSKT2
provides the ability to retain a certain level of control of DSP-side
memory allocations. Without this centralized allocation of algorithm
memory, each algorithm developer could implement different
allocation policies, for example grabbing all on-chip memory for their
own algorithms, without consideration for other algorithms
concurrently running on the DSP.

DSKT2 Calling Sequence

Using the DSKT2 Interface 1-3

1.2 DSKT2 Calling Sequence

The following code example uses the typical calling sequence for DSKT2
APIs:

#include <std.h>

#include <ti/sdo/fc/dskt2/dskt2.h>

#include <sys.h>

#include <usescratch_ti.h>

Void smain(Int argc, Char * argv[])

{

 IUSESCRATCH_Handle alg;

 IUSESCRATCH_Params params = IUSESCRATCH_PARAMS;

 IALG_Fxns *fxns;

 Int scratchId = 0;

 Int status = USESCRATCH_SOK;

 /* IALG_Fxns for an algorithm that uses scratch memory */

 fxns = (IALG_Fxns *)&USESCRATCH_TI_IUSESCRATCH;

 /* Create alg */

 alg = (IUSESCRATCH_Handle)DSKT2_createAlg(scratchId,

 fxns, NULL, (IALG_Params *)¶ms);

 if (alg == NULL) {

 SYS_abort("Memory allocation failed\n");

 }

 /* Activate alg before calling its process function */

 DSKT2_activateAlg(scratchId, (IALG_Handle)alg);

 /* Call alg's processing function */

 status = alg->fxns->process((IALG_Handle)alg);

 /* Deactivate the alg */

 DSKT2_deactivateAlg(scratchId, (IALG_Handle)alg1);

 /* Free alg */

 DSKT2_freeAlg(scratchId, (IALG_Handle)alg);

}

Configuring DSKT2 to Map Algorithm Data Memory Segments

1-4

1.3 Configuring DSKT2 to Map Algorithm Data Memory Segments

For DSKT2 to fully honor algorithm memory requests it must know the
following:

❏ What DSP/BIOS memory segments are available to allocate from?

❏ What are the attributes of the available memory segments?

This section describes the configuration of this information for the DSKT2
module.

There are two ways to configure DSKT2 parameters.

❏ You can use a low-level C language and linker command file based
approach to directly modify global DSKT2 parameters.

❏ You can use XDC tooling to configure the RTSC module, DSKT2.
The XDC tooling approach results in the generation of the same low-
level C-based global variables, so the type of configuration
technology used does not matter to the underlying DSKT2 library
implementation.

You will still need to configure some DSP/BIOS heaps that will be used
by the DSKT2 module, using the Tconf language and configuration files
used for DSP/BIOS. (See SPRU007.)

For example, if you want to define a DSP/BIOS heap that will be used by
DSKT2, you may have something like the following in your TCF file:

// Create a heap in external memory and give it a label

var EXTMEM = prog.module("MEM").create("EXTMEM")

EXTMEM.createHeap = true;

EXTMEM.enableHeapLabel = true;

EXTMEM.heapLabel = prog.extern("EXTMEM_HEAP");

Note that the heap must be given a label so that it can be referenced by
DSKT2.

1.3.1 RTSC Configuration of DSKT2

Follow these steps to use RTSC to configure DSKT2:

1) The first statement related to DSKT2 in your RTSC configuration
(CFG) file should get access to the DSKT2 module as follows:

 var DSKT2 = xdc.useModule('ti.sdo.fc.dskt2.DSKT2');

Configuring DSKT2 to Map Algorithm Data Memory Segments

Using the DSKT2 Interface 1-5

2) To allow DSKT2 to use external scratch memory, add the following
statement:

 DSKT2.ALLOW_EXTERNAL_SCRATCH = true;

Setting the ALLOW_EXTERNAL_SCRATCH property to "true"
means that if a scratch request in internal memory cannot be granted
AND there is insufficient memory in persistent internal memory to
allocate for the request, then DSKT2 allocates using external
memory.

If you set this property to "false", then DSKT2_createAlg fails if there
is insufficient scratch memory and insufficient internal persistent
memory to satisfy the request.

3) Next, your CFG file should specify the heap that DSKT2 will use by
default to allocate internal objects. This is the name of a heap label
that has been defined in a TCF file. For example, if you defined the
heap label "EXTMEM_HEAP" as in Section 1.3, Configuring DSKT2
to Map Algorithm Data Memory Segments, then in your CFG file, you
could specify that DSKT2 use heap for allocating its internal objects
as follows.

 DSKT2.DSKT2_HEAP = "_EXTMEM_HEAP";

Notice that you add a leading underscore ("_") to the name of the
heap label, since prog.extern() generates a "C" name, and
DSKT2_HEAP is the assembly name of the heap.

4) Then, you map IALG memory space types to specific heaps. In the
following statements, _L1D_HEAP and _EXTMEM_HEAP are heap
labels that have been assigned to DSP/BIOS MEM segments

 DSKT2.DARAM0 = "_L1D_HEAP";

 DSKT2.DARAM1 = "_L1D_HEAP";

 DSKT2.DARAM2 = "_L1D_HEAP";

 DSKT2.SARAM0 = "_L1D_HEAP";

 DSKT2.SARAM1 = "_L1D_HEAP";

 DSKT2.SARAM2 = "_L1D_HEAP";

 DSKT2.ESDATA = "_EXTMEM_HEAP";

 DSKT2.IPROG = "_EXTMEM_HEAP";

 DSKT2.EPROG = "_EXTMEM_HEAP";

5) Next, you link in the DSKT2 library. The following statement links in
the debug library of DSKT2. You can set the debug property to "false"
to link in the non-debug DSKT2 library.

 DSKT2.debug = true;

Configuring DSKT2 to Map Algorithm Data Memory Segments

1-6

6) Then, you assign sizes to the scratch groups. There can be up to 20
scratch groups for each of the memory types, DARAM and SARAM.
In the following statements, the scratch group 0 has been assigned
a size of 512 MAUs.

 DSKT2.DARAM_SCRATCH_SIZES = [0x200,0,0,0,0,0,0,0,0,0,0,

 0,0,0,0,0,0,0,0,0];

 DSKT2.SARAM_SCRATCH_SIZES = [0x200,0,0,0,0,0,0,0,0,0,0,

 0,0,0,0,0,0,0,0,0];

If you assign the same heap label to both DSKT2.DARAM0 and
DSKT2.SARAM0, the values in DSKT2.SARAM_SCRATCH_SIZES
are ignored; algorithms that request scratch memory from SARAM
are granted scratch memory in DARAM if memory is available.

7) Finally, you name a function to implement cache writeback and
invalidation. This function must have the following signature in your
C code:

 (*DSKT2_CacheWBInvFxn)(Ptr blockPtr, size_t byteCnt,

 Bool wait)

For C6000 platforms, DSKT2 calls this function to ensure that the
algorithm instance memory is not resident in a cache when it is
instantiated. This is necessary for compliance with the xDAIS C6000
DMA Rules and Guidelines.

The default value of this parameter is "BCACHE_wbInv", so you don't
need to set this on C6000 platforms. If you are configuring this for a
C55, then you would set it to null as follows:

 DSKT2.cacheWritebackInvalidateFxn = null;

Configuring DSKT2 to Map Algorithm Data Memory Segments

Using the DSKT2 Interface 1-7

1.3.2 RTSC Configuration Example

For example, the combined example.tcf file for the DSKT2 Tconf
configuration might look like the following:

/* ======== example.tcf ======== */

// DaVinci platform

var platform = "ti.platforms.evmDM6446";

var params = null;

/* load the platform */

utils.loadPlatform(platform, params);

/* Enable BIOS features needed */

bios.enableRealTimeAnalysis(prog);

bios.enableMemoryHeaps(prog);

bios.enableTskManager(prog);

var DDR = prog.module("MEM").instance("DDR2");

/*

 * Create external memory segment for this (simulated) board

 * Enable heaps in it and define the label for heap usage.

 */

DDR.base = 0x83F00000;

DDR.len = 0x0FFE00; // may be much bigger

DDR.space = "code/data"; // so we can put code here

DDR.createHeap = true;

DDR.enableHeapLabel = true;

DDR["heapLabel"] = prog.extern("EXTMEM_HEAP");

DDR.heapSize = 0xc0000;

DDR.comment = "DDR";

/*

 * Enable heaps in L1DSRAM (internal L1 cache ram, fixed

 * size) and define the label for heap usage.

 */

bios.L1DSRAM.createHeap = true;

bios.L1DSRAM.enableHeapLabel = true;

bios.L1DSRAM["heapLabel"] = prog.extern("L1D_HEAP");

bios.L1DSRAM.heapSize = 0x4000;

Configuring DSKT2 to Map Algorithm Data Memory Segments

1-8

And, the combined example.cfg file for the DSKT2 RTSC configuration
might look like the following:

/* ======== example.cfg ========

 * Example configuration of DSKT2 module

 */

// Get the DSKT2 module.

var DSKT2 = xdc.useModule('ti.sdo.fc.dskt2.DSKT2');

// If a scratch request in internal memory cannot be granted

// AND there is insufficient persistent internal memory to

// allocate for the request, THEN DSKT2 uses external memory.

DSKT2.ALLOW_EXTERNAL_SCRATCH = true;

// Set the heap that the DSKT2 will use to allocate internal

// objects. This is a heap label defined in a .tcf file.

DSKT2.DSKT2_HEAP = "_EXTMEM_HEAP";

// Map IALG memory space types to specific heaps assigned to

// DSP/BIOS MEM segments.

DSKT2.DARAM0 = "_L1D_HEAP";

DSKT2.DARAM1 = "_L1D_HEAP";

DSKT2.DARAM2 = "_L1D_HEAP";

DSKT2.SARAM0 = "_L1D_HEAP";

DSKT2.SARAM1 = "_L1D_HEAP";

DSKT2.SARAM2 = "_L1D_HEAP";

DSKT2.ESDATA = "_EXTMEM_HEAP";

DSKT2.IPROG = "_EXTMEM_HEAP";

DSKT2.EPROG = "_EXTMEM_HEAP";

// Link in the debug library of DSKT2.

DSKT2.debug = true;

// Assign sizes to scratch groups.

DSKT2.DARAM_SCRATCH_SIZES = [0x200,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];

DSKT2.SARAM_SCRATCH_SIZES = [0x200,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];

// Function implementing cache writeback and invalidate.

// For C6000 platforms the default is "BCACHE_wbInv",

// so we don't need to set this on C6000 platforms.

// For a C55x, we would set it to null, as follows:

// DSKT2.cacheWritebackInvalidateFxn = null;

Configuring DSKT2 to Map Algorithm Data Memory Segments

Using the DSKT2 Interface 1-9

1.3.3 Non-RTSC Configuration of DSKT2

It is also possible to configure DSKT2 without using RTSC tooling. In this
case, you still need to configure DSP/BIOS heaps in a TCF file, as
described in Section 1.3.1, RTSC Configuration of DSKT2. You will also
need a C source file and linker command file to build your application.

To match the RTSC configuration of DSKT2 shown in the previous
section, your C file should contain the following:

/* ======== dskt2_config.c ========

 * DSKT2 scratch config file to initialize pre-allocated

 * scratch heap size for each node priority level. */

#include <std.h>

#include <ti/sdo/fc/dskt2/dskt2.h>

#include <ti/sdo/fc/dskt2/_dskt2.h>

#include <bcache.h>

#ifdef _6x_

far DSKT2_CacheWBInvFxn DSKT2_cacheWBInvFxn = BCACHE_wbInv;

#else

DSKT2_CacheWBInvFxn DSKT2_cacheWBInvFxn = NULL;

#endif

Uns _DSKT2_DARAM_SCRATCH_SIZES[DSKT2_NUM_SCRATCH_GROUPS] = {

 0x200 /* 0 */

 0, /* 1 */

 0, /* 2 */

 0, /* 3 */

 0, /* 4 */

 0, /* 5 */

 0, /* 6 */

 0, /* 7 */

 0, /* 8 */

 0, /* 9 */

 0, /* 10 */

 0, /* 11 */

 0, /* 12 */

 0, /* 13 */

 0, /* 14 */

 0, /* 15*/

 0, /* 16 */

 0, /* 17 */

 0, /* 18 */

 0, /* 19 */

};

Configuring DSKT2 to Map Algorithm Data Memory Segments

1-10

Uns _DSKT2_SARAM_SCRATCH_SIZES[DSKT2_NUM_SCRATCH_GROUPS] = {

 0x200, /* 0 */

 0, /* 1 */

 0, /* 2 */

 0, /* 3 */

 0, /* 4 */

 0, /* 5 */

 0, /* 6 */

 0, /* 7 */

 0, /* 8 */

 0, /* 9 */

 0, /* 10 */

 0, /* 11 */

 0, /* 12 */

 0, /* 13 */

 0, /* 14 */

 0, /* 15*/

 0, /* 16 */

 0, /* 17 */

 0, /* 18 */

 0, /* 19 */

};

The linker command file needs to link in the DSP/BIOS generated linker
command file and the DSKT2 library, and define the mapping of IALG
memory spaces to DSP/BIOS heaps. The following linker command file
code illustrates this.

 /*

 * example.cmd

 * Linker command file for non RTSC DSKT2 configuration.

 */

 /* Link in DSP/BIOS generated linker command file */

 -l examplecfg.cmd

 /* Link in DSKT2 library */

 -l dskt2.a64P

DSKT2 Support for Shared Algorithm Scratch Memory

Using the DSKT2 Interface 1-11

 /*

 * Mapping of IALG mem spaces to BIOS heaps

 * (Note: there is no DSKT2 mapping of IALG_EXTERNAL)

 */

 __DSKT_DARAM0 = _L1D_HEAP; /* IALG_DARAM0 */

 __DSKT_DARAM1 = _L1D_HEAP; /* IALG_DARAM1 */

 __DSKT_DARAM2 = _L1D_HEAP; /* IALG_DARAM2 */

 __DSKT_SARAM0 = _EXTMEM_HEAP; /* IALG_SARAM0 */

 __DSKT_SARAM1 = _EXTMEM_HEAP; /* IALG_SARAM1 */

 __DSKT_SARAM2 = _EXTMEM_HEAP; /* IALG_SARAM2 */

 __DSKT_ESDATA = _EXTMEM_HEAP; /* IALG_ESDATA */

 __DSKT_IPROG = _EXTMEM_HEAP; /* IALG_IPROG */

 __DSKT_EPROG = _EXTMEM_HEAP; /* IALG_EPROG */

 /* DSKT2 heap for allocating internal objects */

 __DSKT2_HEAP = _EXTMEM_HEAP;

1.4 DSKT2 Support for Shared Algorithm Scratch Memory

The xDAIS standard includes provisions to allow algorithms to share
memory buffers and reduce the overall application memory footprint.

1.4.1 xDAIS Scratch Memory Support Overview

TMS320 DSP Algorithm Standard (xDAIS) compliant algorithms request
memory blocks from their housing application frameworks. Each
requested memory block is designated as either "persistent" or "scratch".

Scratch memory is defined as a type of memory that is freely used by an
algorithm without regard to its prior contents, that is, no assumptions
about the content can be made by the algorithm and the algorithm is free
to leave it in any state. The algorithm instance initializes its scratch
buffers when the application activates the instance by granting it
exclusive access to the scratch region and calling its IALG activation
function, algActivate().

During initialization of its scratch buffers in algActivate() the algorithm can
only access its static memory and what’s saved in its persistent instance
memory. The application calls algDeactivate() when it wants to use/free
up the scratch area granted to the instance. The algorithm saves to its
persistent memory any information in its scratch buffers that it will need
later during re-activation to re-initialize its scratch buffers.

After the standard algorithm initialization call to algInit(), all compliant
algorithm instances with scratch buffers are in either one of these two
states: activated or deactivated. It is in activated state if no algDeactivate

DSKT2 Support for Shared Algorithm Scratch Memory

1-12

calls have been issued since the last algActivate call. Algorithm is in
deactivated state if it has received no algActivate calls since algInit or
since the last algDeactivate.

The basic rule of operation is that an algorithm instance must be in the
activated state when any of its processing functions are called.

The basic rule of sharing a system overlay scratch area is that at any
given time at most one algorithm instance sharing the overlay area can
be activated—all other instances must be de-activated.

A xDAIS application framework is always in charge as to where to
allocate scratch memory and decides which groups of algorithm
instances (if any) will share a common “scratch” overlay region and when
a particular algorithm instance gets activated or deactivated.

1.4.2 Scratch Groups for Arranged Sharing of Scratch Memory

Scratch groups form the basis for arranging multiple algorithm instances
to share "scratch memory". Each scratch group is associated with an ID.
It is the responsibility of the application framework to ensure mutually
exclusive operation of algorithm instances having the same scratch
group ID. No algorithm instance is allowed to preempt another algorithm
instance’s processing stage belonging to the same scratch group.

One way to assign scratch IDs if algorithms are run from DSP/BIOS tasks
is to use the task priority as the scratch ID for this algorithm. This
technique can be used so long as the application doesn’t change task
priorities at run-time.

Using a “task priority level” based protection approach, algorithms that
share the same scratch buffers run at the same priority level, and
preemption is avoided. Therefore, multiple algorithms running at the
same task priority level can share the same physical addresses for their
scratch buffers and are ensured exclusive access to the shared buffer
when their processing functions get called.

Here’s an overview of how this works for DSKT2: OEMs configure the
size of scratch memory to be supported for each group ID. For example,
this size could be set to the largest amount of scratch needed by any of
the algorithms to be instantiated with the specified scratch ID.

DSKT2 Support for Shared Algorithm Scratch Memory

Using the DSKT2 Interface 1-13

For example, the following statements configure two scratch buffers—
one of 2048 MAU and another of 1024 MAU. These are designated as
the default sizes of the shared scratch memory area allocated in the
IALG_DARAM memory spaces.

// Get the DSKT2 module

var DSKT2 = xdc.useModule('ti.sdo.fc.dskt2.DSKT2');

// Assign sizes 2048 and 1024 to scratch groups 5 and 6,

// respectively, for IALG_DARAM memory spaces.

DSKT2.DARAM_SCRATCH_SIZES = [0,0,0,0,0, 2048, 1024,

 0,0,0,0,0,0,0,0,0,0,0,0,0];

These scratch buffers are shared among algorithm instances configured
with scratch group IDs 5 and 6, respectively. The following actions occur:

1) When the first xDAIS algorithm created with the specified scratch ID
requests scratch memory, DSKT2 dynamically allocates "shared"
scratch buffers of the maximum size configured by the OEM for the
specified scratch ID and the amount requested by the algorithm.

2) DSKT2 uses the OEM-configured mappings of IALG memory spaces
to designated DSP/BIOS heap segments when determining which
system heaps to use for creating the shared scratch buffers.

3) DSKT2 pieces out individual scratch buffers from shared buffers, to
satisfy each individual scratch buffer requested by the algorithm. The
memory allocator processes each request for scratch in the
memTab[] by assigning a slice of the shared scratch buffer with
adjustments for alignment. If the algorithm requests more scratch
than is allocated in the shared scratch buffer, DSKT2 allocates as
much of the scratch memory as it can from any other shared scratch
buffer available to the same scratch group. All other requests are
fulfilled as non-shared private memory based on the following policy:

a) If the algorithm requests scratch memory in IALG_DARAM0, the
DSKT2 allocator first tries to satisfy the request using the shared
IALG_DARAM scratch buffer. If it cannot, it tries to satisfy the
request using the IALG_SARAM shared scratch of the same
scratch group. If both attempts fail, it attempts to dynamically
allocate the buffer in one of the OEM configured “internal” system
heaps. If those attempts also fail:

i) DSKT2 indicates failure if “Allow External Memory for
IALG_SCRATCH requests” configuration is not enabled.
That is, if DSKT2.ALLOW_EXTERNAL_SCRATCH is
configured to be false.

ii) Otherwise, DSKT2 attempts to allocate memory in external
heap.

Hardware Dependencies

1-14

b) If the algorithm requests scratch memory in IALG_DARAM1 or in
IALG_DARAM2, and the actual mapped DSP/BIOS heap is
different than the heap for IALG_DARAM0, the allocator first tries
to satisfy the request by attempting dynamic allocation in the
requested memory space as configured by OEM. If that fails, any
existing shared scratch buffers at the same priority level in
IALG_DARAM0 or IALG_SARAM0 are tried respectively. If still
not satisfied, DSKT2, attempts to dynamically allocate the buffer
in one of the OEM configured “internal” system heaps. If those
attempts also fail:

i) DSKT2 indicates failure if “Allow External Memory for
IALG_SCRATCH requests” configuration is not enabled.

ii) Otherwise, DSKT2 attempts to allocate memory in “external”
heap.

c) Scratch memory requests in IALG_SARAM0, IALG_SARAM1, or
IALG_SARAM2 are handled similarly to their DARAM
counterparts as outlined in steps (a) and (b)

4) As each new algorithm requesting scratch memory at a given scratch
group is instantiated, the scratch is pieced out from the previously
allocated shared buffer, and the reference count for the buffer is
incremented.

5) When freeing algorithm instance memory (via DSKT2_freeAlg), any
shared scratch buffer is not immediately freed, but those allocated
outside the shared buffers are dynamically freed. Each time an
algorithm using scratch is deleted, the reference count for the shared
scratch buffer at the given priority level is decremented.

6) When the last algorithm using scratch at a given scratch group is
deleted, the shared scratch buffer at that scratch group is freed by
DSKT2, as it is no longer needed.

1.5 Hardware Dependencies

DSKT2 does not reference hardware-specific configuration directly.
Instead, the DSP/BIOS configuration tools are used in conjunction with
the DSP/BIOS MEM module for creating and configuring multiple system
heaps and dynamic memory allocation and freeing. DSP/BIOS TSK APIs
are called for implementing critical sections. If you have linked with the
debug library, LOG_printf calls are used for limited real-time trace
messages.

DSKT2 is designed to be modular and independent—all current
DSP/BIOS dependencies can be implemented independently by custom
application frameworks.

Runtime Optimization of Algorithm Activation and Deactivation

Using the DSKT2 Interface 1-15

1.6 Runtime Optimization of Algorithm Activation and Deactivation

A benefit of using the DSKT2-mandated calling sequences outlined in
Section 1.2, DSKT2 Calling Sequence is that the implementation of the
DSKT2_activateAlg and DSKT2_deactivateAlg APIs can transparently
maintain runtime state information to minimize real activation/de-
activation of the algorithm instances.

Since DSKT2 can track state at runtime to determine when there is no
actual “sharing” of scratch buffers it can transparently avoid unnecessary
calls to IALG algActivate and algDeactivate functions. Actual de-
activation of the “current” algorithm is deferred by implementing
DSKT2_deactivateAlg “optimistically”. When DSKT2_activateAlg needs
to activate an algorithm it checks if the instance is already active within
the same scratch group, if it is already active nothing needs to be done.
If another algorithm (identified by unique IALG_handles) is currently
active, DSKT2_activateAlg de-activates the other (current active)
instance and activates the given algorithm instance. It is sufficient for
DSKT2 to keep track of only the “currently active” algorithm for each
scratch group and a single test.

You can use DSKT2_deactivateAll to perform the deactivation without
deferral.

1.7 Context Switching During xDAIS Callback Functions

In order to adopt a task-priority based scratch buffer sharing, we impose
certain restrictions on callback functions that can be called by xDAIS
algorithms. To maintain coherence of algorithm scratch buffers, callback
functions are not allowed to issue any operations that may result in a
context switch that may lead to the preemption of current task by another
task at the same priority level. These callback functions could be defined
by the xDAIS spec (for example the ACPY2 or ACPY3 DMA APIs) or they
may be proprietary xDAIS-compliant algorithm framework APIs.

The restriction is required since there is no mechanism available for the
callback function to be able to do algorithm deactivation and then re-
activation (algActivate and algDeactivate functions cannot be called
during any of its algorithm processing calls, that is, during an intermediate
stage of execution). A framework or callback function cannot call
algDeactivate or algDeactivate calls, which would be one way to ensure
the integrity of instance scratch buffers. xDAIS algorithms are developed
under the assumption that they are operationally not preemptable. If they
do get preempted, their persistent and scratch memory must be saved
and restored by the framework, making the preemption transparent to the
algorithm. Additionally, algorithms implement algActivate/algDeactivate

DSKT2 IALG Extension: Providing Information to Algorithms

1-16

knowing that they can only be called at well-specified steady states, not
at arbitrary execution points within any one of its processing or control
functions.

Finally, if a callback function has to share an algorithm's scratch buffer
during the execution of the callback function, it can save and then restore
the shared scratch before resuming back to the algorithm. This approach
is a fair one, as the burden is on the callback side.

1.8 DSKT2 IALG Extension: Providing Information to Algorithms

In anticipation of formalization of a future xDAIS spec enhancement
involving the IALG interface, the DSKT2 framework provides the actual
physical memory space information for each memory buffer it grants to
the algorithm during the algInit() call. Algorithms that are designed to
exploit this feature will be able to utilize the provided IALG_MemSpace
information to optimize or fine tune its operation or optionally return
“failure” status to indicate inability to ensure proper operation with the
provided memory.

xDAIS-compliant algorithms use algAlloc() to provide information about
what type of memory space they want each buffer to be allocated on.
However, they are expected to function correctly even if they don’t get the
exact memory space they requested. Applications, for example, due to
scarcity of internal memory may decide to allocate some of the buffers in
external memory even thought the algorithm’s request was for internal
memory.

The only risk involved is that algorithms designed to exploit this
enhancement may not operate correctly when: (1) they are deployed in
non-DSKT2 frameworks, and (2) they expect and rely on the memory
space designation information to be passed by the framework, and (3)
when the framework allocates memory in a memory space other than
what the algorithm requested. This risk can be minimized by disclosing
the information and impact properly to the algorithm developers.

2-1

Chapter 2

The DSKT2 API

This chapter provides additional information about the DSKT2 API.

2.1 Memory Requirements . 2–2

2.2 Mandated Calling Sequences. 2–2

2.3 DSKT2 APIs . 2–3

Topic Page

Memory Requirements

2-2

2.1 Memory Requirements

All instance memory for the created algorithm instances uses the
configuration provided DSP/BIOS memory heaps.

All internal DSKT2 objects are allocated on the configuration-provided
DSKT2_HEAP, during the first call to one of the DSKT2_createAlg
APIs—DSKT2_createAlg(), DSKT2_createAlg2(), or
DSKT2_createAlgExt().

Typically, you configure DSKT2_HEAP to map to a DSP/BIOS heap in
external memory. This helps save internal memory for algorithm buffers.

DSKT2 initialization does not occur until the first call to
DSKT2_createAlg, and some memory internal to DSKT2 is allocated at
this point. This memory is never freed, making it appear as if there is a
memory leak in the algorithm. You can see this memory difference if you
use the DSP/BIOS MEM_stat API to measure the heap sizes before and
after the first call to DSKT2_createAlg.

2.2 Mandated Calling Sequences

To ensure protection of scratch memory shared by each “Scratch Group”,
each algorithm instance must be prepared to gain “exclusive access” to
its scratch memory via a DSKT2_activateAlg call. After the algorithm’s
processing stage is completed, DSKT2_deactivateAlg must be called to
relinquish its exclusive access to the shared scratch.

The algInit() function called through DSKT2_createAlg must not access
its scratch buffers, since DSKT2_activateAlg has not yet been called, and
the algorithm is not considered to be in the "active" state at this point.

DSKT2 APIs

The DSKT2 API 2-3

2.3 DSKT2 APIs

The new DSKT2 APIs are described in the subsections that follow. The
following table shows the corresponding IALG functions called by each
DSKT2 API:

Table 2-1. DSKT2 APIs

DSKT2 Function IALG Function(s)

DSKT2_createAlg algNumAlloc, algAlloc, algInit

DSKT2_createAlg2 algNumAlloc, algAlloc, algInit

DSKT2_createAlgExt algNumAlloc, algAlloc, algInit

DSKT2_freeAlg algNumAlloc, algFree

DSKT2_controlAlg algControl

DSKT2_activateAlg algActivate

DSKT2_deactivateAlg algDeactivate

DSKT2_deactivateAll algDeactivate

DSKT2 APIs

2-4

2.3.1 DSKT2_createAlg

IALG_Handle DSKT2_createAlg(

 Int scratchMutexId,

 IALG_Fxns *fxns,

 IALG_Handle parent,

 IALG_Params *params);

Implementation The DSKT2_createAlg function creates and initializes a xDAIS algorithm
instance object. It uses the algorithm’s IALG interface functions (passed
in fxns) to query the algorithm for its memory needs, allocate the memory
for the algorithm, and call the algorithm’s algInit function to let the new
algorithm instance object initialize itself using the allocated memory.

On success, the function returns the IALG_Handle of the new algorithm
instance that has been created. On failure, the function returns NULL,
and all memory allocated during the call (that used for algorithm query,
and portions of algorithm memory that were successfully allocated during
the function) is freed before DSKT2_createAlg returns.

Parameters Int scratchMutexId scratchMutexId associates the created
instance with a Scratch Group.
Values = 0-19: instances created with same
ID share a common scratch memory buffer.
The caller ensures algorithms created with
the same "scratchMutexId" do not execute
simultaneously.
Value = -1: Disables scratch sharing when
creating this algorithm instance.

IALG_Fxns *fxns Pointer to the algorithm's IALG_Fxns table.

IALG_Handle parent Handle of parent algorithm (optional).

IALG_Params *params Pointer to an IALG_Params structure.

Return non-NULL IALG_Handle for the new instance object

NULL Instance creation failed.

Preconditions The following conditions must be true prior to calling this method;
otherwise, its operation is undefined.

❏ fxns is a valid pointer to an IALG_Fxns structure (containing the
vtable for a xDAIS-compliant algorithm.)

DSKT2 APIs

The DSKT2 API 2-5

Postconditions The following conditions are true immediately after returning from this
method:

❏ If scratchMutexId is "-1", all instance scratch memory is allocated as
persistent (i.e. not shared) and instance operation does not require
mutual exclusion.

❏ With the exception of any initialization performed by algActivate and
(IDMA2) dmaInit, all of the instance’s persistent memory is initialized
and the object is ready to be used.

Comments DSKT2_createAlg performs initialization necessary to complete the run-
time creation of an algorithm’s instance object. After a successful return
from DSKT2_createAlg, the algorithm’s instance object can be activated
via a DSKT2_activateAlg (as well as dmaInit), if IDMA2 is implemented
by the algorithm) before it can be used to process data.

The parent argument is a handle to another algorithm instance object.
This parameter is often NULL, indicating that no parent object exists. This
parameter allows clients to create a shared algorithm instance object and
pass it to other algorithm instances. For example, a parent instance
object might contain global read-only tables that are used by several
instances of a vocoder.

The params argument is a pointer to algorithm-specific parameters that
are necessary for the creation and initialization of the instance object.
This pointer points to the same parameters passed to the algorithm’s
IALG algAlloc function. However, this pointer may be NULL. In this case,
algorithm’s IALG function algInit, must assume default creation
parameters.

DSKT2_createAlg tries to dynamically allocate instance memory based
on the IALG_MemSpace attribute of the requested memory. Global
DSKT2 configuration settings allow OEM to designate a memory heap for
each IALG_MemSpace. DSKT2_createAlg attempts to allocate memory
in the requested space, but may search for alternative heaps when
preferred heap is not large enough.

DSKT2 APIs

2-6

2.3.2 DSKT2_createAlg2

IALG_Handle DSKT2_createAlg2(

 Int scratchMutexId,

 IALG_Fxns *fxns,

 IALG_Handle parent,

 IALG_Params *params,

 Int extHeapId);

Implementation DSKT2_createAlg2 performs the same actions and has the same
requirements and consequences as DSKT2_createAlg. The difference is
that it also has an extHeapId input parameter.

When you use the DSKT2_createAlg2 API, all IALG memory requests in
IALG_ESDATA type memory are allocated in the memory segment
identified by the extHeapId parameter, rather than from the DSP/BIOS
memory heap that was mapped to IALG_ESDATA.

This API was created specifically for multi-processor applications in
which DSP algorithms are launched from a GPP (General Purpose
Processor). In such cases, it may not be known in advance which DSP
algorithms will be run. Rather than having to configure an external heap
in the DSP image that meets the worst case scenario, the GPP can
allocate and map a buffer to the DSP's memory space on the fly. The new
heap size and base address information can then be passed to the DSP
program, which can create a heap with the DSP/BIOS MEM_define API.
The new heap ID can then be passed as the extHeapId argument to
DSKT2_createAlg2.

The DSKT2_createAlg2 function creates and initializes a xDAIS
algorithm instance object. It uses the algorithm’s IALG interface functions
(passed in fxns) to query the algorithm for its memory needs, allocate the
memory for the algorithm, and call the algorithm’s algInit function to let
the new algorithm instance object initialize itself using the allocated
memory.

On success, the function returns the IALG_Handle of the new algorithm
instance that has been created. On failure, the function returns NULL,
and all memory allocated during the call (that used for algorithm query
and portions of algorithm memory that were successfully allocated during
the function) is freed before DSKT2_createAlg2 returns.

Parameters Int scratchMutexId scratchMutexId is used to associate the
created instance with a Scratch Group.
Values = 0-19: instances created with same
ID share a common scratch memory buffer.
The caller must ensure that algorithms

DSKT2 APIs

The DSKT2 API 2-7

created with the same "scratchMutexId" do
not execute simultaneously.
Value = -1: Disables scratch sharing when
creating this algorithm instance.

IALG_Fxns *fxns Pointer to the algorithm's IALG_Fxns table.

IALG_Handle parent Handle of parent algorithm (optional).

IALG_Params *params Pointer to an IALG_Params structure.

Int extHeapId Segment ID of the memory heap to be used
for all allocations in memory space
IALG_ESDATA. This segment will be used
instead of the default external memory
segment.

Return non-NULL IALG_Handle for the new instance object

NULL Instance creation failed.

Preconditions The following conditions must be true prior to calling this method;
otherwise, its operation is undefined.

❏ fxns is a valid pointer to an IALG_Fxns structure (containing the
vtable for a xDAIS-compliant algorithm).

❏ extHeapId must be greater than or equal to 0.

Postconditions The following condition is true immediately after returning from this
method:

❏ If scratchMutexId is "-1", all instance scratch memory is allocated as
persistent (i.e. not shared) and instance operation does not require
mutual exclusion.

❏ With the exception of any initialization performed by algActivate and
(IDMA2) dmaInit, all of the instance’s persistent memory is initialized
and the object is ready to be used.

Comments DSKT2_createAlg2 attempts to use the heap specified by extHeapId for
all allocations in the IALG_MemSpace, IALG_ESDATA. This holds for
any IALG_MemSpace that has been configured with the same memory
segment as IALG_ESDATA. For example, if IALG_ESDATA and
IALG_SARAM3 have both been configured to use the heap in the
memory segment EXTMEM, then DSKT2_createAlg2 attempts to
allocate memory requested in the spaces IALG_SARAM3 and
IALG_ESDATA, from the heap specified by extHeapId.

DSKT2 APIs

2-8

2.3.3 DSKT2_createAlgExt

IALG_Handle DSKT2_createAlgExt(

Int scratchMutexId,

IALG_Fxns *fxns,

IALG_Handle parent,

IALG_Params *params);

Implementation DSKT2_createAlgExt performs the same actions and has the same
requirements and consequences as DSKT2_createAlg. The difference is
that all IALG memory requests are allocated in the DSP/BIOS memory
heap that was mapped to IALG_ESDATA.

The DSKT2_createAlgExt function creates and initializes an xDAIS
algorithm instance object. It uses the algorithm's IALG interface functions
(passed in fxns) to query the algorithm for its memory needs (only size
and alignment are taken into consideration), allocate the memory for the
algorithm in the external heap, and call the algorithm's algInit function to
let the new algorithm instance object initialize itself using the allocated
memory.

On success, the function returns the IALG_Handle of the new algorithm
instance that has been created. On failure, the function returns NULL,
and all memory allocated during the call is freed before
DSKT2_createAlgExt returns.

Parameters Int scratchMutexId scratchMutexId is used to associate the
created instance with a Scratch Group.
Values = 0-19: instances created with same
ID can share common scratch resources.
Values not in the range 0-19: Scratch
resources cannot be shared by this
algorithm instance. In the case of memory,
this is not an issue, since all the algorithm's
memory will be allocated as persistent, in
the external heap.

IALG_Fxns *fxns Pointer to the algorithm's IALG_Fxns table.

IALG_Handle parent Handle of parent algorithm (optional).

IALG_Params *params Pointer to an IALG_Params structure.

Return non-NULL IALG_Handle for the new instance object

NULL Instance creation failed.

DSKT2 APIs

The DSKT2 API 2-9

Preconditions The following condition must be true prior to calling this method;
otherwise, its operation is undefined.

❏ fxns is a valid pointer to an IALG_Fxns structure (containing the
vtable for a xDAIS-compliant algorithm).

Postconditions The following condition is true immediately after returning from this
method:

❏ With the exception of any initialization performed by algActivate and
(IDMA3) dmaInit, all of the instance's persistent memory is initialized
and the object is ready to be used.

2.3.4 DSKT2_activateAlg

Void DSKT2_activateAlg(

 Int scratchMutexId,

 IALG_Handle alg);

Implementation The DSKT2_activateAlg function prepares a xDAIS algorithm instance
object to start using its scratch memory. Unless the instance is already
active, DSKT2_activateAlg uses the algorithm’s IALG interface function
algActivate (accessed via IALG_Handle alg) to initialize the algorithm
instance’s scratch buffers from persistent data memory.

DSKT2_activateAlg must be called before any processing or control
methods of the algorithm instance, alg, can be called.

Parameters Int scratchMutexId scratchMutexId is used to associate the
instance with a Scratch Group. Value must
be the same ID used when creating this
algorithm instance.

IALG_Handle alg IALG_Handle of the algorithm instance to
be activated.

Return nothing

Preconditions The following conditions must be true prior to calling this method;
otherwise, its operation is undefined:

❏ alg must be a valid handle for the algorithm’s instance object returned
by an earlier call to DSKT2_createAlg or DSKT2_createAlg2.

❏ If alg uses DMA (IDMA2) dmaInit must be called before calling this
method, ensuring that all of the instance’s persistent memory is
initialized and the object is ready to be used.

DSKT2 APIs

2-10

❏ No other algorithm method is currently being run on this instance.
(This method never preempts any other method on the same
instance.)

Postconditions The following condition is true immediately after returning from this
method:

❏ All of the instance’s persistent and scratch memory is initialized and
the object is ready to be used.

Comments DSKT2_activateAlg performs all scratch memory initialization for an
algorithm’s instance object. After a successful return from
DSKT2_activateAlg, the algorithm’s instance object is ready to be used
to process data.

DSKT2 maintains state information about current "active" algorithm
instances at run-time, so that it does not perform unnecessary IALG
"activation" calls when "alg" is already active. As part of this optimization
it may call the algDeactivate method of the currently active algorithm
instance in order to activate the this (alg) algorithm instance.

The implementation of the IALG algActivate is optional by xDAIS
standard. So, the instance activation makes sense only when the method
is implemented by the algorithm. The DSKT2_activateAlg method makes
proper checks to ensure correct operation even if the algorithm does not
implement the algActivate method.

2.3.5 DSKT2_deactivateAlg

Void DSKT2_deactivateAlg(

 Int scratchMutexId,

 IALG_Handle alg);

Implementation DSKT2_deactivateAlg function prepares a xDAIS algorithm instance
object to give up using its scratch memory. An object’s deactivation logic
involves calling the algorithm’s IALG interface function algDeactivate
(accessed via IALG_Handle alg) to save necessary data from the
algorithm instance’s scratch buffers to its persistent data memory.

DSKT2_deactivateAlg must be called after the last processing or control
methods of the algorithm instance, alg, during each execute stage of its
operation.

Parameters Int scratchMutexId scratchMutexId is used to associate the
instance with a Scratch Group. Value must
be the same ID used when creating this
algorithm instance.

DSKT2 APIs

The DSKT2 API 2-11

IALG_Handle alg IALG_Handle of the algorithm instance to
be deactivated.

Return nothing

Preconditions The following conditions must be true prior to calling this method;
otherwise, its operation is undefined:

❏ alg must be a valid handle for the algorithm’s instance object
returned by an earlier call to DSKT2_createAlg or
DSKT2_createAlg2.

❏ DSKT2_activateAlg must be called before calling this method.

❏ No other algorithm method is currently being run on this instance.
(This method never preempts any other method on the same
instance.)

Comments DSKT2_deactivateAlg marks an algorithm’s shared scratch memory as
available to other instances activation. After a successful return from
DSKT2_activateAlg, the algorithm’s processing or control functions
cannot be called to process data.

DSKT2 maintains state information about current "active" algorithm
instances at run-time, so that it does not perform unnecessary IALG
"deactivation" calls. As part of this optimization it may defer the
deactivation (via a call to the algDeactivate method) of this algorithm
instance (alg) until a later stage, that is, when DSKT2_activateAlg is
called to activate another algorithm instance.

The implementation of the IALG algDeactivate is optional by xDAIS
standard. So, the instance deactivation makes sense only when the
method is implemented by the algorithm. DSKT2 methods make proper
checks to ensure correct operation even if the algorithm does not
implement the algActivate or algDeactivate methods.

To improve performance, DSKT2 uses the concept of "lazy deactivation"
to avoid unnecessary activation/deactivation operations by postponing
the actual algorithm deactivation.

With "lazy deactivation" the algorithm's deactivate function is not called
in DSKT2_deactivateAlg, but rather in the next DSKT2_activateAlg call
for a new algorithm that shares the same scratch buffer. This way, if
DSKT2_activateAlg is called for an algorithm that was just deactivated
(through DSKT2_deactivateAlg), no unnecessary copying of data
between persistent and scratch memory needs to be performed.

Since many times the process function of a single algorithm is called
repeatedly, the deactivation only happens at the end of the sequence.

DSKT2 APIs

2-12

However, in some situations, it may be necessary to force the
deactivation of the algorithm. For example, in power-down/wakeup
situations where the algActivate function must re-initialize volatile
memory. In this case, the algorithm must really be deactivated before
power-down, so that the next call to DSKT2_activateAlg calls the
algorithm's activate function.

In order to force the deactivation of algorithms that have been lazily
deactivated, DSKT2 provides the DSKT2_deactivateAll function. This
function does not deactivate any currently running algorithm, and will
return the number of algorithms that are still running.

2.3.6 DSKT2_deactivateAll

Int DSKT2_deactivateAll();

Implementation All algorithms that have been deactivated lazily (that is, with
DSKT2_deactivateAlg) are now really deactivated. Any algorithms that
are still currently active are left as is. The number of algorithms that are
still active is returned by this call.

Parameters None.

Return Int The number of remaining active algorithms.
Returns zero if no active algorithms exist.

Preconditions This function must be called with the TSK and SWI schedulers disabled.

2.3.7 DSKT2_freeAlg

Bool DSKT2_freeAlg(

 Int scratchMutexId,

 IALG_Handle alg);

Implementation DSKT2_freeAlg function deletes a xDAIS algorithm instance object and
frees all persistent memory allocated for the instance object. A reference
counting mechanism is implemented to free up instance scratch memory
so that when the last instance within a scratch group is deleted all shared
scratch memory allocated for the group is reclaimed.

DSKT2_freeAlg must be called during delete phase of operation to
prevent memory leaks.

Parameters Int scratchMutexId scratchMutexId is used to associate the
instance with a Scratch Group. Value must
be the same ID used when creating this
algorithm instance.

DSKT2 APIs

The DSKT2 API 2-13

IALG_Handle alg IALG_Handle of the algorithm instance to
be deactivated.

Return TRUE Success

FALSE Failure

Preconditions The following conditions must be true prior to calling this method;
otherwise, its operation is undefined:

❏ alg must be a valid handle for the algorithm’s instance object
returned by an earlier call to DSKT2_createAlg or
DSKT2_createAlg2.

Postconditions The following condition is true immediately after returning from this
method:

❏ If status is TRUE, then all memory allocated to the algorithm will have
been freed.

Comments DSKT2_freeAlg frees an algorithm’s persistent and when last member of
a scratch group, its shared scratch memory. After a successful return
from DSKT2_activateAlg, the IALG_Handle, alg, becomes invalid and its
IALG, processing or control functions cannot be called.

DSKT2 maintains allocation information about all algorithm instances
created by DSKT2_createAlg or DSKT2_createAlg2, so it does not call
the instance algFree method before freeing instance memory.

2.3.8 DSKT2_controlAlg

Int DSKT2_controlAlg(IALG_Handle alg, IALG_Cmd cmd, IALG_Status
*status);

Implementation DSKT2_controlAlg function is a convenience API to call a xDAIS
algorithm instance’s algControl function.

DSKT2_ controlAlg must be called only when the instance is in active
state.

Parameters IALG_Handle alg IALG_Handle of the algorithm instance to
be deactivated.

IALG_Cmd cmd IALG_Cmd structure for the control
operation.

IALG_Status *status Pointer to IALG_Status structure for
algorithm to return the status.

Return IALG_EOK The control operation was successful.

DSKT2 APIs

2-14

IALG_EFAIL A failure occurred during the control
operation or algorithm-specific return value

Preconditions The following conditions must be true prior to calling this method;
otherwise, its operation is undefined:

❏ Algorithm specific cmd values are always less than IALG_SYSCMD

❏ alg must be a valid handle for the algorithm’s instance object
returned by an earlier call to DSKT2_createAlg or
DSKT2_createAlg2 and instance must be in "active" state.

Postconditions The following condition is true immediately after returning from this
method:

❏ If the control operation is successful, the return value from this
operation is equal to IALG_EOK; otherwise it is equal to either
IALG_EFAIL or an algorithm-specific return value

❏ If the cmd value is not recognized, the return value is not equal to
IALG_EOK.

Comments The implementation of the IALG algControl is optional by xDAIS
standard. DSKT2 makes proper checks to ensure correct operation even
if the algorithm does not implement algControl.

Index-1

This is a draft version printed from file: dskt2IX.fm on 9/25/07

Index

A
activation 1-11, 1-15, 2-9
algActivate function 1-11

avoiding unneeded calls 1-15, 2-11
algAlloc function 1-16
algDeactivate function 1-11

avoiding unneeded calls 1-15, 2-11
algInit function 1-11, 1-16
ALLOW_EXTERNAL_SCRATCH property 1-5

example 1-13
APIs 2-3

B
BCACHE_wbInv function 1-6, 1-9

C
C source file configuration 1-9
callback functions 1-15
calling sequence 1-3
CFG file 1-5
configuration 1-4
context switch by callback functions 1-15
controlling algorithm instance 2-13
createHeap property 1-4
creating algorithm instance 2-4, 2-6, 2-8

D
DARAM mapping 1-5
DARAM_SCRATCH_SIZES property 1-6, 1-9

example 1-13
deactivation 1-11, 1-15, 2-10, 2-12
debug library 1-5, 1-14
debug property 1-5
DSKT2

APIs 2-3
configuration 1-4
primary purpose 1-2

DSKT2_activateAlg function 2-3, 2-9

example 1-3
optimization 1-15

DSKT2_CacheWBInvFxn 1-6, 1-9
DSKT2_controlAlg function 2-3, 2-13
DSKT2_createAlg function 2-3, 2-4

configuration for 1-5
example 1-3

DSKT2_createAlg2 function 2-3, 2-6
DSKT2_createAlgExt function 2-3, 2-8
DSKT2_deactivateAlg function 2-3, 2-10

example 1-3
DSKT2_deactivateAll function 2-3, 2-12
DSKT2_freeAlg function 1-14, 2-3, 2-12

example 1-3
DSKT2_HEAP property 1-5, 1-11, 2-2
DSP/BIOS configuration 1-4

E
enableHeapLabel property 1-4
EPROG mapping 1-5
ESDATA mapping 1-5
external heap 2-8
extHeapId parameter 2-7

F
footprint size 1-2
freeing algorithm instance 2-12
function signature 1-6, 1-9

G
group ID 1-12

H
hardware dependencies 1-14
heap segment 1-2, 1-4, 1-5
heapLabel property 1-4

Index-2

 Index

I
IALG memory space types 1-5
IALG_DARAM request 1-13, 1-14
IALG_ESDATA heap 2-8
IALG_Handle

getting 2-4
using 2-9

IALG_MemSpace structure 1-16
IALG_SARAM request 1-14
initialization

of DSKT2 module 2-2
of scratch buffers 1-11

insufficient memory 1-5, 1-13
invalidation function 1-6, 1-9
IPROG mapping 1-5

L
lazy deactivation 2-12
library for DSKT2 1-5
linker command file 1-4, 1-9
linking DSKT2 library 1-5
LOG_printf messages 1-14

M
MEM module 1-4, 1-14
memory allocation 1-13

O
optimization 1-15

P
persistent memory 1-11
preemption 1-12, 1-15
priority of tasks 1-12

R
release version 1-5
RTSC configuration 1-4, 1-8

S
SARAM mapping 1-5
SARAM_SCRATCH_SIZES property 1-6, 1-10
scratch groups 1-6, 1-12
scratch ID 1-13
scratch memory 1-2, 1-11

configuration 1-5
scratch sizes 1-6
scratchMutexId parameter 2-4, 2-6
state of algorithm 1-11

T
task priority 1-12
TCF file 1-7
Tconf configuration 1-5, 1-7
trace messages 1-14
TSK module 1-14

U
useModule method 1-4

W
writeback function 1-6, 1-9

X
xDAIS library 1-2
xDAIS standard 1-11
XDC tooling 1-4, 1-8

	xDAIS DSKT2 User’s Guide
	Preface
	Contents
	Using the DSKT2 Interface
	1.1 Introducing the DSKT2 Interfaces
	1.2 DSKT2 Calling Sequence
	1.3 Configuring DSKT2 to Map Algorithm Data Memory Segments
	1.3.1 RTSC Configuration of DSKT2
	1.3.2 RTSC Configuration Example
	1.3.3 Non-RTSC Configuration of DSKT2

	1.4 DSKT2 Support for Shared Algorithm Scratch Memory
	1.4.1 xDAIS Scratch Memory Support Overview
	1.4.2 Scratch Groups for Arranged Sharing of Scratch Memory

	1.5 Hardware Dependencies
	1.6 Runtime Optimization of Algorithm Activation and Deactivation
	1.7 Context Switching During xDAIS Callback Functions
	1.8 DSKT2 IALG Extension: Providing Information to Algorithms

	The DSKT2 API
	2.1 Memory Requirements
	2.2 Mandated Calling Sequences
	2.3 DSKT2 APIs
	2.3.1 DSKT2_createAlg
	2.3.2 DSKT2_createAlg2
	2.3.3 DSKT2_createAlgExt
	2.3.4 DSKT2_activateAlg
	2.3.5 DSKT2_deactivateAlg
	2.3.6 DSKT2_deactivateAll
	2.3.7 DSKT2_freeAlg
	2.3.8 DSKT2_controlAlg

	Index

