
XDC Consumer User’s Guide

Literature Number: SPRUEX4
July 2007



IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue any
product or service without notice. Customers should obtain the latest relevant information before placing orders
and should verify that such information is current and complete. All products are sold subject to TI's terms and
conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance
with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by government requirements, testing of all parameters of each
product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this infor-
mation with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered
documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and is an
unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless



iii

This is a draft version printed from file: pref.fm on 7/31/07 

Preface

Read This First

About This Manual
The eXpress DSP Components (XDC, pronounced "ex-dee-see") is a
standard for providing reusable software components that are optimized for
real-time embedded systems.

This document is a user's guide for consumers of XDC-based packages,
including XDC itself. 

How to Use this Manual
Chapter 1 describes XDC and provides a general introduction.

Chapter 2 describes the steps to creating and building applications that use
XDC in more detail.

Chapter 3 describes the tools provided with XDC that apply to XDC
consumers.

Chapter 4 describes the XDC runtime packages that apply to XDC
consumers.

Chapter 5 describes the XDC configuration syntax.

Appendix A lists compiler options for various targets.



iv

 Notational Conventions

Notational Conventions
This document uses the following conventions:

Program listings, program examples, and interactive displays are shown
in a special typeface. Examples use a bold version of the special typeface
for emphasis.

Here is a sample program listing:

      #include <xdc/runtime/System.h>

      int main(){
          System_printf("Hello World!\n");
          return (0);
      }

Square brackets ( [ and ] ) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets.
Unless the square brackets are in a bold typeface, do not enter the
brackets themselves. 

Related Documentation From Texas Instruments
XDC Release Notes (XDC_INSTALL_DIR/release_notes.html). Includes
information about software version, upgrades and compatibility, host and
target device support, validation, and known issues.

XDC Getting Started Guide
(XDC_INSTALL_DIR/doc/XDC_Getting_Started_Guide.pdf). Includes
steps for installing and validating the installation. Provides a quick
introduction to XDC using a "hello world" application.

"CDOC" reference documentation. Contains full reference information
about all installed packages and their modules, APIs, XDC configuration,
data structures, etc. See Section 1.6.1 for how to use this online system.

XDC Producer User’s Guide (SPRUEX5). Provides information about
creating XDC packages.

XDC Documentation List (XDC_INSTALL_DIR/doc/index.html). Provides
links to several other XDC documents.



Read This First v

Related Documentation

Related Documentation
You can use the following books to supplement this reference guide:

The C Programming Language (second edition), by Brian W. Kernighan
and Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs, New
Jersey, 1988

Programming in C, Kochan, Steve G., Hayden Book Company

Programming Embedded Systems in C and C++, by Michael Barr, Andy
Oram (Editor), published by O'Reilly & Associates; ISBN: 1565923545,
February 1999

Real-Time Systems, by Jane W. S. Liu, published by Prentice Hall; ISBN:
013099651, June 2000 

Principles of Concurrent and Distributed Programming (Prentice Hall
International Series in Computer Science), by M. Ben-Ari, published by
Prentice Hall; ISBN: 013711821X, May 1990

American National Standard for Information Systems-Programming
Language C X3.159-1989, American National Standards Institute (ANSI
standard for C); (out of print)

Trademarks
The Texas Instruments logo and Texas Instruments are registered
trademarks of Texas Instruments. Trademarks of Texas Instruments include:
TI, Code Composer, Code Composer Studio, DSP/BIOS, SPOX, TMS320,
TMS320C54x, TMS320C55x, TMS320C62x, TMS320C64x, TMS320C67x,
TMS320C28x, TMS320C5000, TMS320C6000 and TMS320C2000.

Windows is a registered trademark of Microsoft Corporation.

Linux is a registered trademark of Linus Torvalds.

All other brand or product names are trademarks or registered trademarks of
their respective companies or organizations.



vi

 



vii

This is a draft version printed from file: xdcugtoc.fm on 7/31/07 

Contents

1 About XDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-1
This chapter provides an overview of eXpress Dsp Components (XDC).
1.1 What is XDC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-2
1.2 XDC Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-3
1.3 How to Use XDC: The Quick Tour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-5
1.4 The Package Path  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-6
1.5 Setting Your PATH Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-8
1.6 Getting More Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-9

2 Basic Steps to Using XDC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-1
This chapter provides a more detailed look at the steps to using XDC.
2.1 Overview of the Development Steps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-2
2.2 Configuring the Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-2
2.3 Writing C Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-7
2.4 Processing the Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-14
2.5 Compiling and Linking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-19

3 XDC Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-1
This chapter provides command-line syntax and examples for the tools provided with XDC.
3.1 Overview of the Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-2
3.2 The cdoc Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-3
3.3 The configuro Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-5
3.4 The path Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-6
3.5 The repoman Tool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-8

4 XDC Runtime Modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-1
This chapter provides introductory information about the XDC runtime modules.
4.1 Overview of the Runtime Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-2
4.2 XDC Boot Sequence and Control Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-2
4.3 System Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-6
4.4 Memory Segments and Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-10
4.5 Memory Allocation and Heaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-13
4.6 Timestamp Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-17
4.7 Gate Interface and Implementations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-19
4.8 Diagnostics and Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-21
4.9 Types Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-33



viii

 Contents

5 XDC Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
This chapter provides more information about XDC configuration syntax.
5.1 More About the XDC Script Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
5.2 More About the xs Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
5.3 JavaScript Language  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13
5.4 XDC Script Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15

A Target Compiler Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
This appendix lists the compiler options used by default for the various targets you can select.



1-1

Chapter 1

About XDC

This chapter provides an overview of eXpress Dsp Components (XDC).

 

1.1 What is XDC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

1.2 XDC Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

1.3 How to Use XDC: The Quick Tour. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

1.4 The Package Path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

1.5 Setting Your PATH Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8

1.6 Getting More Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9

Topic Page



What is XDC?

1-2

1.1 What is XDC?

The eXpress DSP Components (XDC, pronounced "ex-dee-see") is a
standard for providing reusable software components, called "packages",
that are optimized for real-time embedded systems.

XDC includes tools and standards for API development, static configuration,
and packaging. XDC components have hardware-neutral formal interfaces,
are configurable offline to optimize memory and performance, and support
custom automation in the development environment via a scripting language.

The main benefit of XDC is that it standardizes the delivery of target content
and makes it easier for target content to be included in applications.

The users of XDC are divided into developers we call "consumers" and
"producers." Consumers integrate target content packages—DSP
algorithms, device drivers, TCP/IP stacks, real-time OSes, and so on—into
their own applications. Producers create the packages used by consumers.

An XDC "package" is a named collection of files that form a unit of versioning,
update, and delivery from a producer to a consumer. Each package is
embodied as a specially-named directory (and its contents) within a file
system. Packages are the focal point for managing content throughout its life-
cycle. All packages are built, tested, released, and deployed as a unit. 



XDC Terminology

About XDC 1-3

An XDC "repository" is simply a directory that contains packages. The dots in
the name of a package, interface, or module refer to its location within the
repository. For example the ti.sysbios.knl.Task module would be located at
ti/sysbios/knl with respect to a repository directory named in the XDC
"package path". The package path is simply a list of repositories containing
packages installed by the user. 

This document is intended for use by consumers. However, producers must
also be familiar with the concepts in this document in order to move beyond
it and understand how to create packages. (Also, producers often also
function as consumers, for example, to use a third-party RTOS when creating
a TCP/IP stack.) After reading this document, producers should move on to
the XDC Producer User’s Guide (SPRUEX5).

1.2 XDC Terminology

XDC uses a number of terms that you will need to be familiar with:

Packages. These serve as general-purpose containers for modules and
interfaces as well as other software artifacts. Packages are the focal point
for managing content throughout its life-cycle. All packages are built,
tested, released, and deployed as a unit. 

Modules. These encapsulate a related set of types and functions. They
have both an external specification and a concrete internal
implementation. A module optionally manages a single instance type,
which is analogous to a C++ class.



XDC Terminology

1-4

Interfaces. These are effectively "abstract modules". They have a
specification without an implementation. Other modules and interfaces
can inherit the specification. An interface defines a collection of related
types, constants, variables, and functions. A single C (and/or asm)
header file defines the interface. 

Repository. A directory in which one or more packages are installed.
Repositories can contain only one version of a package. So, side-by-side
installations of two different versions of a package require two
repositories. The user has complete control over the number and names
of repositories.

Package Path. An ordered sequence of repositories that are searched
when locating a package's file. Like the PATH environment variable used
to locate commands, the package path is set by the user and allows
source code to reference package files without using absolute paths.
Simple adjustments of the package path can be used to quickly switch
between different versions of one or more packages.

Target content. Software bound into an application program executing
on a particular hardware platform.

Meta content. Host-based content that plays an active role in the design-
time configuration as well as the run-time analysis of target programs.

Client applications. The application that consumes packages and calls
functions in interfaces to perform application actions. 



How to Use XDC: The Quick Tour

About XDC 1-5

1.3 How to Use XDC: The Quick Tour

Using an XDC package requires the introduction of a configuration step to the
conventional compile/link cycle. You can easily add this configuration step to
existing build flows using XDC's "configuro" command-line tool. For more
about integrating configuration into your build flow, see the XDC Getting
Started Guide (XDC_INSTALL_DIR/doc/XDC_Getting_Started_Guide.pdf).

Follow the steps in the first chapter of the XDC Getting Started Guide to install
XDC and test the installation.

Follow the steps in the second chapter of the XDC Getting Started Guide to
get a quick introduction to the process of creating applications that use XDC-
based content. The main steps in that process are:

1) Configuring the application. See Section 2.2 for more information.

2) Writing C code. See Section 2.3 for more information.

3) Processing the configuration for your target and platform. See Section
2.4 for more information.

4) Compiling and linking the application. See Section 2.5 for more
information.

The next chapter of this manual (XDC Consumer User’s Guide) goes into
more detail than the XDC Getting Started Guide about each of these
development steps.



The Package Path

1-6

1.4 The Package Path

XDC packages often need to reference files contained in other packages.
Files contained in a package are always found along the "Package Path,"
which is simply a semicolon-separated list of package "repositories". A
repository is simply a directory that contains installed packages.

The Package Path is always defined as follows:

   XDCPATH;XDC_INSTALL_DIR/packages;^

In this definition, XDCPATH is a semicolon-separated set of repositories
specified by the user. The XDC_INSTALL_DIR/packages is the repository of
packages included with the XDC tools. The "^" denotes the current package's
repository (if there is a current package). For most tools, the current package
is defined as the package named by a package.xdc file in the current working
directory. If no such file exists, then any repository name containing the "^"
character expands to an empty string "".

Because XDC_INSTALL_DIR/packages is always part of the package path,
the XDC tools can automatically find XDC’s own packages. However, if you
have other software that uses XDC packaging (such as DSP/BIOS), you
need to set the XDCPATH environment variable to reference any repositories
containing packages you require. 

All source files, whether they are part of a package or your application, should
always reference files contained in a package by prefixing the file name with
the package's directory name. For example, to include the Task.h header in
the ti.sysbios.knl package, your source files should #include
<ti/sysbios/knl/Task.h>. 

When compiling your sources, you should add a -I option for each repository
named in the Package Path in the same order that they appear in the
Package Path. Following this pattern allows you to easily
add/remove/override packages without having to update your build system.
You can simply install (or remove) a package into one of the repositories, add
(or remove) the reference from your sources, and rebuild.

Since virtually all build tools support an option similar to -I, the pattern works
for linker command files, assembly language files, XDC scripts, and
makefiles.



The Package Path

About XDC 1-7

1.4.1 Managing the XDCPATH Portion of the Package Path

In the Package Path, you control the XDCPATH portion. This prefix is a string
of ';' separated directories that contain packages. 

XDCPATH may be specified as an environment variable or on the command
line of any tool that uses the Package Path. See the documentation of the
particular command-line tool to find the appropriate option. 

IMPORTANT NOTE: All directories referenced in XDCPATH, whether in an
environment variable or a command line, must use forward slashes (/) as
separators instead of the Windows-standard backslash (\). For example,
use "c:/os;c:/drivers;c:/framework".

Relative paths in XDCPATH reference directories relative to the package
being built rather than the directory from which the command was invoked.
Thus, a relative path refers to a different repository for each package used.

Note: It is usually a mistake to use a relative path in the XDCPATH prefix.

It is possible, however, to use the '^' character in the XDCPATH definition to
refer to the "current package's" repository. So, if you have a repository that is
always in a fixed location relative to all of your package's repositories, it is
possible to create a single XDCPATH setting that works for all your packages
and does not include any absolute paths. 

Suppose, for example, that your build system places all prerequisite
packages in an "imports" repository prior to building the packages in a "src"
repository and the imports and src repositories are sibling directories in the
file system. The following XDCPATH setting is sufficient to build all packages
in the src repository.

   set XDCPATH=^/../imports

Multiple versions of the same package can appear along the Package Path.
The Package Path can name multiple repositories that can contain a package
directory with the same name. When searching for a package, the first
repository that contains a directory matching the package's name is used.
Thus, even if two packages with the same name appear in the package path,
only one will ever be found-the first one in the order specified in the package
path. 

Thus, it is possible to quickly update selected packages by adding an
"updates" repository at the front of XDCPATH. If the updates are successful,
you can "permanently" remove the old versions; otherwise you can quickly
revert to the previous versions by simply removing the updates repository
from XDCPATH.



Setting Your PATH Definition

1-8

Here is a Linux command example for setting XDCPATH: 

   export XDCPATH="/opt/embedded/os;/opt/embedded/drivers"

If you are using Microsoft Windows, see Section 1.5 for how to set
environment variables.

XDC configuration scripts mention packages by name, not by location. This
makes scripts portable to new directory locations.

If you do not want to specify a directory using the XDCPATH environment
variable, you can use the --xdcpath option on the command line for all the xs
command-line tools.

Alternately, you can place the --xdcpath command-line option in a text file,
say mysettings.txt, and specify the file on the command line of xs commands.
This is useful in makefiles, which can have a dependency on the text file. The
xs command line would reference the file as shown in this example:

   xs @mysettings.txt

1.5 Setting Your PATH Definition

XDC does not use the PATH environment variable directly. However, your
operating system or shell does—PATH defines where the operating system
looks for command line programs. You may want to include the top-level XDC
directory in your PATH to simplify invoking the XDC command-line tools.

Setting the PATH definition makes it easy to run XDC's xs command, which
is used to run a number of tools. If you do not want to add the XDC directory
to your PATH, you can use one of the following alternate ways of running the
xs command:

You can invoke xs from the command line by using the full path
<xdc_install_dir>/xs.

You can make an alias to the xs or xs.exe executable.

On Microsoft Windows, the PATH is managed by Windows itself (in Windows
2000 and Windows XP) rather than by the autoexec.bat or autoexec.nt files
used in previous versions of Windows. 

You can create aliases using the doskey command from the Windows
cmd.exe shell as shown in this example:

   doskey xdc=<xdc_install_dir>/xs.exe $*



Getting More Information

About XDC 1-9

To change the Windows PATH (and other Windows environment variables),
follow these steps:

1) Right-click My Computer and choose Properties.

2) In the System Properties window, choose the Advanced tab.

3) In the Advanced tab, click the Environment Variables button. 

4) Highlight the Path variable in the "Systems variables" area and click Edit.

5) Add the directory in which you installed XDC to the end of the current
Path definition. Use a semicolon to separate the locations in the list. For
example, you might add the following to your existing Path definition:

   ;c:\xdc_2_95

6) Click OK in the Environment Variables window and OK in the System
Properties window.

7) Reopen any Command Prompt or MS-DOS windows you want to use
with XDC.

1.6 Getting More Information

You can read the following additional documents to learn more about XDC:

XDC Release Notes (XDC_INSTALL_DIR/release_notes.html). Includes
information about software version, upgrades and compatibility, host and
target device support, validation, and known issues.

XDC Getting Started Guide
(XDC_INSTALL_DIR/doc/XDC_Getting_Started_Guide.pdf). Includes
steps for installing and validating the installation. Provides a quick
introduction to XDC using a "hello world" application.

"CDOC" reference documentation. Contains full reference information
about all installed packages and their modules, APIs, XDC configuration,
data structures, etc. See Section 1.6.1 for how to use this online system.

XDC Producer User’s Guide (SPRUEX5). Provides information about
creating XDC packages.

XDC Documentation List (XDC_INSTALL_DIR/doc/index.html). Provides
links to several other XDC documents.



Getting More Information

1-10

1.6.1 Using the CDOC Reference Help System

To open the CDOC reference help system, you can choose CDOC from the
XDC group in the All Programs section of the Windows Start menu.

Alternatively, issue the following command from the command prompt—for
example by opening the Microsoft Windows Start menu and choosing Run.

   xs xdc.tools.cdoc.sg

You see the "cdoc" window with a tree view of the XDC packages available
to you. All of these packages provide documentation that can be displayed by
the CDOC viewer.

Click "+" next to a repository to expand its list of packages. Click "+" next to a
package name to see the list of modules it provides. You can further expand
the tree to see a list of the functions provided by a module. Double-click on a
package or module to see its reference information.

Notice the icons in the upper-right corner of the window. The following icons
are useful:

View C interface view of documentation.

View XDC interface view of documentation.

Close all page tabs.

For each topic you view, there is a tab across the top of the page area. You
can use these to quickly return to other pages you have viewed. You can also
use the arrows next to "Views" to move backward and forward in your history
of page views. 

To close a page and remove its tab, click the X on the tab.



2-1

Chapter 2

Basic Steps to Using XDC

This chapter provides a more detailed look at the steps to using XDC.

 

2.1 Overview of the Development Steps  . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

2.2 Configuring the Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

2.3 Writing C Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

2.4 Processing the Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14

2.5 Compiling and Linking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19

Topic Page



Overview of the Development Steps

2-2

2.1 Overview of the Development Steps

To expand on the quick tour provided in the XDC Getting Started Guide this
chapter expands on each of the steps in the development process.

Creating applications that use XDC-based software packages follows a
development cycle that builds on traditional C programming techniques. XDC
packages standardize the delivery of TI and 3rd party software, easing the
integration of such software.

Using an XDC package adds a configuration step to the conventional
compile/link cycle. The configuration processing is easily added to existing
build flows. XDC provides a number of tools that simplify the task of
integrating and using XDC-based packages.

The steps for creating an application that uses XDC-based content are as
follows:

1) Configuring the application. See Section 2.2.

2) Writing C code. See Section 2.3.

3) Processing the configuration for your target and platform. See Section
2.4.

4) Compiling and linking the application. See Section 2.5.

As with the standard development cycle, the focus is on writing C code. The
other steps are simple. XDC provides tools to support the additional
configuration steps.

2.2 Configuring the Application

An application that uses XDC packages needs a configuration file. This is a
file containing script statements that statically configure how the application
uses XDC packages. Your C program code can do additional dynamic
configuration, but the XDC configuration defines the starting point.

The XDC configuration serves the following purposes:

Specifies the packages to use and the static objects to create.

Performs integrity checks between specified and dependent packages.

Sets options for modules and objects to change their default behavior.

The configuration file is typically located in the same directory as your main
C code file. It can have any name. The name should not contain spaces, and
lowercase names are recommended.



Configuring the Application

Basic Steps to Using XDC 2-3

As you develop applications, the configuration step is one you may revisit as
you add functionality to your C code or tune the functionality of the packages
used by your application for optimal performance.

Use a text editor to create the configuration file, and save the file with an
extension of .cfg. For example, your file might be called mycfg.cfg. When
you save the file, be sure to save it as plain text (not as a Microsoft Word or
other word processor file).

XDC configuration files use JavaScript (EcmaScript) syntax. For more
information about configuration syntax, see Chapter 5. For details about the
packages, modules, objects, and properties you can configure, see the
CDOC reference help system (see Section 1.6.1).

The following subsections provide an overview of the basic statement types
you will use for most configurations.

2.2.1 Using a Module

The xdc.useModule command enables an application to use a particular
module. For example, this command enables use of the xdc.runtime.System
module:

   var System = xdc.useModule("xdc.runtime.System");

(The package path allows XDC to find packages, so all you specify is the
name of the package within a repository referenced in the package path.)

The generalized syntax is:

   var Mod = xdc.useModule("pkg.name.Mod");

Your C code file will also need to identify modules referenced in C code by
including their header files. For example:

   #include <pkg/name/Mod.h>

Notice the similarity in referencing modules between JavaScript and C. This
is made possible by adding a -I option for each repository in the package path
to the C compiler's command line. A similar technique can be used with
assembly language files, linker command files, and even GNU makefiles.



Configuring the Application

2-4

2.2.2 Setting a Module Parameter Value

Your XDC configuration scripts can set properties for modules and for
instances you have created for a module.

The generalized syntax for setting a parameter of a module in an XDC
configuration script is:

   Mod.cfgParam1 = value1;

This example enables the Error module, which handles run-time errors. It
sets the Policy parameter to return errors to the calling function.

   var Err = xdc.useModule("xdc.runtime.Error");
   Err.Policy = Err.UNWIND;

Warning: We normally would use "Error" as the name of the variable. But
since JavaScript already has a Error class defined, creating an Error
variable here would overwrite JavaScript's built-in Error class and prevent
other parts of the configuration from throwing Error exceptions.

2.2.3 Defining Static Constants

Program.global is a special object that allows you to define global variables
and constants in a configuration script and access these values from C/C++.

Suppose, for example, that your configuration script contains the following
line:

   Program.global.MAXCHANNELS = 2;

You can access the MAXCHANNELS parameter from your C/C++ files as
follows:

   #include <xdc/cfg/global.h>

   void main()
   {
      printf("MAXCHANNELS = %d\n", MAXCHANNELS);
   }

See the xdc.cfg.Program.global topic in the CDOC reference help system
(see Section 1.6.1) for information about how to compile sources that use
xdc/cfg/global.h.



Configuring the Application

Basic Steps to Using XDC 2-5

2.2.4 Static Object Instance Creation

Each module can manage at most one instance type. For example, suppose
the Task module of the ti.sysbios.knl package allows you to create Task
objects. You can create objects statically (in an XDC configuration file) or
dynamically (in C code).

The syntax to create such an object statically is as follows.

var Task = xdc.useModule("ti.sysbios.knl.Task");

Program.global.tsk0 = Task.create("&twoArgsFxn");

The tsk0 name is the name of the object created within the Program.global
namespace.

The "&twoArgsFxn" is a module-specific argument to the create() method. In
this case, it specifies an externally defined C function named "twoArgsFxn"
that the Task thread should run. 

To use tsk0 from your C/C++ code, follow the same pattern used in the
previous section to access MAXCHANNELS. For example:

#include <xdc/cfg/global.h>       /* declares tsk0 */
#include <ti/sysbios/knl/Task.h>  /* declares Task functions */
...
Task_setPri(tsk0);

These additional examples create instances for other modules:

Program.global.heap0 = HeapBuf.create(heapBufParams);
Program.global.swi0 = Swi.create('&swi0Fxn', swiParams);
Program.global.clk0 = Clock.create("&clk0Fxn", 5, clkParams);

In general, the create method of any module has zero or more required
parameters, and the last parameter is a "structure" of instance parameters
that is optionally passed to the create method; if it is not passed (as in the
Task example above), module-specific defaults are used. Each module's
online reference documentation describes these defaults; see Section 1.6.1
for more information about how to view a module's reference documentation.



Configuring the Application

2-6

2.2.5 Setting an Instance Parameter Value

You can set the parameters of instances you create. Typically, this is done by
setting parameters in a Params structure that is specific to the module. Then,
you pass the Params structure to the create() method for the module
(sometimes along with some other arguments). The instance created has
those parameters. 

For example, the following statements enable the xdc.runtime.Memory and
ti.sysbios.heaps.HeapBuf module. Then, a variable of type Heapbuf.Params
is declared. This is the Params structure defined by the
ti.sysbios.heaps.HeapBuf module. Statements fill in the values of the
blockSize, numBlocks, and align fields of the structure. Then, a HeapBuf
instance is created using those parameters and the heap is assigned to be
the default heap instance for the Memory module.

var Memory = xdc.useModule('xdc.runtime.Memory');
var HeapBuf = xdc.useModule('ti.sysbios.heaps.HeapBuf');

/* Create a heap using ti.bios.HeapBuf */
var heapBufParams = new HeapBuf.Params();
heapBufParams.blockSize = 128;
heapBufParams.numBlocks = 100;
heapBufParams.align = 8;
Program.global.heap0 = HeapBuf.create(heapBufParams);

/* Use heap0 as the default heap */
Memory.defaultHeapInstance = Program.global.heap0;

2.2.6 Finding Configuration Options

Configuration parameters are described in a module’s CDOC online help.
Look for the “config” keyword in CDOC to find the properties you can set for
the module and instances of the object it describes.

The section with the heading "Module-wide configuration parameters" lists
parameters you can set for the entire module. The heading "Per-instance
configuration parameters" lists parameters you can set for an instance or in
the create() method for the module.



Writing C Code

Basic Steps to Using XDC 2-7

2.2.7 Property Types

The CDOC online help lists the type of value expected for each configuration
parameter. Since JavaScript is an untyped language, variables can refer to
different types at different points in a script and most types are automatically
converted as needed. For example:

var tmp = 1;           /* tmp is the numeric variable 1 */
tmp = "tmp = " + tmp;  /* now tmp is the string "tmp = 1" */

However, all properties of XDC objects are declared with a fixed type and all
assignments to these properties are checked at runtime. If an inappropriate
assignment is made, a runtime exception is thrown and the script terminates
at the point that the assignment is made. This runtime type checking helps
catch programmer errors. For example, the defaultHeapSize property of the
xdc.runtime.Memory module is declared to be an "int". The following script
terminates on the second assignment to defaultHeapSize with a fatal error:

var Memory = xdc.useModule("xdc.runtime.Memory");
Memory.defaultHeapSize = 64 * 1024;   /* ok*/
Memory.defaultHeapSize = "64K";        /* ERROR! must be an int */

Similarly, do not set a Boolean value to the quoted string "true" or "false".

2.3 Writing C Code

XDC establishes C coding conventions that make it easier to integrate XDC-
based content. After you learn these conventions, you will be able to integrate
any modules supplied within XDC packages.

2.3.1 Using Modules

A module encapsulates a related set of types and functions. A module is
analogous to a C++ class and can optionally manage a single instance type.

To use a module in C code, you must #include its header file. For example:

   #include <xdc/runtime/Memory.h>

Suppose you want to use the printf method supplied by the
xdc.runtime.System module. As we saw in Section 2.2.1, first you use this
XDC configuration statement in your application's configuration script:

   var System = xdc.useModule("xdc.runtime.System");



Writing C Code

2-8

Then you should add the following statements to your C code:

#include <xdc/runtime/System.h>
    :
System_printf("Hello World!");

Notice that the package name in the #include statement was not used in the
name of System's printf method. In fact, all XDC modules provide two names
for each module identifier: a "short" name without the package name (e.g.,
System_printf) and a "long" name that includes the package name (e.g.,
xdc_runtime_System_printf). So, the code above could also have been
written as follows.

#include <xdc/runtime/System.h>
    :
xdc_runtime_System_printf("Hello World!");

Short names are much easier to read but may conflict with another method's
short name. For example, the printf method of a hypothetical ti.wlan.System
module. Since conflicts are rare, we use the short names whenever possible. 

In the event of a conflict, you can disable the short names for a specific
module by defining the symbol <modName>__nolocalnames prior to
including the module's header. For example:

#define xdc_runtime_System__nolocalnames
#include <xdc/runtime/System.h>
#include <ti/wlan/System.h>
   :
System_printf("Hello world"); /* call ti_wlan_System_printf()*/
xdc_runtime_System_printf("Hello World");

The same technique is used to avoid conflicts with the base types defined in
xdc/std.h. Suppose, for example, your code defines a Boolean type named
Bool that conflicts with the same named type in xdc/std.h. Simply define the
symbol xdc__nolocalnames and all identifiers from xdc/std.h will have the
"xdc_" prefix. For example:

#define xdc__nolocalnames
#include <xdc/std.h>

typedef unsigned char Bool;  /* define a local boolean type */
     :
xdc_Bool flag1;    /* flag1 is an XDC boolean variable */
Bool flag2;        /* flag2 is a local boolean variable */



Writing C Code

Basic Steps to Using XDC 2-9

As rule, all identifiers in a module's interface have the prefix <pkg>_<Mod>_.
Shorter names are defined for all identifiers with just the <Mod>_ prefix. In the
event that a module's short names conflict with other identifiers, you can
#define <pkg>_<Mod>__nolocalnames to disable these short names. 

Finally, all identifiers with the prefix <pkg>_<Mod>_ are defined in the
<pkg/Mod>.h header file.

2.3.2 Naming Conventions

XDC uses a set of naming conventions and suggests that you and third-party
providers follow these same conventions. The benefits of these conventions
are as follows:

1) Package names can be distinguished from module names. For example,
ti.bios.utils is a package, but ti.bios.Utils is a module in the ti.bios
package.

2) Modifiable entities can be distinguished from constants. For example,
System.DONE is a constant, but System.maxPasses is a module
configuration parameter.

3) Interfaces can be distinguished from concrete modules. For example,
xdc.IPlatform is an interface, but xdc.Platform is a module.

4) Types can be distinguished from variables and functions. For example,
Arg and Startup_InitFxn are types, but arg and Startup_firstFxns are
parameters or variables.

All identifiers follow these naming conventions:

Package names are all lowercase.

    xdc.runtime

Module names begin with an uppercase letter.

    xdc.runtime.Memory

Interface names begin with an uppercase "I".

    IHeap and IGateProvider

Type names begin with an uppercase letter. The uppercase applies to the
first letter after any prefix (for example, "Handle" in Task_Handle).

    Arg and String       /* types */
    xdc_String    



Writing C Code

2-10

Functions, variables, and parameter names begin with a lowercase letter
after any module prefix. Camel case is used where needed to delimit
multi-word names.

    Diags_setMask()     /* function */
    Log_system          /* global variable */

Multiple-word identifiers are separated by uppercase letters, not an
underscore.

    Mod_twoWords        /* multi-word global variable */

Constants are in all uppercase after the module or package prefix. If
multiple words are required, an underscore delimits the words.

    Diags_INTERNAL      /* constant */
    Types_STATIC_POLICY /* two-word constant name */ 

Structure field names and configuration parameters begin with a
lowercase letter.

    attrs.count               /* structure field name */
    System_maxAtexitHandlers  /* configuration parameter */

2.3.3 Runtime Object Instance Creation

Modules that manage instances provide C functions to create and delete the
type of object managed by that module.

create() function. The function for dynamically creating an instance is
named <Mod>_create(). The <Mod>_create() function returns a handle to the
new instance or NULL if the function fails. The handle returned by
<Mod>_create() is of type <Mod>_Handle. The type of the instance itself is
<Mod>_Object.

#include <ti/sysbios/knl/Task.h>
#include <xdc/runtime/System.h>
#include <xdc/runtime/Error.h>
   :
Error_Block eb;
Task_Handle task;
   :
task = Task_create(NULL, &eb);
if (task == NULL) {
    System_abort("task create failed!\n");
}



Writing C Code

Basic Steps to Using XDC 2-11

The first argument to a function that deals with an instance for that module is
a <Mod>_Handle. (The exception is the delete() function, which takes a
pointer to a <Mod>_Handle.)

Task_setPri(task, Task_MAXPRI); /* set priority of task thread*/
Task_delete(&task);    /* delete task object, set task to NULL */

The create() function for a module always take a parameter that is a pointer
to a structure of type <Mod>_Params. If you set this parameter to NULL (as
in the previous example), the defaults are used for all the object’s parameters.

For all modules with instance creation parameters, you can get the default
instance parameter values by calling <Mod>_Params_init(). For example:

   HeapMin_Params heapParams;
   HeapMin_Handle heap;

   /* initialize all instance parameters to their defaults */
   HeapMin_Params_init(&heapParams);

   /* set specific parameters */
   heapParams.size = 0x10000;

   /* create instance */
   heap = HeapMin_create(&heapParams, NULL);

The create() function always takes a last parameter that is a pointer to an
Error_Block. The Error_Block structure is defined by the xdc.runtime.Error
module. If this parameter is NULL, errors will cause the application to
terminate (via xdc_runtime_System_abort()) without returning to the caller.

delete() function. The function for dynamically deleting an instance is named
<Mod>_delete(). This function returns Void, which means it cannot directly
return a failure status. If it is successful, it sets the pointer to a <Mod>_Handle
that was passed to it to NULL. This has the benefit of preventing the
application from inadvertently using the handle variable after the instance has
been deleted.

The following example shows the create() and delete() functions for a
Semaphore module. In this case, we create a Semaphore instance with
default parameters and no error block (so any error will abort the application).

   Semaphore_Handle sem; /* declare handle to semaphore */

   sem = Semaphore_create(NULL, NULL);   /* create semaphore */
   ...
   Semaphore_delete(&sem);               /* delete semaphore */



Writing C Code

2-12

The following example illustrates how to create a module (Task) instance with
parameters other than the defaults.

   Task_Handle myTask;    /* declare handle to task */
   Task_Params params;    /* declare task creation attributes */

   Task_Params_init(&params);  /* init task params to defaults */
   /* set only attributes of interest */
   params.stacksize = 1024 * sizeof (Int);
   myTask = Task_create(fxn, &params, NULL);   /* create task */

2.3.4 XDC Datatypes

XDC defines the following base datatypes for use in C code in xdc/std.h. You
should use these types in application code that uses XDC modules or is
intended to be portable to multiple targets. Most datatypes have names that
are similar to the corresponding C type, but with TitleCase used for
differentiation and abbreviation of unsigned and long. The underlying sizes
may be different on various targets.

For more information about these types as well as predefined macros that
facilitate the creation of portable C modules see the CDOC reference help for
the xdc package (see Section 1.6.1).

Table 2–1  XDC Datatypes for C Programs

XDC Type C99 Type Comments

Bits16 uint16_t

Bits32 uint32_t

Bits8 uint8_t Supported only for ’C55x+byte mode and 
for all ’C6000 and TMS470 targets

Bool unsigned short 1 for true and 0 for false
 or use TRUE and FALSE

Char char

Double double

Float float

Fxn int (*)() function pointer

IArg intptr_t

Int int

Int16 int_least16_t
or int_fast16_t

The target may opt to use either the 
int_fast or the int_least types for these 
definitions.



Writing C Code

Basic Steps to Using XDC 2-13

Int32 int_least32_t
or int_fast32_t

 

Int8 int_least8_t
or int_fast8_t

LDouble long double

LLong long long May be supported only as long on some 
targets

Long long

Ptr void* data pointer

Short short

SizeT size_t

String char* null-terminated string

UArg uintptr_t holds arguments to pass to functions

UChar unsigned char

UInt unsigned int

UInt16 uint_least16_t
 or unint_fast_16_t

The target may opt to use either the 
uint_fast or the uint_least types.

UInt32 uint_least32_t
 or unint_fast32_t

UInt8 uint_least8_t
 or unint_fast_8_t

ULLong unsigned long long May be supported only as unsigned long 
on some targets

ULong unsigned long

Uns unsigned int

UShort unsigned short

VaList va_list

XDC Type C99 Type Comments



Processing the Configuration

2-14

2.4 Processing the Configuration

In this step, you use the "configuro" tool provided with XDC to process your
application's configuration file. Processing the file generates a compiler.opt
file to be used when you compile the application and a linker.cmd file to be
used when you link the application.

Before a configuration script can be processed, you need to specify the
"target" compiler and the hardware "platform" required to run your application.
In general terms: 

A target identifies a specific compiler and an ISA and runtime model
supported by the compiler. For example, the TI ’C6000 compiler for the
’C64+ ISA running in big-endian mode.

A platform identifies the hardware execution environment as seen by
your application. For example, a DM6446 EVM with 64 MB of DDR2
external memory.

XDC uses simple string names to identify targets and platforms. 

2.4.1 Choosing a Target

The following target strings are recognized by XDC. See Section A.1 for a list
showing the compiler options generated for various targets.

To see the latest list of targets, open the CDOC online documentation
(Section 1.6.1). Select the  (XDC) view. You can expand the ti.targets and
gnu.targets lists.

Table 2–2  TI Targets

ti.targets.TMS470 ti.targets.C28 ti.targets.C62

ti.targets.TMS470_big_endian ti.targets.C28_large ti.targets.C62_big_endian

ti.targets.MSP430 ti.targets.C55 ti.targets.C64

ti.targets.Arm7 ti.targets.C55_huge ti.targets.C64_big_endian

ti.targets.Arm7_big_endian ti.targets.C55_large ti.targets.C64P

ti.targets.Arm9 ti.targets.C64P_big_endian

ti.targets.Arm9t ti.targets.C67

ti.targets.C67_big_endian

ti.targets.C67P

ti.targets.C67P_big_endian



Processing the Configuration

Basic Steps to Using XDC 2-15

Table 2–3  Non-TI Targets

If your target is not listed, it is possible to create your own target, but you may
need to contact technical support.

2.4.2 Choosing a Platform

The "platform" is a string that describes the specific board. It specifies a
particular device and memory map on which an application will run, and is
used for linking.

Platforms are provided for many common TI development boards.

The full list of platforms available is visible in the CDOC online documentation
(see Section 1.6.1) in the list of packages under ti.platforms. Examples
include ti.platforms.sim6xxx, ti.platforms.sim64Pxx, ti.platforms.dsk5510,
ti.platforms.dsk6416, and ti.platforms.evmDM6437.

If you are developing for a platform that is not listed in the online
documentation, you may be able to use the ti.platforms.generic platform. For
more information about how to define a platform instance using this platform
package, see the CDOC online documentation for the ti.platforms.generic
package.

2.4.3 Running Configuro

XDC provides a tool called "configuro" that processes XDC configuration
files.

Running configuro generates a subdirectory with the same name as your
CFG file (for example, C:/myprojects/hello/mycfg for the mycfg.cfg file). This
subdirectory is an XDC "package".

gnu.targets.Linux86 Native target for Linux on PC

gnu.targets.Mingw Native target for Windows using Mingw compiler

gnu.targets.MVArm9 Embedded target for Linux on Arm9

gnu.targets.Sparc Native target for Solaris on Sparc workstations

gnu.targets.UCArm9 gcc/uClibc target for Linux on Arm

microsoft.targets.Net32 Microsoft .Net 32-bit native target

microsoft.targets.VC98 Windows 32-bit using Visual C/C++ 6.x compiler.

microsoft.targets.Win32 Windows 32-bit using Visual C/C++ 6,7,8 compilers.



Processing the Configuration

2-16

From a consumer perspective, the important thing about this package is that
it contains files generated from your configuration to be used when compiling
and linking your application. These files include compiler.opt and
linker.cmd, along with header files and libraries.

Generate files from the configuration you created using the following
command line:

   xs xdc.tools.configuro -t <target> -p <platform> 
       -c <compiler_location> mycfg.cfg

For example:

   xs xdc.tools.configuro -t ti.targets.C64 
       -p ti.platforms.sim6xxx
       -c c:/CCStudio_v3.3/C6000/cgtools mycfg.cfg

The -t option specifies the target.

The -p option specifies the platform.

The -c option specifies the location of the compiler you want to use.

You can view further command-line options for the configuro tool with this
command:

   xs xdc.tools.configuro --help

compiler.opt
file

linker.cmd
file

C compiler linker

mycfg.cfg
file

configuro tool



Processing the Configuration

Basic Steps to Using XDC 2-17

When you run configuro, you see a message similar to the following:

making package.mak (because of package.bld) ...
generating interfaces for package mycfg (because ...)
configuring mycfg.x64 from package/cfg/mycfg_x64.cfg ...
cl64 package/cfg/mycfg_x64.c ...

Re-run configuro on your CFG file whenever you do any of the following:

Change the CFG file

Change the target or platform

Update a package used by your application

The configuro command uses specially generated makefiles to avoid running
any unnecessary steps when you make the changes above. So, if you are not
sure whether to run configuro, go ahead and run it; if nothing needs to be
done, configuro quickly detects this and does nothing. 

You can integrate the step of running configuro into your makefile or Code
Composer Studio project file as described in the subsections that follow. 

For details about using configuro, see Section 3.3 and the CDOC online
reference for the xdc.tools.configuro package.

2.4.4 Running Configuro from a CCStudio Project

On Windows systems, if you have installed both XDC and Code Composer
Studio, you can use an XDC tab in the Build Options dialog in Code
Composer Studio.

1) First, use the Component Manager (part of CCStudio) to make sure the
latest version of XDC is enabled. To run the Component Manager, use
your Windows Start menu to choose All Programs->Texas
Instruments->Code Composer Studio->Component Manager. Within
Component Manger, expand Target Content (XDC). Then expand your
target family. Make sure the version of XDC you want to use has a
checkmark. When you close Component Manager, save your changes.



Processing the Configuration

2-18

2) Next, add the CFG file you created to your CCStudio project.

3) Then, open the Project->Build Options dialog and move to the XDC
tab:

4) With the Basic category selected, specify the target and platform
packages you want to use. Optionally, you can also specify the -r (build
profile) and --xp (XDCPATH) command-line options for configuro here.



Compiling and Linking

Basic Steps to Using XDC 2-19

2.5 Compiling and Linking

The particular compile and link syntax you use is compiler-dependent. See
Section A.1 for details about compiler options for various targets. Additional
examples are provided with XDC in the examples/configuro directory.

NOTE: The compiler's standard C runtime library must come after the
linker.cmd file in the link order in a makefile or CCStudio project. For
example, this is an RTS library for TI compilers, libc.a for GCC, and
msvcrt.lib for Microsoft Visual Studio.

2.5.1 Compiling and Linking with CCStudio

Add the compiler.opt file to the project in the Project->Build Options dialog.
In the Compiler tab, select the Files category and add mycfg/compiler.opt in
the Options File field.

Add the linker.cmd file to your project using the Add Files to Project
command.

If you haven't already added a RTS library to your CCStudio project, use the
Add Files to Project command. For example, your RTS library might be
$(CGTOOLS)/lib/rts6400.lib.

2.5.2 Using the Command Line on Windows for TI Targets with CCStudio
1) In a command window, run the DosRun.bat file in the CCStudio

installation directory.

2) Compile your application using a command similar to the following, where
<mycfg> is the name of your configuration package directory.

   cl6x -@<mycfg>/compiler.opt -c hello.c

3) Link your application using a command similar to the following, where
<mycfg> is the name of your configuration package directory.

   cl6x -q -z -c hello.obj <mycfg>/linker.cmd
     C:/CCStudio_v3.3/C6000/cgtools/lib/rts6400.lib -o hello.out 



Compiling and Linking

2-20

2.5.3 Building with the TI Code Generation Tools from a Makefile

This section and the two sections that follow show how to run the configuro
tool and use its output with the compilers and linkers for TI, GNU, and
Microsoft. They use the compiler.opt and linker.cmd files generated by
configuro.

The example makefiles in this section and the following sections all use GNU
make, which is delivered with XDC (XDC_INSTALL_DIR/gmake). 

Important Note: In GNU makefiles, always use a tab character to indent,
not spaces. Also, all commands should be on a single line. Variable
definitions that contain spaces (for example, CGTOOLS often does on
Windows) must be surrounded by quotes. For more information about the
syntax of makefiles and the operation of GNU make see the online GNU
make manual at http://www.gnu.org/software/make/manual/make.html. 

The following example makefile runs the TI Code Generation Tools compiler
and linker.

CGTOOLS = C:/CCStudio_v3.3/C6000/cgtools

CC = $(CGTOOLS)/bin/cl6x
LNK = $(CGTOOLS)/bin/lnk6x
RTS = $(CGTOOLS)/lib/rts6400.lib

CONFIG = mycfg
XDCTARGET = ti.targets.C64
XDCPLATFORM = ti.platforms.sim6xxx

%/linker.cmd %/compiler.opt : %.cfg
  xs xdc.tools.configuro -c $(CGTOOLS) -t $(XDCTARGET) -p $(XDCPLATFORM) $<

%.obj : %.c $(CONFIG)/compiler.opt
  $(CC) -@$(CONFIG)/compiler.opt -c $<

hello.out : hello.obj $(CONFIG)/linker.cmd
  $(LNK) -o hello.out -c hello.obj $(CONFIG)/linker.cmd $(RTS)



Compiling and Linking

Basic Steps to Using XDC 2-21

2.5.4 Building with Microsoft Visual Studio from a Makefile

The following example makefile runs configuro and uses the compiler.opt and
linker.cmd files generated by configuro in the command lines for the Microsoft
Visual Studio compiler and linker.

CGTOOLS = "C:/Program Files/Microsoft Visual Studio 8"

CC = $(CGTOOLS)/vc/bin/cl
LNK = $(CGTOOLS)/vc/bin/link
RTS = -nodefaultlib -libpath:$(CGTOOLS)/vc/lib kernel32.lib ms-
vcrt.lib

CONFIG = mycfg
XDCTARGET = microsoft.targets.Win32

%/linker.cmd %/compiler.opt : %.cfg
   xs xdc.tools.configuro -c $(CGTOOLS) -t $(XDCTARGET) $<

%.obj : %.c $(CONFIG)/compiler.opt
   $(CC) @$(CONFIG)/compiler.opt -c $<

hello.exe : hello.obj $(CONFIG)/linker.cmd
   $(LNK) -out:$@ hello.obj @$(CONFIG)/linker.cmd $(RTS)

No platform specification is needed because the default platform for each
target in microsoft.targets is the one required for native execution on an x86
PC (host.platforms.PC).



Compiling and Linking

2-22

2.5.5 Building with GCC from a Makefile

The following example makefile runs configuro and uses the compiler.opt and
linker.cmd files generated by configuro in the command lines for the GCC
compiler and linker.

CGTOOLS = $(TOOLS)/vendors/gnu/gcc/3.2.1/Linux

CC = $(CGTOOLS)/bin/gcc
LNK = $(CGTOOLS)/bin/gcc
RTS = -lstdc++

CONFIG = mycfg
XDCTARGET = gnu.targets.Linux86

%/linker.cmd %/compiler.opt : %.cfg
   xs xdc.tools.configuro -c $(CGTOOLS) -t $(XDCTARGET) $<

%.o : %.c # forget built-in rule
%.o : %.c $(CONFIG)/compiler.opt
   $(CC) $(shell cat $(CONFIG)/compiler.opt) -c $<

hello : hello.o $(CONFIG)/linker.cmd
   $(LNK) -o $@ hello.o $(CONFIG)/linker.cmd $(RTS)

No platform specification is needed because the default platform for the
gnu.targets.Linux86 target is the one required for native execution on an x86
PC (host.platforms.PC).

The GCC compiler does not directly support an option to include other
command line options from a file. However, this example accomplishes this
by using GNU make's "$(shell ...)" function and the Linux cat command to
copy the options to the compiler's command line before calling GCC.



3-1

Chapter 3

XDC Tools

This chapter provides command-line syntax and examples for the tools
provided with XDC.

 

3.1 Overview of the Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

3.2 The cdoc Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

3.3 The configuro Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

3.4 The path Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6

3.5 The repoman Tool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8

Topic Page



Overview of the Tools

3-2

3.1 Overview of the Tools

The following XDC tools are useful when creating applications that use XDC-
based content. See the CDOC online documentation for information about
each of these tools. (See Section 1.6.1 for information about using CDOC.)

Table 3–1  XDC Tools

These tools are run using the xs command. The xs executable runs command
scripts found using the package path. In most cases, these tools include both
command-line (textual) output tools and graphical tools. If a graphical version
of a tool exists, its package name is the same as the command-line tool with
the additional suffix ".sg".

Tool Package Description

xdc.tools.cdoc.sg Online documentation viewer for XDC-based packages

xdc.tools.cdoc Command-line based documentation viewer

xdc.tools.configuro Processes an XDC configuration file to generate com-
piler.opt and linker.cmd files

xdc.tools.path Displays a list of packages on the XDCPATH

xdc.tools.path.sg Displays a list of packages on the XDCPATH in a graph-
ical window

xdc.tools.repoman Command-line based repository manager

xdc.tools.repoman.sg Graphical display repository manager



The cdoc Tool

XDC Tools 3-3

3.2 The cdoc Tool

The cdoc tool displays help information about XDC packages. The interface
is graphical. This tool is in the xdc.tools.cdoc.sg package.

To open the CDOC reference help system, run the following command from
the command prompt—for example by opening the Microsoft Windows Start
menu and choosing Run.

   xs xdc.tools.cdoc.sg

You see the "cdoc" window with a tree view of the XDC packages available
to you. All of these packages provide documentation that can be displayed by
the CDOC viewer.

Click "+" next to a repository to expand its list of packages. Click "+" next to a
package name to see the list of modules it provides. You can further expand
the tree to see a list of the functions provided by a module. Double-click on a
package or module to see its reference information.

Notice the icons in the upper-right corner of the window. The following icons
are useful:

View C interface view of documentation.

View XDC interface view of documentation.

Close all page tabs.

Many modules have a dual existence—they have configuration parameters
that are used during the configuration process and they have C APIs that are
called at runtime. Chose the "XDC interface view" to view a module's
configuration interface and the "C interface view" for a its C runtime interface.

For each topic you view, there is a tab across the top of the page area. You
can use these to quickly return to other pages you have viewed. You can also
use the arrows next to "Views" to move backward and forward in your history
of page views. 

To close a page and remove its tab, click the X on the tab.

Optionally, you can specify a repository on the command line. If you do, only
the packages in that repository are listed. If you do not specify a repository,
all packages found using the package path are listed.



The cdoc Tool

3-4

3.2.1 Generating Static Help Documentation

If you prefer to use a web browser to view package Reference
documentation, you can run a command-line version of the CDOC tool to
generate static HTML files for any collection of packages. After generating
static pages, you can leverage popular search tools such as Google Desktop
to locate relevant documentation.

Suppose you have packages installed in the repositories
c:/bios_6_00/packages and c:/codec_engine_1_20/packages. The following
command generates configuration documentation for all of these packages
into the output directory ref_html.

xs xdc.tools.cdoc -l XDC -od:ref_html -PR c:/bios_6_00/packages 
c:/codec_engine_1_20/packages

For more information see the CDOC documentation of the xdc.tools.cdoc
package.



The configuro Tool

XDC Tools 3-5

3.3 The configuro Tool

The XDC configuro tool processes XDC configuration files. The interface is
via a command line. This tool is in the xdc.tools.configuro package. For step-
by-step instructions for using configuro, see Section 2.4.

Running the configuro command generates a subdirectory with the same
name as your CFG file (for example, mycfg for the mycfg.cfg file). This
subdirectory is an XDC "package".

The configuro command allows you to import XDC content, in the form of
reusable modules built using the XDC tools, into your embedded application.
This tool is the recommended method for integrating XDC content into
traditional command-line based build environments.

Configuro lets you identify and customize the XDC content you want to use.
It computes a set of libraries, command-line flags, and other artifacts to
include in your application build. By changing values of configuration settings,
you can trade off the functionality, memory footprint, and even performance
of the XDC content to best meet the needs of your application.

To generate files from a configuration, use this command line syntax:

xs xdc.tools.configuro
        [-v|--help] [-b config_bld | -c codegen_dir]
        [-t target] [-p platform[:instance]] [-r profile]
        [-x regexp] [-w] [-o outdir] infile.cfg

For example:

   xs xdc.tools.configuro -t ti.targets.C64 
       -p ti.platforms.sim6xxx
       -c c:/CCStudio_v3.3/C6000/cgtools mycfg.cfg

-b : Specifies the name of the config.bld file.
-c : Specifies root directory of the code generation tools or compiler.
-o : Specifies the name of the output directory.
-oc : Set name of compiler options file to create. Default is compiler.opt.
-ol : Set name of the linker command file to create. Default is linker.cmd.
-p : Specifies the platform to use.
-r : Specifies the build profile to use.
-t : Specifies the target to use.
-v : Show details during build.
-w : Treat incompatibilities only as warnings.
-x : Exclude specified packages from compatibility checking.



The path Tool

3-6

3.4 The path Tool

The path tool displays the packages located along the specified package
path. Both textual and graphical versions of this tool are provided. The textual
tool is xdc.tools.path and the graphical tool is xdc.tools.path.sg.

By default, the path tool displays a list of all packages found in the
repositories referenced by the package path.

For example, output for the xdc.tools.cdoc.sg package is similar to this:

Package Name:      xdc.tools.cdoc.sg
Repository:        C:\xdc_2_94_01\packages
Release Name:      xdc_tools_cdoc_sg
Label:             default
Compatibility Key: 1, 0, 0, 62
Date:              04/25/2007  19:07

The following command-line options are available:

-n : Display only the names of the packages.

-p : Echo only the current package path.

-d : Display information about the packages in the specified repository
only. For example:

        xs xdc.tools.path -d C:/CCStudio_v3.3/bios_5_31/packages



The path Tool

XDC Tools 3-7

When you run the xdc.tools.path.sg graphical utility, the window looks similar
to the following:

This tool allows you to modify the package path and rescan the repositories
for packages. You can also save the list of packages to a file.



The repoman Tool

3-8

3.5 The repoman Tool

The repoman tool creates and manages package repositories. It displays
information about archived packages, extracts archived packages, extracts
repositories from bundles and deletes packages from repositories. Both
textual and graphical versions of this tool are provided. The textual tool is
xdc.tools.repoman and the graphical tool is xdc.tools.repoman.sg.

Important Note: The repoman tool, especially its current command-line
option set, is preliminary and subject to change in a future release. See the
online documentation for the xdc.tools.repoman and xdc.tools.repoman.sg
packages to get the most recent information about this tool.

3.5.1 Command Line Repoman Tool

For the command-line tool, the main options are:

-t : Display package info for an archive directory or tar file. 

-n : Display package names only. 

-x : Extract packages from an archive directory or tar file. 

-d : Delete packages from a repository. 

-c : Copy packages to a repository.

-o : Save repository information to a file.

--rrestore : Restore one or more repositories from information in a file.

--rcreate : Create one or more repositories from information in a file.

There are a number of other options that can be used in conjunction with
these options, but one of these options is required on the command line to tell
repoman what action it is supposed to take. This section describes the main
functions first and gives the syntax for each. Later, it lists the various extra
options you can use in combination with the main options.

The -t and -n options display information. The -t option displays the file,
release name, label, version, category, buildable, required packages,
references, and description. The -n option displays only the name. The
syntax for these informational functions is:

xs xdc.tools.repoman -t [-v] [-p path ] 
                     [ packagename... | packagefile... ] 

xs xdc.tools.repoman -n [-v] [-p path ] 
                     [ packagename... | packagefile... ] 



The repoman Tool

XDC Tools 3-9

The -x option can extract packages from an archived directory or tar file to a
destination repository. If any of the packages in the specified package list are
not compatible, the operation is not performed. The syntax is:

xs xdc.tools.repoman -x [-v] [-D] [-R] [-f] [-r destrepo ] 
                     [-p path ][-b [ bundlerepository... ]] 
                     [ packagename... | packagefile... ] 

The following example extracts the package ti.platforms.sim6xxx from an
archive in /db/trees/app-a01 to c:/xdc/packages:

xs xdc.tools.repoman -x -r c:/xdc/packages -p /db/trees/app-a01
    ti.platforms.sim6xxx 

The following example extracts the examples repository from c:/xdc-
Win32.tar.gz to c:/myexamples:

xs xdc.tools.repoman -x -r c:/myexamples 
    -b examples c:/xdc-Win32.tar.gz 

The -d option deletes a package from a repository. If the package has any
subdirectories that contain packages, they will be left intact. After the package
is deleted, if the package has no subdirectories with packages, empty
directories that are part of the fully qualified package are deleted, too. The
syntax is:

xs xdc.tools.repoman -d [-v] [-r destrepo ] packagename... 

The following example deletes the package ti.platforms.sim6xxx from
c:/xdc/packages:

xs xdc.tools.repoman -d -r c:/xdc/packages ti.platforms.sim6xxx 

The -c option copies packages to a destination repository. The syntax is:

xs xdc.tools.repoman -c [-v] [-r destrepo] [-p path] 
                     packagename... 

The following example copies the package ti.catalog.c6000 from
c:\srcdir\packages to c:\destdir\packages:

xs xdc.tools.repoman -c -r c:\destdir\packages 
    -p c:\srcdir\packages ti.catalog.c6000



The repoman Tool

3-10

The -o option saves repository information to the "outfile" file to be used in a
subsequent restore or create operation. The syntax is:

xs xdc.tools.repoman -o outfile [-p searchpath] repository ...

The following example saves package information for repository c:/myrepo to
the c:/myrepo.rmn file. It also saves the c:/pkgarchives;c:/testpkgs search
path:

xs xdc.tools.repoman -o c:/myrepo.rmn 
    -p "c:/pkgarchives;c:/testpkgs" c:/myrepo 

The --rrestore option restores one or more repositories from information in
the "infile" file. The syntax is:
xs xdc.tools.repoman --rrestore -i infile [-p searchpath]
    [infile_repo_indicies]

The following example restores all the packages in c:/myrepo from
information that was saved to the file c:/myrepo.rmn. It uses the search path
c:/pkgarchives;c:/testpkgs to find and copy the packages. The example
creates c:/myrepo if it doesn't exist.

xs xdc.tools.repoman -rrestore -i c:/myrepo.rmn 
    -p "c:/pkgarchives;c:/testpkgs" 

The --rcreate option creates one or more repositories from information in the
"infile" file. The syntax is:

xs xdc.tools.repoman --rcreate -i infile [-p searchpath] 
    [infile_repo_indicies] dest_repo0  ...

The following example creates the new repository c:/mynewrepo from
information that was saved to the file c:/myrepo.rmn for the repository
c:/myrepo. It uses the search path c:/pkgarchives;c:/testpkgs to find and copy
the packages. When created, c:/mynewrepo will be identical to c:/myrepo
when its package information was saved with the -o option.

xs xdc.tools.repoman -rcreate -i c:/myrepo.rmn 
    -p "c:/pkgarchives;c:/testpkgs" c:/mynewrepo



The repoman Tool

XDC Tools 3-11

3.5.2 Additional Command-Line Options

The other options that can be used on the repoman command line with the
main options described in the previous section are as follows:

-b : The repositories to be extracted when -x is used to extract
repositories from a bundle. In this case, the last argument specifies the
bundle file to extract from. If omitted, use "packages". Use with: -x.

-D : Also extracts dependent packages. Use with: -x.

-f : Force all packages to be extracted, regardless of incompatibilities.
Use with: -x.

-p path : Search the specified directory. If the -p option is omitted, the
current directory is searched. Use with: -t, -n, -x, -c.

-r destrepo : Use specified destination repository. If omitted, use the
repository for the current package. If there is no current package, use the
current working directory. Use with: -x, -d, -c.

-R : Also recursively extracts dependent packages. Use with: -x.

-v : Print informative messages during execution. Use with: all.

packagename : A list of packages to use. If none are specified, all
packages found in the search directory are used. May contain wildcards.
For example: ti.platforms.sim6xxx or ti.catalog.c??00 or ti.platforms.*.
Use with: all.

A version/key can also be attached to a package name as follows:
ti.platforms.c6000[1,0,0,0,313835]. A prefix of the full version/key may
also be used as follows: ti.platforms.c6000[1,0]. If a package name has
multiple matches either with or without a version/key specified, the most
recent is selected.

packagefile : A list of files to use. If none are specified, all packages in the
search directory are used. May contain wildcards. Use with: -t, -n, -x.



The repoman Tool

3-12

3.5.3 Graphical Repoman Tool

The Repoman graphical tool is used to manage package repositories and
check the validity of package paths. The left-hand pane displays archived
packages and packages found in repositories. The right-hand pane shows
packages in repositories that are treated as a package path. Package details
can be viewed by hovering the mouse cursor over the package name, as
shown in the following figures.

Duplicate packages are displayed under the package name on a separate
branch, by version and date. 

You can populate the
Available Packages
pane by clicking the

 button on the
pane's toolbar and
adding or removing
directories via the
dialog box. Directories
are first searched for
archived packages. If
none are found, they
are then recursively searched for package directories.



The repoman Tool

XDC Tools 3-13

You can copy or extract any package in the Available Packages pane by
selecting it and dragging it to the "Package Path" pane and dropping onto a
repository in that pane. 

To have an archived package's dependencies extracted along with it, right-
click on the package and select a dependency level prior to using drag-and-
drop. "Immediate Dependencies" extracts all of the package's dependencies.
"All Dependencies" extracts all of the package's dependencies and their
recursive dependencies. 

The "Package path repositories pane" is initially populated with the contents
of XDCPATH environment variable. You can add additional repositories by
clicking the  button on the pane's toolbar and specifying a repository in the
dialog box that comes up. The dialog box also allows you to create new
repositories (directories). Only repositories created in this manner can
have packages added and deleted.

A common use for this tool is to copy or extract existing packages to create a
“working” repository. You might then modify some of the packages or delete
some packages. Then, you can view the “working” repository’s internal
compatibility and its compatibility in relation to other repositories.

Your XDCPATH is not modified by adding or removing repositories using
Repoman. However, you can copy the resulting path to the clipboard and
update your XDCPATH manually.



The repoman Tool

3-14

You can remove a repository from the path by selecting it and clicking the 
icon, or by right-clicking on the repository and selecting the "Remove From
Path" menu item. 

You can move a repository up or down in the order by right-clicking it and
selecting the "Move up" or "Move down" menu item. 

To delete a package from a repository, select the package and click the 
icon, or right-click on the package and select "Delete". All of the packages'
files will be deleted. 

You can copy the pane’s repository list to the clipboard by clicking the  icon.
The list is delimited by semicolons and provided in the order they are shown
in the pane.

You can check the package path for errors by clicking the  icon. If any
errors or warnings are generated, an error  or warning  icon is
displayed next to the repository containing the package that generated the
error and also next to the package. To see a description of the error, hover the
mouse over the package's icon. 

You can save repository information to a file by choosing File->Save from the
menu bar. The repository, the name and version of all packages in the
Package Path pane, and the directories used to display packages in the
Available Packages pane will be saved. 



The repoman Tool

XDC Tools 3-15

You can open repository information files that were created with File->Save
by choosing File->Open from the menu bar. Opening a previously saved file
displays a dialog showing the repositories that package information was
saved for and their state.

If all of the repositories about which information was saved are intact, you can
click Done to see the usual Repoman view. If any of the repositories have
been modified or deleted, you can start a restore operation for them. You may
specify a different name for any repository being restored. If the repository
cannot be restored completely to its original state, the operation does not
create, modify or copy any directories or files. You may repeatedly retry the
restore operation with different search paths.



3-16



4-1

Chapter 4

XDC Runtime Modules

This chapter provides introductory information about the XDC runtime
modules.

 

4.1 Overview of the Runtime Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

4.2 XDC Boot Sequence and Control Points . . . . . . . . . . . . . . . . . . . . . . 4-2

4.3 System Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

4.4 Memory Segments and Sections  . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10

4.5 Memory Allocation and Heaps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13

4.6 Timestamp Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17

4.7 Gate Interface and Implementations  . . . . . . . . . . . . . . . . . . . . . . . . 4-19

4.8 Diagnostics and Logs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21

4.9 Types Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-33

Topic Page



Overview of the Runtime Modules

4-2

4.1 Overview of the Runtime Modules
The modules and interfaces in the xdc.runtime package form the "core" XDC
target runtime support library. This package is provided with complete
sources. It implements basic system services required by virtually all
applications. 

4.2 XDC Boot Sequence and Control Points
This section describes the sequence of events that occurs immediately after
a device is reset until execution reaches the application’s main() function. It
also identifies the specific points during this boot sequence at which user-
provided functions ("boot hooks") are called.

All targets follow the same set of boot sequence steps. In outline the target-
independent boot sequence steps are:

1) Immediately after CPU reset, perform target-specific CPU initialization.

2) Run user-supplied reset function (see Startup.resetFxn).

3) Perform additional target-specific initialization.

4) Run user-supplied "first functions" (See Startup.firstFxns).

5) Run all module initialization functions.

6) Run user-supplied last functions (See Startup.lastFxns).

7) Run main().

The reset function (in step 2 above) is run as early as possible in the boot
sequence. In fact, for some targets it is called before the C environment is
fully initialized. So, the execution context of this function is target-specific and
may require that it not use static data, for example.

Although the functions in steps 4-6 are C functions, they are run during
normal C++ static object initialization. This has two consequences:

Since the C++ standard does not provide a means to control the order of
execution of static constructors, the initialization of application modules
may not run before a C++ constructor runs. If you need to use a module
(for memory allocation, for example), your constructor must explicitly call
Startup_exec() before using any other module in the system. Since the
Startup_exec() function is idempotent (multiple calls yield the same
result), it is safe to call this function more than once. Thus you may call it
from each C++ constructor that needs a module's services.

If you are using a target that does not support C++, you must explicitly
call Startup_exec() prior to using any module's services. You can simply
call Startup_exec() as the first step in main(), for example.



XDC Boot Sequence and Control Points

XDC Runtime Modules 4-3

4.2.1 Initialize Registers

Execution on TI targets always starts at _c_int00, which is plugged as the
reset vector. The boot sequence begins with the initialization of a few critical
registers, including the system stack pointer. This part of the sequence is
target-specific. 

For a detailed view of the initial register setup, the actual boot code is
available in the XDC installation. On all targets, the relevant portion of the
boot code (in terms of the initial register setup) occurs between _c_int00
(where execution starts) and the call to the xdc_runtime_Startup_reset()
function. Boot code for any other targets should be available in a similar
location, inside the "rts" folder for that target.

The following sections show what register initialization occurs for each target
and where the actual boot code is located:

’C6000

Clear the IER and IFR.

Set the system stack pointer (B15) to point to the end of the stack section. 

Set the global page pointer (B14) to point to the beginning of the .bss
section.

On the ’C6700, also set the floating point registers.

The c6000 boot code is available in:
<xdc_install_dir>\packages\ti\targets\rts6000\boot.c

The auto_init() function is defined in autoinit.c in the same directory.

’C2000
Set up the stack, initialize any status bits not initialized by the reset, and set
the C28x modes.

The c2000 boot code is available in:
<xdc_install_dir>\packages\ti\targets\rts2800\boot_cg.asm

’C470
Set user mode, change to 16-bit state, and initialize and align the user mode
stack.

The c470 boot code is available in:
<xdc_install_dir>\packages\ti\targets\boot.asm



XDC Boot Sequence and Control Points

4-4

ARM7
Set user mode, change to 16-bit state, and initialize and align the user mode
stack.

The arm7 boot code is available in:
<xdc_install_dir>\packages\ti\targets\arm\rtsarm7\boot.asm

ARM9
Set user mode, change to 16-bit state, and initialize and align the user mode
stack.

ARM7

The arm9 boot code is available in:
<xdc_install_dir>\packages\ti\targets\arm\rtsarm9\boot.asm

4.2.2 Perform User Reset Function

The reset function is the first control point in the boot sequence. It occurs
almost immediately after the target has been reset. The user-specified reset
function is called after the initial register initialization, but before even the cinit
records have been processed. Any code that needs to be executed
immediately after a reset, such as configuring or disabling a watchdog timer,
should occur here.

The Startup module has a module-wide configuration parameter called
"resetFxn", which specifies the function to run at this point. 

Configuration example: The following example XDC configuration
statements demonstrate the Startup module’s use:

var Startup = xdc.useModule('xdc.runtime.Startup');
Startup.resetFxn = "&myResetFxn";

Note that the "&" isn’t actually being used as an operator in these statements;
it’s just part of a string. Internally, XDC knows to interpret the characters after
the & as the name of an external user-supplied function.

The resetFxn is called before the cinit records have been processed, so no
data structures or variables have been loaded with their initial values at this
point.

4.2.3 Process .cinit Records

After the reset function has been called, the C initialization records are
processed.



XDC Boot Sequence and Control Points

XDC Runtime Modules 4-5

4.2.4 Start Modules

At this point, the boot sequence calls the xdc_runtime_Startup_exec()
function. This function then calls all the module startup functions. 

The Startup module has two module-wide configuration parameters:
"firstFxns" and "lastFxns", which are arrays of user-specified functions to be
called before and after the module startup functions, respectively.

Configuration example: The following example XDC configuration
statements specify functions to be called with the firstFxns and lastFxns
parameters.

var Startup = xdc.useModule('xdc.runtime.Startup');

var len = Startup.firstFxns.length;
Startup.firstFxns.length++;
Startup.firstFxns[len] = '&myFirst';

var len = Startup.lastFxns.length;
Startup.lastFxns.length++;
Startup.lastFxns[len] = '&myLast';

Functions added to "firstFxns" typically initialize values needed by module
startup functions—such as initialization of global data used by modules,
which is a function of platform-specific registers. Functions added to the
"lastFxns" array might be used by middleware or other modules to perform
any necessary initialization before main().

4.2.5 Process .pinit Records

After the module startup functions have run, the pinit records are processed.
The .pinit table consists of pointers to initialization functions. For C++
programs, class constructors of global objects execute during .pinit
processing.

Note that the module initialization in the previous section may occur in the
middle of .pinit processing. So, C++ constructors that require the services of
a module must explicitly call Startup_exec() prior to using any module.

4.2.6 Main() Function

Finally, execution reaches the main() function. 



System Module

4-6

4.3 System Module

The System module provides a façade for two key system level areas:
printing and program termination. Since both the printing and termination
processes can be very different depending on the product and stage of
development, you can configure an application to use different
implementations of the underlying mechanisms while maintaining the same
code base. This is accomplished by setting the System Support Proxy.

4.3.1 System Support Proxy

The Support Proxy modules inherit from xdc.runtime.ISystemSupport. This
interface specifies five functions: abort, exit, flush, putch and ready. The
System module calls into the configured Support Proxy functions as needed.
There are two implementations in the xdc.runtime package:

xdc.runtime.SysStd: Based on the standard C runtime library. See
Section 4.3.6.

xdc.runtime.SysMin (default): Used for footprint- or performance-
constrained applications. See Section 4.3.7.

You set the Support Proxy via the SupportProxy configuration parameter of
the System module. The following statements set the Support Proxy to
xdc.runtime.SysStd:

var System = xdc.useModule('xdc.runtime.System');
System.SupportProxy = xdc.useModule('xdc.runtime.SysStd');

If an application wants to minimize the memory footprint, it should use the
SysMin module as the Support Proxy by either omitting the lines above or
substituting SysMin for SysStd above.

4.3.2 System Gate

The System module is a gated module (see Section 4.7). The gate
associated with the System module is a used for two purposes:

Used to manage critical regions within the System Module.

Used by any code to protect its small critical regions via the
Gate_enterSystem() and Gate_leaveSystem() APIs.

The System Gate must be restrictive enough to insure that critical regions
protected by System's gate are safe. For example, if these regions can be
accessed by both interrupt service routines (ISRs) and non-ISR code, the



System Module

XDC Runtime Modules 4-7

Gate must disable interrupts on entering and restore interrupts on leaving.
The following is example configuration code to set the System Gate to an
instance of the GateHwi module in the ti.sysbios.gates package.

GateHwi = xdc.useModule('ti.sysbios.gates.GateHwi');
System.common$.gate = GateHwi.create();

4.3.3 atexit Handling

An atexit function is a function that is called during an exit. The System
module allows you to configure the number of atexit functions that are bound
at runtime via the maxAtexitHandlers configuration parameter (default is 8).
The following statements set the maximum number of System atexit functions
that can be added after the application starts running.

var System = xdc.useModule('xdc.runtime.System');
System.maxAtexitHandlers = 4;

The System atexit functions have the following typedef:

typedef Void (*AtexitHandler)(Int status);

The System atexit functions are called when a System_exit() is called. The
status that is passed into System_exit() is passed into each of the System
atexit functions. The order of the System atexit functions is last in first out
(LIFO). The System_atexit() function is used to add a System atexit function.

if (System_atexit(myExitFxn) == FALSE) {
    /* failed to add myExitFxn atexit function */
}

The System atexit functions are independent of the standard C runtime atexit
functions. During startup, the System module registers the System_rtsExit
function with the atexit handler. During the execution of the standard C
runtime atexit functions, this function (System_rtsExit) executes all System
atexit functions.

4.3.4 Termination

There are two types of termination functions:

System_exit() 

System_abort()

The System_exit() function is intended to be used for a graceful termination.
The System_abort() is intended for catastrophic termination. The main
difference is that the atexit functions (both System and standard C runtime)
are executed on a System_exit() and not on an System_abort().



System Module

4-8

4.3.4.1 System_exit

When called, the System_exit() function performs the following operations:

1) Calls the standard C runtime exit() function.

2) Via System_rtsExit (the standard C runtime atexit function that System
registered):

a) Enters the System gate (see Section 4.3.2).

b) Calls the System atexit functions (see Section 4.3.3).

c) Calls the Support Proxy's exit function (see Section 4.3.1).

If the standard C runtime exit function is called instead of the System_exit(),
the exit status passed into exit() is not passed to the System atexit functions.
The constant System_STATUS_UNKNOWN (equal to 0xCAFE) is used
instead.

4.3.4.2 System_abort

When called, the System_abort() function performs the following operations

1) Enters the System gate (see Section 4.3.2)

2) Calls the Support Proxy's abort function (see Section 4.3.1).

3) Calls the standard C runtime abort() function.

The System atexit (or standard C runtime atexit) functions are not executed.

If the standard C runtime abort function is called instead of the
System_abort(), the first two steps are not performed.

4.3.5 Printing

There are several printing APIs provided by the System module:
System_putch(), System_printf(), System_sprintf(), System_vprintf() and
System_vsprintf(). Although the prototypes for these APIs are same as their
standard C runtime counterparts, not all standard printf format strings are
supported. The System module manages printf format string parsing, while
the System Proxy does the actual character output. See SysMin and SysStd
for implementation details.

The System_flush() function calls into the Support Proxy's flush function. See
SysMin and SysStd for implementation details.



System Module

XDC Runtime Modules 4-9

4.3.6 SysStd Module

The SysStd module inherits the xdc.runtime.ISystemSupport interface and is
used to provide the underlying services required by the System module via
System's SupportProxy configuration parameter (see Section 4.3.1). 

SysStd directly calls the standard C runtime functions. It does not perform any
additional functionality. The standard C runtime putchar and fflush functions
are used. Both SysStd's abort and exit functions flush the standard output via
the standard C runtime fflush function.

4.3.7 SysMin Module

The SysMin module inherits the xdc.runtime.ISystemSupport interface and is
used to provide the underlying services required by the System module via
System's SupportProxy configuration parameter (see Section 4.3.1).

SysMin is System’s default Support Proxy; it is intended to be flexible but
minimal. When SysMin is the Support Proxy, all output—such as
System_printf() and System_putch()—goes into an internally managed
buffer. There are several configuration parameters that let you change the
features as needed.

bufSize. The size in MAUs of the internal buffer used for output.

sectionName. The section in which the internal buffer should be created.

flushAtExit. If true, the internal buffer is flushed via SysMin_flush()
during a System_exit() or System_abort().

If an application wants to minimize the memory footprint, it should use the
SysMin module as the Support Proxy. If the application needs minimal
printing capabilities, the bufSize configuration parameter can be set to 0, and
flushAtExit can be set to false to even further reduce the footprint.



Memory Segments and Sections

4-10

4.4 Memory Segments and Sections

XDC manages a device's memory by dividing it first into memory segments
and then into memory sections that lie within those segments. 

Memory segments are named ranges of memory with fixed addresses; they
generally correspond to the different memory units on a device. Memory
segments are configurable in an application's config.bld or configuration file.

Memory sections are smaller allocations of a memory segment, such as the
".text" section, which holds code, and the ".far" section, which holds data.
Each memory section is placed in a particular memory segment. The default
mapping of sections to segments is based on two factors. First, the XDC
target (see Section 2.4.1) defines all the default sections (such as ".text",
".const", and ".cinit") and maps them to either "code", "data", or "stack"
memory. Then, the XDC platform (see Section 2.4.2) maps "code", "data",
and "stack" to actual memory segments.

The target and platform define the default mapping of sections to segments,
but these mappings can be overridden by explicitly placing the sections in the
client configuration script using 'Program.sectMap'. For example, to place a
section named ".mySection" into the memory segment named "IRAM", the
configuration script would contain the following line:

Program.sectMap[".mySection"] = "IRAM";

This same line can be used to either relocate an existing section, or to create
a new section. In this way, the memory managed by a statically created heap
can be explicitly placed by specifying a section for the heap, and placing that
section into the desired memory segment using 'Program.sectMap'. 

Configuration example: The following XDC configuration example places a
heap in memory explicitly by placing its section.

var HeapMin = xdc.useModule('xdc.runtime.HeapMin');

/* Create a HeapMin and place it in new section ".myHeapSect" */
var myHeap = HeapMin.create();
myHeap.size = 1024;
myHeap.sectionName = ".myHeapSect";

/* Place the heap's section in the IRAM segment */
Program.sectMap["myHeap.sectionName"] = "IRAM";

The section map can also be used to accomplish more specific placement,
including specifying the load and run addresses for the segment. See the
CDOC online reference for more details.



Memory Segments and Sections

XDC Runtime Modules 4-11

Configuration example: The following XDC configuration statements place
the .text section in a different load and run segment. They also place the
.myHeapSect section at a specific address.

Program.sectMap[".text"] = {loadSegment: "SDRAM", 
            runSegment: "IRAM"};
Program.sectMap[".myHeapSect"] = {loadAddress: 0x80000000};

Finally, the current section map can be viewed programmatically in a
configuration script using the Program.getSectMap() API. This API returns
the current section map based on the Target and Platform section maps as
well as the Program.sectMap. See the CDOC online reference for details.

Configuration example: The following XDC configuration statements print
all of the sections in the section map, as well as any defined properties of the
section. 

var sectMapView = Program.getSectMap();

/* For each section in the sectMap */
for (var sectName in sectMapView) {
    print(sectName);
    var sectSpec = sectMapView[sectName];
    /* print the section's defined properties */
    for (var p in sectSpec) {
        if (sectSpec[p] != undefined) {
            print("    " + p + " = " + sectSpec[p]);
        }
    }
}



Memory Segments and Sections

4-12

Sample output (printed to command line during configuration)

.text
    loadSegment = IRAM
.myHeapSect
    loadSegment = IRAM
.switch
    loadSegment = SDRAM
.vecs
    loadSegment = IRAM
.args
    loadSegment = SDRAM
.stack
    loadSegment = SDRAM
.sysmem
    loadSegment = SDRAM
.far
    loadSegment = SDRAM
.data
    loadSegment = SDRAM
.cinit
    loadSegment = SDRAM
.bss
    loadSegment = SDRAM
.const
    loadSegment = SDRAM
.pinit
    loadSegment = SDRAM
.cio
    loadSegment = SDRAM



Memory Allocation and Heaps

XDC Runtime Modules 4-13

4.5 Memory Allocation and Heaps

The xdc.runtime.Memory module provides the interface for all memory
allocations, both static and dynamic. This module is a common interface for
all the different IHeap implementations. 

The actual memory management is performed by heaps. Heaps are created
via heap-specific create functions. The heap instances are then used in the
Memory module calls. Internally, the Memory module calls the heap’s
interface functions.

Memory_alloc() is used at runtime to dynamically allocate memory.

The Memory module is simply a common interface for all memory operations.
The actual memory management is performed by a heap instance, such as
HeapMin or HeapStd. All of the Memory APIs take a heap instance as one of
their parameters. Internally, the Memory module calls into the heap’s
interface functions.

Different heap implementations have different memory management
algorithms, but all are accessed through xdc.runtime.Memory.

The Memory module supports a default heap, which can be used by passing
“NULL” as the IHeap_Handle to the Memory APIs. The default heap can be
specified by configuring Memory.defaultHeapInstance. Otherwise, a default
heap of type xdc_runtime_HeapStd is created with size
Memory.defaultHeapSize.

Memory allocations sizes are measured in "Minimum Addressable Units"
(MAUs) of memory. The size of an MAU in bits is determined by the target.

4.5.1 Heap Handles

The memory APIs that require a handle to a heap require a handle of type
IHeap_Handle. This requires an explicit cast from the specific Heap handle
type to the general IHeap_Handle. You can perform this explicit cast using a
utility function, which always has the form 
<specific heap type>_Handle_to_xdc_runtime_IHeap(myHeap);

For example, to convert a HeapStd_Handle to an IHeap_Handle, use the
following:

IHeap_Handle iheap = HeapStd_Handle_to_xdc_runtime_IHeap(myHeap);

Of course, you can simply cast the variable myHeap to be an IHeap_Handle.
But, by using the utility function above, your code remains type safe. For
example, if myHeap is ever changed to an incompatible type, the compiler
correctly flags an error, whereas with the cast the compiler silently proceeds.



Memory Allocation and Heaps

4-14

4.5.2 Allocating Memory Dynamically

The Memory_alloc() function allocates memory. Its prototype is as follows:

Ptr Memory_alloc(IHeap_Handle heap, SizeT size, SizeT align, 
           Error.Block* eb)

The "heap" parameter is the heap instance to allocate memory from. The
"size" and "align" parameters specify the length of the memory block to
allocate and the alignment of the starting address, respectively. The error
block is used for error reporting.

Run-time example: The following C code example allocates a task stack
from the default heap. The task stack will have a size of 512 MAUs and no
particular alignment.

Ptr tsk1_stack = Memory_alloc(NULL, 512, 0, NULL);

Run-time example: The following C code example allocates space for a
structure from a heap.

extern HeapStd_Handle myHeap;

typedef struct Foo {
     int bar;
} Foo;

Foo *myFoo;
IHeap_Handle iheap = HeapStd_Handle_to_xdc_runtime_IHeap(myHeap);
myFoo = (Foo *) Memory_alloc(iheap, sizeof(Foo), 0, NULL);
myFoo->bar = 10;

The Memory module also supports the standard calloc and valloc APIs, which
initialize the allocated memory to zero or to a specified value, respectively.

Ptr Memory_calloc (IHeap_Handle heap, SizeT size, SizeT align,
                   Error_Block* eb);
Ptr Memory_valloc (IHeap_Handle heap, SizeT size, SizeT align,
                   Char value, Error_Block* eb);



Memory Allocation and Heaps

XDC Runtime Modules 4-15

4.5.3 Freeing Memory

The Memory_free() function frees memory. Its prototype is as follows:

Void Memory_free(IHeap_Handle heap, Ptr block, SizeT size)

Memory can only be freed if the underlying Heap supports it.

A call to Memory_free() takes the handle to the heap instance to free memory
to, a pointer to the block of memory to be freed, and the size of the block that
was allocated.

By requiring the size of the block to be passed to the Memory_free() method,
the underlying memory allocator can manage heaps with no extra space from
the heap itself. This can be particularly important when managing small on-
chip memory regions with large alignment requirements; even one word
taken from a 32K block of memory wastes significant memory when
allocations must be aligned on 8K boundaries, for example.

Run-time example: The following C code example allocates a block, then
frees it back to a heap. Foo is a structure, and the doSomething() function
operates on a block of memory. The "myHeap" handle is for a Heap instance.

Ptr block;
extern HeapStd_Handle myHeap;

IHeap_Handle iheap = HeapStd_Handle_to_xdc_runtime_IHeap(myHeap);
block = Memory_alloc(iheap, sizeof(Foo), 0, NULL);

doSomething(block);

Memory_free(iheap, block, sizeof(Foo));

4.5.4 The xdc.runtime.HeapMin Implementation

HeapMin is a simple “growth-only” heap, meaning that it does not support
Memory_free(). It is intended as a minimal footprint heap implementation.
HeapMin services any size allocation request. Attempting to free memory
back to a HeapMin instance results in an error.

Configuration example: The following XDC configuration example statically
creates a HeapMem instance named myHeap:

var HeapMin = xdc.useModule('xdc.runtime.HeapMin');

/* Create heap as global variable so it can be used in C code */
Program.global.myHeap = HeapMin.create();
Program.global.myHeap.size = 1024;



Memory Allocation and Heaps

4-16

Run-time example: The following C code example dynamically creates a
HeapMem instance named myHeap:

HeapMin_Params prms;
char *buf[1024];
HeapMin_Handle myHeap;

HeapMin_Params_init(&prms);
prms.size = 1024;
prms.buf = (Ptr)buf;
myHeap = HeapMin_create(&prms, NULL);

4.5.5 The xdc.runtime.HeapStd Implementation

HeapStd is a wrapper for the "C" standard C runtime malloc() and free()
functions. As a consequence, allocating from a HeapStd instance ignores the
"align" parameter to Memory_alloc().

Configuration example: The following XDC configuration example statically
creates a HeapStd heap instance named myHeap:

var HeapStd = xdc.useModule('xdc.runtime.HeapStd');

/* Create heap as global variable so it can be used in C code */
Program.global.myHeap = HeapStd.create();
Program.global.myHeap.size = 1024;

Run-time example: The following C code example dynamically creates a
HeapStd instance named myHeap:

HeapStd_Params prms;
HeapStd_Handle myHeap;

HeapStd_Params_init(&prms);
prms.size = 1024;
myHeap = HeapStd_create(&prms, NULL);



Timestamp Module

XDC Runtime Modules 4-17

4.6 Timestamp Module

The xdc.runtime.Timestamp module, as the name suggests, provides
timestamping services. The Timestamp module can be used for
benchmarking code and adding timestamps to Log events (see Section
4.8.4).

Timestamp provides two APIs for timestamping: Timestamp_get32() and
Timestamp_get64(). Timestamp_get64() is only truly supported on targets
that have a dedicated 64-bit counter. On other targets, the upper part of
Types.Timerstamp is simply set to zero.

This module also provides a Timestamp_getFreq() API that returns the
frequency of the timestamp counter in Hz. This API can be used to convert
the numbers returned by Timestamp_get32() and Timestamp_get64() to
actual time units (milliseconds).

The Timestamp module has a configuration parameter of type
ITimestampProvider. Depending on the Timestamp provider used, the
Timestamp counter may be a timer or a 64-bit dedicated counter in the core
or a 32-bit counter that is part of a timer peripheral. 

During debugging, you may plug xdc.runtime.Timestamp.SupportProxy with
xdc.runtime.TimestampStd, which calls the standard C runtime function
clock(). For example:

var Timestamp = xdc.useModule("xdc.runtime.Timestamp");
Timestamp.SupportProxy = xdc.useModule("xdc.runtime.TimestampStd");

There is also an xdc.runtime.TimestampNull module that can be used when
timestamp services are not needed by the application. The TimestampNull
module always returns a timestamp of ~0. However, other modules like
xdc.runtime.LoggerBuf that use xdc.runtime.Timestamp will tag events with
this unchanging timestamp.

Run-time example: This C example calculates a time delta based on
timestamp values:

#include <xdc/runtime/Timestamp.h>

time1 = Timestamp_get32();
CallLongFunction();
time2 = Timestamp_get32();
delta = time2 - time1;



Timestamp Module

4-18

Run-time example: This C example uses Timestamp_getFreq() and prints a
message every second.

#include <xdc/runtime/Types.h>
#include <xdc/runtime/Timestamp.h>
main ()
{
    ...
    Types.FreqHz freq;
    UInt32 start;

    Timestamp_getFreq(&freq);

    /* works only for timestamps with 32-bit frequencies */
    assert(freq.hi == 0); 

    for (;;) {
       start = Timestamp_get32();
       while ((Timestamp_get32() - start) < freq.lo) {
          ; /* do nothing */
       }
       System_print("A second has elapsed");
    }
    ...
}

Configuration example: This XDC example showing how to plug proxy
var Timestamp = xdc.useModule('xdc.runtime.Timestamp');

Timestamp.SupportProxy = 
   xdc.useModule('xdc.runtime.TimestampStd');



Gate Interface and Implementations

XDC Runtime Modules 4-19

4.7 Gate Interface and Implementations

A "Gate" is a module that implements the IGateProvider interface. Gates
prevent concurrent accesses to critical data structures—that is, data
structures that must be updated atomically to preserve system integrity. The
various Gate implementations differ in how they lock the critical regions.

Threads can be preempted by other threads of higher priority, and some
sections of code need to be completed by one thread before they can be
executed by another thread. Code that modifies a linked list is a common
example of a critical region that needs to be protected by a Gate.

Some modules use Gates internally to protect critical regions of code, such
as modifications to the module state, which are shared across all instances
of the module. A module that does this is referred to as a "Gated Module".
Gated modules are marked with the "@Gated" command in their CDOC
documentation. The documentation for such modules discusses how the
Gate is used by that module.

Gated modules can be configured to use a specific Gate type, which is set
using the common defaults for that module.

Gates generally work by either disabling some level of preemption such as
disabling task switching or even hardware interrupts, or by acquiring a binary
semaphore prior to any access to the critical data.

Gates have two key APIs: "enter" and "leave". A thread calls Gate_enter() to
lock a critical region and prevent other threads from passing that point in the
code. When the thread has finished executing the critical region, it calls
Gate_leave() to allow other threads to execute that critical region.

All Gate implementations support nesting through the use of a "key". A call to
Gate_enter() returns a key that must then be passed back to Gate_leave().



Gate Interface and Implementations

4-20

Run-time example: The following C code protects a critical region with a
Gate. This example uses a module named GateHwi, a Gate implementation
that disables and enables interrupts as its locking mechanism.

UInt gateKey;
GateHwi_Handle gateHwi;
GateHwi_Params prms;
GateHwi_Params_init(&prms);

gateHwi = GateHwi_create(&prms, NULL);

/* Simultaneous operations on a Queue by multiple threads could
 * corrupt the Queue structure, so modifications to the Queue 
 * are protected with a Gate. */
gateKey = GateHwi_enter(gateHwi);
Queue_dequeue(myQ);
GateHwi_leave(gateHwi, gateKey);

4.7.1 The xdc.runtime.GateNull Implementation

GateNull provides no protection. Calling GateNull_enter() and
GateNull_leave() has no effect. For applications without preemptive threads
or when an application never uses a gated module from more than one
thread, GateNull is provided so that a gated module may be configured to not
use any real Gate.

4.7.2 Plugging Gates

Gated modules can be configured to use a specific Gate type, which is set
using the common defaults for that module.

Configuration example: The following XDC example creates a Gate.

ModA.common$.gate = MyGate.create();

In addition to gated modules, there is a system-wide "system gate" that can
be used anywhere. The system gate is configured to provide the highest level
of protection available or required by the system. A real-time operating
system, for example, would configure the system gate to disable all
preemption down to the hardware level.

The system gate is configured using the common$.gate property of the
System module:

Var System = xdc.useModule(‘xdc.runtime.System’);
System.common$.gate = MyGate.create();



Diagnostics and Logs

XDC Runtime Modules 4-21

4.8 Diagnostics and Logs

XDC provides for diagnostics with a set of modules that operate together to
configure and implement diagnostics. 

These modules can be partitioned into three groups: modules that generate
events, a module that allows precise control over when (or if) various events
are generated, and modules that manage the output or display of the events. 

Assert, Error, and Log provide methods that are added to source code and
generate events. The Diags module provides both configuration and runtime
methods to selectively enable or disable different type of events on a per
module basis. Finally, LoggerBuf and LoggerSys are simple alternative
implementations of an event output interface, ILogger. You can provide more
sophisticated or platform-specific implementations of ILogger without making
any changes to code that uses Assert, Log, Error, or Diags.

The modules described in this section are

Assert. Add integrity checks to the code. See Section 4.8.1.

Diags. Manage a module's diagnostics mask. See Section 4.8.2. 

Error. Raise error events. See Section 4.8.3. 

Log. Generate log events in real-time. See Section 4.8.4. 

LoggerBuf. A logger using a buffer for log events. See Section 4.8.5. 

LoggerSys. A logger using printf for log events. See Section 4.8.6. 

Types. Define diagnostics configuration parameters. See Section 4.9.

4.8.1 Assert Module

The Assert module provides configurable diagnostics to the program. Similar
to the standard C assert() macro, Assert methods are interspersed with other
code to add diagnostics to a program. Unlike the standard C assert support,
the Assert module provides greater flexibility in managing the messages
displayed, the message string space overhead, and the runtime handling of
failures. In addition, because the Assert methods build atop the Diags
module, you can precisely control which asserts remain in the final
application, if any.

The Assert module works in conjunction with the Diags module. Assert
statements are added to the code using the Assert_isTrue() function.
Execution of the assert statements is controlled by the Diags_ASSERT bit in
the module's diagnostics mask (see Section 4.8.2). 



Diagnostics and Logs

4-22

Two types of asserts are supported: public asserts and internal asserts:

Public asserts must have an assert ID and are, by default, controlled by
the Diags.ASSERT bit. 

Internal asserts cannot have an assert ID (other than NULL) and are
active only when both the Diags.ASSERT and Diags_INTERNAL bits of
the module's diagnostics mask are set.

Assert IDs are small integer values that index into a table of assertion
descriptors. These descriptors hold an error message and a diagnostics
mask that is used to enable and disable the assertion at runtime.

You can remap individual public asserts to different bits in the diagnostics
mask, or even disable the asserts altogether. This is done by setting the mask
property of the assert ID. Setting the mask to 0 disables the assert. In all other
cases, the Diags.ASSERT bit is ORed together with the mask to define the
controlling bits. For example, the module's diagnostics mask must have the
Diags.ASSERT bit set and any other bit specified in the mask property of the
assert ID in order to activate the assert. 

Example 1: The following C code adds an assert to application code that is
that is not in a module. This assert does not have an assert identifier (the
second argument is NULL); This makes it an internal assert. 

/* file.c */
#include <xdc/runtime/Assert.h>

Assert_isTrue(count > 0, NULL);

The following XDC configuration statements set both the ASSERT and
INTERNAL bits in the diagnostics mask to enable the internal assert created
in the previous C code. Since the C code is not in a module, you must set the
bits in the diagnostics mask of the xdc.runtime.Main module. The Main
module is used to control all Log and Assert statements that are not part of
the implementation of a module; for example, top-level application code or
any existing sources that simply call the Log or Assert methods.

/* program.cfg */
var Assert = xdc.useModule('xdc.runtime.Assert');
var Diags = xdc.useModule('xdc.runtime.Diags');
var Main = xdc.useModule('xdc.runtime.Main');

Main.common$.diags_ASSERT = Diags.ALWAYS_ON;
Main.common$.diags_INTERNAL = Diags.ALWAYS_ON;



Diagnostics and Logs

XDC Runtime Modules 4-23

Example 2: The following example shows how to use and configure an
assert ID that is declared by a module. It adds that assert to the application’s
C source code, and configures the application to execute the assert.

This is part of the XDC file for the module that declares an Assert Id:

/* Mod.xdc */
import xdc.runtime.Assert;
import xdc.runtime.Diags;

config Assert.Id A_nonZero = {
    msg: "A_nonZero: value must be non-zero"
};

This is part of the C code for the application:

#include <xdc/runtime/Assert.h>

Assert_isTrue(x != 0, Mod_A_nonZero);

This is part of the XDC configuration file for the application:

var Diags = xdc.useModule('xdc.runtime.Diags');
var Mod = xdc.useModule('my.pkg.Mod');
Mod.common$.diags_ASSERT = Diags.ALWAYS_ON;

4.8.2 Diags Module

Every XDC module has a "diagnostics mask" that allows clients to enable or
disable diagnostics on a per module basis both at configuration time and at
runtime. The Diags module manages a module's diagnostics mask. 

You use the Diags module to set and clear bits in a module's diagnostics
mask for the purpose of controlling diagnostics within that module. Each bit
corresponds to a "type" of diagnostic that can be individually enabled or
disabled.

A module's diagnostics mask controls both Assert and Log statements within
that module. A module's diagnostics mask may also used to conditionally
execute blocks of code using the Diags_query() runtime function.

A module's diagnostics mask can be set at configuration time or at run-time.
The implementation of diagnostics is such that when they are permanently
turned off at configuration time, an optimizer can completely eliminate the
diagnostics code from the program. Similarly, if diagnostics are permanently
turned on at configuration time, the optimizer can eliminate all run-time
conditional checking and simply invoke the diagnostics code directly. Run-
time checking of the diagnostics mask is performed only when the
diagnostics are configured to be run-time modifiable.



Diagnostics and Logs

4-24

Each bit of the diagnostics mask is controlled by one of the following
constants. 

These constants can be used from either JavaScript configuration scripts or
C code and, therefore, have two "names". For example, to reference the
ENTRY constant from JavaScript you must use "Diag.ENTRY" whereas from
C your would use "Diags_ENTRY".

The ENTRY and EXIT bits control Log statements at the entry and exit points,
respectively, to each function within a module. This is useful for tracking the
execution flow of your program.

The LIFECYCLE bit controls Log statements at the create/construct and
delete/destruct points to each instance object for the module. This is useful
for tracking the lifecycle of a module instance object.

The ASSERT bit controls Assert statements in a module. There are two
classes of asserts:

Public asserts, which have an Assert_Id and are documented in the
module's reference pages. These asserts are on by default and are
meant to help developers validate code that invokes a module's
functions.

  Constant Meaning

  ENTRY Function entry

  EXIT Function exit

  LIFECYCLE Object lifecycle

  INTERNAL Internal diagnostics

  ASSERT Assert checking

  USER1 User defined diagnostics

  USER2 User defined diagnostics

  USER3 User defined diagnostics

  USER4 User defined diagnostics

  USER5 User defined diagnostics

  USER6 User defined diagnostics

  USER7 User defined diagnostics

  USER8 User defined diagnostics



Diagnostics and Logs

XDC Runtime Modules 4-25

Internal asserts, which have no Assert_Id. These asserts are off by
default and are typically used only when developing code. That is, like the
standard C assert() mechanism, these asserts are not part of a deployed
application.

When a module has the ASSERT bit set (which is set by default) in its
diagnostics mask, the module executes all of its public assert statements. To
enable internal asserts, you must set both the ASSERT and INTERNAL bits.

The INTERNAL bit is used to classify diagnostic code as being internal. That
is to say, this class of diagnostics is undocumented and typically not used by
client software.

The USER1-7 bits are available to each module writer to use as they wish.

Configuration example: The following XDC configuration statements set a
module's diagnostics mask in a configuration script. (In this case, the Task
module of the ti.sysbios.knl package is used.) In this example, the ENTER bit
is turned on and the EXIT bit is turned off. Both bits are configured to be run-
time modifiable. 

   var Diags = xdc.useModule('xdc.runtime.Diags');
   var Task = xdc.useModule('ti.sysbios.knl.Task');

   Task.common$.diags_ENTER = Diags.RUNTIME_ON;
   Task.common$.diags_EXIT = Diags.RUNTIME_OFF;

Run-time example: The following C code shows how to disable and re-
enable ENTER diagnostics at runtime for the ti.sysbios.knl.Task module
configured in the previous example. The first call to Diag_setMask() enables
entry diagnostics ("+E") for just the ti.sysbios.knl.Task module; any call to any
Task method in the application causes an "entry" Log event to be generated.
The second call disables ("-E") the generation of these events. See the
xdc.runtime.Diags module's reference documentation for a complete
description of the strings accepted by Diags_setMask().

   #include <xdc/runtime/Diags.h>
   :
   Diags_setMask("ti.sysbios.knl.Task+E");
   :
   Diags_setMask("ti.sysbios.knl.Task-E");

Configuration example: The following XDC configuration statements turn
on asserts in the entire program.

  var Diags = xdc.useModule('xdc.runtime.Diags');
  var Defaults = xdc.useModule('xdc.runtime.Defaults');
  Defaults.diags_ASSERT = Diags.ALWAYS_ON;



Diagnostics and Logs

4-26

Configuration example: The following XDC configuration statements turn
on asserts in all of the modules whose name begins with "ti.sysbios." using
the Diags.setMaskMeta() function. In this case, no change to the application
code is necessary to enable these events. It is important to note that, while
the configuration step must be rerun and the application must be re-linked, no
application sources need to be recompiled.

var Diags = xdc.useModule('xdc.runtime.Diags');
Diags.setMaskMeta("ti.sysbios.%", Diags.ASSERT, Diags.ALWAYS_ON);

4.8.3 Error Module

The xdc.runtime.Error module is the run-time error manager.

This module provides mechanisms for raising, checking, and handling errors
in a program. You can configure it via the Error.policy and Error.raiseHook
configuration parameters.

Modules may define specific error types and reference these when raising an
error. Each error type has a custom error message and can be parameterized
with up to NUMARGS arguments. A generic error type is provided for raising
errors when not in a module.

Use the Error_check() function to determine if an error has been raised. It is
important to understand that it is the caller's responsibility to check the error
block after calling a function that takes an error block as an argument.
Otherwise, a raised error may go undetected, which could compromise the
integrity of the system. For example:

  Task_create(..., &eb);
  if (Error_check(&eb)) {
      ...an error has been raised...
  }

The Error.raiseHook allows a configured function to be invoked when any
error is raised. This function is passed a pointer to the error's error block and
makes it easy to mange all errors from a common point. For example, you can
trap any error (fatal or not) by simply setting a breakpoint in this function. You
can use the following functions to extract information from an error block.

Error_getData() 

Error_getCode() 

Error_getId() 

Error_getMsg() 

Error_getSite() 



Diagnostics and Logs

XDC Runtime Modules 4-27

Example: The following example shows how a module, named ModA,
defines a custom error type and shows how this error is raised by the module.
The module defines an Id of E_notEven in its module specification file (in this
case, ModA.xdc). The error's message string takes only one argument. The
module also defines a mayFail() function that takes an error block. In the
module's C source file, the function checks for the error condition and raises
the error if needed. 

This is part of ModA's XDC specification file for the module:

  config xdc.runtime.Error.Id E_notEven = {
      msg: "expected an even number (%d)"
  };

  Void mayFail(Int x, xdc.runtime.Error.Block *eb);

This is part of the C code for the module:

  Void ModA_mayFail(Int x, Error_Block *eb)
  {
      if ((x % 2) != 0) {
          Error_raise(eb, ModA_E_notEven, x, 0);
          ...add error handling code here...
          return;
      }
      ...
  }

Run-time Example: The following C code supplies an error block to a
function that requires one and tests the error block to see if the function raised
an error. Note that an error block must be initialized before it can be used and
same error block may be passed to several functions. 

  #include <xdc/runtime/Error.h>
  #include <ti/sysbios/knl/Task.h>
  Error_Block eb;
  Task_Handle tsk;

  Error_init(&eb);
  tsk = Task_create(..., &eb);

  if (Error_check(&eb)) {
      ...an error has been raised...
  }



Diagnostics and Logs

4-28

Run-time Example: The following C code shows that you may pass NULL to
a function requiring an error block. In this case, if the function raises an error,
the program is aborted (via xdc_runtime_System_abort()), thus execution
control will never return to the caller. 

  #include <xdc/runtime/Error.h>
  #include <ti/sysbios/knl/Task.h>

  tsk = Task_create(..., NULL);
  ...will never get here if an error was raised in Task_create...

Run-time Example: The following C code shows how to write a function that
is not part of a module and that takes an error block and raises the generic
error type provided by the Error module. Note, if the caller passes NULL for
the error block or if the error policy is Error_TERMINATE, then the call to
Error_raise() will call xdc_runtime_System_abort() and never return. 

  #include <xdc/runtime/Error.h>

  Void myFunc(..., Error_Block *eb)
  {
      ...
      if (...error condition detected...) {
          String  myErrorMsg = "my custom error message";
          Error_raise(eb, Error_E_generic, myErrorMsg, 0);
          ...add error handling code here...
          return;
      }
  }

4.8.4 Log Module

The Log module is used to generate log events in real-time while the target
program executes. Log events are routed to a "logger" instance for output or
storage; for example, an instance of xdc.runtime.LoggerBuf or
xdc.runtime.LoggerSys.

Log event routing is managed at the module level, where each module can
specify a logger instance. A logger instance can accept log events from many
modules, but a module can route log events to only one logger instance.
There can be one or many logger instances in a system. Each logger instance
represents a separate log. All Log calls that are not in a module are controlled
by the module xdc.runtime.Main. The Main module is used to control all Log
and Assert statements that are not part of the implementation of a module—
for example, top-level application code or any existing sources that simply
call the Log or Assert methods.



Diagnostics and Logs

XDC Runtime Modules 4-29

The generation of a log event is controlled by a module's diagnostics mask.
Each log event is associated with a mask. Log events are generated only
when a particular bit is set in both the log event mask and the module's
diagnostics mask. For example, a log event mask with the USER1 bit set is
generated only when the USER1 bit is also set in the module's diagnostics
mask.

There are two ways to generate log events:

LOG_write(), which is tailored for module writers and takes full
advantage of the XDC configuration model—for example, the message
string associated with the Log event need not be part of the final
application, significantly reducing the "footprint overhead" of embedding
diagnostics in deployed systems. The Log_write[0-8]() functions allows
up to 8 values to be passed to the logger. They expect the logger to
handle any formatting. A log event type allows you to specify the type of
event.

LOG_print(), which is designed for arbitrary C code. The Log_print[0-6]()
functions allow up to 6 values to be passed along with a printf-like format
string to the logger. They handle printf-style formatting.

Both functions are controlled by the module's diagnostics mask. Their
storage or output is defined by the logger that is assigned to the module that
calls the Log methods or to the xdc.runtime.Main module if the caller is not
part of a module.

The log function call sites are implemented in such a way that an optimizer
can completely eliminate log code from the program if the log function has
been permanently disabled at configuration time. If the log functions are
permanently turned on at configuration time, then the optimizer can eliminate
all run-time conditional checking and simply invoke the log function directly.
Run-time checking is performed only when the log functions are configured
to be run-time modifiable.

The Log module provides log event generation, but in order to store or display
a log event, a logger instance must be created and assigned to the module.
This is done in the program configuration script. See Section 4.8.5 or Section
4.8.6 for details.

Example 1: The following example defines a log event, uses that log event
in a module, and configures the program to generate the log event. In this
example, both USER1 and USER2 bits are set in the event mask. This means
that if either bit is set in the module's diagnostics mask, then the log event will
be generated. Note, in order for the event to be realized, you must also create
a logger instance and assign it to the module. See LoggerBuf or LoggerSys
for details. 



Diagnostics and Logs

4-30

This is part of the XDC specification file for the Mod module (Mod.xdc):

  import xdc.runtime.Diags;
  import xdc.runtime.Log;

  config Log.Event L_someEvent = {
      mask: Diags.USER1 | Diags.USER2,
      msg: "my log event message, arg1: 0x%x, arg2: 0x%x"
  };

This is part of the C code implementation of the Mod module:

  #include <xdc/runtime/Log.h>
  UInt x, y;

  Log_write2(Mod_L_someEvent, (IArg)x, (IArg)y);

Finally, the following is an example of how the application might control the
Log statements embedded in the Mod module at configuration time. In this
case, the configuration script arranges for the Log statements within the
my.pkg.Mod module (shown above) to always generate events. Without
these configuration statements, no Log events would be generated by this
module. This is part of the XDC configuration file for the application:

  var Diags = xdc.useModule('xdc.runtime.Diags');
  var Mod = xdc.useModule('my.pkg.Mod');
  Mod.common$.diags_USER1 = Diags.ALWAYS_ON;

Example 2: The following XDC configuration statements turn on enter and
exit logging at configuration time for a module.

  var Diags = xdc.useModule('xdc.runtime.Diags');
  var MyMod = xdc.useModule('my.pkg.MyMod');

  MyMod.common$.diags_ENTER = Diags.ALWAYS_ON;
  MyMod.common$.diags_EXIT = Diags.ALWAYS_ON;

Example 3: The following example configures a module to support enter and
exit logging, but defers the actual activation and deactivation of the logging
until run-time. See the Diags_setMask() function for details on specifying the
control string. 

This is part of the XDC configuration file for the application:

  var Diags = xdc.useModule('xdc.runtime.Diags');
  var MyMod = xdc.useModule('my.pkg.MyMod');

  MyMod.common$.diags_ENTER = Diags.RUNTIME_OFF;
  MyMod.common$.diags_EXIT = Diags.RUNTIME_OFF;



Diagnostics and Logs

XDC Runtime Modules 4-31

This is part of the C code for the application:

  /* turn on enter and exit logging in the module */
  Diags_setMask("my.pkg.MyMod+EX");

  /* turn off enter and exit logging in the module */
  Diags_setMask("my.pkg.MyMod-EX");

4.8.5 LoggerBuf Module

The xdc.runtime.LoggerBuf module provides a logger that stores run-time log
events in a buffer.

This logger captures log events in real-time to a buffer. The log events stored
in the buffer are unformatted; the log event formatting is deferred. Use
LoggerBuf_flush() to process the log events stored in the buffer and stream
the formatted output to stdout.

The implementation of this logger is fast with minimal stack usage making it
appropriate for a real-time application. If this logger is used in a preemptive
environment, then an appropriate gate must be assigned to the module. For
example, if you wish to generate log events from an interrupt context, then a
gate that disables interrupts must be used. 

  var LoggerBuf = xdc.useModule('xdc.runtime.LoggerBuf');
  LoggerBuf.common$.gate = ...some gate instance...

If the buffer type is circular, the log buffer of size LoggerBuf_numEntries
contains the last numEntries log events. If the bufType is fixed, the log buffer
contains the first numEntries log events.



Diagnostics and Logs

4-32

Configuration example: The following XDC configuration statements create
a logger instance, assign it as the default logger for all modules, and enable
USER1 logging in all modules of the package my.pkg. See the
Diags.setMaskMeta() function in the CDOC system for details on specifying
the module names.

  var LoggerBuf = xdc.useModule('xdc.runtime.LoggerBuf');
  LoggerBuf.enableFlush = true;

  var LoggerBufParams = new LoggerBuf.Params();
  LoggerBufParams.exitFlush = true;

  var Defaults = xdc.useModule('xdc.runtime.Defaults');
  Defaults.common$.logger = LoggerBuf.create(LoggerBufParams);

  var Diags = xdc.useModule('xdc.runtime.Diags');
  Diags.setMaskMeta("my.pkg.%", Diags.USER1, 
     Diags.RUNTIME_ON);

4.8.6 LoggerSys Module

The xdc.runtime.LoggerSys module routes events to the System_printf()
function.

This logger processes log events as they are generated and routes them
through the System_printf() function. The final disposition of the log event is
dependent on which system provider has been assigned to
System.SupportProxy.

Note that the log events are processed within the run-time context of the
Log_write() or Log_print() function that generated the event. It is important to
account for the processing overhead and stack usage imposed on the run-
time context. The cost of this processing is defined by the implementation of
the system provider. 



Types Module

XDC Runtime Modules 4-33

Configuration example: The following XDC configuration statements create
a logger instance, assign it as the default logger for all modules, and enable
USER1 logging in all modules of the package my.pkg. See
Diags.setMaskMeta for details on specifying the module names. 

  var LoggerSys = xdc.useModule('xdc.runtime.LoggerSys');
  var LoggerSysParams = new LoggerSys.Params();

  var Defaults = xdc.useModule('xdc.runtime.Defaults');
  Defaults.common$.logger = LoggerSys.create(LoggerSysParams);

  var Diags = xdc.useModule('xdc.runtime.Diags');
  Diags.setMaskMeta("my.pkg.%", Diags.USER1, 
     Diags.RUNTIME_ON);

4.9 Types Module

The xdc.runtime.Types module defines basic constants and types used
throughout the xdc.runtime package and, in some cases, to every XDC
module. 

The Common$ structure defined by the Types module is available for (or
common to) all XDC modules. Every field of the Common$ structure is a
configuration parameter that may be set within a configuration script for any
XDC module (not just the xdc.runtime modules). The fields of this structure
are typically read by the modules in the xdc.runtime package at configuration
time to control the generation of data structures that are embedded in the
application and referenced by these modules at runtime.

Every XDC module has a configuration parameter named "common$" that is
of type Common$. This allows the user of any module to control the module's
diagnostics, where its instances are allocated, how they are allocated, and
(for gated modules) what gate it should use to protect critical sections.

Configuration example: The following configuration script specifies that the
instance objects managed by the Task module in the ti.sysbios.knl package
should be placed in the ".fast" memory section and that only ENTRY
diagnostics should be available at runtime.

var Task = xdc.useModule('ti.sysbios.knl.Task");
Task.common$.instanceSection = ".fast";
Task.common$.diags_ENTRY = Diags.RUNTIME_OFF

Note that by setting Task.common$.diags_ENTRY to Diags.RUNTIME_OFF
we are both enabling ENTRY events and specifying that they are initially
disabled; they must be explicitly enable at runtime. See Section 4.8 for
additional information.



Types Module

4-34

The Common$ structure is defined as follows:

metaonly struct Common$ {  
    Diags.Mode diags_ASSERT ;  
    Diags.Mode diags_ENTRY ;  
    Diags.Mode diags_EXIT ;  
    Diags.Mode diags_INTERNAL ;  
    Diags.Mode diags_LIFECYCLE ;  
    Diags.Mode diags_USER1 ;  
    Diags.Mode diags_USER2 ;  
    Diags.Mode diags_USER3 ;  
    Diags.Mode diags_USER4 ;  
    Diags.Mode diags_USER5 ;  
    Diags.Mode diags_USER6 ;  
    Diags.Mode diags_USER7 ;  
    Diags.Mode diags_USER8 ;  
    IGateProvider.Handle gate ;  
    Ptr gateParams ;  
    IHeap.Handle instanceHeap ;  
    String instanceSection ;  
    ILogger.Handle logger ;  
    CreatePolicy memoryPolicy ;  
    Bool namedInstance ;  
    Bool namedModule ;  
}  

The following fields in the Common$ structure are used by the Diags and Log
modules:

Field Description

diags_ASSERT The Diags.ASSERT bit of a module's diagnostics mask. 

diags_ENTRY The Diags.ENTRY bit of a module's diagnostics mask. 
(default=Diags.ALWAYS_OFF)

diags_EXIT The Diags.EXIT bit of a module's diagnostics mask. 
(default=Diags.ALWAYS_OFF)

diags_INTERNAL The Diags.INTERNAL bit of a module's diagnostics mask. 
(default=Diags.ALWAYS_OFF)

diags_LIFECYCLE The Diags.LIFECYCLE bit of a module's diagnostics mask. 
(default=Diags.ALWAYS_OFF)

diags_USER1 The Diags.USER1 bit of a module's diagnostics mask. 
(default=Diags.ALWAYS_OFF)



Types Module

XDC Runtime Modules 4-35

diags_USER2 The Diags.USER2 bit of a module's diagnostics mask. 
(default=Diags.ALWAYS_OFF)

diags_USER3 The Diags.USER3 bit of a module's diagnostics mask. 
(default=Diags.ALWAYS_OFF)

diags_USER4 The Diags.USER4 bit of a module's diagnostics mask. 
(default=Diags.ALWAYS_OFF)

diags_USER5 The Diags.USER5 bit of a module's diagnostics mask. 
(default=Diags.ALWAYS_OFF)

diags_USER6 The Diags.USER6 bit of a module's diagnostics mask. 
(default=Diags.ALWAYS_OFF)

diags_USER7 The Diags.USER7 bit of a module's diagnostics mask. 
(default=Diags.ALWAYS_OFF)

diags_USER8 The Diags.USER8 bit of a module's diagnostics mask. 
(default=Diags.ALWAYS_OFF)

logger The handle of the logger instance used by the module. All log events gen-
erated by the module are routed to this logger instance. See LoggerBuf 
and LoggerSys for two examples of logger instances provided by the 
xdc.runtime package. 

namedInstance If set to true, each instance object is given an additional field to hold a 
string name that is used when displaying information about an instance. 
Setting this to true increases the size of the module's instance objects by a 
single word but improves the usability of tools that display instance 
objects. (default=FALSE)

namedModule If set to true, this module's string name is retained on the target so that it 
can be displayed as part of Log and Error events. Setting this to false 
saves data space in the application at the expense of readability of Log 
and error messages associated with this module. (default=TRUE)

Field Description



Types Module

4-36

The following fields in the Common$ structure are used by the Memory
module:

The following fields in the Common$ structure are used by the Gate module:

Field Description

instanceSection Identifies the section in which instances created by this module should be 
placed.

instanceHeap Identifies the heap from which this module should allocate memory.

memoryPolicy Specifies whether this module should allow static object creation only 
(STATIC_POLICY), dynamic object creation but not deletion 
(CREATE_POLICY), or both dynamic object creation and deletion 
(DELETE_POLICY).

Field Description

gate A handle to the Gate implementation to be used by this module.

gateParams Gate parameters for use by this module.



5-1

Chapter 5

XDC Configuration

This chapter provides more information about XDC configuration syntax.

 

5.1 More About the XDC Script Language . . . . . . . . . . . . . . . . . . . . . . . . 5-2

5.2 More About the xs Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5

5.3 JavaScript Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13

5.4 XDC Script Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15

Topic Page



More About the XDC Script Language

5-2

5.1 More About the XDC Script Language

XDC scripts use a general-purpose programming language based upon the
ECMA-262 Edition 3 standard—popularly known as JavaScript 1.5. 

The xs command runs a JavaScript interpreter based on the Mozilla Rhino
package. See the Rhino documentation to learn more about the particular
features of this implementation of JavaScript. In particular, look for material
on LiveConnect, which enables JavaScript programs to transparently invoke
Java APIs. This powerful feature provides a mechanism to tap into the vast
amount of functionality in the Java ecosystem.

5.1.1 Benefits of Static Configuration

XDC supports both static and dynamic creation of objects. Creating objects
at run-time (dynamic) is easier, but extra code is required to support the
object creation and deletion. Design-time configuration (static) provides the
following benefits over run-time configuration:

Improves run-time performance by reducing the time your program
spends performing system setup.

Can reduce program size by eliminating run-time code required to
dynamically create and configure objects. For typical modules, functions
to create and delete objects make up 50% of the code in the module.

Optimizes internal data structures.

Detects errors earlier by validating properties before compilation.

Automatically sets a variety of properties that are dependent on other
properties. This helps ensure that your configuration is valid.

5.1.2 Language Overview

JavaScript syntax, operators, and flow-control statements are similar to those
in the C language. C programmers can easily read JavaScript. It includes if,
else, switch, break, for, while, do, and return statements.

JavaScript is a loosely-typed language. Variables in JavaScript are more
flexible than variables in C or Java. Variables do not need to be explicitly
declared, and the same variable can store different data types at different
times. These types are number, string, Boolean value, array, object, function
(which is actually an object itself), and null. Operators automatically convert
values between data types as necessary.



More About the XDC Script Language

XDC Configuration 5-3

Variables can be local to a function or global to the entire JavaScript
environment. Variable and object names may not contain spaces or
punctuation other than "_" or "$". In addition, variable and object names can
include numbers but must not begin with a number.

JavaScript does not have pointers and does not deal with memory
addresses.

5.1.3 Common Misconceptions About JavaScript

If you've used JavaScript before, you have probably added scripts to a web
page. It's important to clear up misconceptions some programmers may have
about JavaScript when used outside the context of web pages:

JavaScript is a general-purpose, cross-platform programming language.
While it was developed for use in web browsers, it has a number of
features that make it useful for application configuration. It is easy to learn
and use, the syntax is similar to C, it is object-oriented, and it is widely
documented.

JavaScript is standardized. The language is also called ECMAScript, and
the ECMA-262 standard defines the language (see
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM). The basic syntax
and semantics of the language are stable and standardized.

When you use JavaScript in a web page, the objects you use are defined
by the Document Object Model (DOM). These objects include window,
document, form, and image. The DOM is not part of the JavaScript
standard; nor is the DOM part of XDC.

Other object models can be defined for use with JavaScript. Instead of
the DOM, XDC provides its own objects via modules contained by
packages.

JavaScript is not a part of Java. These are two different languages that
have similar names for historical marketing reasons. However, XDC
scripts can call Java functions to provide file services. JavaScript itself
does not provide file services for security reasons on web browsers.

XDC runs JavaScript only on the host PC or Linux machine. JavaScript
code is never run on the target DSP.



More About the XDC Script Language

5-4

5.1.4 JavaScript and Java References

This document does not provide details on the syntax of the JavaScript
language or on the Java packages that can be used. For reference
information, we recommend the following sources:

JavaScript, The Definitive Guide, 3rd Edition, David Flanagan; O’Reilly
1998

ECMA-262 standard: 
http://www.ecma-international.org/publications/standards/Ecma-262.htm

Core JavaScript 1.5 Reference:
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference

Rhino JavaScript interpreter: http://www.mozilla.org/rhino

Java 2 SDK: http://java.sun.com/j2se/1.3/docs

java.io package: 
http://java.sun.com/j2se/1.3/docs/api/java/io/package-summary.html



More About the xs Command

XDC Configuration 5-5

5.2 More About the xs Command

Chapter 3 describes a number of XDC tools that you can run using the xs
command. For example:

   xs xdc.tools.cdoc.sg

The xs command is actually more than a central command for running
various tools. It is actually a program that executes XDC scripts. The tools
described in Chapter 3 are implemented as XDC scripts. 

Since the xs command is an XDC script execution program, you can also use
it to test XDC scripts or script commands. The xs command accepts the
following command syntaxes:

xs [options] xdc-package [script-args ...]
Script code is part of an XDC package (default: no option required)
Section 5.2.1

xs [options] -c xdc-capsule [script-args ...]
Script code is contained in an XDC capsule. Section 5.2.2

xs [options] -f xs-script-file [script-args ...]
Script file is located anywhere on the filesystem. Section 5.2.3

xs [options] -m xdc-module [script-args ...]
Script code is part of an XDC module. Section 5.2.4

xs [options] -i
Specify a script interactively. Section 5.2.5

xs [options] -g
Debug a script with a graphical tool. Section 5.2.6

The basic model for using the xs command is to specify a script to execute
along with optional arguments to be passed to the script. The variations
shown here are due to how the “script” is located by xs.

Important: Running a script in one of these modes is different from running
it with the configuro utility. When a configuration script is run, it is run in a
context (called an "object model" or "domain") in which the global object
"Program" is initialized based on the user-specified target and platform
parameters. Several distinct domains are defined by XDC; each defines a
top-level object that provides a context for the execution of scripts.
Currently, there is a "cfg" configuration domain, a "bld" build domain, and a
"rov" runtime domain.

The options you can use on the command line beyond the basic -c, -f, -m, -i,
and -g mode-selection options are described in Section 5.2.7.



More About the xs Command

5-6

5.2.1 Running a Script Defined by a Package

An XDC package that contains a main() method in a module named Main can
be invoked directly as shown below.

   xs sample.stuff world

The package is "sample.stuff" and is located along the XDCPATH package
path. The script must be contained in the file Main.xs. The argument "world"
is sent to the main() function. Note that this is equivalent to using the following
invocation using the -m module option:

   xs –m sample.stuff.Main world

If none of the options -m, -f, or -c is specified, the argument given to xs after
[options] is assumed to be a package name. This package must have a
module named Main that defines a main() function.

Arguments are passed as function parameters to the main() function that is
required in the script file.

5.2.2 Running a Script Defined by a Capsule

An XDC capsule is simply a file that contains an XDC script that can be
loaded and used via the xdc.loadCapsule() method. The capsule that
contains a main() method can be run using xs by specifying the capsule with
the –c option. For example:

   xs –c sample/stuff/hello.xs world

In this example, the script hello.xs is contained in a package called
sample.stuff and is located along the package path. Note that instead of using
the package name directly, the “.” separator is replaced with a forward slash
“/” (on both Linux and Windows). 

There are no requirements on the naming of the script file (different file
extensions can be used) or the actual location of the file within a package
(subdirectories can be used).

Arguments are passed as a single string array parameter to the main()
function that is required in the script file. Each argument passed on the xs
command line is a separate string in the array passed to main().



More About the xs Command

XDC Configuration 5-7

5.2.3 Running a Script Defined by a File

As with the previous examples, the following command runs the code in the
file hello.xs contained in the sample.stuff package.

   xs –f sample/stuff/hello.xs world

For example, if hello.cfg contains the line, the text “hello world” is echoed to
the standard output of the command shell:

   print("hello " + arguments[0]);

The only difference between the capsule and the file techniques is that a
capsule defines a main() function that is run, whereas a file runs when it is
loaded. The capsule is a better way to encapsulate scripts because the
capsule can be loaded from other scripts that need finer control over when
the script is run.

In both the file and capsule techniques, it is possible to supply an absolute
path to the capsule or file on the xs command line. In this case, the package
path is not used.

The -f option specifies that the next argument is the name of a script to
execute. Any remaining arguments are passed to the script.

If you start a script using the -f option, arguments supplied on the command
line can be retrieved using the standard JavaScript “arguments” array. This is
an array-like object containing the arguments passed to the function, indexed
beginning at 0. The “length” property of the object can be used to determine
the number of arguments actually passed. This is true even for scripts that do
not have a function defined, but rather just begin execution with the first line
in the file.

5.2.4 Running a Script Defined by a Module

A meta-only module that contains a method named "main" can be run using
xs by specifying the module with the –m option. For example:

   xs –m sample.stuff.Hello world

The package in this example is sample.stuff and is located along the package
path. The module Hello must contain a "main" function, which must be
specified in the corresponding Hello.xdc and implemented in the Hello.xs file.

The -m option specifies that the next argument is the name of a module, and
that the main function of that module should be run. Any remaining arguments
on the command line are passed to the script.

Arguments are passed as a single string array parameter to the main()
function that is required in the script file.



More About the xs Command

5-8

5.2.5 Running an Interactive JavaScript Session

If you use the -i option on the command line, you enter the interactive
JavaScript shell, which executes statements you type at the js> prompt. This
mode echoes the results of print statements and expressions to your terminal
window. This can be useful for testing XDC script statements.

Thus, the following command starts the XDC script interpreter and issues a
prompt for an interactive statement.

   xs –i

Once you enter interactive mode, you can run a script from the interactive
shell using the built-in xdc.includeFile() method. For example:

   % xs -i
   js> xdc.includeFile("xdc/services/io/File.xs")

The results of this statement are similar to those if you executed the script
from the command line.

Note: Be aware that running a script in interactive mode is different from
running it with the configuro utility, because when a configuration script is
run, it is run in a context in which the global object Program is initialized
based on the user-specified target and platform parameters.

Any statements in the included file that are not contained within a function run
when the file is included. Functions in the included file become available for
execution by other statements.

After script execution ends, you are still in the JavaScript shell and are free
to execute any methods or use any variables defined by the script.

Alternatively, instead of including a script, you can type commands directly.
For each line or group of lines that constitutes a complete expression,
complete statement, or complete statement block, the debugging shell
displays the result on the next line. For example, a portion of a debugging
session might look like the following:

   % xs -i
   js> textvar = "hello world";
   js> print(textvar);

To exit from the interactive shell, type quit. The quit command cannot be
executed in a XDC script; it is only available in the interactive shell. The
keywords quit and exit are reserved for future use in XDC scripts.



More About the xs Command

XDC Configuration 5-9

5.2.6 The Rhino Script Debugger

You can use the Rhino GUI debugger to test a script. Rhino is an open-source
implementation of JavaScript. It is written entirely in Java
(http://www.mozilla.org/rhino). 

The command-line syntax for the GUI debugger is the same as for the rest of
the xs command line, except that you add the -g option:

   xs -g[=i] myscript.cfg

In the Rhino environment, you can use File->Run to run a script file. Output
from the print() statement is displayed in the JavaScript Console window. You
can Step Into and Step Over script functions. This debugger also allows you
to watch variables, evaluate arbitrary expressions, and view the current
context for the "this" variable and local variables.

Figure 5–1  Rhino GUI Debugger Window



More About the xs Command

5-10

Here are some important hints for using the Rhino debugger:

The Debug menu contains three check boxes: Break on Exception,
Break on Function Enter, and Break on Function Return. If the -g option
is used on the xs command line, Break on Exception and Break on
Function Enter are enabled within the debugger. Only Break on
Exception is enabled if you use the -g=i option.

When Break on Exception is enabled, non-fatal errors are displayed in
exception dialog boxes as they occur.

Use Windows->Tile or Windows->Cascade to open windows for the
main script, all its included files, and internal XDC script files.

Break on Function Enter and Break on Function Return cause the
debugger to stop at entry and exit of each JavaScript function. You may
want to deselect these options if you just want to run to a specific
breakpoint you have set.

You can set a breakpoint by clicking in the gray column next to the line
number of the script. You can only set breakpoints on lines that contain
executable statements.

Choose Windows->Console to open the Console window, which
receives standard out and standard error. 

We recommend that you set a breakpoint at the last statement in your
script file to see any displayed messages in the Console window before
the debugger finishes running the script.

The Rhino debugger allows you to browse and view XDC script objects,
however the list is not always clear or complete. You can add print()
statements to the script. The results of print() statements are displayed in
the Console window.

5.2.7 Further Command-Line Options

In addition to the basic -c, -f, -m, -i, and -g mode-selection options for the xs
command, you can use a number of additional options and command-line
syntaxes. These are:

The --xdcpath option to specify the package path. Section 5.2.7.1

The -D option to specify environment variables. Section 5.2.7.2

Passing arguments to a script. Section 5.2.7.3

@ to take options and arguments from a file. Section 5.2.7.4



More About the xs Command

XDC Configuration 5-11

5.2.7.1 Specifying the Package Path

Normally, you specify the list of locations where XDC should search for
packages using the XDCPATH environment variable. 

Alternatively, you can specify these locations using the --xdcpath option of the
xs command. 

All subdirectories in the locations referenced are searched for packages.

For example, the following command adds auto-generated documentation for
your own packages to the beginning of the CDOC online help display.

   xs --xdcpath=c:/mypackages xdc.tools.cdoc.sg

If you want to specify more than one directory with the --xdcpath option, use
semicolons to separate the items in the list.

If you use a UNIX-like shell, you will have to quote the semicolons to prevent
the shell from interpreting these characters as command separators. For
example:

xs --xdcpath="/usr/home/me/packages;/tools/packages" ...

5.2.7.2 Setting Environment Variables

It can be useful to set, what is in effect, a “global” variable whose value is
specified on the command line when running an XDC script. This can be done
using the –D option to xs. Your script can then retrieve that value from the
global “environment” object in the script being run without having to save and
parse the command line arguments array. The environment is a table indexed
by the name of the environment variable.

For example, this command makes an environment variable called "mode"
available to the script. Your script would then need to handle this variable
appropriately:

   xs -Dmode=debug xdc.tools.configuro <options> mycfg.cfg

Note that these global values are not the same as the command shell’s
environment variables.

As another example, the following command sets an environment variable
called “junk” to the value “car”.

   xs –Djunk=car –f envvar.xs

The environment could be accessed by the script and printed as shown
below:

   print("Env var: " + environment["junk"]);



More About the xs Command

5-12

This example shows how to set and retrieve an environment variable. This
approach works for any of the methods for finding and running a script from
the xs command line.

5.2.7.3 Passing Arguments

If you start a script using the -f option, arguments supplied on the command
line can be retrieved using the standard JavaScript “arguments” array. This is
an array-like object containing the arguments passed to the function, indexed
beginning at 0. The “length” property of the object can be used to determine
the number of arguments actually passed. This is true even for scripts that do
not have a function defined, but rather just begin execution with the first line
in the file. For example:

for (var i = 0; i < arguments.length; i++ ) {
    print("argument " + i + " = " + arguments[i]);
}

If you start a script using the default method, -c, or -m, arguments are passed
as function parameters to the main() function that is required in the script file.
For example, 

function main(args) 
{
    for (var i = 0; i < args.length; i++ ) {
        print("argument " + i + " = " + args[i]);
    }
}

5.2.7.4 Taking Options and Arguments from a File

The @ option enables you to reuse common command-line options and
arguments by saving them in a file. This option reads the specified file and
include its contents as arguments to xs.

One common scenario is specifying a user-specific portion of the XDC
package path. If several repositories (directories containing packages) are
being used, the argument to the --xdcpath option can get quite long and
tedious to re-enter each time you use the xs command. 

Alternately, you can create a file that specifies arguments, one argument per
line. Suppose, for example, you create a file named opts-file that contains the
following lines:

   --xdcpath
   dir-path1;dir-path2;dir-path3



JavaScript Language

XDC Configuration 5-13

Then, run the xs command as follows:

   xs @opts-file ...

As a result, the xs command effectively is invoked as follows:

   xs --xdcpath "dir-path1;dir-path2;dir-path3" ...

In general, each line of the file supplied with the @ option is added to the
argument list of the xs command. The process is recursive so that if there is
a line with an @ option, that file is opened and each line is added to the
argument list, and so on.

5.3 JavaScript Language

XDC scripts contain statements in the JavaScript language. These
statements are executed to perform design-time application configuration.

This document does not provide details on the syntax of the JavaScript
language. However, several concepts are important when using JavaScript
for XDC configuration. This section provides an overview of such concepts.
Also see Section 5.1.4 for JavaScript reference sources.

5.3.1 Object and Property Naming and Referencing

JavaScript is object-oriented. The object model is separate from the
JavaScript language, but object handling syntax is part of the language.
Modules are treated as object classes in XDC scripts. Certain modules can
have instances created.

Modules have properties to define their characteristics. Such properties are
actually variables local to the object. You access properties using the dot (.)
notation. For example, use xdc.runtime.Memory.defaultHeapSize to
refer to the defaultHeapSize property of the Memory module in the
xdc.runtime package.



JavaScript Language

5-14

5.3.2 Error Handling and Exceptions

The exit status from an XDC script is 0 (success) unless a script specified on
the command line could not be run (for example, because the file was not
found or results in errors). If the script runs and results in errors, the exit status
is non-zero.

Scripts can throw exceptions. Exceptions should be used for confirmed errors
where an action has failed. Exceptions thrown by a script can be caught in a
script. Uncaught exceptions cause a script to terminate execution and return
with a non-zero status. Exceptions are always written to the stderr location,
unless they are caught by a script and handled.

In interactive XDC script mode, stderr messages are shown as separate lines
without the js> command prompt. In the GUI debugger, stderr messages are
shown in the JavaScript Console window.

To throw an exception, scripts use the "throw" keyword. This example throws
an exception if the defaultHeapInstance property of the xdc.runtime.Memory
module is null.

if (xdc.runtime.Memory.defaultHeapInstance = NULL) { 
    throw new Error("A default heap is required!");
}

To catch an exception, a script can use a “try-catch” block. The syntax for
such a block is as follows:

try {
    /* something that might throw an exception */
}
catch (e) {
    /* e is the error object thrown */
}

For example, the following statements attempt to load a JavaScript file. If the
file does not exist, an exception is thrown. When the exception is caught, the
script continues executing. If this script did not catch the exception, the script
would terminate execution when the exception occurred.

try {
  fileName = prog_name + ".cfg";
  xdc.includeFile(fileName);
}
catch (e) {
  print(e + "\nNo " + fileName + " file.");
}



XDC Script Methods

XDC Configuration 5-15

5.4 XDC Script Methods

The XDC script environment provides a number of utility methods available
to any script. The following sections describe these methods and point to
further documentation.

5.4.1 The print() Method

The print() method is an extension to JavaScript that sends the result of the
expression passed to the method to the stdout location. Within the Rhino
environment, output from the print() statement is displayed in the JavaScript
Console window.

In this example, if any array of objects has been assigned to obj, these
statements print a list of the objects in the array.

for (var i in obj) { 
  print("obj." + i + " = " + obj[i]) 
}

5.4.2 Methods from Java Packages

For security reasons, JavaScript does not provide file services. In a web
browser, the lack of file services prevents most forms of file access on your
computer. In XDC scripts, access to Java methods is provided through the
Rhino JavaScript interpreter via LiveConnect. The implementation provides
unrestricted use of any Java package including, for example, the java.io
package.

Calls to Java’s java.io package from a script look just like JavaScript function
calls. Only the function called is written in Java. For example, these
statements return the path to a file if it exists:

var file = new java.io.File(fileName);
if (file.exists()) {
   return (file.getPath());
}

For documentation of the java.io package, see version 1.3.1 of the Java 2
SDK documentation at http://java.sun.com/j2se/1.3/docs. In particular, see
the java.io page at 
http://java.sun.com/j2se/1.3/docs/api/java/io/package-summary.html.



XDC Script Methods

5-16

5.4.3 Methods and Properties from the xdc Package

The xdc package itself provides a number of methods for use in XDC scripts.
This section lists these methods. 

xdc.csd() returns the directory of the script file that is currently being
loaded. There is always exactly one script file loading. This file is not
necessarily the same as the file containing the function currently
executing. During the load of a script, the script can refer to its location
and possibly load/read/write files relative to this location. When a function
defined by the script runs, the directory of the currently loading script may
not be the directory of the script where the function is defined.

xdc.exec(command, attrs, status). Executes an arbitrary shell
command and optionally puts output into a file. Both stderr and stdout are
combined into a single output stream. Returns the command’s exit status.

"command" is the command string to execute.

"attrs" specifies an optional set of attributes used to control the
environment of the command:

attrs.envs may be an array of environment variable settings.

attrs.cwd may be the command's current working directory.

attrs.outName may be the name of the output file to create. If the
file exists, output is appended to the end of the file.

attrs.filter may be a regular expression to filter command output.

"status" is an optional output parameter. If it is non-NULL, the
following fields are set:

status.output is a string containing all output from the command.

status.exitStatus is the exit status of the command.

xdc.findFile(filename). Finds the file specified by filename. This method
searches for filename according to the following algorithm. It returns the
path to the file. The path returned may be absolute or relative. If the file
cannot be found in these directories, NULL is returned.

a) If filename is an absolute path or begins with "./", xdc.findFile()
returns filename if it exists. Otherwise xdc.findFile() returns NULL.

b) If filename is a relative path that does not start with "./": the following
directories are searched in order:

i) the current script directory (see xdc.csd())

ii) the directories specified by the XDCPATH

filename is a string specifying a file to locate.



XDC Script Methods

XDC Configuration 5-17

xdc.getPackageBase(package_name). Returns the absolute path to
the specified package's base directory. This method returns the full path
string to the package. If the package cannot be found, this method throws
an exception.

package_name is a '.' separated package name. For example,
xdc.runtime.

xdc.getPackageRepository(package_name). Returns the absolute
path to the specified package's repository directory. This method returns
the full path string to the repository. If the repository cannot be found, this
method throws an exception.

package_name is a '.' separated package name. For example,
xdc.runtime.

xdc.includeFile(). An XDC script can load another script file using the
xdc.includeFile() method. For example, this command includes the
generic.cfg file

      xdc.includeFile("generic.cfg");

This method normally searches the package path (XDCPATH) for the file
specified. However, if you specify a path to the file beginning with "./",
XDC looks for the file relative to the current script’s location. For example:

      xdc.includeFile("././project/includes/file.cfg");

Directory paths specified in JavaScript statements can use either "\\" or
"/" as a directory separator. (Directory paths on the xs command line must
use "/".)

If you do not specify a file extension, this function looks for the specified
file with an extension of .cfg.

When a script file is loaded, any statements that are outside any function
are executed immediately. The functions defined in the loaded script are
available to be called by the script that loaded the file. 

xdc.loadPackage(package_name). Loads the specified package and
returns a package object. This method finds a package's schema file
(package/<package_name>.xds), loads it, initializes packageBase and
packageRepository, and calls the package's initialization function. If the
package cannot be found, this method throws an exception.

package_name is a '.' separated package name. For example,
xdc.runtime.



XDC Script Methods

5-18

xdc.module(module_name). Loads the specified module for use in a
script.

The only difference between the xdc.useModule() and xdc.module()
methods is that useModule() sets the returned module object's $used flag
to a non-zero value. During configuration, only modules that have $used
set to non-zero are linked into the final application. So, it is possible to get
a module's object and use it's meta-only methods via xdc.module()
without the module's target methods becoming part of the application.

xdc.useModule(module_name). Enables a module contained in a
package for use in the script.

module_name is a '.' separated module name. For example,
xdc.runtime.System.



A-1

Appendix A

Target Compiler Options

This appendix lists the compiler options used by default for the various
targets you can select.

 

A.1 Compiler Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–2

Topic Page



Compiler Options

A-2

A.1 Compiler Options

The target you specify when you use configuro determines the compiler
options added to the compiler command line. The available targets have
the following default compiler options:

Target Compiler Options and Notes

ti.targets.arm.Arm7 "-me -mv4 --abi=ti_arm9_abi”

ti.targets.arm.Arm7_big_endian "-mv4 --abi=ti_arm9_abi”

ti.targets.arm.Arm9 "-me -mv5e --abi=ti_arm9_abi”
Uses little endian

ti.targets.arm.Arm9t "-me -mt -mv5e --abi=ti_arm9_abi”
Uses little endian

ti.targets.C28 "-v28 -mo”

ti.targets.C28_large "-v28 -DLARGE_MODEL=1 -ml”

ti.targets.C55 ““

ti.targets.C55_huge "--memory_model=huge”

ti.targets.C55_large "-ml”

ti.targets.C62 ““

ti.targets.C62_big_endian "-me”

ti.targets.C64 "-mv6400”

ti.targets.C64_big_endian "-me -mv6400”

ti.targets.C64P "-mv64p”

ti.targets.C64P_big_endian "-me -mv64p”

ti.targets.C67 "-mv6700”



Compiler Options

Target Compiler Options A-3

1) Sequences of the form "$(...)" refer to properties of the target:

n $(rootDir) is the value of the target's rootDir property. That is, it is
the installation directory of the compiler as specified by the user.

n $(GCCTARG) is the GSSTARG property of a GNU target. That
is, it is the output from running "gcc -dumpmachine".

n $(GCCVERS) is the GCCVERS property of a GNU target. That
is, it is the output from running "gcc -dumpversion".

ti.targets.C67_big_endian "-me -mv6700”

ti.targets.C67P "-mv67p”

ti.targets.C67P_big_endian "-me -mv67p”

ti.targets.MSP430 "-vmsp”

gnu.targets.Linux86 (See Note 1) "-nostdinc -B$(rootDir)/lib/gcc-lib/$(GCCTARG)/$(GCCVERS)/”
Native Linux target using GCC compiler

gnu.targets.Mingw (See Note 1) "-nostdinc -B$(rootDir)/lib/gcc-lib/$(GCCTARG)/$(GCCVERS)/”
Native Windows target using Mingw GCC compiler

gnu.targets.MVArm9 ““
Embedded Linux target using MontaVista GCC compiler

gnu.targets.Sparc (See Note 1) "-nostdinc -B$(rootDir)/lib/gcc-lib/$(GCCTARG)/$(GCCVERS)/”
Native Solaris target using GCC compiler

gnu.targets.UCArm9 ““
ARM target with uClibc binary compatibility and GCC compiler for Linux

microsoft.targets.Net32 "-nologo -c”
Microsoft .Net 32-bit native target using Microsoft VC++ 8

microsoft.targets.VC98 "-W3 -Zp1 -DWIN32 -D_DLL -D_AFXDLL -DEXPORT=”
Microsoft Windows 32-bit target using Visual C/C++ 6.x compiler

microsoft.targets.Win32 "-W3 -Zp1 -DWIN32 -D_DLL -D_AFXDLL -DEXPORT=”
Microsoft Windows 32-bit target using Visual C/C++ 6, 7, or 8 compiler

Target Compiler Options and Notes



A-4



Index-1

This is a draft version printed from file: xdcugix.fm on 7/31/07 

Index

C
catch keyword 5-14
catching exceptions 5-14

D
data types 5-2
debugging

GUI debugger 5-9
design-time configuration 5-2
directory path 5-17
Document Object Model (DOM) 5-3
documentation, other 5-4
dot (.) notation 5-13
dynamic objects 5-2

E
ECMA-262 5-3
error handling 5-14
exceptions 5-14

catching 5-14
throwing 5-14

exit keyword 5-8
exit status 5-14
exiting from tconf 5-8

F
file services 5-3, 5-15

G
GUI debugger 5-9

command line 5-9

I
interactive tconf

command line 5-8

J
Java 5-3

documentation 5-4
Rhino written in 5-9

JavaScript
documentation 5-4
language issues 5-13
misconceptions 5-3
overview 5-2
Rhino interpreter 5-9

L
LiveConnect 5-15
loosely-typed language 5-2

N
names

variables 5-3

O
object-orientation 5-13

P
path

separators 5-17
pointers 5-3
print() method 5-15

Rhino GUI 5-9



Index-2

 Index

properties 5-13

Q
quit command 5-8

R
reserved keywords 5-8
Rhino 5-9

S
stdout location 5-15

T
throw keyword 5-14
throwing exceptions 5-14
try keyword 5-14

V
variable names 5-3
variable types 5-2


	XDC Consumer User’s Guide
	Read This First
	About This Manual
	How to Use this Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Related Documentation
	Trademarks

	Contents
	About XDC
	1.1 What is XDC?
	1.2 XDC Terminology
	1.3 How to Use XDC: The Quick Tour
	1.4 The Package Path
	1.4.1 Managing the XDCPATH Portion of the Package Path

	1.5 Setting Your PATH Definition
	1.6 Getting More Information
	1.6.1 Using the CDOC Reference Help System


	Basic Steps to Using XDC
	2.1 Overview of the Development Steps
	2.2 Configuring the Application
	2.2.1 Using a Module
	2.2.2 Setting a Module Parameter Value
	2.2.3 Defining Static Constants
	2.2.4 Static Object Instance Creation
	2.2.5 Setting an Instance Parameter Value
	2.2.6 Finding Configuration Options
	2.2.7 Property Types

	2.3 Writing C Code
	2.3.1 Using Modules
	2.3.2 Naming Conventions
	2.3.3 Runtime Object Instance Creation
	2.3.4 XDC Datatypes

	2.4 Processing the Configuration
	2.4.1 Choosing a Target
	2.4.2 Choosing a Platform
	2.4.3 Running Configuro
	2.4.4 Running Configuro from a CCStudio Project

	2.5 Compiling and Linking
	2.5.1 Compiling and Linking with CCStudio
	2.5.2 Using the Command Line on Windows for TI Targets with CCStudio
	2.5.3 Building with the TI Code Generation Tools from a Makefile
	2.5.4 Building with Microsoft Visual Studio from a Makefile
	2.5.5 Building with GCC from a Makefile


	XDC Tools
	3.1 Overview of the Tools
	3.2 The cdoc Tool
	3.2.1 Generating Static Help Documentation

	3.3 The configuro Tool
	3.4 The path Tool
	3.5 The repoman Tool
	3.5.1 Command Line Repoman Tool
	3.5.2 Additional Command-Line Options
	3.5.3 Graphical Repoman Tool


	XDC Runtime Modules
	4.1 Overview of the Runtime Modules
	4.2 XDC Boot Sequence and Control Points
	4.2.1 Initialize Registers
	4.2.2 Perform User Reset Function
	4.2.3 Process .cinit Records
	4.2.4 Start Modules
	4.2.5 Process .pinit Records
	4.2.6 Main() Function

	4.3 System Module
	4.3.1 System Support Proxy
	4.3.2 System Gate
	4.3.3 atexit Handling
	4.3.4 Termination
	4.3.4.1 System_exit
	4.3.4.2 System_abort

	4.3.5 Printing
	4.3.6 SysStd Module
	4.3.7 SysMin Module

	4.4 Memory Segments and Sections
	4.5 Memory Allocation and Heaps
	4.5.1 Heap Handles
	4.5.2 Allocating Memory Dynamically
	4.5.3 Freeing Memory
	4.5.4 The xdc.runtime.HeapMin Implementation
	4.5.5 The xdc.runtime.HeapStd Implementation

	4.6 Timestamp Module
	4.7 Gate Interface and Implementations
	4.7.1 The xdc.runtime.GateNull Implementation
	4.7.2 Plugging Gates

	4.8 Diagnostics and Logs
	4.8.1 Assert Module
	4.8.2 Diags Module
	4.8.3 Error Module
	4.8.4 Log Module
	4.8.5 LoggerBuf Module
	4.8.6 LoggerSys Module

	4.9 Types Module

	XDC Configuration
	5.1 More About the XDC Script Language
	5.1.1 Benefits of Static Configuration
	5.1.2 Language Overview
	5.1.3 Common Misconceptions About JavaScript
	5.1.4 JavaScript and Java References

	5.2 More About the xs Command
	5.2.1 Running a Script Defined by a Package
	5.2.2 Running a Script Defined by a Capsule
	5.2.3 Running a Script Defined by a File
	5.2.4 Running a Script Defined by a Module
	5.2.5 Running an Interactive JavaScript Session
	5.2.6 The Rhino Script Debugger
	5.2.7 Further Command-Line Options
	5.2.7.1 Specifying the Package Path
	5.2.7.2 Setting Environment Variables
	5.2.7.3 Passing Arguments
	5.2.7.4 Taking Options and Arguments from a File


	5.3 JavaScript Language
	5.3.1 Object and Property Naming and Referencing
	5.3.2 Error Handling and Exceptions

	5.4 XDC Script Methods
	5.4.1 The print() Method
	5.4.2 Methods from Java Packages
	5.4.3 Methods and Properties from the xdc Package


	Target Compiler Options
	A.1 Compiler Options

	Index


