
Windows Media VC-1 Advanced
Profile Decoder on C64x+

User Guide

Literature Number: SPRUF05
June 2007

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of
this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and is an
unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony
 Video & Imaging www.ti.com/video
 Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
 Post Office Box 655303 Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

This document describes how to install and work with Texas Instruments’
(TI) VC-1 Advanced Profile Decoder implementation on the C64x+
platform. It also provides a detailed Application Programming Interface
(API) reference and information on the sample application that
accompanies this component.

TI’s codec implementations are based on the eXpressDSP Digital Media
(XDM) standard. XDM is an extension of the eXpressDSP Algorithm
Interface Standard (XDAIS).

Intended Audience

This document is intended for system engineers who want to integrate
TI’s codecs with other software to build a multimedia system based on
the C64x+ platform.

This document assumes that you are fluent in the C language, have a
good working knowledge of Digital Signal Processing (DSP), digital
signal processors, and DSP applications. Good knowledge of
eXpressDSP Algorithm Interface Standard (XDAIS) and eXpressDSP
Digital Media (XDM) standard will be helpful.

How to Use This Manual

This document includes the following chapters:

 Chapter 1 - Introduction, provides a brief introduction to the XDAIS
and XDM standards. It also provides an overview of the codec and
lists its supported features.

 Chapter 2 - Installation Overview, describes how to install, build,
and run the codec.

 Chapter 3 - Sample Usage, describes the sample usage of the
codec.

 Chapter 4 - API Reference, describes the data structures and
interface functions used in the codec.

Read This First

iv

Related Documentation From Texas Instruments

The following documents describe TI’s DSP algorithm standards such
as, XDAIS and XDM. To obtain a copy of any of these TI documents,
visit the Texas Instruments website at www.ti.com.

 TMS320 DSP Algorithm Standard Rules and Guidelines (literature
number SPRU352) defines a set of requirements for DSP algorithms
that, if followed, allow system integrators to quickly assemble
production-quality systems from one or more such algorithms.

 TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360) describes all the APIs that are defined by the TMS320
DSP Algorithm Interface Standard (also known as XDAIS)
specification.

 Technical Overview of eXpressDSP - Compliant Algorithms for DSP
Software Producers (literature number SPRA579) describes how to
make algorithms compliant with the TMS320 DSP Algorithm
Standard which is part of TI’s eXpressDSP technology initiative.

 Using the TMS320 DSP Algorithm Standard in a Static DSP System
(literature number SPRA577) describes how an eXpressDSP-
compliant algorithm may be used effectively in a static system with
limited memory.

 DMA Guide for eXpressDSP-Compliant Algorithm Producers and
Consumers (literature number SPRA445) describes the DMA
architecture specified by the TMS320 DSP Algorithm Standard
(XDAIS). It also describes two sets of APIs used for accessing DMA
resources: the IDMA2 abstract interface and the ACPY2 library.

 eXpressDSP Digital Media (XDM) Standard API Reference (literature
number SPRUEC8)

The following documents describe TMS320 devices and related support
tools:

 Design and Implementation of an eXpressDSP-Compliant DMA
Manager for C6X1X (literature number SPRA789) describes a
C6x1x-optimized (C6211, C6711) ACPY2 library implementation and
DMA Resource Manager.

 TMS320c64x+ Megamodule (literature number SPRAA68) describes
the enhancements made to the internal memory and describes the
new features which have been added to support the internal memory
architecture's performance and protection.

 TMS320C64x+ DSP Megamodule Reference Guide (literature
number SPRU871) describes the C64x+ megamodule peripherals.

 TMS320C64x to TMS320C64x+ CPU Migration Guide (literature
number SPRAA84) describes migration from the Texas Instruments
TMS320C64x™ digital signal processor (DSP) to the
TMS320C64x+™ DSP.

 TMS320C6000 Optimizing Compiler v 6.0 Beta User's Guide
(literature number SPRU187N) explains how to use compiler tools

http://www.ti.com/

Read This First

v

such as compiler, assembly optimizer, standalone simulator, library-
build utility, and C++ name demangler.

 TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide
(literature number SPRU732) describes the CPU architecture,
pipeline, instruction set, and interrupts of the C64x and C64x+ DSPs.

 TMS320DM6446 Digital Media System-on-Chip (literature number
SPRS283)

 TMS320DM6446 Digital Media System-on-Chip Errata (Silicon
Revision 1.0) (literature number SPRZ241) describes the known
exceptions to the functional specifications for the TMS320DM6446
Digital Media System-on-Chip (DMSoC).

 TMS320DM6443 Digital Media System-on-Chip (literature number
SPRS282)

 TMS320DM6443 Digital Media System-on-Chip Errata (Silicon
Revision 1.0) (literature number SPRZ240) describes the known
exceptions to the functional specifications for the TMS320DM6443
Digital Media System-on-Chip (DMSoC).

 TMS320DM644x DMSoC DSP Subsystem Reference Guide
(literature number SPRUE15) describes the digital signal processor
(DSP) subsystem in the TMS320DM644x Digital Media System-on-
Chip (DMSoC).

 TMS320DM644x DMSoC ARM Subsystem Reference Guide
(literature number SPRUE14) describes the ARM subsystem in the
TMS320DM644x Digital Media System on a Chip (DMSoC).

 DaVinci Technology - Digital Video Innovation Product Bulletin (Rev.
A) (sprt378a.pdf)

 The DaVinci Effect: Achieving Digital Video Without Complexity
White Paper (spry079.pdf)

 DaVinci Benchmarks Product Bulletin (sprt379.pdf)

 DaVinci Technology for Digital Video White Paper (spry067.pdf)

 The Future of Digital Video White Paper (spry066.pdf)

Related Documentation

You can use the following documents to supplement this user guide:

 Windows Media Video V9 Decoding Specification (Revision 87)

 Proposed SMPTE Standard for Television: VC-1 Compressed Video
Bitstream Format and Decoding Process (Final committee Draft 1,
revision 5)

Read This First

vi

Abbreviations

The following abbreviations are used in this document:

Table 1-1. List of Abbreviations
Abbreviation Description

AP Advanced Profile

API Application Programming Interface

ASF Advanced Systems Format

DMA Direct Memory Access

DMAN3 DMA Manager

DSP Digital Signal Processing

EVM Evaluation Module

MP Main Profile

MPML Main Profile at Main Level

RCV Raw Compressed Video

SP Simple Profile

SMPTE Society of Motion Picture and Television Engineers

WMV Windows Media Video

XDAIS eXpressDSP Algorithm Interface Standard

XDM eXpressDSP Digital Media

Text Conventions

The following conventions are used in this document:

 Text inside back-quotes (‘‘) represents pseudo-code.

 Program source code, function and macro names, parameters, and
command line commands are shown in a mono-spaced font.

Product Support

When contacting TI for support on this codec, please quote the product
name (VC-1 Advanced Profile Decoder on C64x+) and version number.
The version number of the codec is included in the Title of the Release
Notes that accompanies this codec.

Read This First

vii

Trademarks

Code Composer Studio, the DAVINCI Logo, DAVINCI, DSP/BIOS,
eXpressDSP, TMS320, TMS320C64x, TMS320C6000, TMS320DM644x,
and TMS320C64x+ are trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

Read This First

viii

This page is intentionally left blank

ix

Contents

Read This First .. iii

About This Manual ...iii
Intended Audience ...iii
How to Use This Manual ..iii
Related Documentation From Texas Instruments... iv
Related Documentation.. v
Abbreviations .. vi
Text Conventions .. vi
Product Support .. vi
Trademarks ...vii

Contents... ix
Figures ... xi
Tables... xiii
Introduction ...1-1

1.1 Overview of XDAIS and XDM..1-2
1.1.1 XDAIS Overview ..1-2
1.1.2 XDM Overview ...1-2

1.2 Overview of VC-1 Advanced Profile Decoder ...1-3
1.3 Supported Services and Features...1-4

Installation Overview ..2-1
2.1 System Requirements ...2-2

2.1.1 Hardware..2-2
2.1.2 Software ...2-2

2.2 Installing the Component...2-2
2.3 Before Building the Sample Test Application ..2-3

2.3.1 Installing DSP/BIOS ...2-4
2.3.2 Installing Framework Component (FC) ..2-4

2.4 Building and Running the Sample Test Application ..2-4
2.5 Configuration Files ..2-5

2.5.1 Generic Configuration File ...2-5
2.5.2 Decoder Configuration File ..2-6

2.6 Standards Conformance and User-Defined Inputs ...2-7
2.7 Uninstalling the Component ..2-7
2.8 Evaluation Version ..2-7

Sample Usage..3-1
3.1 Overview of the Test Application...3-2

3.1.1 Parameter Setup ..3-3
3.1.2 Algorithm Instance Creation and Initialization..3-3
3.1.3 Process Call ...3-4
3.1.4 Algorithm Instance Deletion ...3-5

API Reference..4-1
4.1 Symbolic Constants and Enumerated Data Types..4-2
4.2 Data Structures ...4-7

4.2.1 Common XDM Data Structures..4-7

x

4.2.2 VC-1 Decoder Data Structures ..4-15
4.3 Interface Functions..4-18

4.3.1 Creation APIs ...4-18
4.3.2 Initialization API..4-20
4.3.3 Control API ...4-21
4.3.4 Data Processing API ..4-23
4.3.5 Termination API ...4-27

xi

Figures

Figure 2-1. Component Directory Structure ...2-2
Figure 3-1. Test Application Sample Implementation..3-2

xii

This page is intentionally left blank

xiii

Tables

Table 1-1. List of Abbreviations... vi
Table 2-1. Component Directories...2-3
Table 4-1. List of Enumerated Data Types..4-2
Table 4-2. VC-1 Decoder Error Status ...4-5

xiv

This page is intentionally left blank

1-1

Chapter 1

Introduction

This chapter provides a brief introduction to XDAIS and XDM. It also
provides an overview of TI’s implementation of the VC-1 Advanced Profile
Decoder on the C64x+ platform and its supported features.

Topic Page

1.1 Overview of XDAIS and XDM 1-2

1.2 Overview of VC-1 Advanced Profile Decoder 1-3

1.3 Supported Services and Features 1-4

Introduction

1-2

1.1 Overview of XDAIS and XDM

TI’s multimedia codec implementations are based on the eXpressDSP
Digital Media (XDM) standard. XDM is an extension of the eXpressDSP
Algorithm Interface Standard (XDAIS).

1.1.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the
abstract interface IALG. The IALG API takes the memory management
function away from the algorithm and places it in the hosting framework.
Thus, an interaction occurs between the algorithm and the framework. This
interaction allows the client application to allocate memory for the algorithm
and also share memory between algorithms. It also allows the memory to
be moved around while an algorithm is operating in the system. In order to
facilitate these functionalities, the IALG interface defines the following
APIs:

 algAlloc()

 algInit()

 algActivate()

 algDeactivate()

 algFree()

The algAlloc() API allows the algorithm to communicate its memory
requirements to the client application. The algInit() API allows the
algorithm to initialize the memory allocated by the client application. The
algFree() API allows the algorithm to communicate the memory to be
freed when an instance is no longer required.

Once an algorithm instance object is created, it can be used to process
data in real-time. The algActivate() API provides a notification to the
algorithm instance that one or more algorithm processing methods is about
to be run zero or more times in succession. After the processing methods
have been run, the client application calls the algDeactivate() API prior
to reusing any of the instance’s scratch memory.

The IALG interface also defines three more optional APIs algControl(),
algNumAlloc(), and algMoved(). For more details on these APIs, see
TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360).

1.1.2 XDM Overview

In the multimedia application space, you have the choice of integrating any
codec into your multimedia system. For example, if you are building a
video decoder system, you can use any of the available video decoders
(such as MPEG4, H.263, or H.264) in your system. To enable easy
integration with the client application, it is important that all codecs with
similar functionality use similar APIs. XDM was primarily defined as an
extension to XDAIS to ensure uniformity across different classes of codecs

Introduction

1-3

(for example audio, video, image, and speech). The XDM standard defines
the following two APIs:

 control()

 process()

The control() API provides a standard way to control an algorithm
instance and receive status information from the algorithm in real-time. The
control() API replaces the algControl() API defined as part of the
IALG interface. The process() API does the basic processing
(encode/decode) of data.

Apart from defining standardized APIs for multimedia codecs, XDM also
standardizes the generic parameters that the client application must pass
to these APIs. The client application can define additional implementation
specific parameters using extended data structures.

The following figure depicts the XDM interface to the client application.

As depicted in the figure, XDM is an extension to XDAIS and forms an
interface between the client application and the codec component. XDM
insulates the client application from component-level changes. Since TI’s
multimedia algorithms are XDM compliant, it provides you with the flexibility
to use any TI algorithm without changing the client application code. For
example, if you have developed a client application using an XDM-
compliant MPEG4 video decoder, then you can easily replace MPEG4 with
another XDM-compliant video decoder, say H.263, with minimal changes
to the client application.

For more details, see eXpressDSP Digital Media (XDM) Standard API
Reference (literature number SPRUEC8).

1.2 Overview of VC-1 Advanced Profile Decoder

VC-1 is the Society of Motion Picture and Television Engineers (SMPTE)
standardized video decoder. VC-1 consists of three profiles namely,
simple, main, and advanced. Simple and main profiles were originally
developed for use in lower-bit-rate networked computing environments.
The advanced profile adds extensive in-band metadata support to allow for
optimized experience on a wide range of display devices. This decoder
supports Simple, Main, and Advance profile up to PAL D1 (720x576)
resolution.

Client Application

XDAIS Interface (IALG)

TI’s Codec Algorithms

XDM Interface

Introduction

1-4

From this point onwards, all references to VC-1 Decoder means VC-1
Advanced Profile Decoder only.

1.3 Supported Services and Features

This user guide accompanies TI’s implementation of VC-1 Decoder on the
C64x+ platform.

This version of the codec has the following supported features:

 Supports the advanced profile features of the SMPTE FCD1r6 at level
1 (AP@L1) standard

 Supports elementary input streams

 Supports YUV 420 and YUV 422 interleaved output formats

 Considers Advanced Systems Format (ASF) parser as an application
layer

 Main profile is bit exact with the reference decoder provided by
Microsoft®

 Advanced profile (VC-1) is bit exact with the SMPTE test cases

 eXpressDSP compliant

 eXpressDSP Digital Media (XDM) compliant

2-1

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and
instructions for installing the codec component. It also provides information
on building and running the sample test application.

Topic Page

2.1 System Requirements 2-2

2.2 Installing the Component 2-2

2.3 Before Building the Sample Test Application 2-3

2.4 Building and Running the Sample Test Application 2-4

2.5 Configuration Files 2-5

2.6 Standards Conformance and User-Defined Inputs 2-7

2.7 Uninstalling the Component 2-7

2.8 Evaluation Version 2-7

Installation Overview

2-2

2.1 System Requirements

This section describes the hardware and software requirements for the
normal functioning of the codec component.

2.1.1 Hardware

This codec has been built and tested on the DM6437 EVM hardware with
XDS510 USB (Code Composer Studio version 3.3.24.1 with patch
3.2.30.0).

2.1.2 Software

The following are the software requirements for the normal functioning of
the codec:

 Development Environment: This project is developed using Code
Composer Studio version 3.3.24.1.

 Code Generation Tools: This project is compiled, assembled,
archived, and linked using the code generation tools version 6.0.8.

2.2 Installing the Component

The codec component is released as a compressed archive. To install the
codec, extract the contents of the zip file onto your local hard disk. The zip
file extraction creates a directory called 100_V_VC1_D_1_02.

Figure 2-1 shows the sub-directories created in this directory.

Figure 2-1. Component Directory Structure

Installation Overview

2-3

Note:

If you are installing an evaluation version of this codec, the directory
name will be 100E_V_VC1_D_1_02 .

Table 2-1 provides a description of the sub-directories created in the
100_V_VC1_D_1_02 directory.

Table 2-1. Component Directories
Sub-Directory Description

\Inc Contains XDM related header files which allow interface to the
codec library

\Lib Contains the codec library file

\Docs Contains user guide, datasheet, and release notes

\Client\Build Contains the sample test application project (.pjt) file

\Client\Build\Map Contains the memory map generated on compilation of the
code

\Client\Build\Obj Contains the intermediate .asm and/or .obj file generated on
compilation of the code

\Client\Build\Out Contains the final application executable (.out) file generated
by the sample test application

\Client\Test\Src Contains application C files

\Client\Test\Inc Contains header files needed for the application code

\Client\Test\TestVecs\Input Contains input test vectors

\Client\Test\TestVecs\Output Contains output generated by the codec

\Client\Test\TestVecs\Reference Contains read-only reference output to be used for cross-
checking against codec output

\Client\Test\TestVecs\Config Contains configuration parameter files

2.3 Before Building the Sample Test Application

This codec is accompanied by a sample test application. To run the sample
test application, you need DSP/BIOS and TI Framework Components (FC).

This version of the codec has been validated with DSP/BIOS version
5.31.02 and Framework Component (FC) version 1.10.01.

Installation Overview

2-4

2.3.1 Installing DSP/BIOS

You can download DSP/BIOS from the TI external website:

https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html

Install DSP/BIOS at the same location where you have installed Code
Composer Studio. For example:

<install directory>\CCStudio_v3.2

The sample test application uses the following DSP/BIOS files:

 Header file, bcache.h available in the
<install
directory>\CCStudio_v3.2\<bios_directory>\packages\ti\bios\include
directory.

 Library file, biosDM420.a64P available in the
<install directory>\CCStudio_v3.2\<bios_directory>\packages\ti\bios\lib
directory.

2.3.2 Installing Framework Component (FC)

You can download FC from the TI external website:

https://www-a.ti.com/downloads/sds_support/targetcontent/FC/index.html

Extract the FC zip file to the same location where you have installed Code
Composer Studio. For example:

<install directory>\CCStudio_v3.2

The test application uses the following DMAN3 files:

 Library file, dman3.a64P available in the
<install directory>\CCStudio_v3.2\<fc_directory>\packages
\ti\sdo\fc\dman3 directory.

 Header file, dman3.h available in the
<install directory>\CCStudio_v3.2\<fc_directory>\packages
\ti\sdo\fc\dman3 directory.

 Header file, idma3.h available in the
<install directory>\CCStudio_v3.2\<fc_directory>\packages
\ti\sdo\fc\acpy3 directory.

2.4 Building and Running the Sample Test Application

The sample test application that accompanies this codec component will
run in TI’s Code Composer Studio development environment. To build and
run the sample test application in Code Composer Studio, follow these
steps:

1) Verify that you have an installation of TI’s Code Composer Studio
version 3.3.24.1 and code generation tools version 6.0.8.

https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html
https://www-a.ti.com/downloads/sds_support/targetcontent/FC/index.html

Installation Overview

2-5

2) Verify that the codec object library vc1dec_ti.l64P exists in the \Lib sub-
directory.

3) Open the test application project file, TestAppDecoder.pjt in Code
Composer Studio. This file is available in the \Client\Build sub-
directory.

4) Select Project > Build to build the sample test application. This
creates an executable file, TestAppDecoder.out in the \Client\Build\Out
sub-directory.

5) Select File > Load, browse to the \Client\Build\Out sub-directory,
select the codec executable created in step 4, and load it into Code
Composer Studio in preparation for execution.

6) Select Debug > Run to execute the sample test application.

The sample test application takes the input files stored in the
\Client\Test\TestVecs\Input sub-directory, runs the codec, and uses the
reference files stored in the \Client\Test\TestVecs\Reference sub-
directory to verify that the codec is functioning as expected.

7) On successful completion, the application displays one of the following
messages for each frame:

o “Decoder compliance test passed/failed” (for compliance check
mode)

o “Decoder output dump completed” (for output dump mode)

2.5 Configuration Files

This codec is shipped along with:

 A generic configuration file (Testvecs.cfg) – specifies input and
reference files for the sample test application.

 A Decoder configuration file (Testparams.cfg) – specifies the
configuration parameters used by the test application to configure the
Decoder.

2.5.1 Generic Configuration File

The sample test application shipped along with the codec uses the
configuration file, Testvecs.cfg for determining the input and reference files
for running the codec and checking for compliance. The Testvecs.cfg file is
available in the \Client\Test\TestVecs\Config sub-directory.

The format of the Testvecs.cfg file is:

X
Config
Input
Output/Reference

where:

 X may be set as:

o 1 - for compliance checking, no output file is created

Installation Overview

2-6

o 0 - for writing the output to the output file

 Config is the Decoder configuration file. For details, see Section 2.5.2.

 Input is the input file name (use complete path).

 Output/Reference is the output file name (if X is 0) or reference file
name (if X is 1).

A sample Testvecs.cfg file is as shown:

1
..\..\Test\TestVecs\Config\Testparams.cfg
..\..\Test\TestVecs\Input\SA00050.vc1
..\..\Test\TestVecs\Output\SA00050_REF_OUT.yuv
0
..\..\Test\TestVecs\Config\Testparams.cfg
..\..\Test\TestVecs\Input\SA00050.vc1
..\..\Test\TestVecs\Output\SA00050_OUT.yuv

2.5.2 Decoder Configuration File

The decoder configuration file, Testparams.cfg contains the configuration
parameters required for the decoder. The Testparams.cfg file is available in
the \Client\Test\TestVecs\Config sub-directory.

A sample Testparams.cfg file is as shown:

Input File Format is as follows
<ParameterName> = <ParameterValue> # Comment

Parameters
###

ImageWidth = 720 # Image width in Pels, must be
 multiples of 16
ImageHeight = 576 # Image height in Pels, must be
 multiples of 16
ChromaFormat = 1 # 1 => XDM_YUV_420P,
 4 => XDM_YUV_422ILE
FramesToDecode = 110 # Number of frames to be coded

Note:

 For the RCV streams an additional Testparams file,
Testparams_RCVStreams.cfg is included, which has the parameter
IsElementaryStream determining VC1/RCV streams in addition to
the parameters already specified in the Testparams file.

Any field in the IVIDDEC_Params structure (see Section 4.2.1.5) can be
set in the Testparams.cfg file using the syntax shown above. If you specify
additional fields in the Testparams.cfg file, ensure to modify the test
application appropriately to handle these fields.

Installation Overview

2-7

2.6 Standards Conformance and User-Defined Inputs

To check the conformance of the codec for the default input file shipped
along with the codec, follow the steps as described in Section 2.4.

To check the conformance of the codec for other input files of your choice,
follow these steps:

1) Copy the input files to the \Client\Test\TestVecs\Inputs sub-directory.

2) Copy the reference files to the \Client\Test\TestVecs\Reference sub-
directory.

3) Edit the configuration file, Testvecs.cfg available in the
\Client\Test\TestVecs\Config sub-directory. For details on the format of
the Testvecs.cfg file, see Section 2.5.1.

4) Execute the sample test application. On successful completion, the
application displays one of the following messages for each frame:

o “Decoder compliance test passed/failed” (if X is 1)

o “Decoder output dump completed” (if X is 0)

If you have chosen the option to write to an output file (X is 0), you can use
any standard file comparison utility to compare the codec output with the
reference output and check for conformance.

2.7 Uninstalling the Component

To uninstall the component, delete the codec directory from your hard disk.

2.8 Evaluation Version

If you are using an evaluation version of this codec a Texas Instruments
logo will be visible in the output.

Installation Overview

2-8

This page is intentionally left blank

3-1

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application
that accompanies this codec component.

Sample Usage

3-2

3.1 Overview of the Test Application

The test application exercises the IVIDDEC base class of the VC-1
Decoder library. The main test application files are TestAppDecoder.c and
TestAppDecoder.h. These files are available in the \Client\Test\Src and
\Client\Test\Inc sub-directories respectively.

Figure 3-1 depicts the sequence of APIs exercised in the sample test
application.

XDAIS-XDM Interface Codec Library

Al
go

rit
hm

In

st
an

ce

De
let

io
n

Al
go

rit
hm

In

st
an

ce
 C

re
at

io
n

an
d

In
iti

ali
za

tio
n

Pa
ra

m
et

er

Se
tu

p

DMAN3_init()

 algInit()
algAlloc()

algNumAlloc()

DMAN3_grantDmaChannels()

Pr
oc

es
s

Ca
ll

algActivate
control()
process()
control()

algDeactivate()

DMAN3_releaseDmaChannels()

DMAN3_exit()
algNumAlloc()
 algFree()

Test Application

Figure 3-1. Test Application Sample Implementation

Sample Usage

3-3

The test application is divided into four logical blocks:

 Parameter setup

 Algorithm instance creation and initialization

 Process call

 Algorithm instance deletion

3.1.1 Parameter Setup

Each codec component requires various codec configuration parameters to
be set at initialization. For example, a video codec requires parameters
such as video height, video width, etc. The test application obtains the
required parameters from the Decoder configuration files.

In this logical block, the test application does the following:

1) Opens the generic configuration file, Testvecs.cfg and reads the
compliance checking parameter, Decoder configuration file name
(Testparams.cfg), input file name, and output/reference file name.

2) Opens the Decoder configuration file, (Testparams.cfg) and reads the
various configuration parameters required for the algorithm.

For more details on the configuration files, see Section 2.5.

3) Sets the IVIDDEC_Params structure based on the values it reads from
the Testparams.cfg file.

4) Initializes the various DMAN3 parameters.

5) Reads the input bit stream into the application input buffer.

After successful completion of the above steps, the test application does
the algorithm instance creation and initialization.

3.1.2 Algorithm Instance Creation and Initialization

In this logical block, the test application accepts the various initialization
parameters and returns an algorithm instance pointer. The following APIs
are called in sequence:

1) algNumAlloc() - To query the algorithm about the number of memory
records it requires.

2) algAlloc() - To query the algorithm about the memory requirement
to be filled in the memory records.

3) algInit() - To initialize the algorithm with the memory structures
provided by the application.

A sample implementation of the create function that calls algNumAlloc(),
algAlloc(), and algInit() in sequence is provided in the
ALG_create() function implemented in the alg_create.c file.

Sample Usage

3-4

After successful creation of the algorithm instance, the test application
does DMA resource allocation for the algorithm. This requires initialization
of DMA Manager Module and grant of DMA resources. This is
implemented by calling DMAN3 interface functions in the following
sequence:

1) DMAN3_init() - To initialize the DMAN module.

2) DMAN3_grantDmaChannels() - To grant the DMA resources to the
algorithm instance.

Note:

DMAN3 function implementations are provided in dman3.a64P library.

3.1.3 Process Call

After algorithm instance creation and initialization, the test application does
the following:

1) Sets the dynamic parameters (if they change during run time) by
calling the control() function with the XDM_SETPARAMS command.

2) Sets the input and output buffer descriptors required for the
process() function call. The input and output buffer descriptors are
obtained by calling the control() function with the XDM_GETBUFINFO
command.

3) Calls the process() function to encode/decode a single frame of data.
The behavior of the algorithm can be controlled using various dynamic
parameters (see Section 4.2.1.6). The inputs to the process function
are input and output buffer descriptors, pointer to the
IVIDDEC_InArgs and IVIDDEC_OutArgs structures.

The control() and process() functions should be called only within the
scope of the algActivate() and algDeactivate() XDAIS functions
which activate and deactivate the algorithm instance respectively. Once an
algorithm is activated, there could be any ordering of control() and
process() functions. The following APIs are called in sequence:

1) algActivate() - To activate the algorithm instance.

2) control() (optional) - To query the algorithm on status or setting of
dynamic parameters etc., using the six available control commands.

3) process() - To call the Decoder with appropriate input/output buffer
and arguments information.

4) control() (optional) - To query the algorithm on status or setting of
dynamic parameters etc., using the six available control commands.

5) algDeactivate() - To deactivate the algorithm instance.

The do-while loop encapsulates frame level process() call and updates
the input buffer pointer every time before the next call. The do-while loop
breaks off either when an error condition occurs or when the input buffer
exhausts. It also protects the process() call from file operations by

Sample Usage

3-5

placing appropriate calls for cache operations as well. The test application
does a cache invalidate for the valid input buffers before process() and a
cache write back invalidate for output buffers after process().

In the sample test application, after calling algDeactivate(), the output
data is either dumped to a file or compared with a reference file.

3.1.4 Algorithm Instance Deletion

Once decoding/encoding is complete, the test application must release the
DMA channels granted by the DMA Manager interface and delete the
current algorithm instance. The following APIs are called in sequence:

1) DMAN3_releaseDmaChannels() - To remove logical channel
resources from an algorithm instance.

2) DMAN3_exit() - To free DMAN3 memory resources.

3) algNumAlloc() - To query the algorithm about the number of memory
records it used.

4) algFree() - To query the algorithm to get the memory record
information.

A sample implementation of the delete function that calls algNumAlloc()
and algFree() in sequence is provided in the ALG_delete() function
implemented in the alg_create.c file.

Sample Usage

3-6

This page is intentionally left blank

4-1

Chapter 4

API Reference

This chapter provides a detailed description of the data structures and
interfaces functions used in the codec component.

Topic Page

4.1 Symbolic Constants and Enumerated Data Types 4-2

4.2 Data Structures 4-7

4.3 Interface Functions 4-17

API Reference

4-2

4.1 Symbolic Constants and Enumerated Data Types

This section summarizes all the symbolic constants specified as either
#define macros and/or enumerated C data types. Described alongside the
macro or enumeration is the semantics or interpretation of the same in
terms of what value it stands for and what it means.

Table 4-1. List of Enumerated Data Types
Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_I_FRAME Intra coded frame

IVIDEO_P_FRAME Forward inter coded frame

IVIDEO_B_FRAME Bi-directional inter coded frame

IVIDEO_FrameType

IVIDEO_IDR_FRAME Intra coded frame that can be used
for refreshing video content

IVIDEO_PROGRESSIVE Progressive video content IVIDEO_ContentType

IVIDEO_INTERLACED Interlaced video content

IVIDEO_NO_SKIP Do not skip the current frame.
Not supported in this version of VC-1
Decoder

IVIDEO_SKIP_P Skip forward inter coded frame.
Not supported in this version of VC-1
Decoder

IVIDEO_SKIP_B Skip bi-directional inter coded frame.
Not supported in this version of VC-1
Decoder

IVIDEO_FrameSkip

IVIDEO_SKIP_I Skip intra coded frame.
Not supported in this version of VC-1
Decoder

XDM_BYTE Big endian stream.

XDM_LE_16 16-bit little endian stream.
Not supported in this version of VC-1
Decoder

XDM_DataFormat

XDM_LE_32 32-bit little endian stream.
Not supported in this version of VC-1
Decoder

XDM_YUV_420P YUV 4:2:0 planar XDM_ChromaFormat

XDM_YUV_422P YUV 4:2:2 planar.
Not supported in this version of VC-1
Decoder

API Reference

4-3

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_YUV_422IBE YUV 4:2:2 interleaved (big endian).
Not supported in this version of VC-1
Decoder.

XDM_YUV_422ILE YUV 4:2:2 interleaved (little endian)

XDM_YUV_444P YUV 4:4:4 planar.
Not supported in this version of VC-1
Decoder.

XDM_YUV_411P YUV 4:1:1 planar.
Not supported in this version of VC-1
Decoder.

XDM_GRAY Gray format.
Not supported in this version of VC-1
Decoder.

XDM_RGB RGB color format.
Not supported in this version of VC-1
Decoder.

XDM_GETSTATUS Query algorithm instance to fill
Status structure

XDM_SETPARAMS Set run-time dynamic parameters via
the DynamicParams structure

XDM_RESET Reset the algorithm. All fields in the
internal data structures are reset and
all internal buffers are flushed. After
you have reset the decoder, the
decoder will start decoding from the
point where it detects a sequence
header in the bit stream. Any external
buffers passed by the system to the
decoder are assumed to be freed by
the decoder after a reset.

XDM_SETDEFAULT Initialize all fields in Params
structure to default values specified in
the library

XDM_FLUSH Flushes the last output frame data for
display. control() API should be
called with the XDM_FLUSH
command only after the decode of
the last frame in the sequence.

XDM_CmdId

XDM_GETBUFINFO Query algorithm instance regarding
the properties of input and output
buffers

XDM_DecMode XDM_DECODE_AU Decode entire frame including all the
headers

API Reference

4-4

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_PARSE_HEADER Decode only the sequence/entry
point frame header. Not supported in
this version of VC-1 Decoder.

XDM_APPLIEDCONCEALMENT Bit 9
 1 - Applied concealment
 0 - Ignore

XDM_INSUFFICIENTDATA Bit 10
 1 - Insufficient data
 0 - Ignore

XDM_CORRUPTEDDATA Bit 11
 1 - Data problem/corruption
 0 - Ignore

XDM_CORRUPTEDHEADER Bit 12
 1 - Header problem/corruption
 0 - Ignore

XDM_UNSUPPORTEDINPUT Bit 13
 1 - Unsupported

feature/parameter in input
 0 - Ignore

XDM_UNSUPPORTEDPARAM Bit 14
 1 - Unsupported input parameter

or configuration
 0 - Ignore

XDM_ErrorBit

XDM_FATALERROR Bit 15
 1 - Fatal error (stop encoding)
 0 - Recoverable error

Note:

The remaining bits that are not mentioned in XDM_ErrorBit are
interpreted as:

 Bit 16-32: Reserved

 Bit 8: Reserved

 Bit 0-7: Codec and implementation specific (see Table 4-2)

The algorithm can set multiple bits to 1 depending on the error condition.

The VC-1 Decoder specific error status messages are listed in
Table 4-2. The Value column indicates the decimal value of the last 8-bits
reserved for codec specific error statuses.

API Reference

4-5

Table 4-2. VC-1 Decoder Error Status
Group or
Enumerat
ion Class

Symbolic Constant Name Value Description or Evaluation

WMVDEC_invalidBitstreamAddre
ss

1 Bit stream points to NULL

WMVDEC_nullBitstreamAddress 2 The input pointer is set to NULL

WMVDEC_insufficientData 3 Input bitstream incomplete to decode a
frame

WMVDEC_corruptedHeader 4 Corrupted header to the decoder

WMVDEC_corruptedBitStream 5 Corrupted bit stream to the decoder

WMVDEC_duringInitialization 6 Sequence header not found or insufficient
data in the stream

WMVDEC_invalidCodecVersion 7 Unsupported WMV version

WMVDEC_allocFailure 8 Memory allocation error

WMVDEC_systemError 9 Memory Related error

WMVDEC_skippedFrame_USF 12 Indicates that skipped frame is not
supported

WMVDEC_unsupported_BS 13 Unsupported codec version of WMV

WMVDEC_internalErrorBBOR 14 Error during Bounding box computations

WMVDEC_internalErrorMBDec1 15 Failed to decode MB overhead in frame

WMVDEC_internalErrorMBDec2 16 Failed in MB decode

WMVDEC_nullWmvDecObject 17 Instance points to NULL

WMVDEC_insufficientMemoryDur
ingInit

19 Insufficient memory to handle decoding
process

WMVDEC_internalErrorHWFE1 21 Error at Huffman decoding

WMVDEC_internalErrorHWFE2 22 Error at Huffman decoding

WMVDEC_unsupportedFeature 24 Indicates unsupported feature

WMVDEC_internalErrorWQ 27 Wrong QP

WMVDEC_unsupportedFeatureInt
erlace

28 Indicates Interlace decoding of main
profile stream not supported

WMVDEC_
STATUS

WMVDEC_unsupportedFeatureSpr
ite

29 Indicates SpriteMode not supported

API Reference

4-6

Group or
Enumerat
ion Class

Symbolic Constant Name Value Description or Evaluation

WMVDEC_unsupportedFeatureX8I
Intra

30 Unsupported header bits for transform
type

WMVDEC_unsupportedFeatureMul
tiRes

31 Multi resolution video not supported

WMVDEC_unsupportedFeatureBet
a

33 Indicates non RTM compatible bit-stream
is not supported

WMVDEC_unsupportedFeatureCom
plex

34 Indicate WMV3_PC_PROFILE not
supported

WMVDEC_startCodeNotFound 35 Start code not found

WMVDEC_invalidStartcode 36 Inappropriate start code

WMVDEC_flushBitNotFound 37 Flush bit not found

Note:

The missing constants are not applicable for this version of VC-1
Decoder.

API Reference

4-7

4.2 Data Structures

This section describes the XDM defined data structures that are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

4.2.1 Common XDM Data Structures

This section includes the following common XDM data structures:

 XDM_BufDesc

 XDM_AlgBufInfo

 IVIDEO_BufDesc

 IVIDDEC_Fxns

 IVIDDEC_Params

 IVIDDEC_DynamicParams

 IVIDDEC_InArgs

 IVIDDEC_Status

 IVIDDEC_OutArgs

API Reference

4-8

4.2.1.1 XDM_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.
║ Fields

Field Datatype Input/
Output

Description

**bufs XDAS_Int8 Input Pointer to the vector containing buffer addresses

numBufs XDAS_Int32 Input Number of buffers

*bufSizes XDAS_Int32 Input Size of each buffer in bytes

4.2.1.2 XDM_AlgBufInfo

║ Description

This structure defines the buffer information descriptor for input and output
buffers. This structure is filled when you invoke the control() function
with the XDM_GETBUFINFO command.

║ Fields

Field Datatype Input/
Output

Description

minNumInBufs XDAS_Int32 Output Number of input buffers

minNumOutBufs XDAS_Int32 Output Number of output buffers

minInBufSize[XDM_
MAX_IO_BUFFERS]

XDAS_Int32 Output Size in bytes required for each input buffer

minOutBufSize[XDM
_MAX_IO_BUFFERS]

XDAS_Int32 Output Size in bytes required for each output buffer

Note:

For VC-1 Decoder, the buffer details are:

 Number of input buffer required is 1

 Number of output buffer required is 1 for YUV 422ILE and 3 for
YUV420P

There is no restriction on input buffer size except that it should contain at
least one frame of encoded data.

API Reference

4-9

4.2.1.3 IVIDEO_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.

║ Fields

Field Datatype Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers

width XDAS_Int32 Input Padded width of the video data

*bufs[XDM_MAX_IO_BUFFERS] XDAS_Int8 Input Pointer to the vector containing
buffer addresses

bufSizes[XDM_MAX_IO_BUFFERS] XDAS_Int32 Input Size of each buffer in bytes

4.2.1.4 IVIDDEC_Fxns

║ Description

This structure contains pointers to all the XDAIS and XDM interface
functions.

║ Fields

Field Datatype Input/
Output

Description

ialg IALG_Fxns Input Structure containing pointers to all the XDAIS
interface functions.

For more details, see TMS320 DSP Algorithm
Standard API Reference (literature number
SPRU360).

*process XDAS_Int32 Input Pointer to the process() function

*control XDAS_Int32 Input Pointer to the control() function

API Reference

4-10

4.2.1.5 IVIDDEC_Params

║ Description

This structure defines the creation parameters for an algorithm instance
object. Set this data structure to NULL, if you are unsure of the values to be
specified for these parameters.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

maxHeight XDAS_Int32 Input Maximum video height to be supported in pixels

maxWidth XDAS_Int32 Input Maximum video width to be supported in pixels

maxFrameRate XDAS_Int32 Input Maximum frame rate in fps * 1000 to be
supported.

maxBitRate XDAS_Int32 Input Maximum bit rate to be supported in bits per
second. For example, if bit rate is 10 Mbps, set
this field to 10485760.

dataEndianness XDAS_Int32 Input Endianness of input data. See
XDM_DataFormat enumeration for details.

forceChromaFormat XDAS_Int32 Input Sets the output to the specified format. For
example, if the output should be in YUV 4:2:2
interleaved (little endian) format, set this field to
XDM_YUV_422ILE.

See XDM_ChromaFormat enumeration for
details.

Note:

 VC-1 Decoder does not use the maxFrameRate, maxBitRate, and
dataEndianess fields for creating the algorithm instance.

 Only XDM_BYTE is supported for DataEndianness.

 Maximum video height and width supported are 576 pixels and 720
pixels respectively.

API Reference

4-11

4.2.1.6 IVIDDEC_DynamicParams

║ Description

This structure defines the run time parameters for an algorithm instance
object. Set this data structure to NULL, if you are unsure of the values to
be specified for these parameters.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

decodeHeader XDAS_Int32 Input Number of access units to decode:
 0 (XDM_DECODE_AU) - Decode entire frame

including all the headers
 1 (XDM_PARSE_HEADER) - Decode only one

NAL unit

displayWidth XDAS_Int32 Input If the field is set to:
 0 - Uses decoded image width as pitch
 If any other value greater than the decoded image

width is given, then this value in pixels is used as
pitch.

frameSkipMode XDAS_Int32 Input Frame skip mode. See IVIDEO_FrameSkip
enumeration for details.

Note:

The fields frameSkipMode is not supported in this version of VC-1
Decoder.

XDM_PARSE_HEADER is not supported in this version of VC-1 Decoder.

API Reference

4-12

4.2.1.7 IVIDDEC_InArgs

║ Description

This structure defines the run time input arguments for an algorithm
instance object.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

numBytes XDAS_Int32 Input Size of input data (in bytes) provided to the algorithm for
decoding

inputID XDAS_Int32 Input Application passes this ID to algorithm and decoder will
attach this ID to the corresponding output frames. This is
useful in case of re-ordering (for example, B frames). If
there is no re-ordering, outputID field in the
IVIDDEC_OutArgs data structure will be same as
inputID field.

API Reference

4-13

4.2.1.8 IVIDDEC_Status

║ Description

This structure defines parameters that describe the status of an algorithm
instance object.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

extendedError XDAS_Int32 Output Extended error code. See XDM_ErrorBit
enumeration for details.

outputHeight XDAS_Int32 Output Output height in pixels

outputWidth XDAS_Int32 Output Output width in pixels

frameRate XDAS_Int32 Output Average frame rate in fps * 1000. The
average frame rate for all video decoders is
30 fps.

bitRate XDAS_Int32 Output Average bit rate in bits per second

contentType XDAS_Int32 Output Video content. See
IVIDEO_ContentType enumeration for
details.

outputChromaFormat XDAS_Int32 Output Output chroma format. See
XDM_ChromaFormat enumeration for
details.

bufInfo XDM_AlgBufInfo Output Input and output buffer information. See
XDM_AlgBufInfo data structure for
details.

Note:

 The decoder, for few erroneous test streams under some rare
circumstances may not set the extendedError parameter.

 For VC-1 Decoder, the bitRate is expressed in Kilo bits per
second.

API Reference

4-14

4.2.1.9 IVIDDEC_OutArgs

║ Description

This structure defines the run time output arguments for an algorithm
instance object.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

extendedError XDAS_Int32 Output Extended error code. See XDM_ErrorBit
enumeration for details.

bytesConsumed XDAS_Int32 Output Bytes consumed per decode call

decodedFrameType XDAS_Int32 Output Decoded frame type. See IVIDEO_FrameType
enumeration for more details.

outputID XDAS_Int32 Output Output ID. See inputID field description in
IVIDDEC_InArgs data structure for details.

displayBufs IVIDEO_Buf
Desc

Output Decoder fills this structure to denote the buffer
pointers for current frames. In case of sequences
having I and P frames only, these values are
identical to the output buffers (outBufs) passed using
the process call.

Note:

The field decodedFrametype gives the frame type of the current frame
decoded and it is -1 when RCV header is decoded. A value of -1
indicates the decoded frame type is Not Applicable (NA) for the frame
decoded. This may appear sometimes for the erroneous bit streams.

API Reference

4-15

4.2.2 VC-1 Decoder Data Structures

This section includes the following VC-1 Decoder specific extended data
structures:

 IVC1DEC_Params

 IVC1DEC_DynamicParams

 IVC1DEC_InArgs

 IVC1DEC_Status

 IVC1DEC_OutArgs

API Reference

4-16

4.2.2.1 IVC1DEC_Params

║ Description

This structure defines the creation parameters and any other
implementation specific parameters for a VC-1 Decoder instance object.
The creation parameters are defined in the XDM data structure,
IVIDDEC_Params.

║ Fields

Field Datatype Input/
Output

Description

viddecParams IVIDDEC_Params Input See IVIDDEC_Params data structure for
details.

4.2.2.2 IVC1DEC_DynamicParams

║ Description

This structure defines the run time parameters and any other
implementation specific parameters for a VC-1 Decoder instance object.
The run time parameters are defined in the XDM data structure,
IVIDDEC_DynamicParams.

║ Fields

Field Datatype Input/
Output

Description

viddecDynamicParams IVIDDEC_DynamicParams Input See IVIDDEC_DynamicParams
data structure for details.

bIsElementaryStream XDAS_UInt8 Input Flag indicating the type of input
stream:

 1 - Indicates that the stream is
an elementary stream

 2 - Indicates that the stream is
an RCV stream

Note:

The Test Wrapper supports both VC1 and RCV streams and only
bIsElementaryStream variable needs to be set properly.

4.2.2.3 IVC1DEC_InArgs

║ Description

API Reference

4-17

This structure defines the run time input arguments for a VC-1 Decoder
instance object.

║ Fields

Field Datatype Input/

Output
Description

viddecInArgs IVIDDEC_InArgs Input See IVIDDEC_InArgs data structure for
details.

4.2.2.4 IVC1DEC_Status

║ Description

This structure defines parameters that describe the status of the VC-1
Decoder and any other implementation specific parameters. The status
parameters are defined in the XDM data structure, IVIDDEC_Status.

║ Fields

Field Datatype Input/
Output

Description

viddecStatus IVIDDEC_Status Input See IVIDDEC_Status data structure for
details.

4.2.2.5 IVC1DEC_OutArgs

║ Description

This structure defines the run time output arguments for the VC-1 Decoder
instance object.

║ Fields

Field Datatype Input/

Output
Description

viddecOutArgs IVIDDEC_OutArgs Output See IVIDDEC_OutArgs data structure for
details.

API Reference

4-18

4.3 Interface Functions

This section describes the Application Programming Interfaces (APIs) used
in the VC-1 Decoder. The APIs are logically grouped into the following
categories:

 Creation – algNumAlloc(), algAlloc()

 Initialization – algInit()

 Control – control()

 Data processing – algActivate(), process(), algDeactivate()

 Termination – algFree()

You must call these APIs in the following sequence:

1) algNumAlloc()

2) algAlloc()

3) algInit()

4) algActivate()

5) process()

6) algDeactivate()

7) algFree()

control() can be called any time after calling the algInit() API.

algNumAlloc(), algAlloc(), algInit(), algActivate(),
algDeactivate(), and algFree() are standard XDAIS APIs. This
document includes only a brief description for the standard XDAIS APIs.
For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

4.3.1 Creation APIs

Creation APIs are used to create an instance of the component. The term
creation could mean allocating system resources, typically memory.

API Reference

4-19

║ Name

algNumAlloc() – determine the number of buffers that an algorithm
requires

║ Synopsis

XDAS_Int32 algNumAlloc(Void);
║ Arguments

Void
║ Return Value

XDAS_Int32; /* number of buffers required */
║ Description

algNumAlloc() returns the number of buffers that the algAlloc()
method requires. This operation allows you to allocate sufficient space to
call the algAlloc() method.

algNumAlloc() may be called at any time and can be called repeatedly
without any side effects. It always returns the same result. The
algNumAlloc() API is optional.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc()

API Reference

4-20

║ Name

algAlloc() – determine the attributes of all buffers that an algorithm
requires

║ Synopsis

XDAS_Int32 algAlloc(const IALG_Params *params, IALG_Fxns
**parentFxns, IALG_MemRec memTab[]);

║ Arguments

IALG_Params *params; /* algorithm specific attributes */

IALG_Fxns **parentFxns;/* output parent algorithm
functions */

IALG_MemRec memTab[]; /* output array of memory records */
║ Return Value

XDAS_Int32 /* number of buffers required */
║ Description

algAlloc() returns a table of memory records that describe the size,
alignment, type, and memory space of all buffers required by an algorithm.
If successful, this function returns a positive non-zero value indicating the
number of records initialized.

The first argument to algAlloc() is a pointer to a structure that defines
the creation parameters. This pointer may be NULL; however, in this case,
algAlloc() must assume default creation parameters and must not fail.

The second argument to algAlloc() is an output parameter.
algAlloc() may return a pointer to its parent’s IALG functions. If an
algorithm does not require a parent object to be created, this pointer must
be set to NULL.

The third argument is a pointer to a memory space of size
nbufs * sizeof(IALG_MemRec) where, nbufs is the number of buffers
returned by algNumAlloc() and IALG_MemRec is the buffer-descriptor
structure defined in ialg.h.

After calling this function, memTab[] is filled up with the memory
requirements of an algorithm.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algNumAlloc(), algFree()

4.3.2 Initialization API

Initialization API is used to initialize an instance of the algorithm. The
initialization parameters are defined in the Params structure (see Data
Structures section for details).

API Reference

4-21

║ Name

algInit() – initialize an algorithm instance
║ Synopsis

XDAS_Int32 algInit(IALG_Handle handle, IALG_MemRec
memTab[], IALG_Handle parent, IALG_Params *params);

║ Arguments

IALG_Handle handle; /* algorithm instance handle*/

IALG_memRec memTab[]; /* array of allocated buffers */

IALG_Handle parent; /* handle to the parent instance */

IALG_Params *params; /* algorithm initialization
parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
║ Description

algInit() performs all initialization necessary to complete the run time
creation of an algorithm instance object. After a successful return from
algInit(), the instance object is ready to be used to process data.

The first argument to algInit() is a handle to an algorithm instance. This
value is initialized to the base field of memTab[0].

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers allocated
for an algorithm instance. The number of initialized records is identical to
the number returned by a prior call to algAlloc().

The third argument is a handle to the parent instance object. If there is no
parent object, this parameter must be set to NULL.

The last argument is a pointer to a structure that defines the algorithm
initialization parameters.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc(), algMoved()

4.3.3 Control API

Control API is used for controlling the functioning of the algorithm instance
during run-time. This is done by changing the status of the controllable
parameters of the algorithm during run-time. These controllable parameters
are defined in the Status data structure (see Data Structures section for
details).

API Reference

4-22

║ Name

control() – change run time parameters and query the status
║ Synopsis

XDAS_Int32 (*control) (IVIDDEC_Handle handle, IVIDDEC_Cmd
id, IVIDDEC_DynamicParams *params, IVIDDEC_Status
*status);

║ Arguments

IVIDDEC_Handle handle; /* algorithm instance handle */

IVIDDEC_Cmd id; /* algorithm specific control commands*/

IVIDDEC_DynamicParams *params /* algorithm run time
parameters */

IVIDDEC_Status *status /* algorithm instance status
parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
║ Description

This function changes the run time parameters of an algorithm instance
and queries the algorithm’s status. control() must only be called after a
successful call to algInit() and must never be called after a call to
algFree().

The first argument to control() is a handle to an algorithm instance.

The second argument is an algorithm specific control command. See
XDM_CmdId enumeration for details.

The third and fourth arguments are pointers to the
IVIDDEC_DynamicParams and IVIDDEC_Status data structures
respectively.

Note:

If you are using extended data structures, the third and fourth arguments
must be pointers to the extended DynamicParams and Status data
structures respectively. Also, ensure that the size field is set to the size
of the extended data structure. Depending on the value set for the size
field, the algorithm uses either basic or extended parameters.

API Reference

4-23

║ Preconditions

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

 control() can only be called after a successful return from
algInit() and algActivate().

 If algorithm uses DMA resources, control() can only be called after
a successful return from DMAN3_init().

 handle must be a valid handle for the algorithm’s instance object.
║ Postconditions

The following conditions are true immediately after returning from this
function.

 If the control operation is successful, the return value from this
operation is equal to IALG_EOK; otherwise it is equal to either
IALG_EFAIL or an algorithm specific return value.

 If the control command is not recognized, the return value from this
operation is not equal to IALG_EOK.

║ Example

See test application file, TestAppDecoder.c available in the \Client\Test\Src
sub-directory.

║ See Also

algInit(), algActivate(), process()

Note:

For VC1/RCV streams, the last frame can be obtained only by calling the
Control API with Flush command and then calling the process API for
getting the output in output buffers.

4.3.4 Data Processing API

Data processing API is used for processing the input data.

API Reference

4-24

║ Name

algActivate() – initialize scratch memory buffers prior to processing.
║ Synopsis

Void algActivate(IALG_Handle handle);
║ Arguments

IALG_Handle handle; /* algorithm instance handle */
║ Return Value

Void
║ Description

algActivate() initializes any of the instance’s scratch buffers using the
persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algActivate() is an algorithm instance
handle. This handle is used by the algorithm to identify various buffers that
must be initialized prior to calling any of the algorithm’s processing
methods.

For more details, see TMS320 DSP Algorithm Standard API Reference.
(literature number SPRU360).

║ See Also

algDeactivate()

API Reference

4-25

║ Name

process() – basic encoding/decoding call
║ Synopsis

XDAS_Int32 (*process)(IVIDDEC_Handle handle, XDM_BufDesc
*inBufs, XDM_BufDesc *outBufs, IVIDDEC_InArgs *inargs,
IVIDDEC_OutArgs *outargs);

║ Arguments

IVIDDEC_Handle handle; /* algorithm instance handle */

XDM_BufDesc *inBufs; /* algorithm input buffer descriptor
*/

XDM_BufDesc *outBufs; /* algorithm output buffer descriptor
*/

IVIDDEC_InArgs *inargs /* algorithm runtime input
arguments */

IVIDDEC_OutArgs *outargs /* algorithm runtime output
arguments */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
║ Description

This function does the basic encoding/decoding. The first argument to
process() is a handle to an algorithm instance.

The second and third arguments are pointers to the input and output buffer
descriptor data structures respectively (see XDM_BufDesc data structure
for details).

The fourth argument is a pointer to the IVIDDEC_InArgs data structure
that defines the run time input arguments for an algorithm instance object.

The last argument is a pointer to the IVIDDEC_OutArgs data structure that
defines the run time output arguments for an algorithm instance object.

Note:

If you are using extended data structures, the fourth and fifth arguments
must be pointers to the extended InArgs and OutArgs data structures
respectively. Also, ensure that the size field is set to the size of the
extended data structure. Depending on the value set for the size field,
the algorithm uses either basic or extended parameters.

║ Preconditions

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

 process() can only be called after a successful return from
algInit() and algActivate().

API Reference

4-26

 If algorithm uses DMA resources, process() can only be called after
a successful return from DMAN3_init().

 handle must be a valid handle for the algorithm’s instance object.

 Buffer descriptor for input and output buffers must be valid.

 Input buffers must have valid input data.
║ Postconditions

The following conditions are true immediately after returning from this
function.

 If the process operation is successful, the return value from this
operation is equal to IALG_EOK; otherwise it is equal to either
IALG_EFAIL or an algorithm specific return value.

 After successful return from process() function, algDeactivate()
can be called.

║ Example

See test application file, TestAppDecoder.c available in the \Client\Test\Src
sub-directory.

║ See Also

algInit(), algDeactivate(), control()

Note:

 A video encoder or decoder cannot be preempted by any other
video encoder or decoder instance. That is, you cannot perform task
switching while encode/decode of a particular frame is in progress.
Pre-emption can happen only at frame boundaries and after
algDeactivate() is called.

 Any codec specific notes for process function.

API Reference

4-27

║ Name

algDeactivate() – save all persistent data to non-scratch memory
║ Synopsis

Void algDeactivate(IALG_Handle handle);
║ Arguments

IALG_Handle handle; /* algorithm instance handle */
║ Return Value

Void
║ Description

algDeactivate() saves any persistent information to non-scratch buffers
using the persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algDeactivate() is an algorithm
instance handle. This handle is used by the algorithm to identify various
buffers that must be saved prior to next cycle of algActivate() and
processing.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algActivate()

4.3.5 Termination API

Termination API is used to terminate the algorithm instance and free up the
memory space that it uses.

API Reference

4-28

║ Name

algFree() – determine the addresses of all memory buffers used by the
algorithm

║ Synopsis

XDAS_Int32 algFree(IALG_Handle handle, IALG_MemRec
memTab[]);

║ Arguments

IALG_Handle handle; /* handle to the algorithm instance */

IALG_MemRec memTab[]; /* output array of memory records */
║ Return Value

XDAS_Int32; /* Number of buffers used by the algorithm */
║ Description

algFree() determines the addresses of all memory buffers used by the
algorithm. The primary aim of doing so is to free up these memory regions
after closing an instance of the algorithm.

The first argument to algFree() is a handle to the algorithm instance.

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers previously
allocated for the algorithm instance.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc()

	IMPORTANT NOTICE
	Read This First
	Contents
	Figures
	Tables
	Introduction
	1.1 Overview of XDAIS and XDM
	1.1.1 XDAIS Overview
	1.1.2 XDM Overview

	1.2 Overview of VC-1 Advanced Profile Decoder
	1.3 Supported Services and Features
	Installation Overview
	2.1 System Requirements
	2.1.1 Hardware
	2.1.2 Software

	2.2 Installing the Component
	2.3 Before Building the Sample Test Application
	2.3.1 Installing DSP/BIOS
	2.3.2 Installing Framework Component (FC)

	2.4 Building and Running the Sample Test Application
	2.5 Configuration Files
	2.5.1 Generic Configuration File
	2.5.2 Decoder Configuration File

	2.6 Standards Conformance and User-Defined Inputs
	2.7 Uninstalling the Component
	2.8 Evaluation Version

	Sample Usage
	3.1 Overview of the Test Application
	3.1.1 Parameter Setup
	3.1.2 Algorithm Instance Creation and Initialization
	3.1.3 Process Call
	3.1.4 Algorithm Instance Deletion

	API Reference
	4.1 Symbolic Constants and Enumerated Data Types
	4.2 Data Structures
	4.2.1 Common XDM Data Structures
	4.2.2 VC-1 Decoder Data Structures

	4.3 Interface Functions
	4.3.1 Creation APIs
	4.3.2 Initialization API
	4.3.3 Control API
	4.3.4 Data Processing API
	4.3.5 Termination API

