

SOMPLC-F28PLC83 System on Module for Power Line Communication

The SOMPLC-PLC83 is a self-contained hardware system on module (SOM) for power line communication, including the analog front end and the digital modem on one single PCB. It is the ideal plug-in tool for developers willing to easily and quickly evaluate the most popular narrowband power line communication standards like PRIME/G3/P1901.2 in their application environment. After the developer brings up the high voltage coupling, the SOM easily plugs into the application with standard communication ports (UART, SPI, I²C, CAN) through a connector header interface. The SOM also plugs into the TI data concentrator reference design and future PLC development tools. Hardware schematics and Gerber files are also available to simplify integration into the application PCB.

Contents

1	SOMPLC Features	2
2	SOMPLC Description	2
	Boot Modes (SW1 Positions)	
	UART SCI Communication	
5	SOMPLC 34-Pin Definition	3
6	Mechanical Specification	5
7	PLC SOM Programming	5

List of Figures

1	PCB Overview	2
2	SW1 Boot Modes	3
3	34-Pin Connector Top View	5
4	Programming Configuration Using XDS100	6
5	Port Configuration	6
6	Programming Progress Using XDS100	7
7	Programming Configuration Using Serial Port	8
8	Programming Progress Using Serial Port	9

List of Tables

1	Supported Interfaces	3
2	34-Pin Connector	4

All trademarks are the property of their respective owners.

1 **SOMPLC Features**

- Small size: 1.5 in x 1.9 in .
- PRIME and G3 Compatible
- F28PLC83 PLC engine with VCU
- **CENELEC** A functionality
- AFE031 integrated analog front end .
- 34-pin mini header for interfacing with other boards
- Multiple serial communications interfaces available including UART, SPI, I²C, and CAN
- Additional ADC interface
- Additional GPIO interfaces

2 **SOMPLC** Description

Figure 1 shows an overview of the SOMPLC PCB and its components.

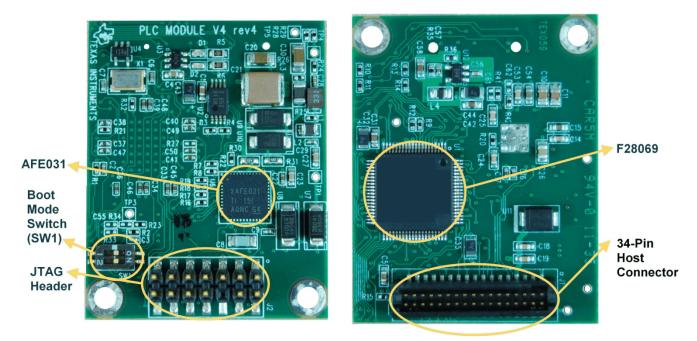
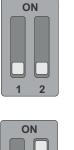
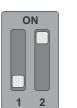



Figure 1. PCB Overview



3 Boot Modes (SW1 Positions)

Figure 2 shows how to set the boot mode using switch SW1.

FLASH Boot Mode (Default Setting) Position 1: OFF Position 2: OFF

SCI-A Boot Mode Position 1: OFF Position 2: ON

Figure 2. SW1 Boot Modes

4 UART SCI Communication

To communicate with the SCI, the following requirements must be met.

Baud Rate = 57600 Message Data Bits = 8 Stop Bits = One Parity = None Handshake = None RTS Enable = True

NOTE: There is no RS232 driver on the SOMPLC. Therefore, external communications with RS232 devices must be considered external to this design.

5 SOMPLC 34-Pin Definition

Table 1 shows the interfaces and connections that are supported on this module. Table 2 describes each pin in the 34-pin connector.

Required Connections	Optional Connections
• SCI (UART)	• ADC
• Line	GPIOs
• 15 V	SCI (UART)
• 3V3	• CAN
• GND	• SPI
	• I2C
	Zero Cross
	Analog Gnd

Table 1. Supported Interfaces

4

Table 2. 34-Pin Connector

Pin	Name	I/O	Electrical	Description	
1	L1	I/O	0 V (GND)	Neutral (analog ground), connected to the PL coupler	
2	L2	I/O	0 V (±6 V Peak)	Analog PLC signal, connected to the PL coupler	
3	NC	NC	-	Unused	
4	NC	NC	-	Unused	
5	GND	-	-	Ground	
6	GND	-	-	Ground	
7	V15	-	+15 V to +18 V	Power supply pin (+15V). Peak current 400 mA in transmit mode. (average 100mA)	
8	3V3	-	+3.14 V to 3.47 V	CPU and Logic Digital Power pin (+3.3V). Max current 1000mA.	
9	EN	I-I/O	-0.3 V to VCC + 0.3 V	System enable (logical level, active high). Controls power up and power down of the module. When low, the module goes to power down mode. This feature is NOT yet implemented in software or GPIO13.	
10	ZC	I	-0.5 V to 6.5 V	Buffered ZC input. The input signal MUST be isolated from the power line before entering this pin.	
11	RX-A	I	-0.3 V to VCC + 0.3 V	Asynchronous serial host transmit, SCI-A	
12	TX-A	0	-0.3 V to VCC + 0.3 V	Asynchronous serial host receive, SCI-A	
13	Phase B/GPIO	I-I/O	-0.3 V to VCC + 0.3 V	Phase B enable signal (for 3-phase selection) or GPIO5	
14	Phase C/GPIO	I/O	-0.3 V to VCC + 0.3 V	Phase C enable signal (for 3-phase selection) or GPIO10	
15	SDAA	I/O	-0.3 V to VCC + 0.3 V	I2C data pin	
16	SCLA	Ι	-0.3 V to VCC + 0.3 V	I2C clock pin	
17	ADC-B0	Ι	-0.3 V to VCC + 0.3 V	Unused ADC input. (ADC-B0).	
18	AGND	-	-	Analog Ground.	
19	GPIO26	I/O	-0.3 V to VCC + 0.3 V	Unused multi-purpose IO, GPIO26	
20	GND	-	-	Ground	
21	GPIO27	I/O	-0.3 V to VCC + 0.3 V	Unused multi-purpose IO, GPIO27	
22	GND	-	-	Ground	
23	CAN RX/GPIO	I-I/O	-0.3 V to VCC + 0.3 V	CAN RX interface or GPIO30	
24	CAN TX/GPIO	O-I/O	-0.3 V to VCC + 0.3 V	CAN TX interface or GPIO31	
25	CLKA/GPIO	I	-0.3 V to VCC + 0.3 V	SPI clock or general purpose I/O (GPIO18).	
26	STEA/GPIO	I	-0.3 V to VCC + 0.3 V	SPI slave transmit enable or general purpose I/O (GPIO19)	
27	SIMOA/GPIO	I	-0.3 V to VCC + 0.3 V	SPI slave in, master out or general purpose I/O (GPIO16)	
28	SOMIA/GPIO	0	-0.3 V to VCC + 0.3 V	SPI master in, slave out or general purpose I/O (GPIO17)	
29	System RESET	I	-0.3 V to VCC + 0.3 V		
30	GPIO04	I/O	-0.3 V to VCC + 0.3 V	Unused multi-purpose IO pin, GPIO04.	
31	NC	NC	-	Unused	
32	NC	NC	-	Unused	
33	RX-B	I	-0.3 V to VCC + 0.3 V	Asynchronous serial host receive, SCI-B	
34	TX-B	0	-0.3 V to VCC + 0.3 V	Asynchronous serial host transmit, SCI-B	
		*			

٠

6 Mechanical Specification

The connectors used on the SOMPLC are as follows:

- A male 0.05-mil header (2 x 17) is on the SOMPLC module.
- This connector is keyed so that the module cannot be placed backwards.
- An example part that fits this design is Sullins Connector Solutions part number SBH31-NBPB-D17-SP-BK, Digi-Key part number: S9108-ND
- A female 0.05 mil receptacle (2x17) should be used on the host board to mate with the SOMPLC module.
 - This connector is keyed and should follow the appropriate orientation as the male connector.
 - An Example Part that will fit this design is Sullins Connector Solutions part number SFH31-NPPB-D17-SP-BK, Digi-Key part number: S9117-ND

The top view of the connector is shown in Figure 3.

1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

Figure 3. 34-Pin Connector Top View

7 PLC SOM Programming

Depending on the end use of the SOM, different versions of the PLC software may be programmed to the module.

7.1 Using the XDS100 and CodeSkin to Program the F28069 MCU

Programming with this method eliminates the need for CCS to load the release(.out) file. A .hex release file is used instead and, therefore, CCS is not required.

- 1. Install the desired Texas Instruments PLC Development Package from www.ti.com/plc.
- 2. Download, install, and start the latest C2Prog from http://www.codeskin.com.

5

PLC SOM Programming

- 3. Set switch SW1 to "FLASH Boot Mode" as described in Section 3.
- 4. Connect a Texas Instruments XDS100 class emulator to the SOMPLC module using the 14-pin JTAG header.
- 5. Power up the SOMPLC module by applying both 15 V and 3.3 V through the 34-pin host connector.
- 6. Program the *.hex file (located in C:\Texas Instruments\<PackageName>\SW\bin) as shown in Figure 4. Select "28069,67,66" in the Target pulldown list and "JTAG" in the Options pulldown list.

File by codeskin.com File: stringer stringer stringer Programming Configuration stringer Target: 28069,67,66 Options: JTAG Code Security: Options Key 1: ***** Key 2: *****						
File: s\PrimeDevelopmentPackageV6000\SW\bin\dfu_prime_f2806x.hex Select File Programming Configuration Image: 28069,67,66 Options: JTAG Image: JTAG Code Security: Options: JTAG Image: Key 1: ***** Key 1: ***** Key 2: ***** Key 3: *****						
s\PrimeDevelopmentPackageV6000\SW\bin\dfu_prime_f2806x.hex Select File Programming Configuration Target: 28069,67,66 Target: 28069,67,66 Options: JTAG Code Security: Options Key 1: ***** Key 2: ***** Key 3: *****						
Target: 28069,67,66 Options: JTAG Code Security: Options Key 1: ***** Key 2: Key 3: *****						
Code Security: Options Key 1: ***** Key 2: ***** Key 3: ***** Key 4: *****						
Key 1: **** Key 2: **** Key 3: **** Key 4: ****						
Key 1. Key 2. Key 3. Key 4.						
Key 5: ***** Key 6: **** Key 7: **** Key 8: ****						
Flash Sectors to be Erased: A B C D E F G H I J Smart Sector Selection Allow OTP Programming						
Append Checksum						
Baudrate: TA: SA: SID:						
Create ehx						
Port:						
Serial CAN OJTAG Configure Ports						
XDS100v1 Program						

7. Click on the Configure Ports button and set the JTAG port to "XDS100v1".

SOMPLC-F28PLC83 System on Module for Power Line Communication

Port Configuration	
Serial port:	
×	Scan Ports
CAN port:	
~]
JTAG port:	
XD5100v1	
USB0 (USB1	
XDS100v1 XDS100v2	ncel

Figure 5. Port Configuration

8. Start flashing the F28069.

C:\temp\Texas Instruments\PrimeDevelopmentPackageV6000\SW\bin\dfu_pri 🔀		
Programming Clos	;e	
Loading kernel OK Starting kernel OK Please wait -Chip ID: 0x9F -Chip Rev: 0x00 OK. Unlocking target OK, Loading OK, Connecting with target -Flash API version: 100 OK. Erasing flash [ABCDEFGH] OK. Programming OK. Resetting target OK. You may now close this window.		
ОК		

Figure 6. Programming Progress Using XDS100

9. After programming is complete, close the program and restart the SOMPLC module.

7.2 Using Code Composer Studio and JTAG Emulator to Program the F28069 MCU

If an XDS100 emulator is not available, Code Composer Studio (CCS) and an XDS510 or XDS560 emulator can be used to program the device. Install CCS v4.2.4 or higher before you start the following procedure.

- 1. Install the desired Texas Instruments PLC Development Package from www.ti.com/plc.
- Set switch SW1 to "FLASH Boot Mode" as described in Section 3. When a JTAG emulator is used, it is capable of interrupting the set boot mode to gain control of the MCU. When the programming procedure is complete it will be necessary for the mode to be set to "FLASH Boot Mode" for the SOMPLC module to continue to work properly.
- 3. Power up SOMPLC module by applying both 15V and 3.3 V through the 34-pin host connector.
- 4. Connect the emulator to the SOMPLC module with the 14-pin JTAG cable.
- 5. Open CCS
- 6. Create a F28069 target configuration
- 7. Connect to F28069 device.
- 8. Load the PLC-specific *.out firmware located in c:\Texas Instruments\<PackageName>\SW\bin) CCS flashes the firmware onto the F28069 device.

PLC SOM Programming

7.3 Using a Serial Port (RS232 or SCI) to Program the F28069 MCU

In some situations, you can connect the SOMPLC module directly to a computer's serial port using RS232 communications. In this scenario, you must have a host board that can converting the RS232 communications protocol to work with the F28069 SCI-A port. In most cases, this can be done using an external RS232 driver device such as the MAX3221ECPWR by Texas Instruments. If this is in place, the following procedure can be used to program the MCU.

- 1. Install the desired Texas Instruments PLC Development Package from www.ti.com/plc.
- 2. Download, install, and start the latest C2Prog from http://www.codeskin.com.
- 3. Make sure the SOMPLC module is not powered on. Set switch SW1 to "SCI-A Boot Mode" as described in Section 3.
- 4. Connect SOMPLC module to the RS232 host using the appropriate cable.
- 5. Power up the SOMPLC module by applying both 15 V and 3.3 V through the 34-pin host connector.
- Program the *.hex file (located in c:\Texas Instruments\<PackageName>\SW\bin) as shown in Figure 7. If a UART cable is used, serial port should be selected. Otherwise, if a USB-serial cable is used, JTAG port should be selected.

CodeSkin Chip Programmer						
File Boot Help						
C2Prog v1.4 by codeskin.com						
3DevelopmentPackageV2000\SW\bin\g3_plc_F2806x_AFE031.hex Select File						
Programming Configuration						
Target: 28069,67,66 💌 Options: SCI 💌						
Code Security:						
Key 1: **** Key 2: **** Key 3: **** Key 4: **** Key 5: **** Key 6: **** Key 7: **** Key 8: ****						
Flash Sectors to be Erased: A B C D E F G H I J Image: Sector Selection Allow OTP Programming						
Append Checksum						
Baudrate: TA: SA: SID:						
Create ehx						
Port:						
Serial CAN JTAG Configure Ports						
COM8 Program						

Figure 7. Programming Configuration Using Serial Port

7. Start flashing the F28069.

8

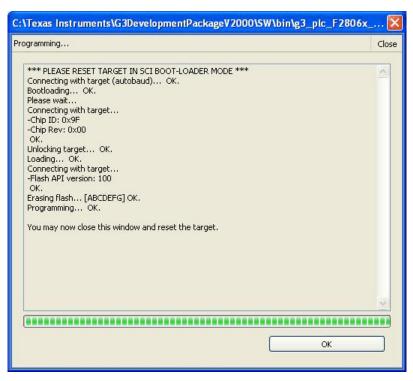


Figure 8. Programming Progress Using Serial Port

- 8. After programming is complete, close the program and remove the power supply from the SOMPLC module.
- 9. Make sure the SOMPLC module is powered off. Set switch SW1 to "FLASH Boot Mode" as described in Section 3.
- 10. The programming procedure is now complete. You may now apply power to the SOMPLC module.

Revision History

www.ti.com

Revision History

Changes from March 30, 2015 to June 30, 2015				
•	Figure 3: Removed references to 'female' connector; maintained the use of '34-pin connector.'	5	5	

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated