TMS320C28x Extended Instruction Sets

Technical Reference Manual

13 TeExAas

INSTRUMENTS

Literature Number: SPRUHS1C
October 2014 —Revised November 2019

I3 TEXAS
INSTRUMENTS

Contents

L 5] =T = 9
1 Floating PoOiNt UNit (FPU) ..uiuiuiiiiiiiiii it ettt et s e e e e et s s e e et e e e e e eees 11
11 L Y= T 12
1.1.1 Compatibility with the C28x FiXed-POINt CPUueiiiiiii i rr e s rrine s rranne e s ranneens 12

1.2 Components of the C28x plus Floating-Point CPUueiiiiiiiiiiiieiiirsii s ssise s ssnnssssanns 13
070 R 1 (0] =1 T o 0T (o 14

O |V =T o 6o Y0 1Y = o 14

1.2.3 ON-Chip Program and Data.......uveeseseiriusesininnneirinsessaissessaisnsssaisssiasissssisannssisasnnesins 14

R O O I [0 (=T B Y =0 14

2SS Y 1= 0 T YA 1 (=] g 7= o S 14

1.3 (04 U =T 0] (= = 15
BG5OSR 15

1.4 T o= 1T 21
1.4.1 PiPeliNe OVEIVIEW 1.uuuuetsiiattessatessasesssasss s ssasae s ssaase s saasss et sastessaansssssannnsssasnnsssnnns 21

1.4.2 General Guidelines for Floating-Point Pipeline AlIgNMEeNntooeviiiiiiiniiiiiiiirie e, 22

1.4.3 Moves from FPU Registers t0 C28X REQISIEIS vuuuuutiiiseiisiirissiistirissiiirriseisssisraseaseianens 23

1.4.4 Moves from C28x Registers t0 FPU ReQIStErSuuiiiiiiisiiiisiiiiie s s sisasssssannnesas 24

O T - 1 1= IS 1 0o 1T o 25

1.4.6 Invalid Delay INStrUCHONS ettt ete ettt e e et e e s a e e ss e e s saan e s ssaan e s saannesssannnessannnneenn 25

1.4.7 Optimizing the PIipeliNe ..uui e s e s a s eaaaas 28

15 Floating Point Unit INStrUCHION St +...ueieiiiiiiie i s r e arn e rans 29
1.5.1 INSIrUCHION DESCIIPIONS ..t atee ittt ee it e ea e e ssa e e s saaa e st aaan e s saannn s s sannnessaannnsssannnesannn 29

TR |11 1 £ o3 11 32

2 Floating Point UNit (FPUBA) ...c.uiiiiiiiiiii ettt e e s e et e e e s e e e e e e aa e e e e e ees 143
21 L= T 144
2.1.1 Compatibility with the C28x Fixed-Point CPU........ccuiiiiiiiiiiii s i sninr e anans 144

2.2 Components of the C28x plus Floating-Point CPU (FPUB4)......ciiiiiiesiiiieeiiiineesiianssessannsessannneeanns 145
P72t R = 411 = o N 0T 146

0 Y/ 1= 4T Y 1Y/ o 146

2.2.3 ON-Chip Program and Datacceeesieeseeessaneessasnneesssnnessaannessesnneessssnnessssnneesssnnnesssnnnes 146

S O W 101 (=T (U A= o) o] £ 146

D22 S T /[T o g o] oA [1= 5 7= Vo = 147

2.3 CPU REISOr SOl uutteiiistesteanteessantessaanneessaannesaasnnesssssnnessasnnessssnnnessesnnessesnnnessssnnesssnnnees 148
P2 TR O o B I =T o 15 (=] £ 148

2.4 T 7= 1T 154
b R 1 =Y 1 T @ YT 1= 154

2.4.2 General Guidelines for Floating-Paint Pipeline AlIgnmentc.ooveiiiiiiiiiiiiii e 155

2.4.3 Moves from FPU Registers t0 C28X REQISIEIS ...uuuuuiiiiiiiiiiiiiiee i iriee s raaae s rannnassanns 156

2.4.4 Moves from C28x Registers to0 FPU REQISIEIS ..uuiiieiiiiiieeiiiineessainsessasnneessannnessannnessennnes 157

2.4.5 Parallel INStrUCHIONS .. ut et st st ra et st s s e s s s s et e s n e s s s s a s s r s an e aaneaas 157

2.4.6 Invalid Delay INStrUCHONS ..uuuiuueeteiiieteirittesaaiaes s e s saaae s s saaae s ssaans et santassaannnesaannnes 158

b @ o) 11014 g o [t [1= g1 161

25 Floating Point Unit (FPUB4) INSIrUCION SET .. .uuustiiuteiiseiineristissssisssissraseiasssissrasssnnssansssaneias 162
2.5.1 INSLrUCLION DESCIIPLIONS .. utteiaateiiateeas e saaiaae s sraae st saaae s ssaaae st sannessanantssaannrsssannes 162

P22 1§ 151 1 £ o1 1o L 165

2 Contents SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

I3 TEXAS
INSTRUMENTS
www.ti.com
3 Viterbi, Complex Math and CRC UNit (VCU) ..uiuiiiiiiiiiiiiirr et e e e e e 338
3.1 L YT 1= 339
3.2 Components Of the C28X PIUS VCU ...ttt ir e r e e s s s as e s sraase st sana e s sannasaannns 340
3.3 LU= LT T o T o S 341
1 TR 0 R /=T o 1o o /= T 342
3.3.2 CPU INteITUPE VB OIS 1t attttiiiissssaiiattn e e es st ssss s sa e e s s s s s asssssasasnsneesssssssssnnnnnnns 342
TG T T |V =1 oo o VA 131 (=Y - Vo 342
3.3.4 AJdress and Dat@ BUSES ..uuiuseiiutirieiissirsesits e ssse e ss s s 342
3.3.5 Alignment of 32-Bit AcCesses t0 EVEN AQAIrESSES ..uuuiiiiiieiiiiiiieiiiie s iiiirs s raaae s raanasaaanns 342
3.4 =0 £ (= S Y= S PP 344
B VL O B I =T o 1153 (]] 344
3.4.2 VCU Status Register (VSTATUS) 1uuiiiiiiiiiiiis s saias s s sase s saaasss s saastassaannsessannnes 346
3.4.3 Repeat BIoCK REQISIEI (RB) +tutueteiiiineeessiineesaainnessasnnesssaneessasnnessssnnessssnneesssnnnesssnnnes 349
3.5 0110 351
TR R T = T @ YT 1= 351
3.5.2 General Guidelines for Floating-Point Pipeline AligNment.......ccciviiieiiiiieeiiiieesiiineeeraanneeanns 351
3.5.3 Parallel INStrUCHIONS ... uueiseesatsnstsrse st e st s s s s e s s s s s et et s n e s a e s s a s s r s r e raneaas 352
3.5.4 Invalid Delay INStrUCHIONS ..uuuiuuutteiieteiraittersaiaessra e s saaaes s saase s saaann st santassaannnesaannnes 352
3.6 0T 1T = 356
3.6.1 INSIrUCHION DESCHIPTIONS 4 uuutinutssuseisserasesasessse s sss s s ss e sase s s s san s s s s saarsanesaneaannens 356
3.6.2 GeNEral INSIIUCHONS 1.uuuueteeieteer et eas e e s s s e s sa e e et s s e s saanae st s aann e s sann e s saannrsssannes 358
3.6.3 Complex Math INSITUCHIONS ...uiiieeeiiiiie e saeiee s seateessanressaanneessannnessaannresssnnnesssnnneesnnnns 389
3.6.4 Cyclic Redundancy Check (CRC) INSIIUCHIONS ... uuesrstiisesistiineriseise s sssssns e ranenanes 427
3.6.5 Viterhi INSIIUCTIONS . eteii it s sttt e st e et s s e s s s s st s a e e s sa st s ssann e ssann e s annnness 439
3.7 L0 10T [T TN 1Yo o T S 461
4 Cyclic Redundancy ChecCk (VCRC) ...uiiiiiiiiiii ettt et e e e e e e e e e e e n e eaenns 463
41 L YT 1= 464
4.2 YO8 2 (O O aTo [N D= =1 o] o] 31T o 464
4.3 Components Of the C28X PIUS VCRCuuuuiiiatiite it rasssss st srts s sae s s s s sanssansaanes 464
0 0 A Y o T = o o T 1 o (o 465
e T |V =T 0 0] /T o 466
G TR B O | =T ¢ 00| Y =T od (o] £ 466
e S |V =Y o VA 1]] -V = 466
4.3.5 Address and Dat@ BUSES ...uuuiueteirinnrirniessssises st ssassssaaasessaastesssansrsssannrsssannnes 466
4.3.6 Alignment of 32-Bit Accesses to EVen AdAreSSES ...uviiiiiiiiiieiiiiiiiiriiisinsaneraaeaas 467
4.4 S0 RS 1= S T 467
R VL O O =T 0 1S3 (] T 468
4.5 0710 469
N A w0 T= [T TSI @ AT T 469
4.5.2 General Guidelines for VCRC Pipeline AligNmMent......c.euiiiiieiiiiineiiiieinsssninsrsssinnneaaaas 469
4.6 L TS] (0T 0 Y=Y 470
O 0 A 1 Y (0 Tox 1T I =Yoo o 470
L €= =T = L =] 1 0T 1o 472
5 C28 Viterbi, Complex Math and CRC Unit-Il (VCU-) ..o e e 507
5.1 L YT 1= 508
5.2 Components Of the C28X PIUS VCUttt s e s s r e s s aase s s sann e s sann e s aanns 509
L2 R = 4310 - U1 o o TN 1o T o 511
ST /[>T o 10 o /- 511
5.2.3 CPU INEITUPE VBCIOIS 1t tttiiiiiisissiistttree s s ssssss s s e s s s s s s aasssasaa s s nnressssssssssnnnnnns 511
L2 R V1T g To] A] 1= 5 = Vo = 511
5.2.5 Address and Dat@ BUSES ...uuiuueiiutiiteiissirissitsrss st ssa s 511
5.2.6 Alignment of 32-Bit AcCesSes t0 EVEN AQUAIrESSES ..uuuiiiiieiiiiiiteiiiie it raanae s saanasiaanns 512
5.3 =0 £ 1= S Y= S PP 513
SPRUHS1C-October 2014—Revised November 2019 Contents 3

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

I3 TEXAS
INSTRUMENTS
www.ti.com
ST TR VL @ B I =T o 153 (]] 514
5.3.2 VCU Status Register (VSTATUS) .uuiuriiintiisiriireiissirsrassssss s sassssnssasesasssinns 516
5.3.3 Repeat BIoCk REgIStEr (RB) .uuuuuteiiiieiiiieiiii i r s s s ss s ssaaa s ssannesrannns 519
5.4 0710 521
Lo R T = [T L= @ YT 1= 521
5.4.2 General Guidelines for VCU Pipeline AlIgNmMENtceiiiieeiiiiieiiiiiies s sannnsssannns 522
5.4.3 Parallel INStrUCHONS ... ueisees sttt e st s s e s s s s e s e s a e s s s a s s s r s an e aaneans 523
5.4.4 Invalid Delay INSIrUCHONS ...uueeeeieteiraietessaaaee s aaiae s sr e s s sanse s ssannn s s sannassaannnesaannnes 523
5.5 LTS (0Tt 0 T = 526
5.5.1 INStrUCHON DESCHIPLIONS +uuutnuteiuseiseesasesaaeeseeraasssss st ssss e san s saassssssanrsanssanssannens 526
5.5.2 GeNEral INSIUCHONS 1.uuuuetttieteiia it eas st e s s e s s aae et saas e s saannn st sann e s sannn e s saannrsssannnes 528
5.5.3 Arithmetic Math INStrUCHIONS .. . uuuee i s s e r s s s saannes 572
5.5.4 Complex Math INSIUCHONS . uuuuueiuseiiterseiaeesiassassssas s sse s ssie s e s s s sasssanesanness 579
5.5.5 Cyclic Redundancy Check (CRC) INStIUCHONSuuueeeiiiiieiiiiieesaainne s raannesssannnssaannnesaannnes 638
5.5.6 Deinterleaver INStUCHONS . ..uu s irietsessieesss s sssiee s ts s st saise s ssaasrs s saantassaannressannnes 654
ST T e 0111 (1 ox 1T 0 670
5.5.8 GalOiS INSIIUCTIONS ..uneteiiieeeaa et et a s iee s sr e et s s e s ssaaa e et san e e s saan s e e s san e e saannessaannness 698
5.5.9 Viterhi INSIIUCTIONS . uuuueteiiieissiee e ia e st e et s e s s e et s s e s s s s s s s s ann e s s nn e s asannness 711
5.6 0T T 11T TN 1Y o T L= 746
Fast Integer Division UNit (FINTDIV) ..ottt e e e e e e e e e e e e ens 748
6.1 L YT 1= 749
6.1.1 Compatibility With the C28x Fixed-Point CPU and C28x Floating Point CPU..........cccvvvviinnnennns 749
6.1.2 Fast Integer Division Code deVelOPMENT ...uiuiiiiseiieriiii i rans 749
6.2 Components of the C28x plus FINTDIV (C28X+FINTDIV) ..uuuiiiiiiiiiiiiiei i irieresssianssanineeanas 750
6.3 (04U L= 1) (= S 750
6.4 0110 750
6.5 Types of Divisions supported by C28X+FINTDIV ...uiieiiiiiii i rrir s ssaase s raanrassaanneenas 750
6.6 C28x+Fast Integer Division — Fast Integer Division INStrUCtoN Setiviieeiiiiiiieiiiiiiinerinnneeeanas 752
6.6.1 INSTrUCHION DESCHIPTIONS 4 uuutinuttsusesseernesase s s s s s s se et an e saa s s s s s saa e sanesaneaannens 752
LG 02 1 T3 1 T4 1o o 754
Trigonometric Math Uit (TMU) ...ttt e e e e e e e e e e e 772
7.1 L= T 773
7.2 Components of the C28X+FPU PIUS TMU ...t it r e s e s s s e e s rannne s ssanna s aaanns 773
7.2.1 Interrupt Context SAve and RESIOIE.uueiiiiiti i r s s nrannes 773
7.3 D72 1= B 0 0T 774
4% R = (o T= 14 To I o1 0 =X oo o [T Vo [774
A B0 N\ 1= 0 oY =T o 774
7.3.3 De-Normalized NUMDEIS: .. .ui i e rnes 774
4 R S U o =T o[774
2 TR T © V=101 774
4 T o 10T 1T 774
7.3.7 Infinity and NoOt @ NUMDBEr (NAN) ...t e r s ar e s s e s rsane s s rannanaanns 774
7.4 T 7= 1T 775
7.4.1 Pipeline and Register CONFlICLS ..uuuiiusiieiiiii i aaes 775
7.4.2 Delay SIot REQUIFEMENTS 1.uuuiuseiistirseiastissesistsrse s sss s sss s san s e aannesanns 777
7.4.3 Effect of Delay Slot Operations 0N the FIagsivvieeiiiiiiiiiiiiiiiii i s srnaees 778
7.4.4 Multi-Cycle Operations in Delay SIOtS.....vuuiivisiieiiiiriiiri s raees 778
7.4.5 Moves From FPU Registers t0 C28X REQISIEIS ...uuuueeiiiiiiiiiiiineiaiinesiaannesssaneessannsasaannns 779
7.5 LI L 11 0o 10 T = 780
7.5.1 INSErUCHION DESCHIPTIONS 4 uuutiutesuaeintesnerasessae s s ss s st res s e s s a s saa s ss s s sannsaanssaneaanness 780
7.5.2 COMMON RESIICONS 1uuuuetetinteeiaeteeraaate e ssaane e saaane s aaaane e ssann et saannasssannnessannrsssannnses 782
7.5.3 TMU TYPE O INStrUCHONS . vt e taetetsaeesssssesssasnsssassesssasssessantsssaaannsssannnsssaannssssannness 782
7.5.4 TMU TYPE L INSHUCHONS 1. vt ttatiiateistsate s ees s s sae s s s s e s e s sn e e st sn e s n e snsaaneens 796
Contents SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

R EAA =Y Lo g Il 113 o] Y/ PPN

SPRUHS1C-October 2014 —Revised November 2019 Contents

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

5

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

I3 TEXAS
INSTRUMENTS
www.ti.com

List of Figures

1-1. FPU Functional BIOCK Diagram eiieteaiiatsessaastessaanesssans s ssanne s ssannessaannnsssannnessaannnsssnnnns 12
1-2. C28x With Floating-PoiNt RegISIOrS . .. uuuieeiiiiiietiiitesiriie s ssiaar s ssaas s ssainssssannssaainnessannns 16
1-3. Floating-point Unit Status RegiSter (STH) .uuuiueiiiiriiiiiiiie i s s ss s aaeenas 18
1-4. Repeat BIOCK REQISIEr (RB) . ..uiiiuesiiiiteiiiateeiaaastesaaatesaaane e ssaansssaaannessaannnsssaannessaannnsssnnnns 20
S T I T 0T] T 21
2-1. FPUG4 Functional BIOCK DIagramuseiuseisesssinsssssssnss s sssesassssssssnsssanssasesannssansssnnssnnes 145
2-2. C28x With FPUGB4 Floating-PoiNt REQISIEISuiiiieiiiiie it e s aanr e s rn e arane s sannn e s ananneess 148
2-3. Floating-point Unit Status RegIiSIEr (STF) tuuuuueriiiiieiiiieiiiirsiis s ssiis s sanir s sraae s saananesss 151
2-4. Repeat BIOCK ReGISIEr (RB) tuuuutiueiiuttiteiitisteiisssssssits e saeesa s s s s san s rasetass s sannssns 153
2-5. FPUGBA PIPEIINE uiutiutieiitiitit ittt e e s s s et e e e e s e s e s e e e r e aas 154
1 I ©5222 > Qi SV @ U I = 1o Tod QD= o = o 340
3-2. C28X + FPU + VCU REGISIEIS . uuuuuiiuuttiuteiintesseiasssssssats st sasssasssansrassiaiessanssannssines 344
3-3. VCU Status Register (VSTATUS) .uuuiuuiiitiiistinterasissssiarsse st saasssasssasessnsssasssnes 346
3-4. Repeat Block RegISter (RB) ..uuuuieiiiisiiiiieiiiirii s s s s s s s s s s aaan s sannenras 349
35, C28X + FCU + VCU PiIPelING . uveetiieieeieateee et se et s sesne e ssasnne s ssanne s saannnnssannnessannnnesaannnesnnn 351
4-1 (05222) Q0 VA @1 = J O =1 (o o3 1q B I= 1o = o ¢ [464
I 74) Qe Y O o O =T L] =] £ 467
ST N 02255 VL @1 U I 2] oY ox Q= T |- oo 509
5-2. C28X + FPU + VCU REQISIEIS . uuttiiiuitiiiittesiaantseaaattesaaantssaaaanesasanasssaansessaannesssannnsssannnessns 513
5-3. VCU Status RegiSter (VSTATUS) tuuuuuieiiiitiiirineiriisssaisssssaaessasssesssassssssassessaasnssssannnsssns 516
5-4. Repeat BIOCK REGISIEr (RB) «uuuutiueiiutiiseiitestsiassssas st rse s s s s st s rasssanssanssannssnns 519
5-5. 0 C28X + FCU + VCU PiIPeliNe .. uueieiiie ittt r e e a i e e r s iae e s s a e s ss s e st sann e e s snannn s ssnnnneannn 521
6-1. Transfer Function for Different Types Of DiVISIONuueeiiiiieiiiii i rrinr s araaees 751
7-1. Calculation of RaH (Quadrant) and RbH (Ratio) Based on RcH (Y) and RdH (X) Values..........c.cvevvnnen. 793
6 List of Figures SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

I3 TEXAS

INSTRUMENTS

www.ti.com

List of Tables

1-1. 28x Plus Floating-Point CPU ReQIStEr SUMIMAIY .uuuuuseiistinseriseissssissssssiissisassrassisnsssarsassinneans 17
1-2. Floating-point Unit Status (STF) Register Field DeSCrPLiONSuueiiiiiereiiiieiriiisiiesssinesisanness 18
1-3. Repeat Block (RB) Register Field DeSCHPLONS +.uuutiuttiueiiteriseisessintirserisssassrassisisssanssansssaneias 20
N @ o 1= = aTo [A\ Lo 4 g T=T o o3 - L] = 30
T T U .1 T Y 11 010 (0 L 32
2-1. 28x Plus Floating-Point FPUB64 CPU RegiSter SUMIMAIYevvutsiisriirerineiaeesinrransssinssannssassiannsnnns 149
2-2. Floating-point Unit Status (STF) Register Field DeSCriptioNSuuvvseiisiiiieiiisiisi i nnsenaneaaes 151
2-3. Repeat Block (RB) Register Field DeSCriPtiONS ... uu..ueeiiitesiiissisistessinnssssainsessainnsssainnssasannness 153
P @ o 1T = T o B AN o 4 1= Tt = 163
2-5. SUMMArY OF INSTIUCTIONS 1 uutisse st isees st s s s s et e s s e e s st s s et s s s n e na e e s n e ranees 165
3-1. Viterbi Decode PerfOrManCe .. .uuiveerissiiseiistiniteiissisisesiare i isiserassssisesaanssaseraessiserannsrses 339
3-2. Complex Math PerfOrmManCe. ... ettt s e st s e s s s s e s et e s s e e rns 339
B T VL O B I =T 115 (] T 345
3-4. 28X CPU REQISIEr SUMMAIY 1uuutteiiustsssatnessnsessannessaissssssasnesaaissestsasssstsassnesissnnsisssnnessns 346
3-5. VCU Status (VSTATUS) Register Field DeSCHPLONS .. .uuiueirieeiieiriesitirns i rinssssssinssansssnes 347
3-6. Operation Interaction With VSTATUS BitSuueiiietiiiiiiteiiiatesraianrsssaaasssaaanse s saanessaannnessaannessns 347
3-7. Repeat Block (RB) Register Field DeSCriPtiONS ... uuuuseiiitesiiitseisissessainsssssinssssainrsssainnssasanness 349
B T @ o 1= = T o I AN 43T o o= 356
3-9. INSTRUCTION dest, sourcel, source2 Short DeSCHPLION ...ueiieeiiiiii i riir e rraee s raanneeaanns 357
3-10. General INSIUCHIONS «.uutiisstiistisseriseiss i s s s e et s s s e s e e et s e aaar e raaenanasnes 358
3-11. Complex Math INSIIUCTIONS . tuuueeiseietsatesae it ae s s s s aera e s s s s s a s s saa s s e e s saa e aanesannsannes 389
Bt O o { O 1 1 11T 10 427
B R V1 =T o 13 TS DT 10} 439
3-14. Example: Values Before Shift RiIght......ooeiiiiiiiiii e 461
3-15. Example: Values after Shift RGNtoeoii s anne s rannn e ens 461
3-16. Example: Addition with Right Shift and ROUNAINGueeiiiiiieiiiii i i ae e 461
3-17. Example: Addition with Rounding After Shift Right.......cvieiiiiiii e 461
3-18. Shift Right Operation With and Without ROUNAING ...vveiiueiiiiiiiiri i 461
4-1. VCRC Status (VSTATUS) Register Field DeSCrHPIONS ..uvuiiiuieiiiiiteiiiiinsiiissessiinrsssainnssssinnsssnnnns 468
4-2. VCRC: The CRC result register for unsecured MeMOIIESuvieeiiueirinriiterineiairinerarirareianeias 468
4-3. VCRCPOLY: The CRC Polynomial register for generic CRC iNStrUCtIONSoviiieeiiiiieneiiiiineriaannesss 468
4-4. VCRCSIZE: The CRC Polynomial and Data Size register for generic CRC inStructionscccvvviueesns 468
4-5. VCUREV: VCU IEViSION FEQISTEI v uuuatiuutsiuseisserusesasssssssasssssssansssass s ssisssantssisssassannsiaieianns 468
G ©] =7 = g (o I\ [0= o T = U = N 471
4-7. INSTRUCTION dest, sourcel, source2 Short DeSCHPLION ..uueiviueeiiiiieeiiiiesiriire s aannnesrannnes 471
e J €= g1 | =11 (1 od 1o 0 472
5-1. Viterbi Decode PerfOrmManCE .. .uuiueerssirseiseisite st s e s s et asn e eeranes 508
5-2. Complex Math PerformanCe. e r s s a s s s s st aasa s sa e e s sanaenras 508
ST T VL @ B I =T o 1153 (] 0 514
5-4. 28X CPU REQISIEr SUMMAIY . uueteiiateeiaattesaaansesaaaasessaaaneesaaannesaaannessaannssssansnessaannnsssannnsssnn 515
5-5. VCU Status (VSTATUS) Register Field DeSCrPHONS ...uvviueetirieeiiiisiesiiisssssannssssainssssianrsssainnss 516
5-6. Operation Interaction With VSTATUS BitS ..uuuuuiiuiiiuiirieiiieiiierinisississnss i ssnssnss s 517
5-7. Repeat Block (RB) Register Field DeSCrPtIONSueeiiiitei i e irieesraat e rs e sraanresananne s aaanneess 519
5-8. Operations Requiring a Delay SIOt(S) .ueetruuueerirutneiiitreiriineirairsssiisrsiaainsssasiinesisainesrarnesins 522
ST TR @ o 1T = T o B AN o 43T Tt = 526
5-10. INSTRUCTION dest, sourcel, source2 Short DeSCHPHONuuiiiieeeiiiiiei i riare s rrareerraanreraannss 527
5-11. General INSrUCHONS «uutiiustiistisserasisstsiste et aa s et s et e s s e s e s s saa e aaar e raseaanasnns 528

SPRUHS1C-October 2014—Revised November 2019 List of Tables 7

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

I3 TEXAS
INSTRUMENTS
www.ti.com
5-12. Arithmetic Math INStrUCTIONS « ... ue ettt et e r e e s a e s e s s s s n s s a e s e s s n e rann e ranes 572
5-13. CompleX Math INSIIUCTIONS ... ueeeeiite it e r e e r e e s r e et s aae s ssaane e s san e e s saannnssaannnesaannneannn 579
ST O o { O 1§ 1 {11 10 638
5-15. Deinterleaver INSIIUCHONS ... u ettt et e s e s e s et s s e s n s s e e s e s s n e ran e e ranes 654
ST G e 011 1 0o 1T 670
5-17. Galois Field INSIUCHIONS +uueiisteiississssississeiastiss e rassiss s s sassssss i raessnnesannns 698
ST S V1 =T o1 T3 (0T 0 L 711
5-19. Example: Values Before Shift RiIgNtoeeiiiii i e e e raaee e 746
5-20. Example: Values after Shift RIGNteeiiiiii i s ee e e 746
5-21. Example: Addition with Right Shift and ROUNAINGvueeiiieiiiiiii i e e 746
5-22. Example: Addition with Rounding After Shift Right.......cvieiiiiiiiii e 746
5-23. Shift Right Operation With and Without ROUNAINGeeviiieeiiiiiii i aeees 747
L @ o 1T = T o AN o 43T Tt = 752
6-2. SUMMArY OF INSTIUCTIONS 1. uutiteiseisseesat et s s s e et e e e s s s s s et r e s n e na e s sn e ranees 754
£ O 8\ L B I/ = O 1= 1 Tod 1T 773
7-2. TMU Type 1 Additional INStUCHIONS .+ uueeiiististeneiete e s s r s s s e s s s neanes 773
7-3. IEEE 32-Bit Single Precision FIoating-Point FOIMALcueeiiiie i rr e reane e ananeeas 774
7-4. Delay Slot Requirements for TMU INSTUCHONS +..uuuueiiiiuisetiistessiinsersiinrsssainnssssinnssssannnssasannesss 777
B T @ o 1T = T o BN\ o 43 T= T 0= D 780
7-6. SUMMArY OF INSTIUCTIONS .+ uutiusetseisseesa st s e s s e s e et e s s n e s s s s s e s n e s n e na e s s n e nanees 782
7-7. SUMMArY OF INSIIUCTIONS . vttt es s e a e st ae et s e s s s a e s s s s s s s s ann e s saannn s asanneaanns 796
8 List of Tables SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

I

Preface
SPRUHS1C-October 2014—Revised November 2019

TeEXAS
INSTRUMENTS

Read This First

This document describes the architecture, pipeline, and instruction sets of the TMU, VCRC, VCU-II,
FPU32, and FPU64 accelerators.

About This Manual

The TMS320C2000™ digital signal processor (DSP) platform is part of the TMS320™ DSP family.

Notational Conventions

This document uses the following conventions.

» Hexadecimal numbers are shown with the suffix h or with a leading 0x. For example, the following
number is 40 hexadecimal (decimal 64): 40h or 0x40.

* Registers in this document are shown as figures and described in tables.

— Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties

— Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation

The following books describe the TMS320x28x and related support tools that are available on the Tl
website:

Data Manual and Errata—

SPRS439— TMS320F2833x, TMS320F2823x Digital Signal Controllers (DSCs) Data Manual contains
the pinout, signal descriptions, as well as electrical and timing specifications.

SPRZ272— TMS320F2833x, TMS320F2823x DSC Silicon Errata describes known advisories on silicon
and provides workarounds.

SPRS516— TMS320C2834x Delfino Microcontrollers Data Manual contains the pinout, signal
descriptions, as well as electrical and timing specifications.

SPRZ267— TMS320C2834x Delfino™ MCUs Silicon Errata describes known advisories on silicon and
provides workarounds.

SPRS698— TMS320F2806x Piccolo™ Microcontrollers Data Manual contains the pinout, signal
descriptions, as well as electrical and timing specifications.

SPRZ342— TMS320F2806x Piccolo™ MCUs Silicon Errata describes known advisories on silicon and
provides workarounds.

SPRS742— F28M35x Concerto™ Microcontrollers Data Manual contains the pinout, signal descriptions,
as well as electrical and timing specifications.

SPRZ357— F28M35x Concerto™ MCUSs Silicon Errata describes known advisories on silicon and
provides workarounds.

SPRS825— F28M36x Concerto™ Microcontrollers Data Manual contains the pinout, signal descriptions,
as well as electrical and timing specifications.

SPRZ375— F28M36x Concerto™ MCUSs Silicon Errata describes known advisories on silicon and
provides workarounds.

SPRUHS1C-October 2014 —Revised November 2019 Read This First 9
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/sprs439
http://www.ti.com/lit/pdf/sprz272
http://www.ti.com/lit/pdf/sprs516
http://www.ti.com/lit/pdf/sprz267
http://www.ti.com/lit/pdf/sprs698
http://www.ti.com/lit/pdf/sprz342
http://www.ti.com/lit/pdf/sprs742
http://www.ti.com/lit/pdf/sprz357
http://www.ti.com/lit/pdf/sprs825
http://www.ti.com/lit/pdf/sprz375

13 TEXAS
INSTRUMENTS

Related Documentation www.ti.com

SPRS880— TMS320F2837xD Dual-Core Delfino™ Microcontrollers Data Manual contains the pinout,
signal descriptions, as well as electrical and timing specifications.

SPRZ412— TMS320F2837xD Dual-Core Delfino™ MCUSs Silicon Errata describes known advisories on
silicon and provides workarounds.

SPRS881— TMS320F2837xS Delfino™ Microcontrollers Data Manual contains the pinout, signal
descriptions, as well as electrical and timing specifications.

SPRZ422— TMS320F2837xS Delfino™ MCUSs Silicon Errata describes known advisories on silicon and
provides workarounds.

SPRS902— TMS320F2807x Piccolo™ Microcontrollers Data Manual contains the pinout, signal
descriptions, as well as electrical and timing specifications.

SPRZ423— TMS320F2807x Piccolo™ MCUs Silicon Errata describes known advisories on silicon and
provides workarounds.

SPRS945— TMS320F28004x Piccolo™ Microcontrollers Data Manual contains the pinout, signal
descriptions, as well as electrical and timing specifications.

SPRZ439— TMS320F28004x Piccolo™ Microcontrollers Silicon Errata describes known advisories on
silicon and provides workarounds.

SPRSP14— TMS320F2838x Microcontrollers With Connectivity Manager Data Manual contains the
pinout, signal descriptions, as well as electrical and timing specifications.

SPRZ458— TMS320F2838x MCUs Silicon Errata describes known advisories on silicon and provides
workarounds.

Trademarks

Delfino, Piccolo, Concerto, TMS320C2000 are trademarks of Texas Instruments.

10

Read This First SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/sprs880
http://www.ti.com/lit/pdf/sprz412
http://www.ti.com/lit/pdf/sprs881
http://www.ti.com/lit/pdf/sprz422
http://www.ti.com/lit/pdf/sprs902
http://www.ti.com/lit/pdf/sprz423
http://www.ti.com/lit/pdf/sprs945
http://www.ti.com/lit/pdf/sprz439
http://www.ti.com/lit/pdf/sprsp14
http://www.ti.com/lit/pdf/sprz458

Chapter 1
I ’.{‘IE)S(’?IEUMENTS SPRUHS1C-October 2014—Revised November 2019

Floating Point Unit (FPU)

The TMS320C2000™ DSP family consists of fixed-point and floating-point digital signal controllers
(DSCs). TMS320C2000™ Digital Signal Controllers combine control peripheral integration and ease of
use of a microcontroller (MCU) with the processing power and C efficiency of TI's leading DSP
technology. This chapter provides an overview of the architectural structure and components of the C28x
plus floating-point unit CPU.

Topic Page

R @ V=T V= PP 12

1.2 Components of the C28x plus Floating-Point CPUcccoiiiiiiiiiiiiiiiiiicieceeeee e 13

R N O o W o =T TS (=T = PPN 15

T o = o= 21

1.5 Floating Point Unit INSTrUCTION Sel......cuiuieiiiiiiiieie et e e e e e 29
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU) 11

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

Overview www.ti.com

1.1

111

Overview

The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU
by adding registers and instructions to support IEEE single-precision floating point operations. This device
draws from the best features of digital signal processing; reduced instruction set computing (RISC); and
microcontroller architectures, firmware, and tool sets. The DSC features include a modified Harvard
architecture and circular addressing. The RISC features are single-cycle instruction execution, register-to-
register operations, and modified Harvard architecture (usable in Von Neumann mode). The
microcontroller features include ease of use through an intuitive instruction set, byte packing and
unpacking, and bit manipulation. The modified Harvard architecture of the CPU enables instruction and
data fetches to be performed in parallel. The CPU can read instructions and data while it writes data
simultaneously to maintain the single-cycle instruction operation across the pipeline. The CPU does this
over six separate address/data buses.

Throughout this document the following notations are used:
e (C28x refers to the C28x fixed-point CPU.

» C28x plus Floating-Point and C28x+FPU both refer to the C28x CPU with enhancements to support
IEEE single-precision floating-point operations.

Compatibility with the C28x Fixed-Point CPU

No changes have been made to the C28x base set of instructions, pipeline, or memory bus architecture.
Therefore, programs written for the C28x CPU are completely compatible with the C28x+FPU and all of
the features of the C28x documented in TMS320C28x DSP CPU and Instruction Set Reference Guide
(literature number SPRU430) apply to the C28x+FPU.

Figure 1-1 shows basic functions of the FPU.

Figure 1-1. FPU Functional Block Diagram

Program address bus (22) >
Memory

bus

Program data bus (32) |

Read address bus (32)

L[[]

Read data bus (32) |

Existing
memory,
peripherals,
interfaces

C28x

FPU

LVE
L LUF | pIE

1} 1

Memory | Write data bus (32)
bus

\Write address bus (32)

12

Floating Point Unit (FPU) SPRUHS1C-October 2014 —-Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430

13 TEXAS
INSTRUMENTS

www.ti.com Components of the C28x plus Floating-Point CPU

1.1.1.1 Floating-Point Code Development

When developing C28x floating-point code use Code Composer Studio 3.3, or later, with at least service
release 8. The C28x compiler V5.0, or later, is also required to generate C28x native floating-point
opcodes. This compiler is available via Code Composer Studio update advisor as a seperate download.
V5.0 can generate both fixed-point as well as floating-point code. To build floating-point code use the
compiler switches:-v28 and - -float_support = fpu32. In Code Composer Studio 3.3 the float_support
option is in the build options under compiler-> advanced: floating point support. Without the float_support
flag, or with float_support = none, the compiler will generate fixed-point code.

When building for C28x floating-point make sure all associated libraries have also been built for floating-
point. The standard run-time support (RTS) libaries built for floating-point included with the compiler have
fpu32 in their name. For example rts2800_fpu32.lib and rts2800_fpu_eh.lib have been built for the floating-
point unit. The "eh" version has exception handling for C++ code. Using the fixed-point RTS libraries in a
floating-point project will result in the linker issuing an error for incompatible object files.

To improve performance of native floating-point projects, consider using the C28x FPU Fast RTS Library
(SPRC664). This library contains hand-coded optimized math routines such as division, square root,
atan2, sin and cos. This library can be linked into your project before the standard runtime support library
to give your application a performance boost. As an example, the standard RTS library uses a polynomial
expansion to calculate the sin function. The Fast RTS library, however, uses a math look-up table in the
boot ROM of the device. Using this look-up table method results in approximately a 20 cycle savings over
the standard RTS calculation.

1.2 Components of the C28x plus Floating-Point CPU

The C28x+FPU contains:

« A central processing unit for generating data and program-memory addresses; decoding and executing
instructions; performing arithmetic, logical, and shift operations; and controlling data transfers among
CPU registers, data memory, and program memory

» A floating-point unit for IEEE single-precision floating point operations.

» Emulation logic for monitoring and controlling various parts and functions of the device and for testing
device operation. This logic is identical to that on the C28x fixed-point CPU.

» Signals for interfacing with memory and peripherals, clocking and controlling the CPU and the
emulation logic, showing the status of the CPU and the emulation logic, and using interrupts. This logic
is identical to the C28x fixed-point CPU.

Some features of the C28x+FPU central processing unit are:

» Fixed-Point instructions are pipeline protected. This pipeline for fixed-point instructions is identical to
that on the C28x fixed-point CPU. The CPU implements an 8-phase pipeline that prevents a write to
and a read from the same location from occurring out of order. See Figure 1-5.

» Some floating-point instructions require pipeline alignment. This alignment is done through software to
allow the user to improve performance by taking advantage of required delay slots.

* Independent register space. These registers function as system-control registers, math registers, and
data pointers. The system-control registers are accessed by special instructions.

» Avrithmetic logic unit (ALU). The 32-bit ALU performs 2s-complement arithmetic and Boolean logic
operations.

* Floating point unit (FPU). The 32-bit FPU performs IEEE single-precision floating-point operations.

» Address register arithmetic unit (ARAU). The ARAU generates data memory addresses and
increments or decrements pointers in parallel with ALU operations.

« Barrel shifter. This shifter performs all left and right shifts of fixed-point data. It can shift data to the left
by up to 16 bits and to the right by up to 16 bits.

* Fixed-Point Multiplier. The multiplier performs 32-bit x 32-bit 2s-complement multiplication with a 64-bit
result. The multiplication can be performed with two signed numbers, two unsigned numbers, or one
signed number and one unsigned number.

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 13

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://focus.ti.com/docs/toolsw/folders/print/sprc664.html

13 TEXAS
INSTRUMENTS

Components of the C28x plus Floating-Point CPU www.ti.com

121

1.2.2

123

124

1.25

Emulation Logic

The emulation logic is identical to that on the C28x fixed-point CPU. This logic includes the following
features:

» Debug-and-test direct memory access (DT-DMA). A debug host can gain direct access to the content
of registers and memory by taking control of the memory interface during unused cycles of the
instruction pipeline.

* A counter for performance benchmarking.
» Multiple debug events. Any of the following debug events can cause a break in program execution:
— A breakpoint initiated by the ESTOPO or ESTOPL instruction.

— An access to a specified program-space or data-space location.
When a debug event causes the C28x to enter the debug-halt state, the event is called a break event.

* Real-time mode of operation.

For more details about these features, refer to the TMS320C28x DSP CPU and Instruction Set Reference
Guide (literature number SPRU430).

Memory Map

Like the C28x, the C28x+FPU uses 32-hit data addresses and 22-bit program addresses. This allows for a
total address reach of 4G words (1 word = 16 bits) in data space and 4M words in program space.
Memory blocks on all C28x+FPU designs are uniformly mapped to both program and data space. For
specific details about each of the map segments, see the data sheet for your device.

On-Chip Program and Data

All C28x+FPU based devices contain at least two blocks of single access on-chip memory referred to as
MO and M1. Each of these blocks is 1K words in size. MO is mapped at addresses 0x0000 - 0xO3FF and
M1 is mapped at addresses 0x0400 — 0xO7FF. Like all other memory blocks on the C28x+FPU devices,
MO and M1 are mapped to both program and data space. Therefore, you can use MO and M1 to execute
code or for data variables. At reset, the stack pointer is set to the top of block M1. Depending on the
device, it may also have additional random-access memory (RAM), read-only memory (ROM), external
interface zones, or flash memory.

CPU Interrupt Vectors

The C28x+FPU interrupt vectors are identical to those on the C28x CPU. Sixty-four addresses in program
space are set aside for a table of 32 CPU interrupt vectors. The CPU vectors can be mapped to the top or
bottom of program space by way of the VMAP bit. For more information about the CPU vectors, see
TMS320C28x DSP CPU and Instruction Set Reference Guide (literature number SPRU430). For devices
with a peripheral interrupt expansion (PIE) block, the interrupt vectors will reside in the PIE vector table
and this memory can be used as program memory.

Memory Interface

The C28x+FPU memory interface is identical to that on the C28x. The C28x+FPU memory map is
accessible outside the CPU by the memory interface, which connects the CPU logic to memories,
peripherals, or other interfaces. The memory interface includes separate buses for program space and
data space. This means an instruction can be fetched from program memory while data memory is being
accessed. The interface also includes signals that indicate the type of read or write being requested by the
CPU. These signals can select a specified memory block or peripheral for a given bus transaction. In
addition to 16-bit and 32-bit accesses, the C28x+FPU supports special byte-access instructions that can
access the least significant byte (LSByte) or most significant byte (MSByte) of an addressed word. Strobe
signals indicate when such an access is occurring on a data bus.

14

Floating Point Unit (FPU) SPRUHS1C-October 2014 —-Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430
http://www.ti.com/lit/pdf/spru430

I

WWW.1i

TEXAS
INSTRUMENTS

i.com CPU Register Set

1.2.5.

1.2.5.

1 Address and Data Buses

Like the C28x, the memory interface has three address buses:
e PAB: Program address bus
The PAB carries addresses for reads and writes from program space. PAB is a 22-bit bus.
* DRAB: Data-read address bus
The 32-bit DRAB carries addresses for reads from data space.
« DWAB: Data-write address bus
The 32-bit DWAB carries addresses for writes to data space.

The memory interface also has three data buses:
* PRDB: Program-read data bus
The PRDB carries instructions during reads from program space. PRDB is a 32-bit bus.
 DRDB: Data-read data bus
The DRDB carries data during reads from data space. DRDB is a 32-bit bus.
- DWDB: Data-/Program-write data bus
The 32-bit DWDB carries data during writes to data space or program space.

A program-space read and a program-space write cannot happen simultaneously because both use the
PAB. Similarly, a program-space write and a data-space write cannot happen simultaneously because
both use the DWDB. Transactions that use different buses can happen simultaneously. For example, the
CPU can read from program space (using PAB and PRDB), read from data space (using DRAB and
DRDB), and write to data space (using DWAB and DWDB) at the same time. This behavior is identical to
the C28x CPU.

2 Alignment of 32-Bit Accesses to Even Addresses

The C28x+FPU CPU expects memory wrappers or peripheral-interface logic to align any 32-bit read or
write to an even address. If the address-generation logic generates an odd address, the CPU will begin
reading or writing at the previous even address. This alignment does not affect the address values
generated by the address-generation logic.

Most instruction fetches from program space are performed as 32-bit read operations and are aligned
accordingly. However, alignment of instruction fetches are effectively invisible to a programmer. When
instructions are stored to program space, they do not have to be aligned to even addresses. Instruction
boundaries are decoded within the CPU.

You need to be concerned with alignment when using instructions that perform 32-bit reads from or writes
to data space.

1.3 CPU Register Set
The C28x+FPU architecture is the same as the C28x CPU with an extended register and instruction set to
support IEEE single-precision floating point operations. This section describes the extensions to the C28x
architecture
1.3.1 CPU Registers
Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point
unit registers. The additional floating-point unit registers are the following:
» Eight floating-point result registers, RnH (where n =0 - 7)
* Floating-point Status Register (STF)
* Repeat Block Register (RB)
All of the floating-point registers except the repeat block register are shadowed. This shadowing can be
used in high priority interrupts for fast context save and restore of the floating-point registers.
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU) 15

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

CPU Register Set www.ti.com

Figure 1-2 shows a diagram of both register sets and Table 1-1 shows a register summary. For
information on the standard C28x register set, see the TMS320C28x DSP CPU and Instruction Set
Reference Guide (literature number SPRU430).

Figure 1-2. C28x With Floating-Point Registers

Standard C28x Register Set Additional 32-bit FPU Registers
ACC (32-bit) ROH (32-bit)
P (32-bit)
R1H (32-bit
XT (32-bit) (32t
XARO (32-bit) R2H (32-bit)
XAR1 (32-bit) R3H (32-bit)
XAR2 (32-bit)
XAR3 (32-bit) R4H (32-bit)
XAR4 (32-bit) R5H (32-bit
XARS (32-bit)
XAR®G (32-bit) R6H (32-bit)
XAR?7 (32-bit)
R7H (32-bit)
PC (22-bit)
- FPU Status Register (STF)

RPC (22-bit)

DP (16-bit) Repeat Block Register (RB)

SP (16-bit) FPU registers ROH - R7H and STF

are shadowed for fast context

STO (16-bit) save and restore

ST1 (16-bit)

IER (16-bit)

IFR (16-bit)

DBGIER (16-bit)
16 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430

13 TEXAS
INSTRUMENTS

www.ti.com

CPU Register Set

Table 1-1. 28x Plus Floating-Point CPU Register Summary

Register C28x CPU | C28x+FPU Size Description Value After Reset
ACC Yes Yes 32 bits Accumulator 0x00000000
AH Yes Yes 16 bits High half of ACC 0x0000

AL Yes Yes 16 bits Low half of ACC 0x0000
XARO Yes Yes 32 bits Auxiliary register 0 0x00000000
XAR1 Yes Yes 32 bits Auxiliary register 1 0x00000000
XAR2 Yes Yes 32 bits Auxiliary register 2 0x00000000
XAR3 Yes Yes 32 bits Auxiliary register 3 0x00000000
XAR4 Yes Yes 32 bits Auxiliary register 4 0x00000000
XAR5 Yes Yes 32 bits Auxiliary register 5 0x00000000
XAR6 Yes Yes 32 bits Auxiliary register 6 0x00000000
XAR7 Yes Yes 32 bits Auxiliary register 7 0x00000000
ARO Yes Yes 16 bits Low half of XARO 0x0000
AR1 Yes Yes 16 bits Low half of XAR1 0x0000
AR2 Yes Yes 16 bits Low half of XAR2 0x0000
AR3 Yes Yes 16 bits Low half of XAR3 0x0000
AR4 Yes Yes 16 bits Low half of XAR4 0x0000
AR5 Yes Yes 16 bits Low half of XAR5 0x0000
ARG Yes Yes 16 bits Low half of XAR6 0x0000
AR7 Yes Yes 16 bits Low half of XAR7 0x0000

DP Yes Yes 16 bits Data-page pointer 0x0000

IFR Yes Yes 16 bits Interrupt flag register 0x0000

IER Yes Yes 16 bits Interrupt enable register 0x0000
DBGIER Yes Yes 16 bits Debug interrupt enable register 0x0000

P Yes Yes 32 bits Product register 0x00000000
PH Yes Yes 16 bits High half of P 0x0000

PL Yes Yes 16 bits Low half of P 0x0000

PC Yes Yes 22 bits Program counter O0x3FFFCO
RPC Yes Yes 22 bits Return program counter 0x00000000
SP Yes Yes 16 bits Stack pointer 0x0400

STO Yes Yes 16 bits Status register 0 0x0000

ST1 Yes Yes 16 bits Status register 1 0x080B™
XT Yes Yes 32 bits Multiplicand register 0x00000000
T Yes Yes 16 bits High half of XT 0x0000

TL Yes Yes 16 bits Low half of XT 0x0000
ROH No Yes 32 bits Floating-point result register 0 0.0

R1H No Yes 32 bits Floating-point result register 1 0.0

R2H No Yes 32 bits Floating-point result register 2 0.0

R3H No Yes 32 bits Floating-point result register 3 0.0

R4H No Yes 32 bits Floating-point result register 4 0.0

R5H No Yes 32 bits Floating-point result register 5 0.0

R6H No Yes 32 bits Floating-point result register 6 0.0

R7H No Yes 32 bits Floating-point result register 7 0.0

STF No Yes 32 bits Floating-point status register 0x00000000
RB No Yes 32 bits Repeat block register 0x00000000

@ Reset value shown is for devices without the VMAP signal and MOM1MAP signal pinned out. On these devices both of these signals are

tied high internal to the device.

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU) 17

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

CPU Register Set www.ti.com

1.3.1.1 Floating-Point Status Register (STF)

The floating-point status register (STF) reflects the results of floating-point operations. There are three
basic rules for floating point operation flags:

1. Zero and negative flags are set based on moves to registers.

2. Zero and negative flags are set based on the result of compare, minimum, maximum, negative and
absolute value operations.

3. Overflow and underflow flags are set by math instructions such as multiply, add, subtract and 1/x.
These flags may also be connected to the peripheral interrupt expansion (PIE) block on your device.
This can be useful for debugging underflow and overflow conditions within an application.

As on the C28x, program flow is controlled by C28x instructions that read status flags in the status register
0 (STO) . If a decision needs to be made based on a floating-point operation, the information in the STF
register needs to be loaded into STO flags (Z,N,0OV,TC,C) so that the appropriate branch conditional
instruction can be executed. The MOVSTO FLAG instruction is used to load the current value of specified
STF flags into the respective bits of STO. When this instruction executes, it will also clear the latched
overflow and underflow flags if those flags are specified.

Example 1-1. Moving STF Flags to the STO Register

Loop:

MOV32 ROH,*XAR4++

MOV32 R1H,*XAR3++

CMPF32 R1H, ROH

MOVSTO ZF, NF ; Move ZF and NF to STO
BF Loop, GT ; Loop if (R1H > ROH)

Figure 1-3. Floating-point Unit Status Register (STF)

31 30 16
[SHOWS | Reserved |
R/W-0 R-0
15 10 9 8 7 6 5 4 3 2 1 0
\ Reserved |RND32| Reseved | TF |zt [N | zZF | NF [LWUF | LvF |
R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-2. Floating-point Unit Status (STF) Register Field Descriptions

Bits Field Value Description

31 SHDWS Shadow Mode Status Bit

This bit is forced to 0 by the RESTORE instruction.

This bit is set to 1 by the SAVE instruction.

This bit is not affected by loading the status register either from memory or from the shadow values.

30-10 Reserved 0 Reserved for future use
9 RND32 Round 32-bit Floating-Point Mode
If this bit is zero, the MPYF32, ADDF32 and SUBF32 instructions will round to zero (truncate).
If this bit is one, the MPYF32, ADDF32 and SUBF32 instructions will round to the nearest even value.
8-7 Reserved 0 Reserved for future use
6 TF Test Flag

The TESTTF instruction can modify this flag based on the condition tested. The SETFLG and SAVE
instructions can also be used to modify this flag.

The condition tested with the TESTTF instruction is false.
The condition tested with the TESTTF instruction is true.

18 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com CPU Register Set

Table 1-2. Floating-point Unit Status (STF) Register Field Descriptions (continued)

Bits Field Value Description

5 ZI Zero Integer Flag

The following instructions modify this flag based on the integer value stored in the destination register:
MOV32, MOVD32, MOVDD32
The SETFLG and SAVE instructions can also be used to modify this flag.

The integer value is not zero.
1 The integer value is zero.

4 NI Negative Integer Flag

The following instructions modify this flag based on the integer value stored in the destination register:
MOV32, MOVD32, MOVDD32
The SETFLG and SAVE instructions can also be used to modify this flag.

The integer value is not negative.
The integer value is negative.
3 ZF Zero Floating-Point Flag @ @

The following instructions modify this flag based on the floating-point value stored in the destination
register:

MOV32, MOVD32, MOVDD32, ABSF32, NEGF32

The CMPF32, MAXF32, and MINF32 instructions modify this flag based on the result of the operation.
The SETFLG and SAVE instructions can also be used to modify this flag

The floating-point value is not zero.

The floating-point value is zero.

2 NF Negative Floating-Point Flag) @

The following instructions modify this flag based on the floating-point value stored in the destination
register:

MOV32, MOVD32, MOVDD32, ABSF32, NEGF32

The CMPF32, MAXF32, and MINF32 instructions modify this flag based on the result of the operation.
The SETFLG and SAVE instructions can also be used to modify this flag.

The floating-point value is not negative.
1 The floating-point value is negative.
1 LUF Latched Underflow Floating-Point Flag

The following instructions will set this flag to 1 if an underflow occurs:
MPYF32, ADDF32, SUBF32, MACF32, EINVF32, EISQRTF32

0 An underflow condition has not been latched. If the MOVSTO instruction is used to copy this bit to STO,
then LUF will be cleared.

1 An underflow condition has been latched.
0 LVF Latched Overflow Floating-Point Flag

The following instructions will set this flag to 1 if an overflow occurs:
MPYF32, ADDF32, SUBF32, MACF32, EINVF32, EISQRTF32

0 An overflow condition has not been latched. If the MOVSTO instruction is used to copy this bit to STO,
then LVF will be cleared.

1 An overflow condition has been latched.

@ A negative zero floating-point value is treated as a positive zero value when configuring the ZF and NF flags.
@ A DeNorm floating-point value is treated as a positive zero value when configuring the ZF and NF flags.

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 19

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

CPU Register Set www.ti.com

1.3.1.2 Repeat Block Register (RB)

The repeat block instruction (RPTB) is a new instruction for C28x+FPU. This instruction allows you to
repeat a block of code as shown in Example 1-2.

Example 1-2. The Repeat Block (RPTB) Instruction uses the RB Register

; Find the largest element and put its address in XAR6
MOV32 ROH, *XARO++;
.align 2 ; Aligns the next instruction to an even address

NOP ; Makes RPTB odd aligned - required for a block size of 8
RPTB VECTOR_MAX_END, AR7 ; RAis set to 1

MOVL ACC, XARO

MOV32 R1H,*XARO++ ; RSIZE reflects the size of the RPTB block

MAXF32 ROH,R1H ; In this case the block size is 8

MOVSTO NF,ZF

MOVL XAR6,ACC, LT

VECTOR_MAX_END: ; RE indicates the end address. RA is cleared

The C28x_FPU hardware automatically populates the RB register based on the execution of a RPTB
instruction. This register is not normally read by the application and does not accept debugger writes.

Figure 1-4. Repeat Block Register (RB)

31 30 29 23 22 16
| RAs | RA | RSIZE \ RE |
RO RO R-0 R-0
15 0
| RC |
R-0

LEGEND: R = Read only; -n = value after reset

Table 1-3. Repeat Block (RB) Register Field Descriptions

Bits Field Value Description
31 RAS Repeat Block Active Shadow Bit

When an interrupt occurs the repeat active, RA, bit is copied to the RAS bit and the RA bit is cleared.
When an interrupt return instruction occurs, the RAS bit is copied to the RA bit and RAS is cleared.

0 A repeat block was not active when the interrupt was taken.
A repeat block was active when the interrupt was taken.
30 RA Repeat Block Active Bit
0 This bit is cleared when the repeat counter, RC, reaches zero.

When an interrupt occurs the RA bit is copied to the repeat active shadow, RAS, bit and RA is cleared.
When an interrupt return, IRET, instruction is executed, the RAS bit is copied to the RA bit and RAS is
cleared.

1 This bit is set when the RPTB instruction is executed to indicate that a RPTB is currently active.
29-23 RSIZE Repeat Block Size

This 7-bit value specifies the number of 16-bit words within the repeat block. This field is initialized
when the RPTB instruction is executed. The value is calculated by the assembler and inserted into the
RPTB instruction's RSIZE opcode field.

0-7 lllegal block size.

8/9-0x7F | A RPTB block that starts at an even address must include at least 9 16-bit words and a block that
starts at an odd address must include at least 8 16-bit words. The maximum block size is 127 16-bit
words. The codegen assembler will check for proper block size and alignment.

20 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com Pipeline

Table 1-3. Repeat Block (RB) Register Field Descriptions (continued)

Bits

Field Value Description

22-16

RE Repeat Block End Address

This 7-bit value specifies the end address location of the repeat block. The RE value is calculated by
hardware based on the RSIZE field and the PC value when the RPTB instruction is executed.

RE = lower 7 bits of (PC + 1 + RSIZE)

15-0

RC Repeat Count

0 The block will not be repeated,; it will be executed only once. In this case the repeat active, RA, bit will
not be set.

1- This 16-bit value determines how many times the block will repeat. The counter is initialized when the
OxFFFF | RPTB instruction is executed and is decremented when the PC reaches the end of the block. When
the counter reaches zero, the repeat active bit is cleared and the block will be executed one more
time. Therefore the total number of times the block is executed is RC+1.

1.4

14.1

Pipeline

The pipeline flow for C28x instructions is identical to that of the C28x CPU described in TMS320C28x
DSP CPU and Instruction Set Reference Guide (SPRU430). Some floating-point instructions, however,
use additional execution phases and thus require a delay to allow the operation to complete. This pipeline
alignment is achieved by inserting NOPs or non-conflicting instructions when required. Software control of
delay slots allows you to improve performance of an application by taking advantage of the delay slots and
filling them with non-conflicting instructions. This section describes the key characteristics of the pipeline
with regards to floating-point instructions. The rules for avoiding pipeline conflicts are small in number and
simple to follow and the C28x+FPU assembler will help you by issuing errors for conflicts.

Pipeline Overview

The C28x FPU pipeline is identical to the C28x pipeline for all standard C28x instructions. In the decode?2
stage (D2), it is determined if an instruction is a C28x instruction or a floating-point unit instruction. The
pipeline flow is shown in Figure 1-5. Notice that stalls due to normal C28x pipeline stalls (D2) and memory
waitstates (R2 and W) will also stall any C28x FPU instruction. Most C28x FPU instructions are single
cycle and will complete in the FPU E1 or W stage which aligns to the C28x pipeline. Some instructions will
take an additional execute cycle (E2). For these instructions you must wait a cycle for the result from the
instruction to be available. The rest of this section will describe when delay cycles are required. Keep in
mind that the assembly tools for the C28x+FPU will issue an error if a delay slot has not been handled
correctly.

Figure 1-5. FPU Pipeline
Fetch Decode Read Exe Write

C28x pipeline| Fq F2 D1 D2 R1 R2 E w

FPU instruction D R E1

A4

Load '«

A4

Store
CMP/MIN/MAX/NEG/ABS

MPY/ADD/SUB/MACF32

A4

A
A

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 21
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430

13 TEXAS
INSTRUMENTS

Pipeline www.ti.com

1.4.2 General Guidelines for Floating-Point Pipeline Alignment

While the C28x+FPU assembler will issue errors for pipeline conflicts, you may still find it useful to
understand when software delays are required. This section describes three guidelines you can follow
when writing C28x+FPU assembly code.

Floating-point instructions that require delay slots have a 'p' after their cycle count. For example '2p’
stands for 2 pipelined cycles. This means that an instruction can be started every cycle, but the result of
the instruction will only be valid one instruction later.

There are three general guidelines to determine if an instruction needs a delay slot:
1. Floating-point math operations (multiply, addition, subtraction, 1/x and MAC) require 1 delay slot.
2. Conversion instructions between integer and floating-point formats require 1 delay slot.

3. Everything else does not require a delay slot. This includes minimum, maximum, compare, load, store,
negative and absolute value instructions.

There are two exceptions to these rules. First, moves between the CPU and FPU registers require special
pipeline alignment that is described later in this section. These operations are typically infrequent. Second,
the MACF32 R7H, R3H, mem32, *XAR7 instruction has special requirements that make it easier to use.
Refer to the MACF32 instruction description for details.

An example of the 32-bit ADDF32 instruction is shown in Example 1-3. ADDF32 is a 2p instruction and
therefore requires one delay slot. The destination register for the operation, ROH, will be updated one
cycle after the instruction for a total of 2 cycles. Therefore, a NOP or instruction that does not use ROH
must follow this instruction.

Any memory stall or pipeline stall will also stall the floating-point unit. This keeps the floating-point unit
aligned with the C28x pipeline and there is no need to change the code based on the waitstates of a
memory block.

Please note that on certain devices instructions make take additional cycles to complete under specific
conditions. These exceptions will be documented in the device errata.

Example 1-3. 2p Instruction Pipeline Alignment

ADDF32 ROH, #1.5, R1H ; 2 pipeline cycles (2p)

NOP

NOP

; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, ROH updated
; Any instruction

22

Floating Point Unit (FPU) SPRUHS1C-October 2014 —-Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com Pipeline

1.4.3 Moves from FPU Registers to C28x Registers

When transferring from the floating-point unit registers to the C28x CPU registers, additional pipeline
alignment is required as shown in Example 1-4 and Example 1-5.

Example 1-4. Floating-Point to C28x Register Software Pipeline Alignment

; MINF32: 32-bit floating-point minimum: single-cycle operation
; An alignment cycle is required before copying ROH to ACC

MINF32 ROH, R1H ; Single-cycle instruction
; <-- ROH is valid

NOP ; Alignment cycle

MOV32 @ACC, ROH ; Copy ROH to ACC

For 1-cycle FPU instructions, one delay slot is required between a write to the floating-point register and
the transfer instruction as shown in Example 1-4. For 2p FPU instructions, two delay slots are required
between a write to the floating-point register and the transfer instruction as shown in Example 1-5.

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 23

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

Pipeline www.ti.com

Example 1-5. Floating-Point to C28x Register Software Pipeline Alignment

; ADDF32: 32-bit floating-point addition: 2p operation
; An alignment cycle is required before copying ROH to ACC

ADDF32 ROH, R1H, #2 ; ROH = R1H + 2, 2 pipeline cycle instruction

NOP ; 1 delay cycle or non-conflicting instruction
; <-- ROH is valid

NOP ; Alignment cycle

NOP :

MOV32 @ACC, ROH ; Copy ROH to ACC

1.4.4 Moves from C28x Registers to FPU Registers

Transfers from the standard C28x CPU registers to the floating-point registers require four alignment
cycles. For the 2833x, 2834x, 2806x, 28M35xx and 28M26xx, the four alignment cycles can be filled with
NOPs or any non-conflicting instruction except for F32TOUI32 RaH, RbH, FRACF32 RaH, RbH,
UI16TOF32 RaH, mem16 and UI16TOF32 RaH, RbH. These instructions cannot replace any of the four
alignment NOPs. On newer devices any non-conflicting instruction can go into the four alignment cycles.
Please refer to the device errata for specific exceptions to these rules.

Example 1-6. C28x Register to Floating-Point Register Software Pipeline Alignment

; Four alignment cycles are required after copying a standard 28x CPU
; register to a floating-point register.

MOV32 ROH,@ACC ; Copy ACC to ROH
NOP

NOP

NOP

NOP ; Wait 4 cycles
ADDF32 R2H,R1H,ROH ; ROH is valid

24 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019
Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com Pipeline

1.4.5 Parallel Instructions

Parallel instructions are single opcodes that perform two operations in parallel. This can be a math
operation in parallel with a move operation, or two math operations in parallel. Math operations with a
parallel move are referred to as 2p/1 instructions. The math portion of the operation takes two pipelined
cycles while the move portion of the operation is single cycle. This means that NOPs or other non
conflicting instructions must be inserted to align the math portion of the operation. An example of an add
with parallel move instruction is shown in Example 1-7.

Example 1-7. 2p/1 Parallel Instruction Software Pipeline Alignment

; ADDF32 || MOV32 instruction: 32-bit floating-point add with parallel move
; ADDF32 is a 2p operation
; MOV32 is a 1 cycle operation

ADDF32 ROH, R1H, #2 ; ROH = R1H + 2, 2 pipeline cycle operation
|] MOV32 R1H, @val ; R1H gets the contents of Val, single cycle operation
; <-- MOV32 completes here (R1H is valid)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes here (ROH is valid)
NOP ; Any instruction

Parallel math instructions are referred to as 2p/2p instructions. Both math operations take 2 cycles to
complete. This means that NOPs or other non conflicting instructions must be inserted to align the both
math operations. An example of a multiply with parallel add instruction is shown in Example 1-8.

Example 1-8. 2p/2p Parallel Instruction Software Pipeline Alignment

; MPYF32 || ADDF32 instruction: 32-bit floating-point multiply with parallel add
; MPYF32 is a 2p operation
; ADDF32 is a 2p cycle operation
MPYF32 ROH, R1H, R3H ; ROH = R1H * R3H, 2 pipeline cycle operation
|1 ADDF32 R1H, R2H, R4H ; R1H = R2H + R4H, 2 pipeline cycle operation

NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32 and ADDF32 complete here (ROH and R1H are valid)
NOP ; Any instruction

1.4.6 Invalid Delay Instructions

Most instructions can be used in delay slots as long as source and destination register conflicts are
avoided. The C28x+FPU assembler will issue an error anytime you use an conflicting instruction within a
delay slot. The following guidelines can be used to avoid these conflicts.

NOTE: Destination register conflicts in delay slots:

Any operation used for pipeline alignment delay must not use the same destination register
as the instruction requiring the delay. See Example 1-9.

In Example 1-9 the MPYF32 instruction uses R2H as its destination register. The next instruction should
not use R2H as its destination. Since the MOV32 instruction uses the R2H register a pipeline conflict will
be issued by the assembler. This conflict can be resolved by using a register other than R2H for the
MOV32 instruction as shown in Example 1-10.

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 25

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

Pipeline www.ti.com

Example 1-9. Destination Register Conflict

; Invalid delay instruction. Both instructions use the same destination register

MPYF32 R2H, R1H, ROH ; 2p instruction
MOV32 R2H, mem32 ; Invalid delay instruction

Example 1-10. Destination Register Conflict Resolved

; Valid delay instruction
MPYF32 R2H, R1H, ROH ; 2p instruction MOV32 R1H, mem32

MOV32 R3H, mem32 ; Valid delay
; <-- MPYF32 completes, R2H valid

NOTE: Instructions in delay slots cannot use the instruction's destination register as a source
register.

Any operation used for pipeline alignment delay must not use the destination register of the
instruction requiring the delay as a source register as shown in Example 1-11. For parallel

instructions, the current value of a register can be used in the parallel operation before it is
overwritten as shown in Example 1-13.

In Example 1-11 the MPYF32 instruction again uses R2H as its destination register. The next instruction
should not use R2H as its source since the MPYF32 will take an additional cycle to complete. Since the
ADDF32 instruction uses the R2H register a pipeline conflict will be issued by the assembler. This conflict
can be resolved by using a register other than R2H or by inserting a non-conflicting instruction between
the MPYF32 and ADDF32 instructions. Since the SUBF32 does not use R2H this instruction can be
moved before the ADDF32 as shown in Example 1-12.

Example 1-11. Destination/Source Register Conflict

; Invalid delay instruction. ADDF32 should not use R2H as a source operand
MPYF32 R2H, R1H, ROH ; 2p instruction
ADDF32 R3H, R3H, R2H ; Invalid delay instruction

SUBF32 R4H, R1H, ROH
Example 1-12. Destination/Source Register Conflict Resolved

; Valid delay instruction.
MPYF32 R2H, R1H, ROH ; 2p instruction
SUBF32 R4H, R1H, ROH ; Valid delay for MPYF32
ADDF32 R3H, R3H, R2H ; <-- MPYF32 completes, R2H valid
NOP ; <-- SUBF32 completes, R4H valid

It should be noted that a source register for the 2nd operation within a parallel instruction can be the same
as the destination register of the first operation. This is because the two operations are started at the
same time. The 2nd operation is not in the delay slot of the first operation. Consider Example 1-13 where
the MPYF32 uses R2H as its destination register. The MOV32 is the 2nd operation in the instruction and
can freely use R2H as a source register. The contents of R2H before the multiply will be used by MOV32.

SPRUHS1C-October 2014 —Revised November 2019

26 Floating Point Unit (FPU)
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com Pipeline

Example 1-13. Parallel Instruction Destination/Source Exception

; Vvalid parallel operation.

MPYF32 R2H, R1H, ROH ; 2p/1 instruction
|1 MOV32 mem32, R2H ; <-- Uses R2H before the MPYF32
; <-- mem32 updated
NOP ; <-- Delay for MPYF32

; <-- R2H updated

Likewise, the source register for the 2nd operation within a parallel instruction can be the same as one of
the source registers of the first operation. The MPYF32 operation in Example 1-14 uses the R1H register
as one of its sources. This register is also updated by the MOV32 register. The multiplication operation will
use the value in R1H before the MOV32 updates it.

Example 1-14. Parallel Instruction Destination/Source Exception

; Valid parallel instruction
MPYF32 R2H, R1H, ROH ; 2p/1 instruction
|1 MOV32 R1H, mem32 ; Vvalid
NOP ; <-- MOV32 completes, R1H valid
; <-- MPYF32, R2H valid

NOTE: Operations within parallel instructions cannot use the same destination register.
When two parallel operations have the same destination register, the result is invalid.

For example, see Example 1-15.

If both operations within a parallel instruction try to update the same destination register as shown in
Example 1-15 the assembler will issue an error.

Example 1-15. Invalid Destination Within a Parallel Instruction

; Invalid parallel instruction. Both operations use the same destination register
MPYF32 R2H, R1H, ROH ; 2p/1 instruction
|1 MOV32 R2H, mem32 ; Invalid

Some instructions access or modify the STF flags. Because the instruction requiring a delay slot will also
be accessing the STF flags, these instructions should not be used in delay slots. These instructions are
SAVE, SETFLG, RESTORE and MOVSTO.

NOTE: Do not use SAVE, SETFLG, RESTORE, or the MOVSTO instruction in a delay slot.

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 27

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

Pipeline

13 TEXAS
INSTRUMENTS

www.ti.com

1.4.7 Optimizing the Pipeline

The following example shows how delay slots can be used to improve the performance of an algorithm.
The example performs two Y = MX+B operations. In Example 1-16, no optimization has been done. The Y
= MX+B calculations are sequential and each takes 7 cycles to complete. Notice there are NOPs in the
delay slots that could be filled with non-conflicting instructions. The only requirement is these instructions

must not cause a register conflict or access the STF register flags.

Example 1-16. Floating-Point Code Without Pipeline Optimization

Y1l M1*X1 + Bl
Y2 = M2*X2 + B2

Calculate Y1

MOV32 ROH, @M1
MOv32 R1H,@X1
MPYF32 R1H,R1H,ROH
MOV32 ROH,@B1

NOP

ADDF32 R1H,R1H,ROH
NOP

MOV32 @Y1,R1H

; Calculate Y2

MOvV32 ROH, @M2
MOvV32 R1H,@X2
MPYF32 R1H,R1H,ROH
MOV32 ROH,@B2

NOP

ADDF32 R1H,R1H,ROH

NOP

MOvV32 @Y2,R1H

; 14 cycles

; 48 bytes

; Using NOPs for alignment cycles, calculate the following:

; Load ROH with M1 - single cycle

; Load R1H with X1 - single cycle

; RIH = M1 * X1 - 2p operation

; Load ROH with B1 - single cycle

; Wait for MPYF32 to complete

; <-- MPYF32 completes, R1H is valid
; RIH = R1H + ROH - 2p operation

; Wait for ADDF32 to complete

; <-- ADDF32 completes, R1H is valid
; Save R1H in Y1

- single cycle

; Load ROH with M2 - single cycle

; Load R1H with X2 - single cycle

; RIH = M2 * X2 - 2p operation

; Load ROH with B2 - single cycle

; Wait for MPYF32 to complete

; <-- MPYF32 completes, R1H is valid
; R1IH = R1H + ROH

; Wait for ADDF32 to complete

; <-- ADDF32 completes, R1H is valid
; Save R1H in Y2

The code shown in Example 1-17 was generated by the C28x+FPU compiler with optimization enabled.
Notice that the NOPs in the first example have now been filled with other instructions. The code for the
two Y = MX+B calculations are now interleaved and both calculations complete in only nine cycles.

28

Floating Point Unit (FPU)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com Floating Point Unit Instruction Set

Example 1-17. Floating-Point Code With Pipeline Optimization

; Us

ing non-conflicting instructions for alignment cycles,

; calculate the following:

; Y1 = M1*X1 + Bl
; Y2 = M2*X2 + B2
MOV32 R2H, @X1 ; Load R2H with X1 - single cycle
MOV32 R1H, @M1 ; Load R1H with M1 - single cycle
MPYF32 R3H,R2H,R1H ; R3H = M1 * X1 - 2p operation
|1 MOV32 ROH, @M2 ; Load ROH with M2 - single cycle
MOV32 R1H,@X2 ; Load R1H with X2 - single cycle
; <-- MPYF32 completes, R3H is valid
MPYF32 ROH,R1H,ROH ; ROH = M2 * X2 - 2p operation
|| Mov32 R4H,@B1 ; Load R4H with Bl - single cycle
; <-- MOV32 completes, R4H is valid
ADDF32 R1H,R4H,R3H ; R1IH = B1 + M1*X1 - 2p operation
|| Mov32 R2H,@B2 ; Load R2H with B2 - single cycle
; <-- MPYF32 completes, ROH is valid
ADDF32 ROH,R2H,ROH ; ROH = B2 + M2*X2 - 2p operation
; <-- ADDF32 completes, R1H is valid
MOV32 @Y1,R1H ; Store Y1
; <-- ADDF32 completes, ROH is valid
MOov32 @Y2,ROH ; Store Y2
; 9 cycles
; 36 bytes
1.5 Floating Point Unit Instruction Set

151

This chapter describes the assembly language instructions of the TMS320C28x plus floating-point
processor. Also described are parallel operations, conditional operations, resource constraints, and
addressing modes. The instructions listed here are an extension to the standard C28x instruction set. For
information on standard C28x instructions, see the TMS320C28x DSP CPU and Instruction Set Reference
Guide (literature number SPRU430).

Instruction Descriptions

This section gives detailed information on the instruction set. Each instruction may present the following
information:

* Operands

e Opcode

» Description
» Exceptions

* Pipeline
» Examples
* Seealso

The example INSTRUCTION is shown to familiarize you with the way each instruction is described. The
example describes the kind of information you will find in each part of the individual instruction description
and where to obtain more information. On the C28x+FPU instructions, follow the same format as the
C28x. The source operand(s) are always on the right and the destination operand(s) are on the left.

The explanations for the syntax of the operands used in the instruction descriptions for the TMS320C28x
plus floating-point processor are given in Table 1-4. For information on the operands of standard C28x
instructions, see the TMS320C28x DSP CPU and Instruction Set Reference Guide (SPRU430).

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 29

Submit

Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430
http://www.ti.com/lit/pdf/spru430

13 TEXAS
INSTRUMENTS

Floating Point Unit Instruction Set www.ti.com

Table 1-4. Operand Nomenclature

Symbol Description

#16FHi 16-bit immediate (hex or float) value that represents the upper 16-bits of an IEEE 32-bit floating-point value.
Lower 16-bits of the mantissa are assumed to be zero.

#16FHiHex 16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit floating-point value.
Lower 16-bits of the mantissa are assumed to be zero.

#16FLoHex A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit floating-point value

#32Fhex 32-bit immediate value that represents an IEEE 32-bit floating-point value

#32F Immediate float value represented in floating-point representation

#0.0 Immediate zero

#RC 16-bit immediate value for the repeat count

*(0:16bitAddr)

16-bit immediate address, zero extended

CNDF

Condition to test the flags in the STF register

FLAG Selected flags from STF register (OR) 11 bit mask indicating which floating-point status flags to change
label Label representing the end of the repeat block
mem16 Pointer (using any of the direct or indirect addressing modes) to a 16-bit memory location
mema32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
RaH ROH to R7H registers
RbH ROH to R7H registers
RcH ROH to R7H registers
RdH ROH to R7H registers
ReH ROH to R7H registers
RfH ROH to R7H registers
RB Repeat Block Register
STF FPU Status Register
VALUE Flag value of 0 or 1 for selected flag (OR) 11 bit mask indicating the flag value; O or 1
30 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

INSTRUCTION destl, sourcel, source2 — Short Description

INSTRUCTION destl, sourcel, source2 Short Description

Operands
destl description for the 1st operand for the instruction
sourcel description for the 2nd operand for the instruction
source2 description for the 3rd operand for the instruction
Each instruction has a table that gives a list of the operands and a short description.
Instructions always have their destination operand(s) first followed by the source
operand(s).
Opcode This section shows the opcode for the instruction.
Description Detailed description of the instruction execution is described. Any constraints on the

Restrictions

operands imposed by the processor or the assembler are discussed.

Any constraints on the operands or use of the instruction imposed by the processor are
discussed.

Pipeline This section describes the instruction in terms of pipeline cycles as described in
Section 1.4.

Example Examples of instruction execution. If applicable, register and memory values are given
before and after instruction execution. All examples assume the device is running with
the OBJMODE set to 1. Normally the boot ROM or the c-code initialization will set this
bit.

See Also Lists related instructions.

SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU) 31

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
Floating Point Unit Instruction Set www.ti.com
1.5.2 Instructions
The instructions are listed alphabetically, preceded by a summary.
Table 1-5. Summary of Instructions
Title Page
ABSF32 RaH, RbH —32-bit Floating-Point ADSOIULE ValUe......iiiiiiiiiii i i e e i s e s e s saann e saanneesannnes 34
ADDF32 RaH, #16FHi, RbH —32-bit Floating-Point AdditioN........euiiiieiiiiiiiii i i sraanes 35
ADDF32 RaH, RbH, #16FHi —32-bit Floating-Point Addition........euiiiie i e s s aannes 37
ADDF32 RaH, RbH, RcH —32-bit Floating-Point Additioneieiii e e e r e e s aenn e e aanes 39
ADDF32 RdH, ReH, RfH [MOV32 mem32, RaH —32-bit Floating-Point Addition with Parallel Move...................... 41
ADDF32 RdH, ReH, RfH [MOV32 RaH, mem32 —32-hit Floating-Point Addition with Parallel Move...............ccv..... 43
CMPF32 RaH, RbH —32-bit Floating-Point Compare for Equal, Less Than or Greater Thanccvvveiiiiiiiinninnnnn. 45
CMPF32 RaH, #16FHi —32-bit Floating-Point Compare for Equal, Less Than or Greater Thancceevviviinneiiinnns 46
CMPF32 RaH, #0.0 —32-bit Floating-Point Compare for Equal, Less Than or Greater Than........ccvvvviieeiiiiiinsiiinnns 48
EINVF32 RaH, RbH —32-bit Floating-Point Reciprocal APProXimationvveserississssrisrrnerie i 49
EISQRTF32 RaH, RbH —32-bit Floating-Point Square-Root Reciprocal APproXimationoeeveeivieerinnirineineinaes 51
F32TOI16 RaH, RbH —Convert 32-bit Floating-Point Value t0 16-bit INteger.....cvvviiiii i rrieriee e rrnneeeas 53
F32TOI16R RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Integer and Roundccoviiiviiiiineeinninnenn. 54
F32TOI32 RaH, RbH —Convert 32-bit Floating-Point Value to 32-bit INtegerccceviiiiiiiiiiii i i 55
F32TOUI16 RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Unsigned Integerccvviiiiiiiiiiininiiansns 56
F32TOUI16R RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Roundccveves 57
F32TOUI32 RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Unsigned INtegerccvvvvvviiiiiiniineininennns 58
FRACF32 RaH, RbH —Fractional Portion of a 32-hit Floating-Point Value........ccevviiiieiiiiiiiiernssnneennnnneennnns 59
116 TOF32 RaH, RbH —Convert 16-bit Integer to 32-bit Floating-Point Valueccciiiiiiiiiiiiiiiiiiie i vvieeeanas 60
116 TOF32 RaH, mem16 —Convert 16-bit Integer to 32-bit Floating-Point Valueccovviiiiiiiiiiiiiiiiiiineeenas 61
I32TOF32 RaH, mem32 —Convert 32-bit Integer to 32-bit Floating-Point Valuecccoiiiiiiiiiiiiiiiiiiieeeenas 62
1I32TOF32 RaH, RbH —Convert 32-bit Integer to 32-bit Floating-Point Valuecooiiiiiiiiiiiiiiii e 63
MACF32 R3H, R2H, RdH, ReH, RfH —32-bit Floating-Point Multiply with Parallel Addccccovviiiiiiiiiiiennne, 64
MACF32 R3H, R2H, RdH, ReH, RfH ||[MOV32 RaH, mem32 —32-bit Floating-Point Multiply and Accumulate with
LT ie= 111 Y1 1Y 66
MACF32 R7H, R3H, mem32, *XAR7++ —32-bit Floating-Point Multiply and Accumulateccvvviiiiiiiininininns 68
MACF32 R7H, R6H, RdH, ReH, RfH —32-bit Floating-Point Multiply with Parallel Addcccovviiiiiiiiiiiiieeenns 70
MACF32 R7H, R6H, RdH, ReH, RfH ||[MOV32 RaH, mem32 —32-bit Floating-Point Multiply and Accumulate with
L 1= 111 Y10 1Y P 72
MAXF32 RaH, RbH —32-bit Floating-Point MaXimUMueeeessiiesssaeeessannresssanneessssnnessasnnessessnnessssnnessennns 74
MAXF32 RaH, #16FHi —32-bit Floating-Point MaximUIMecuiiieeiiii i saresssann e sesanneesaaneesaaannesaannes 75
MAXF32 RaH, RbH ||[MOV32 RcH, RdH —32-bit Floating-Point Maximum with Parallel Move...........cccooviiiiiinnnnn 76
MINF32 RaH, RbH —32-bit Floating-Point MinimUMo e s s s ssins s ssaiass s saanne s ssannassaannes 77
MINF32 RaH, #16FHi —32-bit Floating-Point MiNIMUMt er e e raane e e annns 78
MINF32 RaH, RbH [MOV32 RcH, RdH —32-bit Floating-Point Minimum with Parallel Movecoooviiiiiiiiiiinnnnns 79
MOV16 mem16, RaH —Move 16-bit Floating-Point Register Contents t0 MeMOIY....vvieiererreiineeriainnerrannnersaannneess 80
MOV32 *(0:16bitAddr), loc32 —Move the Contents of I0C32 t0 MEMOIY ...veiiiiiieiiiiie i ieareeseanneersaanneeans 81
MOV32 ACC, RaH —Move 32-bit Floating-Point Register Contents t0 ACC ...uiuuerriiiiriiriinsiriinesiraassssannneeas 82
MOV32 loc32, *(0:16bitAddr) —Move 32-bit Value from Memory t0 I0C32oueiiiiiiiiiiiii i rraaneeenas 83
MOV32 mem32, RaH —Move 32-bit Floating-Point Register Contents to MEeMOIYovvvieeiiiieririniriireiseianes 84
MOV32 mem32, STF —Move 32-bit STF RegiSter t0 MEMIOIY ...uueiretiiiiiiee it as i araaness 86
MOV32 P, RaH —Move 32-bit Floating-Point Register CONtENTS t0 P ..uvieeiiiiieisiieesiannessnnnneessannnessnnnneeanns 87
MOV32 RaH, ACC —Move the Contents of ACC to a 32-bit Floating-Point RegiStercciiiiiiiiiiiiiiiiiiiniiineenns 88
MOV32 RaH, mem32 {, CNDF} —Conditional 32-Dit MOVEciiiieiiiiiiiiiii i i aaas 89
32 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com Floating Point Unit Instruction Set
Table 1-5. Summary of Instructions (continued)
MOV32 RaH, P —Move the Contents of P to a 32-bit Floating-Point RegiStervieeiiiiiiiiiiiiiiiiniiae 91
MOV32 RaH, RbH {, CNDF} —Conditional 32-Dit MOVE.uueeiiiieeieaeessaanneessaneessaannessaannessaannnesaaannessnnnes 92
MOV32 RaH, XARn —Move the Contents of XARnN to a 32-bit Floating-Point Registercccevviiiiiiiiiiieniininnenns 93
MOV32 RaH, XT —Move the Contents of XT to a 32-bit Floating-Point Registercccvviiiiiiiiiiiiiiiiiiieeenns 94
MOV32 STF, mem32 —Move 32-bit Value from Memory to the STF RegISterueiiiiiiiiiiiiiiiiii i reaee e 95
MOV32 XARn, RaH —Move 32-bit Floating-Point Register Contents t0 XARN ...uvvuiiiiiiiiiiiriiininnaeanaes 96
MOV32 XT, RaH —Move 32-bit Floating-Point Register CONtENtS 10 XT .. uueiriseiiueinieeiiirieiirie s 97
MOVD32 RaH, mem32 —Move 32-bit Value from Memory with Data COPY ..vuevrueriintirineiiniirieiirieriereeins 98
MOVF32 RaH, #32F —Load the 32-hits of a 32-bit Floating-Point REQIStErvviiieiiiii i i i e rnaneeeanas 99
MOVI32 RaH, #32FHex —Load the 32-bits of a 32-bit Floating-Point Register with the immediatecoutes 100
MOVIZ RaH, #16FHiHex —Load the Upper 16-bits of a 32-bit Floating-Point Registerccovviiiiiiiiiiiiiniinnens 101
MOVIZF32 RaH, #16FHi —Load the Upper 16-bits of a 32-bit Floating-Point Registercccoviiiiiiiiiiiiiiiinesns 102
MOVSTO FLAG —Load Selected STF FIAgs iNTO STO .uuuuueiruurirnneineinnesassissssisssasssisssanesassiasssinssasssnn 103
MOVXI RaH, #16FLoHex —Move Immediate to the Low 16-bits of a Floating-Point Registerccvvvvviiiiiineinnnnn. 104
MPYF32 RaH, RbH, RcH —32-bit Floating-Point MURIPIYeeeiiii i cs e s e e s erinr e s s nnnn e e snanneeanns 105
MPYF32 RaH, #16FHi, RbH —32-bit Floating-Point MUILIPIYiveeeeiiii i 106
MPYF32 RaH, RbH, #16FHi —32-bit Floating-Point MUIIPLY ... e e 108
MPYF32 RaH, RbH, RcH ||ADDF32 RdH, ReH, RfH —32-bit Floating-Point Multiply with Parallel Add.................... 110
MPYF32 RdH, ReH, RfH |[MOV32 RaH, mem32 —32-bit Floating-Point Multiply with Parallel Move...................... 112
MPYF32 RdH, ReH, RfH |[MOV32 mem32, RaH —32-bit Floating-Point Multiply with Parallel Move...................... 114
MPYF32 RaH, RbH, RcH ||SUBF32 RdH, ReH, RfH —32-bit Floating-Point Multiply with Parallel Subtract.............. 115
NEGF32 RaH, RbH{, CNDF} —Conditional Negationcu.ueeiiiuiesiiiineiiissssriinsssssasssssannssssainssssannssssnnns 116
POP RB —Pop the RB Register from the StACKueiiiiiiiiiiii i i s aaar s s rnr e rranns 117
PUSH RB —Push the RB Register ont0o the STaCKoiiiiiiii i i e s r e e ranns 119
RESTORE —Restore the Floating-PoiNt REGISIEIS +...uuiiusiiiiiiie i raees 120
RPTB label, 10c16 —Repeat A BIOCK Of COUE . .vuuiuiteiiiiieesieeessaaeeseaane e ssaaane s saaneessannnessaannesssannnessnnnes 122
RPTB label, #RC —Repeat @ BlOCK Of COO .. uutiiiiiieiiiieisiatesssite s sasne e saannessasnnessaanneessannsesssnnnnssennnes 124
SAVE FLAG, VALUE —Save Register Set to Shadow Registers and Execute SETFLGcccevviiiiiieiiiiiineiinnnns 126
SETFLG FLAG, VALUE —Set or clear selected floating-point status flagsvvvieiiiiiiiiiiiiiiii e 128
SUBF32 RaH, RbH, RcH —32-bit Floating-Point SUBIrACON ... e aee e 129
SUBF32 RaH, #16FHi, RbH —32-bit Floating Point SUDIractioncviiiiiiii i e e e eaeee e 130
SUBF32 RdH, ReH, RfH |[MOV32 RaH, mem32 —32-bit Floating-Point Subtraction with Parallel Move 131
SUBF32 RdH, ReH, RfH [MOV32 mem32, RaH —32-hit Floating-Point Subtraction with Parallel Move 133
SWAPF RaH, RbH{, CNDF} —CoNditioNal SWaP ... uuuueteiiieiniieesisiiansisnisesssssssssansssssannnssssansssssannnsssnns 135
TESTTF CNDF —Test STF Register Flag Conditioneeiiiieeiiiiieiiiiss i s istsssaiss s ssasssssannsssaannness 136
UI16TOF32 RaH, mem16 —Convert unsigned 16-bit integer to 32-bit floating-point value..........c.cooeeviiiiiiiiiinnsn. 137
UI16TOF32 RaH, RbH —Convert unsigned 16-bit integer to 32-bit floating-point value..........ccvviiiiiiiiiiniinnenn, 138
UI32TOF32 RaH, mem32 —Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value..........ccovevviiiiiiiniinnnn, 139
UI32TOF32 RaH, RbH —Convert Unsigned 32-bit Integer to 32-bit Floating-Point Valueccovviiiivviiiieeniinnnnn. 140
ZERO RaH —Zero the Floating-Point Register RAHeiiiiiiiiiiiiiiii i s s s anr s snannes 141
ZEROA —Zero All Floating-Point RegISIEIS. ..ttt st st ess e saaan e s ss s s saans s s aaannessaannnesss 142
SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 33

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

ABSF32 RaH, RbH — 32-bit Floating-Point Absolute Value

13 TEXAS
INSTRUMENTS

www.ti.com

ABSF32 RaH, RbH 32-bit Floating-Point Absolute Value

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode
LSW: 1110 0110 1001 0101
MSW: 0000 0000 0O0bb baaa
Description The absolute value of RbH is loaded into RaH. Only the sign bit of the operand is
modified by the ABSF32 instruction.
if (RbH < 0) {RaH = -RbH}
else {RaH = RbH}
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The STF register flags are modified as follows:
NF = 0;
ZF = 0;
if (RaH[30:23] == 0) ZF = 1;
Pipeline This is a single-cycle instruction.
Example MOVIZF32 R1H, #-2.0 ; R1IH = -2.0 (0xC0O000000)
ABSF32 R1H, R1H ; R1H = 2.0 (0x40000000), ZF = NF = 0
MOVIZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
ABSF32 ROH, ROH ; ROH = 5.0 (0x40A00000), ZF = NF = 0
MOVIZF32 ROH, #0.0 ; ROH = 0.0
ABSF32 R1H, ROH ; RIH=0.0ZF =1, NF=0
See also NEGF32 RaH, RbH{, CNDF}

34 Floating Point Unit (FPU)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com ADDF32 RaH, #16FHi, RbH — 32-bit Floating-Point Addition

ADDF32 RaH, #16FHi, RbH 32-bit Floating-Point Addition

Operands

RaH floating-point destination register (ROH to R7H)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.

RbH floating-point source register (ROH to R7H)

Opcode
LSW: 1110 1000 1011 1111
MSW: IILL 1111 11bb baaa

Description Add RbH to the floating-point value represented by the immediate operand. Store the
result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.

Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0Ox3F000000), and -1.5
(OxBFCO00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFCO.

RaH = RbH + #16FHi:0
This instruction can also be written as ADDF32 RaH, RbH, #16FHi.

Flags This instruction modifies the following flags in the STF register:

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
 LUF =1 if ADDF32 generates an underflow condition.
* LVF =1 if ADDF32 generates an overflow condition.

Pipeline This is a 2 pipeline-cycle instruction (2p). That is:

ADDF32 RaH, #16FHi, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example ; Add to R1H the value 2.0 in 32-bit floating-point format
ADDF32 ROH, #2.0, R1H ; ROH = 2.0 + R1H
NOP ; Delay for ADDF32 to complete
; <-- ADDF32 completes, ROH updated
NOP ;

; Add to R3H the value -2.5 in 32-bit floating-point format
ADDF32 R2H, #-2.5, R3H ; R2H = -2.5 + R3H
NOP ; Delay for ADDF32 to complete
; <-- ADDF32 completes, R2H updated
NOP ;

; Add to R5H the value Ox3FC00000 (1.5)
ADDF32 R5H, #0x3FCO, R5H ; R5H = 1.5 + R5H
NOP ; Delay for ADDF32 to complete
; <-- ADDF32 completes, R5H updated

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 35

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

ADDF32 RaH, #16FHi, RbH — 32-bit Floating-Point Addition

www.ti.com

NOP

See also ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, RbH, RcH
ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32
ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

36 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com ADDF32 RaH, RbH, #16FHi — 32-bit Floating-Point Addition

ADDF32 RaH, RbH, #16FHi 32-bit Floating-Point Addition

Operands

RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.

Opcode
LSW: 1110 1000 1011 1111
MSW: IILL 1111 11bb baaa

Description Add RbH to the floating-point value represented by the immediate operand. Store the
result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.

Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0Ox3F000000), and -1.5
(OxBFCO00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFCO.

RaH = RbH + #16FHi:0
This instruction can also be written as ADDF32 RaH, #16FHi, RbH.

Flags This instruction modifies the following flags in the STF register:

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
 LUF =1 if ADDF32 generates an underflow condition.
* LVF =1 if ADDF32 generates an overflow condition.

Pipeline This is a 2 pipeline-cycle instruction (2p). That is:

ADDF32 RaH, #16FHi, RbH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example
; Add to R1H the value 2.0 in 32-bit floating-point format
ADDF32 ROH, R1H, #2.0 ; ROH = R1H + 2.0
NOP ; Delay for ADDF32 to complete
; <-- ADDF32 completes, ROH updated
NOP ;
; Add to R3H the value -2.5 in 32-bit floating-point format
ADDF32 R2H, R3H, #-2.5 ; R2H = R3H + (-2.5)
NOP ; Delay for ADDF32 to complete
; <-- ADDF32 completes, R2H updated
NOP ;
; Add to R5H the value Ox3FC00000 (1.5)
ADDF32 R5H, R5H, #0x3FCO ; R5H = R5H + 1.5
NOP ; Delay for ADDF32 to complete
; <-- ADDF32 completes, R5H updated

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 37

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

ADDF32 RaH, RbH, #16FHi — 32-bit Floating-Point Addition

www.ti.com

NOP

See also ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, RbH, RcH
ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32
ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

38 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

ADDF32 RaH, RbH, RcH — 32-bit Floating-Point Addition

ADDF32 RaH, RbH, RcH 32-bit Floating-Point Addition

Operands

RaH
RbH
RcH

floating-point destination register (ROH to R7H)
floating-point source register (ROH to R7H)
floating-point source register (ROH to R7H)

Opcode

Description

Flags

LSW: 1110 0111 0001 0000
MSW: 0000 000c ccbb baaa

Add the contents of RcH to the contents of RbH and load the result into RaH.
RaH = RbH + RcH

This instruction modifies the following flags in the STF register:

Flag TF

VA| NI ZF NF LUF LVF

Modified No

No No No No Yes Yes

Pipeline

Example

See also

The STF register flags are modified as follows:
 LUF =1 if ADDF32 generates an underflow condition.
 LVF =1 if ADDF32 generates an overflow condition.

This is a 2 pipeline-cycle instruction (2p). That is:
ADDF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Calculate Y = M1*X1 + B1. This example assumes that M1, X1, B1 and Y are all on the
same data page.

MOVW DP, #M1 ; Load the data page
MOV32 ROH,@M1 ; Load ROH with M1
MOV32 R1H,@X1 ; Load R1H with X1
MPYF32 R1H,R1H,ROH ; Multiply M1*X1
|] MOV32 ROH,@B1 ; and in parallel load ROH with Bl
NOP ; <-- MOV32 complete
; <-- MPYF32 complete
ADDF32 R1H,R1H,ROH ; Add M*X1 to Bl and store in R1H
NOP
; <-- ADDF32 complete
Mov32 @Y1,R1H ; Store the result

Calculate Y =A+B

MOVL XAR4, #A
MOV32 ROH, *XAR4 ; Load ROH with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
ADDF32 ROH,R1H,ROH ; Add A + B ROH=ROH+R1H
MOVL XAR4, #Y

; < -- ADDF32 complete
MOV32 *XAR4,ROH ; Store the result

ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, #16F, RbH
ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 39
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
ADDF32 RaH, RbH, RcH — 32-bit Floating-Point Addition www.ti.com
ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH
40 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

ADDF32 RdH, ReH, RfH |[MOV32 mem32, RaH — 32-bit Floating-Point Addition with Parallel Move

ADDF32 RdH, ReH, RfH ||[MOV32 mem32, RaH 32-bit Floating-Point Addition with Parallel Move

Operands
RdH floating-point destination register for the ADDF32 (ROH to R7H)
ReH floating-point source register for the ADDF32 (ROH to R7H)
RfH floating-point source register for the ADDF32 (ROH to R7H)
mem32 pointer to a 32-bit memory location. This will be the destination of the MOV32.
RaH floating-point source register for the MOV32 (ROH to R7H)
Opcode
LSW: 1110 0000 0001 fffe
MSW: eedd daaa mem32
Description Perform an ADDF32 and a MOV32 in parallel. Add RfH to the contents of ReH and store
the result in RdH. In parallel move the contents of RaH to the 32-bit location pointed to
by mem32. mem32 addresses memory using any of the direct or indirect addressing
modes supported by the C28x CPU.
RdH = ReH + RfH,
[mem32] = RaH
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
 LUF =1 if ADDF32 generates an underflow condition.
* LVF =1 if ADDF32 generates an overflow condition.
Pipeline ADDF32 is a 2 pipeline-cycle instruction (2p) and MOV32 takes a single cycle. That is:
ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|l MOV32 mem32, RaH ; 1 cycle
; <-- MOV32 completes, mem32 updated
NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, RdH updated
NOP
Any instruction in the delay slot must not use RdH as a destination register or use RdH
as a source operand.
Example
ADDF32 R3H, R6H, R4H ; (A) R3H = R6H + R4H and R7H = 13
Il MOV32 R7H, *-SP[2] ;
; <-- R7H vali
SUBF32 R6H, R6H, R4H ; (B) R6H = R6H - R4H
; <-- ADDF32 (A) completes, R3H valid
SUBF32 R3H, R1H, R7H ; (C) R3H = R1H - R7H and store R3H (A)
Il MOV32 *+XAR5[2], R3H ;
; <-- SUBF32 (B) completes, R6H valid
; <-- MOV32 completes, (A) stored
ADDF32 R4H, R7H, R1IH ; R4H = D = R7H + R1H and store R6H (B)
Il MOV32 *+XAR5[6], R6H ;
; <-- SUBF32 (C) completes, R3H valid
; <-- MOV32 completes, (B) stored
MOV32 *+XAR5[0], R3H ; store R3H (C)
; <-- MOV32 completes, (C) stored
; <-- ADDF32 (D) completes, R4H valid
MOV32 *+XAR5[4], R4H ; store R4H (D) ;
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU) 41

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

ADDF32 RdH, ReH, RfH |[MOV32 mem32, RaH — 32-bit Floating-Point Addition with Parallel Move www.ti.com

; <-- MOV32 completes, (D) stored

See also ADDF32 RaH, #16FHi, RbH
ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, RbH, RcH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH
ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32

42 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com ADDF32 RdH, ReH, RfH |[MOV32 RaH, mem32 — 32-bit Floating-Point Addition with Parallel Move

ADDF32 RdH, ReH, RfH ||[MOV32 RaH, mem32 32-bit Floating-Point Addition with Parallel Move

Operands

RdH floating-point destination register for the ADDF32 (ROH to R7H).
RdH cannot be the same register as RaH.

ReH floating-point source register for the ADDF32 (ROH to R7H)
RfH floating-point source register for the ADDF32 (ROH to R7H)

RaH floating-point destination register for the MOV32 (ROH to R7H).
RaH cannot be the same register as RdH.

mem32 pointer to a 32-bit memory location. This is the source for the MOV32.

Opcode
LSW: 1110 0011 0001 fffe
MSW: eedd daaa mem32

Description Perform an ADDF32 and a MOV32 operation in parallel. Add RfH to the contents of ReH
and store the result in RdH. In parallel move the contents of the 32-bit location pointed to
by mem32 to RaH. mem32 addresses memory using any of the direct or indirect
addressing modes supported by the C28x CPU.

RdH = ReH + RfH,
RaH [mem32]

Restrictions The destination register for the ADDF32 and the MOV32 must be unique. That is, RaH
and RdH cannot be the same register.

Any instruction in the delay slot must not use RdH as a destination register or use RdH
as a source operand.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The STF register flags are modified as follows:
 LUF =1 if ADDF32 generates an underflow condition.
 LVF =1 if ADDF32 generates an overflow condition.

The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);

ZF = 0;

if(RaH(30:23) == 0) { ZF = 1; NF = 0; }

NI = RaH(31);

Zl = 0;

if(RaH(31:0) == 0) ZI = 1;

Pipeline The ADDF32 takes 2 pipeline cycles (2p) and the MOV32 takes a single cycle. That is:

ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 RaH, mem32 ; 1 cycle
; <-- MOV32 completes, RaH updated NOP
; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, RdH updated
NOP

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 43

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
ADDF32 RdH, ReH, RfH ||[MOV32 RaH, mem32 — 32-bit Floating-Point Addition with Parallel Move www.ti.com
Example Calculate Y =A+B - C:
MOVL XAR4, #A
MOV32 ROH, *XAR4 ; Load ROH with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
MOVL XAR4, #C
ADDF32 ROH,R1H,ROH ; Add A + B and in parallel
|1 MOV32 R2H, *XAR4 ; Load R2H with C
; <-- MOV32 complete
MOVL XAR4,#Y
; ADDF32 complete
SUBF32 ROH,ROH,R2H ; Subtract C from (A + B)
NOP ;
<-- SUBF32 completes
MOV32 *XAR4,ROH ; Store the result
See also ADDF32 RaH, #16FHi, RbH
ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, RbH, RcH
ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH
44 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

CMPF32 RaH, RbH — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

CMPF32 RaH, RbH

Operands

32-bit Floating-Point Compare for Equal, Less Than or Greater Than

RaH
RbH

floating-point source register (ROH to R7H)
floating-point source register (ROH to R7H)

Opcode

Description

Flags

LSwW: 1110 0110 1001 0100
MSW: 0000 0000 00bb baaa

Set ZF and NF flags on the result of RaH - RbH. The CMPF32 instruction is performed
as a logical compare operation. This is possible because of the IEEE format offsetting
the exponent. Basically the bigger the binary number, the bigger the floating-point value.

Special cases for inputs:

* Negative zero will be treated as positive zero.

e A denormalized value will be treated as positive zero.
* Not-a-Number (NaN) will be treated as infinity.

This instruction modifies the following flags in the STF register:

Flag TF

Zl NI ZF NF LUF

LVF

Modified No

No No Yes Yes No

No

Pipeline

Example

See also

The STF register flags are modified as follows:
If(RaH == RbH) {ZF=1, NF=0}
If(RaH > RbH) {ZF=0, NF=0}
If(RaH < RbH) {ZF=0, NF=1}

This is a single-cycle instruction.
; Behavior of ZF and NF flags for different comparisons

CMPF32 R1H, ROH ; ZF = 0, NF 1
CMPF32 ROH, R1H ; ZF = 0, NF = 0

MOVIZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
CMPF32 ROH, ROH ; ZF 1, NF =0

; Using the result of a compare for loop control

Loop:

MOV32 ROH,*XAR4++ ; Load ROH

MOV32 R1H,*XAR3++ ; Load R1H

CMPF32 R1H, ROH ; Set/clear ZF and NF

MOVSTO ZF, NF ; Copy ZF and NF to STO Z and N bits
BF Loop, GT ; Loop if R1H > ROH

CMPF32 RaH, #16FHi
CMPF32 RaH, #0.0
MAXF32 RaH, #16FHi
MAXF32 RaH, RbH
MINF32 RaH, #16FHi
MINF32 RaH, RbH

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU) 45

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

CMPF32 RaH, #16FHi — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than www.ti.com

CMPF32 RaH, #16FHi 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands

RaH
#16FHi

floating-point source register (ROH to R7H)

A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.

Opcode

Description

Flags

LSW: 1110 1000 0001 OIll
MSWz 11LD 1111 1111 laaa

Compare the value in RaH with the floating-point value represented by the immediate
operand. Set the ZF and NF flags on (RaH - #16FHi:0).

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0OxBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFCO.

The CMPF32 instruction is performed as a logical compare operation. This is possible
because of the IEEE floating-point format offsets the exponent. Basically the bigger the
binary number, the bigger the floating-point value.

Special cases for inputs:

* Negative zero will be treated as positive zero.

« Denormalized value will be treated as positive zero.

* Not-a-Number (NaN) will be treated as infinity.

This instruction modifies the following flags in the STF register:

Flag TF

ZI NI ZF NF LUF LVF

Modified No

No No Yes Yes No No

Pipeline

Example

See also

The STF register flags are modified as follows:
If(RaH == #16FHi:0) {ZF=1, NF=0}
If(RaH > #16FHi:0) {ZF=0, NF=0}
If(RaH < #16FHi:0) {ZF=0, NF=1}

This is a single-cycle instruction

; Behavior of ZF and NF flags for different comparisons
MOVIZF32 R1H, #-2.0 ; R1H = -2.0 (0xC0O000000)
MOVIZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)

CMPF32 R1H, #-2.2 ; ZF =0, NF=0
CMPF32 ROH, #6.5 ; ZF =0, NF =1
CMPF32 ROH, #5.0 ; ZF =1, NF=0

; Using the result of a compare for loop control

Loop:
MOV32 R1H,*XAR3++ ; Load R1H
CMPF32 R1H, #2.0 ; Set/clear ZF and NF
MOVSTO ZF, NF ; Copy ZF and NF to STO Z and N bits
BF Loop, GT ; Loop if R1H > #2.0

CMPF32 RaH, #0.0
CMPF32 RaH, RbH
MAXF32 RaH, #16FHi

46 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com CMPF32 RaH, #16FHi — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than
MAXF32 RaH, RbH
MINF32 RaH, #16FHi
MINF32 RaH, RbH
SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 47

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

CMPF32 RaH, #0.0 — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than www.ti.com

CMPF32 RaH, #0.0 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands
RaH floating-point source register (ROH to R7H)
#0.0 zero
Opcode LSW: 1110 0101 1010 Oaaa
Description Set the ZF and NF flags on (RaH - #0.0). The CMPF32 instruction is performed as a
logical compare operation. This is possible because of the IEEE floating-point format
offsets the exponent. Basically the bigger the binary number, the bigger the floating-point
value.
Special cases for inputs:
* Negative zero will be treated as positive zero.
» Denormalized value will be treated as positive zero.
* Not-a-Number (NaN) will be treated as infinity.
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The STF register flags are modified as follows:
If(RaH == #0.0) {ZF=1, NF=0}
If(RaH > #0.0) {ZF=0, NF=0}
If(RaH < #0.0) {ZF=0, NF=1}
Pipeline This is a single-cycle instruction.
Example ; Behavior of ZF and NF flags for different comparisons
MOVIZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOVIZF32 R1H, #-2.0 ; R1H = -2.0 (OxC0000000)
MOVIZF32 R2H, #0.0 ; R2H = 0.0 (0x00000000)
CMPF32 ROH, #0.0 :ZF =0, NF=0
CMPF32 R1H, #0.0 ; ZF =0, NF=1
CMPF32 R2H, #0.0 ; ZF =1, NF=0
; Using the result of a compare for loop control
Loop:
MOV32 R1H,*XAR3++ ; Load R1H
CMPF32 R1H, #0.0 ; Set/clear ZF and NF
MOVSTO ZF, NF ; Copy ZF and NF to STO Z and N bits
BF Loop, GT ; Loop if R1H > #0.0
See also CMPF32 RaH, #0.0
CMPF32 RaH, #16FHi
MAXF32 RaH, #16FHi
MAXF32 RaH, RbH
MINF32 RaH, #16FHi
MINF32 RaH, RbH
48 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

EINVF32 RaH, RbH — 32-bit Floating-Point Reciprocal Approximation

EINVF32 RaH, RbH

32-bit Floating-Point Reciprocal Approximation

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode
LSW: 1110 0110 1001 0011
MSW: 0000 0000 0O0bb baaa
Description This operation generates an estimate of 1/X in 32-bit floating-point format accurate to
approximately 8 bits. This value can be used in a Newton-Raphson algorithm to get a
more accurate answer. That is:
Ye = Estimate(1/X);
Ye = Ye*(2.0 - Ye*X)
Ye = Ye*(2.0 - Ye*X)
After two iterations of the Newton-Raphson algorithm, you will get an exact answer
accurate to the 32-bit floating-point format. On each iteration the mantissa bit accuracy
approximately doubles. The EINVF32 operation will not generate a negative zero,
DeNorm or NaN value.
RaH = Estimate of 1/RbH
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
» LUF =1 if EINVF32 generates an underflow condition.
* LVF =1 if EINVF32 generates an overflow condition.
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
EINVF32 RaH, RbH ; 2p
NOP ; 1 cycle delay or non-conflicting instruction
; <-- EINVF32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU) 49

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

EINVF32 RaH, RbH — 32-bit Floating-Point Reciprocal Approximation

13 TEXAS
INSTRUMENTS

www.ti.com

Example Calculate Y = A/B. A fast division routine similar to that shown below can be found in the
C28x FPU Fast RTS Library (SPRC664).
MOVL XAR4, #A
MOV32 ROH, *XAR4 ; Load ROH with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
LCR DIV ; Calculate ROH = ROH / R1H
MOV32 *XAR4, ROH ;
DIV:
EINVF32 R2H, R1H ; R2H = Ye = Estimate(1/B)
CMPF32 ROH, #0.0 ; Check if A ==0
MPYF32 R3H, R2H, R1H ; R3H = Ye*B
NOP
SUBF32 R3H, #2.0, R3H ; R3H = 2.0 - Ye*B
NOP
MPYF32 R2H, R2H, R3H ; R2H = Ye = Ye*(2.0 - Ye*B)
NOP
MPYF32 R3H, R2H, R1H ; R3H = Ye*B
CMPF32 R1H, #0.0 ; Check if B == 0.0
SUBF32 R3H, #2.0, R3H ; R3H = 2.0 - Ye*B
NEGF32 ROH, ROH, EQ ; Fixes sign for A/0.0
MPYF32 R2H, R2H, R3H ; R2H = Ye = Ye*(2.0 - Ye*B)
NOP
MPYF32 ROH, ROH, R2H ; ROH = Y = A*Ye = A/B
LRETR
See also EISQRTF32 RaH, RbH
50 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://focus.ti.com/docs/toolsw/folders/print/sprc664.html

13 TEXAS
INSTRUMENTS

www.ti.com

EISQRTF32 RaH, RbH — 32-bit Floating-Point Square-Root Reciprocal Approximation

EISQRTF32 RaH, RbH 32-bit Floating-Point Square-Root Reciprocal Approximation

Operands

RaH
RbH

floating-point destination register (ROH to R7H)
floating-point source register (ROH to R7H)

Opcode

Description

Flags

LSwW: 1110 0110 1001 0010
MSW: 0000 0000 00bb baaa

This operation generates an estimate of 1/sqrt(X) in 32-bit floating-point format accurate
to approximately 8 bits. This value can be used in a Newton-Raphson algorithm to get a
more accurate answer. That is:

Ye Estimate(1/sqrt(X));

Ye Ye*(1.5 - Ye*Ye*X/2.0)

Ye = Ye*(1.5 - Ye*Ye*X/2.0)

After 2 iterations of the Newton-Raphson algorithm, you will get an exact answer
accurate to the 32-bit floating-point format. On each iteration the mantissa bit accuracy
approximately doubles. The EISQRTF32 operation will not generate a negative zero,
DeNorm or NaN value.

RaH = Estimate of 1/sqrt (RbH)

This instruction modifies the following flags in the STF register:

Flag TF

VA| NI ZF NF LUF LVF

Modified No

No No No No Yes Yes

Pipeline

The STF register flags are modified as follows:
 LUF =1if EISQRTF32 generates an underflow condition.
 LVF =1 if EISQRTF32 generates an overflow condition.

This is a 2 pipeline cycle (2p) instruction. That is:

EINVF32 RaH, RbH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- EISQRTF32 completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 51
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
EISQRTF32 RaH, RbH — 32-bit Floating-Point Square-Root Reciprocal Approximation www.ti.com
Example Calculate the square root of X. A square-root routine similar to that shown below can be
found in the C28x FPU Fast RTS Library (SPRC664).
;Y = sgre(X)
; Ye = Estimate(1/sqrt(X));
: Ye = Ye*(1.5 - Ye*Ye*X*0.5)
; Ye = Ye*(1.5 - Ye*Ye*X*0.5)
;Y = X*Ye
_sqrt:
; ROH = X on entry
EISQRTF32 R1H, ROH ; R1IH = Ye = Estimate(1/sqrt(X))
MPYF32 R2H, ROH, #0.5 ; R2H = X*0.5
MPYF32 R3H, R1H, R1H ; R3H = Ye*Ye
NOP
MPYF32 R3H, R3H, R2H ; R3H = Ye*Ye*X*0.5
NOP
SUBF32 R3H, #1.5, R3H ; R3H = 1.5 - Ye*Ye*X*0.5
NOP
MPYF32 R1H, R1H, R3H ; R2H = Ye = Ye*(1.5 - Ye*Ye*X*0.5)
NOP
MPYF32 R3H, R1H, R2H ; R3H = Ye*X*0.5
NOP
MPYF32 R3H, R1H, R3H ; R3H = Ye*Ye*X*0.5
NOP
SUBF32 R3H, #1.5, R3H ; RBH = 1.5 - Ye*Ye*X*0.5
CMPF32 ROH, #0.0 ; Check if X == 0
MPYF32 R1H, R1H, R3H ; R2H = Ye = Ye*(1.5 - Ye*Ye*X*0.5)
NOP
MOV32 R1H, ROH, EQ ; If X is zero, change the Ye estimate to O
MPYF32 ROH, ROH, R1H ; ROH = Y = X*Ye = sqrt(X)
LRETR
See also EINVF32 RaH, RbH
52 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://focus.ti.com/docs/toolsw/folders/print/sprc664.html

13 TEXAS
INSTRUMENTS

www.ti.com

F32TOI16 RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Integer

F32TOI16 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Integer

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1000 1100
MSW: 0000 0000 OObb baaa
Description Convert a 32-hit floating point value in RbH to a 16-bit integer and truncate. The result
will be stored in RaH.
RaH(15:0) = F32TO116(RbH)
RaH(31:16) = sign extension of RaH(15)
Flags This instruction does not affect any flags:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TO116 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- F32T0I116 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVIZF32 ROH, #5.0 ; ROH = 5.0 (Ox40A00000)
F32TO116 R1H, ROH ; R1H(15:0) = F32TOI116(ROH)
; R1H(31:16) = Sign extension of R1H(15)
MOVIZF32 R2H, #-5.0 ; R2H = -5.0 (OxCOA00000)
; <-- F32T0116 complete, R1H(15:0) = 5 (0x0005)
; R1H(31:16) = 0 (0x0000)
F32TO116 R3H, R2H ; R3H(15:0) = F32TO116(R2H)
; R3H(31:16) = Sign extension of R3H(15)
NOP ; 1 Cycle delay for F32T0I116 to complete
; <-- F32T0116 complete, R3H(15:0) = -5 (OxFFFB)
; R3H(31:16) = (OXFFFF)
See also F32TOI16R RaH, RbH

F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
116 TOF32 RaH, RbH

116 TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

53

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

I

F32TOI16R RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Integer and Round

TEXAS
INSTRUMENTS

www.ti.com

F32TOI16R RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Integer and Round

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1000 1100
MSW: 1000 0000 OObb baaa
Description Convert the 32-bit floating point value in RbH to a 16-bit integer and round to the nearest
even value. The result is stored in RaH.
RaH(15:0) = F32Tol16round(RbH)
RaH(31:16) = sign extension of RaH(15)
Flags This instruction does not affect any flags:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TO116R RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- F32TOI16R completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example
MOVIZ ROH, #O0x3FD9 ; ROH [31:16] = Ox3FD9
MOVX1 ROH, #0x999A ; ROH [15:0] = Ox999A
; ROH = 1.7 (Ox3FD9999A)
F32TOI16R R1H, ROH ; R1H(15:0) = F32TOl16round (ROH)
; R1H(31:16) = Sign extension of R1H(15)
MOVF32 R2H, #-1.7 ; R2H = -1.7 (OxBFD9999A)
; <- F32TOI116R complete, R1H(15:0) = 2 (0x0002)
: R1H(31:16) = 0 (0x0000)
F32TOI16R R3H, R2H ; R3H(15:0) = F32TOl16round (R2H)
; R3H(31:16) = Sign extension of R2H(15)
NOP ; 1 Cycle delay for F32TOI16R to complete
; <-- F32TOI16R complete, R1H(15:0) = -2 (OxFFFE)
; R1H(31:16) = (OXFFFF)
See also F32TOI16 RaH, RbH

F32TOUI16 RaH, RbH

F32TOUI16R RaH, RbH

[16TOF32 RaH, RbH

116 TOF32 RaH, mem16
UI16TOF32 RaH, mem16

UI16TOF32 RaH, RbH

54 Floating Point Unit (FPU)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

F32TOI32 RaH, RbH — Convert 32-bit Floating-Point Value to 32-bit Integer

F32TOI32 RaH, RbH Convert 32-bit Floating-Point Value to 32-bit Integer

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1000 1000
MSW: 0000 0000 OObb baaa
Description Convert the 32-bit floating-point value in RbH to a 32-bit integer value and truncate.
Store the result in RaH.
RaH = F32TOI132(RbH)
Flags This instruction does not affect any flags:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32T0132 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- F32T0132 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example
MOVF32 R2H, #11204005.0 ; R2H = 11204005.0 (Ox4B2AF5A5)
F32T0132 R3H, R2H ; R3H = F32T0132 (R2H)
MOVF32 R4H, #-11204005.0 ; R4H = -11204005.0 (OxCB2AF5A5)
; <-- F32T0132 complete,
; R3H = 11204005 (OxO00AAF5A5)
F32TO132 R5H, R4H ; R5H = F32T0132 (R4H)
NOP ; 1 Cycle delay for F32TOI132 to complete
; <-- F32T0132 complete,
; R5H = -11204005 (OxFF550A5B)
See also F32TOUI32 RaH, RbH

I32TOF32 RaH, RbH

I32TOF32 RaH, mem32
UI32TOF32 RaH, RbH
UI32TOF32 RaH, mem32

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

55

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

F32TOUI16 RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

13 TEXAS
INSTRUMENTS

www.ti.com

F32TOUI16 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1000 1110
MSW: 0000 0000 0Obb baaa
Description Convert the 32-bit floating point value in RbH to an unsigned 16-bit integer value and
truncate to zero. The result will be stored in RaH. To instead round the integer to the
nearest even value use the F32TOUI16R instruction. The instruction will saturate the
float to what can fit in 16bit integer and then convert to 16bit. For example 300000 will
be saturated to 65535.
RaH(15:0) = F32ToUI16(RbH) RaH(31:16) = 0x0000
Flags This instruction does not affect any flags:
Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TOU116 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- F32TOUI16 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example
MOVIZF32 R4H, #9.0 ; R4H = 9.0 (0x41100000)
F32TOUI16 R5H, R4H ; R5H (15:0) = F32T0OUI16 (R4H)
; R5H (31:16) = 0x0000
MOVIZF32 R6H, #-9.0 ; RBH = -9.0 (0xC1100000)
; <-- F32TOUI16 complete, R5H (15:0) = 9.0 (0x0009)
; R5H (31:16) = 0.0 (0x0000)
F32TOU116 R7H, R6H ; R7H (15:0) = F32T0OUI16 (R6H)
; R7H (31:16) = 0x0000
NOP ; 1 Cycle delay for F32TOUI16 to complete
; <-- F32TOUI16 complete, R7H (15:0) = 0.0 (0x0000)
R7H (31:16) = 0.0 (0x0000)
See also F32TOI16 RaH, RbH

F32TOUI16R RaH, RbH
F32TOUI16R RaH, RbH
[16TOF32 RaH, RbH
[16TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

56 Floating Point Unit (FPU)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

F32TOUI16R RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round

F32TOUI16R RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round

Operands

RaH
RbH

floating-point destination register (ROH to R7H)
floating-point source register (ROH to R7H)

Opcode

Description

Flags

LSW: 1110 0110 1000 1110
MSW: 1000 0000 00bb baaa

Convert the 32-bit floating-point value in RbH to an unsigned 16-bit integer and round to
the closest even value. The result will be stored in RaH. To instead truncate the
converted value, use the F32TOUI16 instruction. The instruction will saturate the float to
what can fit in 16bit integer and then convert to 16bit. For example 300000 will be
saturated to 65535.

RaH(15:0) = F32ToUl16round(RbH)
RaH(31:16) = 0x0000

This instruction does not affect any flags:

Flag TF

Zl NI ZF NF LUF LVF

Modified No

No No No No No No

Pipeline

Example

See also

This is a 2 pipeline cycle (2p) instruction. That is:

F32TOUI16R RaH, RbH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- F32TOUI16R completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
MOVIZ R5H, #0x412C ; R5H = 0x412C
MOVXI R5H, #OxCCCD ; R5H = OxCCCD
; R5H = 10.8 (0x412CCCCD)
F32TOUI16R R6H, R5H ; R6H (15:0) = F32TOUI16round (R5H)
; R6H (31:16) = 0x0000
MOVF32 R7H, #-10.8 ; R7H = -10.8 (0x0xC12CCCCD)
; <-- F32TOUI16R complete,
; R6H (15:0) = 11.0 (Ox000B)
; R6H (31:16) = 0.0 (0x0000)
F32TOUI16R ROH, R7H ; ROH (15:0) = F32TOUI16round (R7H)
; ROH (31:16) = 0x0000
NOP ; 1 Cycle delay for F32TOUI16R to complete
; <-- F32TOUI16R complete,
; ROH (15:0) = 0.0 (0x0000)
; ROH (31:16) = 0.0 (0x0000)

F32TOI16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
[16TOF32 RaH, RbH
[16TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU) 57

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

F32TOUI32 RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

I

TEXAS
INSTRUMENTS

www.ti.com

F32TOUI32 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

Operands

RaH
RbH

floating-point destination register (ROH to R7H)
floating-point source register (ROH to R7H)

Opcode

Description

Flags

LSW: 1110 0110 1000 1010
MSW: 0000 0000 00bb baaa

Convert the 32-bit floating-point value in RbH to an unsigned 32-bit integer and store the

result in RaH.
RaH = F32ToU132(RbH)

This instruction does not affect any flags:

Flag TF

Zl NI

ZF NF

LVF

Modified No

No No

No No

No

Pipeline

Example

See also

This is a 2 pipeline cycle (2p) instruction. That is:

F32TOU132 RaH, RbH
NOP

NOP

; 2 pipeline cycles (2p)
; 1 cycle delay or non-conflicting instruction
; <-- F32TOUI32 completes, RaH updated

Any instruction in the delay slot must not use RaH as a destination register or use RaH

as a source operand.

MOVIZF32 R6H, #12.5
F32TOUI32 R7H, R6H
MOVIZF32 R1H, #-6.5

F32TOU132 R2H, R1H
NOP

F32TOI32 RaH, RbH
I32TOF32 RaH, RbH

I32TOF32 RaH, mem32
UI32TOF32 RaH, RbH

; R6H
; R7H
; R1H

<——
R2H

1 Cycle delay for F32TOUI32 to complete

12.5 (0x41480000)
F32TOUI32 (R6H)
-6.5 (0XCODO0000)

F32TOU132 complete, R7H

= F32TOUI32 (R1H)

12.0 (0x0000000C)

<-- F32TOUI32 complete, R2H = 0.0 (0x00000000)

UI32TOF32 RaH, mem32

58 Floating Point Unit (FPU)

Copyright © 2014-2019, Texas Instruments Incorporated

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

FRACF32 RaH, RbH — Fractional Portion of a 32-bit Floating-Point Value

FRACF32 RaH, RbH Fractional Portion of a 32-bit Floating-Point Value

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1111 0001
MSW: 0000 0000 OObb baaa
Description Returns in RaH the fractional portion of the 32-bit floating-point value in RbH
Flags This instruction does not affect any flags:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
FRACF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- FRACF32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVIZF32 R2H, #19.625 ; R2H = 19.625 (0x419D0000)
FRACF32 R3H, R2H ; R3H = FRACF32 (R2H)
NOP ; 1 Cycle delay for FRACF32 to complete
; <—- FRACF32 complete, R3H = 0.625 (0x3F200000)
See also

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

59

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

116 TOF32 RaH, RbH — Convert 16-bit Integer to 32-bit Floating-Point Value www.ti.com

116 TOF32 RaH, RbH Convert 16-bit Integer to 32-bit Floating-Point Value

Operands

RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)

Opcode LSW: 1110 0110 1000 1101
MSW: 0000 0000 00bb baaa

Description Convert the 16-bit signed integer in RbH to a 32-bit floating point value and store the
result in RaH.

RaH = 116ToF32 RbH

Flags This instruction does not affect any flags:

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

116TOF32 RaH, RbH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- 116TOF32 completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVIZ ROH, #0x0000 ; ROH[31:16] = 0.0 (0x0000)
MOVXI ROH, #0x0004 ; ROH[15:0] = 4.0 (0x0004)
116TOF32 R1H, ROH ; R1H = 116TOF32 (ROH)
MOVIZ R2H, #0x0000 ; R2H[31:16] = 0.0 (0x0000)
; <--116TOF32 complete, R1H = 4.0 (0x40800000)
MOVX1 R2H, #OXFFFC ; R2H[15:0] = -
4.0 (OXFFFC) 116TOF32 R3H, R2H ; R3H = 116TOF32 (R2H)
NOP ; 1 Cycle delay for 116TOF32 to complete
; <-- 116TOF32 complete, R3H = -4.0 (0OxC0800000)

See also F32TOIl16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
116 TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

60 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com 116 TOF32 RaH, mem16 — Convert 16-bit Integer to 32-bit Floating-Point Value

I16TOF32 RaH, mem16 Convert 16-bit Integer to 32-bit Floating-Point Value

Operands

RaH floating-point destination register (ROH to R7H)
mem316 16-bit source memory location to be converted

Opcode LSW: 1110 0010 1100 1000
MSW: 0000 Oaaa meml6

Description Convert the 16-bit signed integer indicated by the mem16 pointer to a 32-bit floating-
point value and store the result in RaH.

RaH = 116ToF32[meml6]

Flags This instruction does not affect any flags:

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

116TOF32 RaH, meml6 ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- 116TOF32 completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVW DP, #0x0280 ; DP = 0x0280
MOV @0, #0x0004 ; [O0xO0A000] = 4.0 (0x0004)
116TOF32 ROH, @0 ; ROH = 116TOF32 [0x00A000]
MOV @1, #OXFFFC ; [O0x00A001] = -4.0 (OXFFFC)
; <--116TOF32 complete, ROH = 4.0 (0x40800000)
116TOF32 R1H, @1 ; R1H = 116TOF32 [0x00A001]
NOP ; 1 Cycle delay for 116TOF32 to complete
; <-- 116TOF32 complete, R1H = -4.0 (0xC0O800000)

See also F32TOI16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
116TOF32 RaH, RbH
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 61

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

I32TOF32 RaH, mem32 — Convert 32-bit Integer to 32-bit Floating-Point Value

13 TEXAS
INSTRUMENTS

www.ti.com

I32TOF32 RaH, mem32 Convert 32-bit Integer to 32-bit Floating-Point Value

Operands
RaH floating-point destination register (ROH to R7H)
mema32 32-bit source for the MOV32 operation. mem32 means that the operation can only address memory
using any of the direct or indirect addressing modes supported by the C28x CPU
Opcode LSW: 1110 0010 1000 1000
MSW: 0000 Oaaa mem32
Description Convert the 32-bit signed integer indicated by the mem32 pointer to a 32-bit floating
point value and store the result in RaH.
RaH = 132ToF32[mem32]
Flags This instruction does not affect any flags:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
132TOF32 RaH, mem32 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- 132TOF32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVW DP, #0x0280 ; DP = 0x0280
MOV @0, #0x1111 ; [Ox00A000] = 4369 (0x1111)
MOV @1, #0x1111 ; [OxO0A001] = 4369 (0x1111)
; Value of the 32 bit signed integer present in
; OxO00A001 and OxO00AO000 is +286331153 (0x11111111)
132TOF32 R1H, @0 ; R1H = I132TOF32 (0x11111111)
NOP ; 1 Cycle delay for 132TOF32 to complete
; <-- I132TOF32 complete, R1H = 286331153 (0x4D888888)
See also F32TOI32 RaH, RbH
F32TOUI32 RaH, RbH
I32TOF32 RaH, RbH
UI32TOF32 RaH, RbH
UI32TOF32 RaH, mem32
62 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com I32TOF32 RaH, RbH — Convert 32-bit Integer to 32-bit Floating-Point Value

I32TOF32 RaH, RbH Convert 32-bit Integer to 32-bit Floating-Point Value

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1000 1001
MSW: 0000 0000 OObb baaa
Description Convert the signed 32-bit integer in RbH to a 32-bit floating-point value and store the
result in RaH.
RaH = 132ToF32(RbH)
Flags This instruction does not affect any flags:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
132TOF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- 132TOF32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVIZ R2H, #0x1111 ; R2H[31:16] = 4369 (0x1111)
MOVXI R2H, #0x1111 ; R2H[15:0] = 4369 (0x1111)
; Value of the 32 bit signed integer present
; In R2H is +286331153 (0x11111111)
132TOF32 R3H, R2H ; R3H = 132TOF32 (R2H)
NOP ; 1 Cycle delay for 132TOF32 to complete
; <-- I132TOF32 complete, R3H = 286331153 (0x4D3888888)
See also F32T0OI32 RaH, RbH
F32TOUI32 RaH, RbH
I32TOF32 RaH, mem32
UI32TOF32 RaH, RbH
UI32TOF32 RaH, mem32
SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 63

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
MACF32 R3H, R2H, RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add www.ti.com
MACF32 R3H, R2H, RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add
Operands This instruction is an alias for the parallel multiply and add instruction. The operands are
translated by the assembler such that the instruction becomes:
MPYF32 RdH, RaH, RbH
|1 ADDF32 R3H, R3H, R2H
R3H floating-point destination and source register for the ADDF32
R2H floating-point source register for the ADDF32 operation (ROH to R7H)
RdH floating-point destination register for MPYF32 operation (ROH to R7H)
RdH cannot be R3H
ReH floating-point source register for MPYF32 operation (ROH to R7H)
RfH floating-point source register for MPYF32 operation (ROH to R7H)
Opcode LSW: 1110 0111 0100 OOff
MSW: feee dddc ccbb baaa
Description This instruction is an alias for the parallel multiply and add, MACF32 || ADDF32,
instruction.
RdH = ReH * RfH
R3H = R3H + R2H
Restrictions The destination register for the MPYF32 and the ADDF32 must be unique. That is, RdH
cannot be R3H.
Flags This instruction modifies the following flags in the STF register:.
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
e LUF =1if MPYF32 or ADDF32 generates an underflow condition.
e LVF=1if MPYF32 or ADDF32 generates an overflow condition.

Pipeline Both MPYF32 and ADDF32 take 2 pipeline cycles (2p) That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|1 ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32, ADDF32 complete, RaH, RdH updated
NOP

Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.

64 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MACF32 R3H, R2H, RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add

Example ;

; The next MACF32

Perform 5 multiply and

1st multiply: A = X0
2nd multiply: B = X1
3rd multiply: C = X2
4th multiply: D = X3
5th multiply: E = X3

Result = A+ B + C +

MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MPYF32 R2H, ROH, R1H
MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MPYF32 R3H, ROH, R1H
MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MACF32 R3H, R2H, R2H, ROH, R1H

MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MACF32 R3H, R2H, R2H, ROH, R1H

MOV32 ROH, *XAR4
MOV32 R1H, *XAR5

: MPYF32 || ADDF32

See also

MACF32 R3H, R2H, R2H, ROH, R1H

NOP

ADDF32 R3H, R3H, R2H
NOP
MOV32 @Result, R3H

* YO
Y1l
Y2
Y3
Y3

*
*
*
*

D +

is an alias for

accumulate operations:

ROH = XO
R1H = YO
R2H = A = X0 * YO

In parallel ROH = X1

R1H = Y1
R3H = B = X1 * Y1
In parallel ROH = X2

R1H = Y2
R3H = A + B
R2H = C = X2 * Y2

In parallel ROH = X3

R1H = Y3

R3H = (A+B) +C
R2H = D = X3 * Y3

In parallel ROH = X4

; RIH = Y4

R2H = E = X4 * Y4
in parallel R3H = (A+B +C) + D
Wait for MPYF32 || ADDF32 to complete

R3H = (A+B+C+D) +E
Wait for ADDF32 to complete

; Store the result

MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32

MACF32 R7H, R3H, mem32, *XAR7++

MACF32 R7H, R6H, RdH, ReH, RfH

MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Floating Point Unit (FPU)

Copyright © 2014-2019, Texas Instruments Incorporated

65

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MACF32 R3H, R2H, RdH, ReH, RfH ||[MOV32 RaH, mem32 — 32-bit Floating-Point Multiply and Accumulate with Parallel

Move

www.ti.com

MACF32 R3H, R2H, RdH, ReH, RfH ||[MOV32 RaH, mem32 32-bit Floating-Point Multiply and

Accumulate with Parallel Move

Operands
R3H floating-point destination/source register R3H for the add operation
R2H floating-point source register R2H for the add operation
RdH floating-point destination register (ROH to R7H) for the multiply operation
RdH cannot be the same register as RaH
ReH floating-point source register (ROH to R7H) for the multiply operation
RfH floating-point source register (ROH to R7H) for the multiply operation
RaH floating-point destination register for the MOV32 operation (ROH to R7H).
RaH cannot be R3H or the same register as RdH.
mema32 32-bit source for the MOV32 operation
Opcode LSW: 1110 0011 0011 fffe
MSW: eedd daaa mem32
Description Multiply and accumulate the contents of floating-point registers and move from register

Restrictions

to memory. The destination register for the MOV32 cannot be the same as the
destination registers for the MACF32.

R3H = R3H + R2H,
RdH = ReH * RfH,
RaH = [mem32]

The destination registers for the MACF32 and the MOV32 must be unique. That is, RaH
cannot be R3H and RaH cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes
The STF register flags are modified as follows:
 LUF =1 if MACF32 (add or multiply) generates an underflow condition.
* LVF =1 if MACF32 (add or multiply) generates an overflow condition.
MOV32 sets the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) { ZF = 1; NF = 0; }
NI = RaH(31);
Zl = 0;
if(RaH(31:0) == 0) ZI = 1;
Pipeline The MACF32 takes 2 pipeline cycles (2p) and the MOV32 takes a single cycle. That is:
MACF32 R3H, R2H, RdH, ReH, RfH ; 2 pipeline cycles (2p)
|l MOV32 RaH, mem32 ; 1 cycle
; <-- MOV32 completes, RaH updated
NOP ; 1 cycle delay for MACF32
; <-- MACF32 completes, R3H, RdH updated
NOP
Any instruction in the delay slot for this version of MACF32 must not use R3H or RdH as
a destination register or R3H or RdH as a source operand.
66 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MACF32 R3H, R2H, RdH, ReH, RfH ||[MOV32 RaH, mem32 — 32-bit Floating-Point Multiply and Accumulate

with Parallel Move

Example ; Perform 5 multiply and accumulate operations:
; 1ST multiply: A = X0 * YO
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; ATH multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
; Result =A+B +C+ D+ E
MOV32 ROH, *XAR4++ ; ROH = XO
MOV32 R1H, *XAR5++ ; R1IH = YO
; R2H = A = X0 * YO
MPYF32 R2H, ROH, R1H ; In parallel ROH = X1
Il MOV32 ROH, *XAR4++
MOV32 RI1H, *XAR5++ ; RIH = Y1
; RBH =B = X1 * VY1
MPYF32 R3H, ROH, R1H ; In parallel ROH = X2
|l MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y2
; RBH=A+B
; R2H = C = X2 * Y2
MACF32 R3H, R2H, R2H, ROH, R1H ; In parallel ROH = X3
|l MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y3
; RBH= (A +B) +C
; R2H =D = X3 * Y3
MACF32 R3H, R2H, R2H, ROH, R1H ; In parallel ROH = X4
|l MOV32 ROH, *XAR4
MOV32 R1H, *XAR5 ; RIH = Y4
; R2H = E = X4 * Y4
MPYF32 R2H, ROH, R1H ; in parallel R3BH = (A +B +C) + D
|l ADDF32 R3H, R3H, R2H
NOP ; Wait for MPYF32 || ADDF32 to complete
ADDF32 R3H, R3H, R2H ; RBH=(CA+B+C+D)+E
NOP ; Wait for ADDF32 to complete
MOV32 @Result, R3H ; Store the result
See also MACF32 R3H, R2H, RdH, ReH, RfH

MACF32 R7H, R3H, mem32, *XAR7++
MACF32 R7H, R6H, RdH,

ReH, RfH

MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Floating Point Unit (FPU) 67

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MACF32 R7H, R3H, mem32, *XAR7++ — 32-bit Floating-Point Multiply and Accumulate www.ti.com

MACF32 R7H, R3H, mem32, *XAR7++ 32-bit Floating-Point Multiply and Accumulate

Operands
R7H floating-point destination register
R3H floating-point destination register
mema32 pointer to a 32-bit source location
*XAR7++ 32-bit location pointed to by auxiliary register 7, XAR7 is post incremented.
Opcode LSW: 1110 0010 0101 0000
MSW: 0001 1111 mem32
Description Perform a multiply and accumulate operation. When used as a standalone operation, the

Restrictions

MACF32 will perform a single multiply as shown below:
Cycle 1: R3H = R3H + R2H, R2H = [mem32] * [XAR7++]

This instruction is the only floating-point instruction that can be repeated using the single
repeat instruction (RPT |[). When repeated, the destination of the accumulate will
alternate between R3H and R7H on each cycle and R2H and R6H are used as
temporary storage for each multiply.

Cycle 1: R3H = R3H + R2H, R2H = [mem32] * [XAR7++]
Cycle 2: R7H = R7H + R6H, R6H = [mem32] * [XAR7++]
Cycle 3: R3H = R3H + R2H, R2H = [mem32] * [XAR7++]
Cycle 4: R7H = R7H + R6H, R6H = [mem32] * [XAR7++]
etc...

R2H and R6H will be used as temporary storage by this instruction.

Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
* LUF =1 if MACF32 generates an underflow condition.
* LVF =1 if MACF32 generates an overflow condition.

Pipeline When repeated the MACF32 takes 3 + N cycles where N is the number of times the
instruction is repeated. When repeated, this instruction has the following pipeline
restrictions:

<instructionl> ; No restriction

<instruction2> ; Cannot be a 2p instruction that writes
; to R2H, R3H, R6H or R7H

RPT #(N-1) ; Execute N times, where N is even

[l MACF32 R7H, R3H, *XAR6++, *XAR7++

<instruction3> ; No restrictions.

; Can read R2H, R3H, R6H and R7H
68 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MACF32 R7H, R3H, mem32, *XAR7++ — 32-bit Floating-Point Multiply and Accumulate

Example

See also

MACF32 can also be used standalone. In this case, the instruction takes 2 cycles and

the following pipeline restrictions apply:

<instructionl> ;
<instruction2> ;

MACF32 R7H, R3H, *XAR6, *XAR7 ;

No restriction
Cannot be a 2p instruction that writes
to R2H, R3H, R6H or R7H

R3H = R3H + R2H, R2H = [mem32] * [XAR7++]

- <

R2H and R3H are valid (note: no delay
NOP

ZERO R2H
ZERO R3H
registers
ZERO R6H
ZERO R7H
RPT #3
|1 MACF32 R7H, R3H, *XAR6++, *XAR7++
ADDF32 R7H, R7H, R3H
NOP
NOP

required)

; Zero the accumulation registers
; and temporary multiply storage

; Repeat MACF32 N+1 (4) times

; Final accumulate
; <-- ADDF32 completes, R7H valid

Cascading of RPT || MACF32 is allowed as long as the first and subsequent counts are
even. Cascading is useful for creating interruptible windows so that interrupts are not
delayed too long by the RPT instruction. For example:

ZERO R2H
ZERO R3H

registers
ZERO R6H
ZERO R7H
RPT #3

|| MACF32 R7H,

|l MACF32 R7H,

is even

|| MACF32 R7H,
ADDF32 R7H,
NOP

R3H,
R3H,

R3H,
R7H,

*XAR6++, *XAR7++
R3H

*XAR6++, *XAR7++ RPT #5 ;
*XAR6++, *XAR7++ RPT #N ;

; Zero the accumulation registers
; and temporary multiply storage

; Execute MACF32 N+1 (4) times
Execute MACF32 N+1 (6) times
Repeat MACF32 N+1 times where N+1

; Final accumulate

; <-- ADDF32 completes, R7H valid

MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Floating Point Unit (FPU) 69

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
MACF32 R7H, R6H, RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add www.ti.com
MACF32 R7H, R6H, RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add
Operands This instruction is an alias for the parallel multiply and add instruction. The operands are
translated by the assembler such that the instruction becomes:
MPYF32 RdH, RaH, RbH || ADDF32 R7H, R7H, R6H
R7H floating-point destination and source register for the ADDF32
R6H floating-point source register for the ADDF32 operation (ROH to R7H)
RdH floating-point destination register for MPYF32 operation (ROH to R7H)
RdH cannot be R3H
ReH floating-point source register for MPYF32 operation (ROH to R7H)
RfH floating-point source register for MPYF32 operation (ROH to R7H)
Opcode LSW: 1110 0111 0100 OOFF
MSW: feee dddc ccbb baaa
Description This instruction is an alias for the parallel multiply and add, MACF32 || ADDF32,
instruction.
RdH = RaH * RbH
R7H = R6H + R6H
Restrictions The destination register for the MPYF32 and the ADDF32 must be unique. That is, RdH
cannot be R7H.
Flags This instruction modifies the following flags in the STF register:.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
* LUF =1if MPYF32 or ADDF32 generates an underflow condition.
 LVF=1if MPYF32 or ADDF32 generates an overflow condition.

Pipeline Both MPYF32 and ADDF32 take 2 pipeline cycles (2p) That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|| ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32, ADDF32 complete, RaH, RdH updated
NOP

Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.

70 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MACF32 R7H, R6H, RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add

Example ;

Perform 5 multiply and accumulate operations:

1st multiply: A = X0 * YO
2nd multiply: B = X1 * Y1
3rd multiply: C = X2 * Y2
4th multiply: D = X3 * Y3
5th multiply: E = X3 * Y3

Result =A+B +C+ D+ E

MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MPYF32 R6H, ROH, R1H
MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MPYF32 R7H, ROH, R1H
MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MACF32 R7H, R6H, R6H, ROH, R1H
MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MACF32 R7H, R6H, R6H, ROH, R1H
MOV32 ROH, *XAR4
MOV32 R1H, *XAR5

; Next MACF32 is an alias for
; MPYF32 || ADDF32

See also

MACF32 R7H, R6H, R6H, ROH, R1H

NOP
ADDF32 R7H, R7H, R6H
NOP
MOV32 @Result, R7H

MACF32 R3H, R2H, RdH, ReH, RfH

ROH = XO
R1H = YO
R6H = A = X0 * YO

In parallel ROH = X1

R1H = Y1
R7H = B = X1 * Y1
In parallel ROH = X2

R1H = Y2
R7TH = A + B
R6H = C = X2 * Y2

In parallel ROH = X3

R1H = Y3

R7H = (A + B) + C
R6H = D = X3 * Y3

In parallel ROH = X4

; RIH = Y4

; RBH = E = X4 * Y4

in parallel R7TH = (A+ B + C) + D
Wait for MPYF32 || ADDF32 to complete
R7H = (A+B+C+D) +E

Wait for ADDF32 to complete

Store the result

MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32

MACF32 R7H, R3H, mem32, *XAR7++

MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Floating Point Unit (FPU)

Copyright © 2014-2019, Texas Instruments Incorporated

71

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MACF32 R7H, R6H, RdH, ReH, RfH ||[MOV32 RaH, mem32 — 32-bit Floating-Point Multiply and Accumulate with Parallel

Move

www.ti.com

MACF32 R7H, R6H, RdH, ReH, RfH ||[MOV32 RaH, mem32 32-bit Floating-Point Multiply and

Accumulate with Parallel Move

Operands
R7H floating-point destination/source register R7H for the add operation
R6H floating-point source register R6H for the add operation
RdH floating-point destination register (ROH to R7H) for the multiply operation.
RdH cannot be the same register as RaH.
ReH floating-point source register (ROH to R7H) for the multiply operation
RfH floating-point source register (ROH to R7H) for the multiply operation
RaH floating-point destination register for the MOV32 operation (ROH to R7H).
RaH cannot be R3H or the same as RdH.
mema32 32-bit source for the MOV32 operation
Opcode LSW: 1110 0011 1100 fffe
MSW: eedd daaa mem32
Description Multiply/accumulate the contents of floating-point registers and move from register to

Restrictions

memory. The destination register for the MOV32 cannot be the same as the destination
registers for the MACF32.

R7H = R7H + R6H
RdH = ReH * RfH,
RaH = [mem32]

The destination registers for the MACF32 and the MOV32 must be unique. That is, RaH
cannot be R7H and RaH cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes
The STF register flags are modified as follows:
 LUF =1 if MACF32 (add or multiply) generates an underflow condition.
* LVF =1 if MACF32 (add or multiply) generates an overflow condition.
The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) {ZF = 1;
NF = 0;} NI = RaH(31);
Zl = 0;
if(RaH(31:0) == 0) ZI = 1;
Pipeline The MACF32 takes 2 pipeline cycles (2p) and the MOV32 takes a single cycle. That is:
MACF32 R7H, R6H, RdH, ReH, RfH ; 2 pipeline cycles (2p)
|1 MOV32 RaH, mem32 ; 1 cycle
; <-- MOV32 completes, RaH updated
NOP ; 1 cycle delay
; <-- MACF32 completes, R7H, RdH updated
NOP
72 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MACF32 R7H, R6H, RdH, ReH, RfH ||[MOV32 RaH, mem32 — 32-bit Floating-Point Multiply and Accumulate

with Parallel Move

Example Perform 5 multiply and accumulate operations:
; 1st multiply: A = X0 * YO
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4th multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
; Result = A+B + C+ D +
MOV32 ROH, *XAR4++ ; ROH = XO
MOV32 R1H, *XAR5++ ; R1IH = YO
; RBH = A = X0 * YO
MPYF32 R6H, ROH, R1H ; In parallel ROH = X1
Il MOV32 ROH, *XAR4++
MOV32 RI1H, *XAR5++ ; RIH = Y1
; RTH =B = X1 * Y1
MPYF32 R7H, ROH, R1H ; In parallel ROH = X2
|l MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y2
; RTH = A + B
; RBH = C = X2 * Y2
MACF32 R7H, R6H, R6H, ROH, R1H ; In parallel ROH = X3
|l MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y3
; R7TH = (A + B) + C
; RBH = D = X3 * Y3
MACF32 R7H, R6H, R6H, ROH, R1H ; In parallel ROH = X4
|l MOV32 ROH, *XAR4
MOV32 R1H, *XAR5 ; RIH = Y4
; RBH = E = X4 * Y4
MPYF32 R6H, ROH, R1H ; in parallel R7TH = (A + B + C) + D
|| ADDF32 R7H, R7H, R6H
NOP ; Wait for MPYF32 || ADDF32 to complete
ADDF32 R7H, R7H, R6H ; RTH= (A+B +C +D) + E
NOP ; Wait for ADDF32 to complete
MOV32 @Result, R7H ; Store the result
See also MACF32 R7H, R3H, mem32, *XAR7++

MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Floating Point Unit (FPU) 73

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
MAXF32 RaH, RbH — 32-bit Floating-Point Maximum www.ti.com
MAXF32 RaH, RbH 32-bit Floating-Point Maximum
Operands
RaH floating-point source/destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1001 0110
MSW: 0000 0000 00bb baaa
Description if(RaH < RbH) RaH = RbH
Special cases for the output from the MAXF32 operation:
» NaN output will be converted to infinity
* A denormalized output will be converted to positive zero.
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RbH){ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}
Pipeline This is a single-cycle instruction.
Example
MOV IZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOV I1ZF32 R1H, #-2.0 ; R1H = -2.0 (0xC0000000)
MOV 1ZF32 R2H, #-1.5 ; R2H = -1.5 (OxBFC00000)
MAXF32 R2H, R1H ; R2H = -1.5, ZF = NF = 0
MAXF32 R1H, R2H ; RIH = -1.5, ZF =0, NF = 1
MAXF32 R2H, ROH ; R2H= 5.0, ZF =0, NF=1
MAXF32 ROH, R2H ; R2H= 5.0, ZF=1, NF=0
See also CMPF32 RaH, RbH
CMPF32 RaH, #16FHi
CMPF32 RaH, #0.0
MAXF32 RaH, RbH || MOV32 RcH, RdH
MAXF32 RaH, #16FHi
MINF32 RaH, RbH
MINF32 RaH, #16FHi
74 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MAXF32 RaH, #16FHi — 32-bit Floating-Point Maximum

MAXF32 RaH, #16FHi 32-bit Floating-Point Maximum

Operands

RaH floating-point source/destination register (ROH to R7H)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.

Opcode LSW: 1110 1000 0010 OI1Il
MSW: 1ILE LLILD 1111 laaa

Description Compare RaH with the floating-point value represented by the immediate operand. If the
immediate value is larger, then load it into RaH.

if(RaH < #16FHi:0) RaH = #16FHi:0

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0OxBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFCO.

Special cases for the output from the MAXF32 operation:

» NaN output will be converted to infinity

» A denormalized output will be converted to positive zero.

Flags This instruction modifies the following flags in the STF register:

Flag TF VA| NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.

if(RaH == #16FHi:0){ZF=1, NF=0}

if(RaH > #16FHi:0) {ZF=0, NF=0}

if(RaH < #16FHi:0) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example MOVIZF32 ROH, #5.0 ; ROH
MOVIZF32 R1H, #4.0 ; R1H
MOVIZF32 R2H, #-1.5 ; R2H
MAXF32 ROH, #5.5 ; ROH
MAXF32 R1H, #2.5 ; R1H
MAXF32 R2H, #-1.0 ; R2H
MAXF32 R2H, #-1.0 ; R2H

(0x40A00000)
(0x40800000)
(OXBFC00000)
ZF = 0, NF
ZF = 0, NF
ZF = 0, NF
ZF = 1, NF

L I | A VB VA |
()]
01O O u1ul OO

o mn
OPr O

See also MAXF32 RaH, RbH
MAXF32 RaH, RbH || MOV32 RcH, RdH
MINF32 RaH, RbH
MINF32 RaH, #16FHi

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 75

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MAXF32 RaH, RbH [[MOV32 RcH, RdH — 32-bit Floating-Point Maximum with Parallel Move www.ti.com

MAXF32 RaH, RbH |[MOV32 RcH, RdH 32-bit Floating-Point Maximum with Parallel Move

Operands
RaH floating-point source/destination register for the MAXF32 operation (ROH to R7H)
RaH cannot be the same register as RcH
RbH floating-point source register for the MAXF32 operation (ROH to R7H)
RcH floating-point destination register for the MOV32 operation (ROH to R7H)
RcH cannot be the same register as RaH
RdH floating-point source register for the MOV32 operation (ROH to R7H)
Opcode LSW: 1110 0110 1001 1100
MSW: 0000 dddc ccbb baaa
Description If RaH is less than RbH, then load RaH with RbH. Thus RaH will always have the

Restrictions

maximum value. If RaH is less than RbH, then, in parallel, also load RcH with the
contents of RdH.

if(RaH < RbH) { RaH = RbH; RcH = RdH; }

The MAXF32 instruction is performed as a logical compare operation. This is possible
because of the IEEE floating-point format offsets the exponent. Basically the bigger the
binary number, the bigger the floating-point value.

Special cases for the output from the MAXF32 operation:
* NaN output will be converted to infinity
* A denormalized output will be converted to positive zero.

The destination register for the MAXF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RcH.

Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RbH){ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}
Pipeline This is a single-cycle instruction.
Example MOV 1ZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOV IZF32 R1H, #4.0 ; RIH = 4.0 (0x40800000)
MOV IZF32 R2H, #-1.5 ; R2H = -1.5 (OxBFC00000)
MOV 1ZF32 R3H, #-2.0 ; R3H =-2.0 (0xC0O000000)
MAXF32 ROH, R1H ; ROH = 5.0, R3H = -1.5, ZF = 0, NF = 0
Il mov32 R3H, R2H
MAXF32 R1H, ROH ; RIH = 5.0, R3H = -1.5, ZF = 0, NF = 1
Il Mov32 R3H, R2H
MAXF32 ROH, R1H ; ROH = 5.0, R2H = -1.5, ZF = 1, NF = 0
Il mMov32 R2H, R1H
See also MAXF32 RaH, RbH
MAXF32 RaH, #16FH
76 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MINF32 RaH, RbH — 32-bit Floating-Point Minimum

MINF32 RaH, RbH 32-bit Floating-Point Minimum

Operands
RaH floating-point source/destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1001 0111
MSW: 0000 0000 00bb baaa
Description if(RaH > RbH) RaH = RbH
Special cases for the output from the MINF32 operation:
» NaN output will be converted to infinity
* A denormalized output will be converted to positive zero.
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RbH){ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}
Pipeline This is a single-cycle instruction.
Example MOVIZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; R1H = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (OxBFC00000)
MINF32 ROH, R1H ; ROH = 4.0, ZF = 0, NF =0
MINF32 R1H, R2H ; RIH = -1.5, ZF =0, NF= 0
MINF32 R2H, R1H ; R2H = -1.5, ZF =1, NF=0
MINF32 R1H, ROH ; R2H = -1.5, ZF = 0, NF = 1
See also MAXF32 RaH, RbH
MAXF32 RaH, #16FH
MINF32 RaH, #16FHi
MINF32 RaH, RbH || MOV32 RcH, RdH
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU) 77

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MINF32 RaH, #16FHi — 32-bit Floating-Point Minimum www.ti.com

MINF32 RaH, #16FHi 32-bit Floating-Point Minimum

Operands
RaH floating-point source/destination register (ROH to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.
Opcode LSW: 1110 1000 0011 Ol
MSW: IEEL IEEL 1111 laaa
Description Compare RaH with the floating-point value represented by the immediate operand. If the
immidate value is smaller, then load it into RaH.
if(RaH > #16FHi:0) RaH = #16FHi:0
#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0OxBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFCO.
Special cases for the output from the MINF32 operation:
» NaN output will be converted to infinity
* A denormalized output will be converted to positive zero.
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.

if(RaH == #16FHi:0){ZF=1, NF=0}

if(RaH > #16FHi:0) {ZF=0, NF=0}

if(RaH < #16FHi:0) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example MOV IZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; RIH = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (OxBFC0O0000)
MINF32 ROH, #5.5 ; ROH= 5.0, ZF =0, NF =1
MINF32 R1H, #2.5 s RIH= 2.5, ZF =0, NF =0
MINF32 R2H, #-1.0 ; R2H = -1.5, ZF = 0, NF = 1
MINF32 R2H, #-1.5 ; R2H = -1.5, ZF =1, NF =0

See also MAXF32 RaH, #16FHi
MAXF32 RaH, RbH
MINF32 RaH, RbH
MINF32 RaH, RbH || MOV32 RcH, RdH

78 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MINF32 RaH, RbH |[MOV32 RcH, RdH — 32-bit Floating-Point Minimum with Parallel Move

MINF32 RaH, RbH ||[MOV32 RcH, RdH 32-bit Floating-Point Minimum with Parallel Move

Operands
RaH floating-point source/destination register for the MIN32 operation (ROH to R7H)
RaH cannot be the same register as RcH
RbH floating-point source register for the MIN32 operation (ROH to R7H)
RcH floating-point destination register for the MOV32 operation (ROH to R7H)
RcH cannot be the same register as RaH
RdH floating-point source register for the MOV32 operation (ROH to R7H)
Opcode LSW: 1110 0110 1001 1101
MSW: 0000 dddc ccbb baaa
Description if(RaH > RbH) { RaH = RbH; RcH = RdH; }
Special cases for the output from the MINF32 operation:
» NaN output will be converted to infinity
* A denormalized output will be converted to positive zero.
Restrictions The destination register for the MINF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RcH.
Flags This instruction modifies the following flags in the STF register:
Flag TF VA| NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RbH){ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}
Pipeline This is a single-cycle instruction.
Example
MOV1ZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; RIH = 4.0 (0x40800000)
MOV 1ZF32 R2H, #-1.5 ; R2H = -1.5 (OxBFC00000)
MOV1ZF32 R3H, #-2.0 ; R3H = -2.0 (0xC0000000)
MINF32 ROH, R1H ; ROH = 4.0, R3H = -1.5, ZF = 0, NF = 0
|1 Mov32 R3H, R2H
MINF32 R1H, ROH ; RIH = 4.0, R3H = -1.5, ZF = 1, NF =0
Il Mov32 R3H, R2H
MINF32 R2H, R1H ; R2H = -1.5, RIH = 4.0, ZF =1, NF =1
11 Mov32 R1H, R3H
See also MINF32 RaH, RbH
MINF32 RaH, #16FHi
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU) 79

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MOV16 mem16, RaH — Move 16-bit Floating-Point Register Contents to Memory

13 TEXAS
INSTRUMENTS

www.ti.com

MOV16 mem16, RaH Move 16-bit Floating-Point Register Contents to Memory

Operands
mem16 points to the 16-bit destination memory
RaH floating-point source register (ROH to R7H)
Opcode LSW: 1110 0010 0001 0011
MSW: 0000 Oaaa meml6
Description Move 16-bit value from the lower 16-bits of the floating-point register (RaH[15:0]) to the
location pointed to by mem16.
[mem16] = RaH[15:0]
Flags No flags STF flags are affected.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline

Example

See also

This is a single-cycle instruction.

MOVW DP, #0x02CO ; DP = 0x02CO
MOVXI R4H, #0x0003 ; R4H = 3.0 (0x0003)
MOV16 @0, R4H ; [0x00B0O00O] = 3.0 (0x0003

MOVIZ RaH, #16FHiHex
MOVIZF32 RaH, #16FHi
MOVXI RaH, #16FLoHex

80 Floating Point Unit (FPU)

Copyright © 2014-2019, Texas Instruments Incorporated

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MOV32 *(0:16bitAddr), loc32 — Move the Contents of loc32 to Memory

MOV32 *(0:16bitAddr), loc32 Move the Contents of loc32 to Memory

Operands
0:16bitAddr 16-bit immediate address, zero extended
loc32 32- bit source location
Opcode LSW: 1011 1101 loc32
MSWz 10RLE 100D B0RD LLN]
Description Move the 32-bit value in loc32 to the memory location addressed by 0:16bitAddr. The
EALLOW bit in the ST1 register is ignored by this operation.
[0:16bitAddr] = [loc32]
Flags This instruction does not modify any STF register flags.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a two-cycle instruction.
Example MOVIZ R5H, #0x1234 ; RS5H[31:16] = 0x1234
MOVXI R5H, #OXABCD ; R5H[15:0] = OxABCD
NOP ; 1 Alignment Cycle
MOV32 ACC, R5H ; ACC = 0x1234ABCD
MOV32 *(0xA000), @ACC ; [OxO0A000] = ACC NOP
; 1 Cycle delay for MOV32 to complete
; <-- MOV32 *(0:16bitAddr), loc32 complete,
; [Ox00A000] = OxABCD, [0x00A001] = 0x1234
See also MOV32 mem32, RaH
MOV32 mem32, STF
MOV32 loc32, *(0:16bitAddr)
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU) 81

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MOV32 ACC, RaH — Move 32-bit Floating-Point Register Contents to ACC

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 ACC, RaH

Operands

Move 32-bit Floating-Point Register Contents to ACC

ACC
RaH

28x accumulator
floating-point source register (ROH to R7H)

Opcode

Description

Flags

LSW: 1011 1111 loc32
MSWz 10LL 11D D11 1111

If the condition is true, then move the 32-bit value referenced by mem32 to the floating-
point register indicated by RaH.

ACC = RaH

No STF flags are affected.

Flag TF

Zl NI ZF NF LUF LVF

Modified No

No No No No No No

Pipeline

Example

See also

Z and N flag in status register zero (STO) of the 28x CPU are affected.

While this is a single-cycle instruction, additional pipeline alignment is required when
copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:

MINF32 ROH,R1H ; Single-cycle instruction
NOP ; 1 alignment cycle

MOV32 @ACC,ROH ; Copy ROH to ACC

NOP ; Any instruction

If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:

ADDF32 R2H, R1H, ROH ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete
; <-- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle MOV32 ACC, R2H
; copy R2H into ACC, takes 2 cycles
; <-- MOV32 completes, ACC is valid
NOP ; Any instruction

ADDF32 R2H, R1H, ROH ;
NOP ;

pipeline instruction (2p)
cycle delay for ADDF32 to complete
; -- ADDF32 completes, R2H is valid
NOP ; alignment cycle
MOV32 ACC, R2H ; copy R2H into ACC, takes 2 cycles

; <-- MOV32 completes, ACC is valid
NOP ; Any instruction
MOVIZF32 ROH, #2.5 ; ROH = 2.5 = 0x40200000
F32TOUI32 ROH, ROH
NOP ; Delay for conversion instruction

; < -- Conversion complete, ROH valid
NOP ; Alignment cycle
MOV32 P, ROH ; P = 2 = 0x00000002

P ARFRPDN

MOV32 P, RaH
MOV32 XARn, RaH
MOV32 XT, RaH

82 Floating Point Unit (FPU)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

MOV32 loc32, *(0:16bitAddr) — Move 32-bit Value from Memory to loc32

MOV32 loc32, *(0:16bitAddr) Move 32-bit Value from Memory to loc32

Operands
loc32 destination location
0:16bitAddr 16-bit address of the 32-bit source value
Opcode LSW: 1011 1111 loc32
MSW: TREE TRRE LRRE HRRd
Description Copy the 32-bit value referenced by 0:16bitAddr to the location indicated by loc32.
[1oc32] = [0:16bitAddr]
Flags No STF flags are affected. If loc32 is the ACC register, then the Z and N flag in status
register zero (STO) of the 28x CPU are affected.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 cycle instruction.
Example MOVW DP, #0x0300 ; DP = 0x0300
MOV @0, #OXFFFF ; [0x00C000] = OXFFFF;
MOV @1, #0x1111 ; [0x00C001] = 0x1111;
MOV32 @ACC, *(0xCO00) ; AL = [0x00C000], AH = [0x00C001]
NOP ; 1 Cycle delay for MOV32 to complete
; <-- MOV32 complete, AL = OxFFFF, AH = 0x1111
See also MOV32 RaH, mem32{, CNDF}

MOV32 *(0:16bitAddr), loc32
MOV32 STF, mem32
MOVD32 RaH, mem32

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU) 83

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MOV32 mem32, RaH — Move 32-bit Floating-Point Register Contents to Memory

I

TEXAS
INSTRUMENTS

www.ti.com

MOV32 mem32, RaH Move 32-bit Floating-Point Register Contents to Memory

Operands
RaH floating-point register (ROH to R7H)
mem32 points to the 32-bit destination memory
Opcode LSW: 1110 0010 0000 0011
MSW: 0000 Oaaa mem32
Description Move from memory to STF.
[mem32] = RaH
Flags This instruction modifies the following flags in the STF register:
Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected.
Pipeline This is a single-cycle instruction.
Example ; Perform 5 multiply and accumulate operations:

; 1st multiply: A = X0 * YO
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4th multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3

; Result =A+B+C+D+E

MOV32 ROH, *XAR4++ ; ROH
MOV32 R1H, *XAR5++ ; R1H

X0
YO

: RBH = A = X0 * YO
MPYF32 R6H, ROH, R1H : In parallel ROH = X1
Il MOV32 ROH, *XAR4++
MOV32 R1H, *XARS5++ ; R1IH = Y1
; R7TH = B = X1 * Y1
MPYF32 R7H, ROH, R1H ; In parallel ROH = X2
Il MOV32 ROH, *XARA++
MOV32 R1H, *XAR5++ ; R1H = Y2

:R7TH=A+ B
; R6H = C = X2 * Y2
MACF32 R7H, R6H, R6H, ROH, RIH ; In parallel ROH = X3
Il MOV32 ROH, *XARA++
MOV32 R1H, *XAR5++ ; R1H = Y3

; RBH= (A +B) +C
; RBH = D = X3 * Y3
MACF32 R7H, R6H, R6H, ROH, R1H ; In parallel ROH = X4
Il MOV32 ROH, *XAR4
MOV32 RI1H, *XAR5 ; RIH = Y4

; RBH = E = X4 * Y4
MPYF32 R6H, ROH, R1H ;
|l ADDF32 R7H, R7H, R2H

in parallel R7TH = (A+B +C) + D

NOP ; Wait for MPYF32 || ADDF32 to complete

84 Floating Point Unit (FPU)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com MOV32 mem32, RaH — Move 32-bit Floating-Point Register Contents to Memory
ADDF32 R7H, R7H, R6H ; RTH= (A + B + C + D) + E NOP
; Wait for ADDF32 to complete
MOV32 @Result, R7H ; Store the result
See also MOV32 *(0:16bitAddr), loc32
MOV32 mem32, STF
SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 85

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MOV32 mem32, STF — Move 32-bit STF Register to Memory

I

TEXAS
INSTRUMENTS

www.ti.com

MOV32 mem32, STF Move 32-bit STF Register to Memory

Operands
STF floating-point status register
mem32 points to the 32-bit destination memory
Opcode LSW: 1110 0010 0000 0000
MSW: 0000 0000 mem32
Description Copy the floating-point status register, STF, to memory.
[mem32] = STF
Flags This instruction modifies the following flags in the STF register:
Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected.
Pipeline This is a single-cycle instruction.
Example 1 MOVW DP, #0x0280 ; DP = 0x0280
MOVIZF32 ROH, #2.0 ; ROH = 2.0 (0x40000000)
MOVIZF32 R1H, #3.0 ; R1H = 3.0 (0x40400000)
CMPF32 ROH, R1H ; ZF = 0, NF = 1, STF = 0x00000004
MOV32 @0, STF ; [0x00A000] = 0x00000004
Example 2
MOV32 *SP++, STF ; Store STF in stack
MOVF32 R2H, #3.0 ; R2H = 3.0 (0x40400000)
MOVF32 R3H, #5.0 ; R3H = 5.0 (0x40A00000)
CMPF32 R2H, R3H ; ZF = 0, NF = 1, STF = 0x00000004
MOV32 R3H, R2H, LT ; R3H = 3.0 (0x40400000)
MOv32 STF, *--SP ; Restore STF from stack
See also MOV32 mem32, RaH

MOV32 *(0:16bitAddr), loc32
MOVSTO FLAG

86 Floating Point Unit (FPU)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

MOV32 P, RaH — Move 32-bit Floating-Point Register Contents to P

MOV32 P, RaH Move 32-bit Floating-Point Register Contents to P
Operands
P 28x product register P
RaH floating-point source register (ROH to R7H)
Opcode LSW: 1011 1111 loc32
MSW:z TR0L BRRE BRDE DRRIE
Description Move the 32-bit value in RaH to the 28x product register P.
P = RaH
Flags No flags affected in floating-point unit.

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when
copying a floating-point register to a C28x register. If the move follows a single cycle

floating point instruction, a single alignment cycle must be added. For example:
MINF32 ROH,R1H ; Single-cycle instruction
NOP ; 1 alignment cycle
MOV32 @ACC,ROH ; Copy ROH to ACC
NOP ; Any instruction
If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:
ADDF32 R2H, R1H, ROH ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete
; <-- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle
MOV32 ACC, R2H ; copy R2H into ACC, takes 1 cycle
; <-- MOV32 completes, ACC is valid NOP ; Any instruction
Example MOVIZF32 ROH, #2.5 ; ROH = 2.5 = 0x40200000
F32TOUI32 ROH, ROH
NOP ; Delay for conversion instruction
; <-- Conversion complete, ROH valid
NOP ; Alignment cycle
MOV32 P, ROH ; P = 2 = 0x00000002
See also MOV32 ACC, RaH

MOV32 XARn, RaH
MOV32 XT, RaH

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU) 87

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MOV32 RaH, ACC — Move the Contents of ACC to a 32-bit Floating-Point Register

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 RaH, ACC

Move the Contents of ACC to a 32-bit Floating-Point Register

Operands
RaH floating-point destination register (ROH to R7H)
ACC accumulator
Opcode LSW: 1011 1101 loc32
MSW: TREE TRRE LRRE HRRd
Description Move the 32-bit value in ACC to the floating-point register RaH.
RaH = ACC
Flags This instruction does not modify any STF register flags.

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four

alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, I16 TOF32, F32TOUI32,
and F32TOI32.
MOV32 ROH,@ACC ; Copy ACC to ROH
NOP ; Wait 4 cycles
NOP ; Do not use FRACF32, UI16TOF32
NOP ; 116TOF32, F32TOUI32 or F32T0132
NOP ;
; <-- ROH 1is valid
Example MOV AH, #0x0000
MOV AL, #0x0200 ; ACC = 512
MOV32 ROH, ACC
NOP
NOP
NOP
NOP UI32TOF32 ROH, ROH ; ROH = 512.0 (0x44000000)
See also MOV32 RaH, P

MOV32 RaH, XARn
MOV32 RaH, XT

88 Floating Point Unit (FPU)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MOV32 RaH, mem32 {, CNDF} — Conditional 32-bit Move

MOV32 RaH, mem32 {, CNDF} Conditional 32-bit Move

Operands
RaH floating-point destination register (ROH to R7H)
mem32 pointer to the 32-bit source memory location
CNDF optional condition.
Opcode LSW: 1110 0010 1010 CNDF
MSW: 0000 Oaaa mem32
Description If the condition is true, then move the 32-bit value referenced by mem32 to the floating-
point register indicated by RaH.
if (CNDF == TRUE) RaH = [mem32]
CNDF is one of the following conditions:
Encode @ CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF ==
0001 EQ Equal to zero ZF ==
0010 GT Greater than zero ZF == 0 AND NF ==
0011 GEQ Greater than or equal to zero NF ==
0100 LT Less than zero NF ==
0101 LEQ Less than or equal to zero ZF == 1 AND NF ==
1010 TF Test flag set TF ==
1011 NTF Test flag not set TF ==
1100 LU Latched underflow LUF ==
1101 LV Latched overflow LVF ==
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag modification ~ None

@ values not shown are reserved.

@ This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified
when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No

i F(CNDF == UNCF)

{
NF = RaH(31); ZF = 0;
if(RaH[30:23] == 0) { ZF = 1; NF = 0; } NI = RaH[31]; ZI = O;
if(RaH[31:0] == 0) ZI = 1;

3

else No flags modified;

Pipeline This is a single-cycle instruction.

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 89

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MOV32 RaH, mem32 {, CNDF} — Conditional 32-bit Move

13 TEXAS
INSTRUMENTS

www.ti.com

Example

See also

MOVW DP, #0x0300 ;
MoV @0, #0x5555 ;
MoV @1, #0x5555 ;

MOVIZF32 R3H, #7.0
MOVIZF32 R4H, #7.0
MAXF32 R3H, R4H

MOV32 RIH, @0, EQ ;

DP = 0x0300
[0X00C000] = O0x5555
[0Xx00C001] = Ox5555

: R3H = 7.0 (O0x40E00000)
; R4H = 7.0 (Ox40E00000)

; ZF =1, NF =0

R1H = 0x55555555

MOV32 RaH, RbH{, CNDF}
MOVD32 RaH, mem32

90 Floating Point Unit (FPU)

Copyright © 2014-2019, Texas Instruments Incorporated

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com MOV32 RaH, P — Move the Contents of P to a 32-bit Floating-Point Register
MOV32 RaH, P Move the Contents of P to a 32-bit Floating-Point Register
Operands
RaH floating-point register (ROH to R7H)
P product register
Opcode
LSW: 1011 1101 loc32
MSW: TREE RRRL LRRL Hnl
Description Move the 32-bit value in the product register, P, to the floating-point register RaH.
RaH = P
Flags This instruction does not modify any STF register flags.

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four

alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, I16TOF32, F32TOUI32,
and F32TOI32.
MOV32 ROH,@P ; Copy P to ROH
NOP ; Wait 4 alignment cycles
NOP ; Do not use FRACF32, UI16TOF32
NOP ; 116TOF32, F32TOUI32 or F32T0132
NOP ;
; <-- ROH is valid
; Instruction can use ROH as a source
Example MOV PH, #0x0000
MOV PL, #0x0200 ; P =512
MOV32 ROH, P
NOP
NOP
NOP
NOP
UI32TOF32 ROH, ROH ; ROH = 512.0 (0x44000000)
See also MOV32 RaH, ACC
MOV32 RaH, XARn
MOV32 RaH, XT
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU) 91

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

i3 TEXAS
INSTRUMENTS

MOV32 RaH, RbH {, CNDF} — Conditional 32-bit Move www.ti.com

MOV32 RaH, RbH {, CNDF} Conditional 32-bit Move

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
CNDF optional condition.
Opcode LSW: 1110 0110 1100 CNDF
MSW: 0000 0000 00bb baaa
Description If the condition is true, then move the 32-bit value referenced by mem32 to the floating-
point register indicated by RaH.
if (CNDF == TRUE) RaH = RbH
CNDF is one of the following conditions:
Encode @ CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF==0
0001 EQ Equal to zero ZF==1
0010 GT Greater than zero ZF == 0 AND NF ==
0011 GEQ Greater than or equal to zero NF ==
0100 LT Less than zero NF ==
0101 LEQ Less than or equal to zero ZF == 1 AND NF ==
1010 TF Test flag set TF==1
1011 NTF Test flag not set TF==0
1100 LU Latched underflow LUF ==
1101 Lv Latched overflow LVF ==
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag modification ~ None

@ values not shown are reserved.

@ This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified
when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No
if(CNDF == UNCF) { NF = RaH(31); ZF = 0;
iT(RaH[30:23] == 0) {ZF = 1; NF = 0;} NI = RaH(31); ZI = 0;
if(RaH[31:0] == 0) ZI = 1; } else No flags modified;
Pipeline This is a single-cycle instruction.
Example MOVIZF32 R3H, #8.0 ; R3H = 8.0 (0x41000000)
MOVIZF32 R4H, #7.0 ; R4H = 7.0 (Ox40E00000)
MAXF32 R3H, R4H ; ZF = 0, NF =0
MOv32 R1H, R3H, GT ; R1H = 8.0 (0x41000000)
See also MOV32 RaH, mem32{, CNDF}
92 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 RaH, XARn — Move the Contents of XARn to a 32-bit Floating-Point Register

MOV32 RaH, XARN

Move the Contents of XARn to a 32-bit Floating-Point Register

Operands
RaH floating-point register (ROH to R7H)
XARN auxiliary register (XARO - XAR7)
Opcode LSW: 1011 1101 loc32
MSW: TREE TRRE LRRE HRRd
Description Move the 32-bit value in the auxiliary register XARn to the floating point register RaH.
RaH = XARn
Flags This instruction does not modify any STF register flags.

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four

alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, I16 TOF32, F32TOUI32,
and F32TOI32.
MOV32 ROH,@XAR7 ; Copy XAR7 to ROH
NOP ; Wait 4 alignment cycles
NOP ; Do not use FRACF32, UI16TOF32
NOP ; 116TOF32, F32TOUI32 or F32TOI32
NOP ;
; <-- ROH is valid
ADDF32 R2H,R1H ,ROH ; Instruction can use ROH as a source
Example MOVL XAR1, #0x0200 ; XARl = 512
MOV32 ROH, XAR1
NOP
NOP
NOP
NOP
UI32TOF32 ROH, ROH ; ROH = 512.0 (0x44000000)
See also MOV32 RaH, ACC

MOV32 RaH, P
MOV32 RaH, XT

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU)

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

93

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MOV32 RaH, XT — Move the Contents of XT to a 32-bit Floating-Point Register

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 RaH, XT

Move the Contents of XT to a 32-bit Floating-Point Register

Operands
RaH floating-point register (ROH to R7H)
XT auxiliary register (XARO - XAR7)
Opcode LSW: 1011 1101 loc32
MSW: TREE TRRE LRRE HRRd
Description Move the 32-bit value in temporary register, XT, to the floating-point register RaH.
RaH = XT
Flags This instruction does not modify any STF register flags.

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four

alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, I16 TOF32, F32TOUI32,
and F32TOI32.
MOV32 ROH, XT ; Copy XT to ROH
NOP ; Wait 4 alignment cycles
NOP ; Do not use FRACF32, UI16TOF32
NOP ; 116TOF32, F32TOUI32 or F32TOI32
NOP ;
; <-- ROH is valid
ADDF32 R2H,R1H,ROH ; Instruction can use ROH as a sourc
Example MOVIZF32 R6H, #5.0 ; R6H = 5.0 (0x40A00000)
NOP ; 1 Alignment cycle
MOV32 XT, R6H ; XT = 5.0 (0x40A00000)
MOV32 R1H, XT ; R1IH = 5.0 (0x40A00000)
See also MOV32 RaH, ACC

MOV32 RaH, P
MOV32 RaH, XARn

94 Floating Point Unit (FPU)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 STF, mem32 — Move 32-bit Value from Memory to the STF Register

MOV32 STF, mem32 Move 32-bit Value from Memory to the STF Register

Operands
STF floating-point unit status register
mem32 pointer to the 32-bit source memory location
Opcode
LSW: 1110 0010 1000 0000
MSW: 0000 0000 mem32
Description Move from memory to the floating-point unit's status register STF.
STF = [mem32]
Flags This instruction modifies the following flags in the STF register:
Flag TF ZI NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes

Pipeline

Example 1

Example 2

See also

Restoring status register will overwrite all flags.

This is a single-cycle instruction.

MOVW DP, #0x0300 ; DP = 0x0300

MOV @2, #0x020C ; [0x00C002] = 0x020C
MOV @3, #0x0000 ; [0x00C003] = 0x0000
MOV32 STF, @2 ; STF = 0x0000020C

MOV32 *SP++, STF ; Store STF in stack

MOVF32 R2H, #3.0 ; R2H = 3.0 (0x40400000)

MOVF32 R3H, #5.0 ; R3H = 5.0 (0x40A00000)

CMPF32 R2H, R3H ; ZF = 0, NF = 1, STF = 0x00000004
MOV32 R3H, R2H, LT ; R3H = 3.0 (0x40400000)

Mov32 STF, *--SP ; Restore STF from stack

MOV32 mem32, STF
MOVSTO FLAG

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU) 95

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MOV32 XARn, RaH — Move 32-bit Floating-Point Register Contents to XARnN

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 XARn, RaH Move 32-bit Floating-Point Register Contents to XARn

Operands
XARN 28x auxiliary register (XARO - XAR7)
RaH floating-point source register (ROH to R7H)
Opcode LSW: 1011 1111 loc32
MSW: BIRE DLRLL BRED DRI
Description Move the 32-bit value from the floating-point register RaH to the auxiliary register XARnN.
XARn = RaH
Flags No flags affected in floating-point unit.

Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when

copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:
MINF32 ROH,R1H ; Single-cycle instruction
NOP ; 1 alignment cycle
MOV32 @ACC,ROH ; Copy ROH to ACC
NOP ; Any instruction
If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:
ADDF32 R2H, R1H, ROH ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete
; <-- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle
MOV32 ACC, R2H ; copy R2H into ACC, takes 1 cycle
; <-- MOV32 completes, ACC is valid
NOP ; Any instruction
Example MOVIZF32 ROH, #2.5 ; ROH = 2.5 = 0x40200000
F32TOU132 ROH, ROH
NOP ; Delay for conversion instruction
; <-- Conversion complete, ROH valid
NOP ; Alignment cycle
MOV32 XARO, ROH ; XARO = 2 = 0x00000002
See also MOV32 ACC, RaH

MOV32 P, RaH
MOV32 XT, RaH

96 Floating Point Unit (FPU)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 XT, RaH — Move 32-bit Floating-Point Register Contents to XT

MOV32 XT, RaH

Move 32-bit Floating-Point Register Contents to XT

Operands
XT temporary register
RaH floating-point source register (ROH to R7H)
Opcode
LSW: 1011 1111 loc32
MSW:z TRLL BRLE BLLE DLRIL
Description Move the 32-bit value in RaH to the temporary register XT.
XT = RaH
Flags No flags affected in floating-point unit.
Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when
copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:
MINF32 ROH,R1H ; Single-cycle instruction
NOP ; 1 alignment cycle
MOV32 @XT,ROH ; Copy ROH to ACC NOP
; Any instruction
If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:
ADDF32 R2H, R1H, ROH ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete
; <-- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle
MOV32 XT, R2H ; copy R2H into ACC, takes 1 cycle
; <-- MOV32 completes, ACC is valid
NOP ; Any instruction
Example
MOVIZF32 ROH, #2.5 ; ROH = 2.5 = 0x40200000
F32TOUI32 ROH, ROH
NOP ; Delay for conversion instruction
; <-- Conversion complete, ROH valid
NOP ; Alignment cycle
MOV32 XT, ROH ; XT = 2 = 0x00000002
See also MOV32 ACC, RaH

MOV32 P, RaH
MOV32 XARnN, RaH

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU) 97

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MOVD32 RaH, mem32 — Move 32-bit Value from Memory with Data Copy

13 TEXAS
INSTRUMENTS

www.ti.com

MOVD32 RaH, mem32 Move 32-bit Value from Memory with Data Copy

Operands
RaH floating-point register (ROH to R7H)
mem32 pointer to the 32-bit source memory location
Opcode LSW: 1110 0010 0010 0011
MSW: 0000 Oaaa mem32
Description Move the 32-bit value referenced by mem32 to the floating-point register indicated by
RaH.
RaH = [mem32] [mem32+2] = [mem32]
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No
NF = RaH[31];
ZF = 0;
if(RaH[30:23] == 0){ ZF = 1; NF = 0; }
NI = RaH[31];
Zl = 0;
if(RaH[31:0] == 0) ZI = 1;
Pipeline This is a single-cycle instruction.
Example MOVW DP, #0x02CO ; DP = 0x02CO
MOV @2, #0x0000 ; [0x00B002] = 0x0000
MOV @3, #0x4110 ; [0x00B0O03] = 0x4110
MOVD32 R7H, @2 ; R7H = 0x41100000,
; [0x00B004] = 0x0000, [0x00BOO5] = 0x4110
See also MOV32 RaH, mem32 {,CNDF}

98 Floating Point Unit (FPU)

Copyright © 2014-2019, Texas Instruments Incorporated

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

MOVF32 RaH, #32F — Load the 32-bits of a 32-bit Floating-Point Register

MOVF32 RaH, #32F

Operands

Load the 32-bits of a 32-bit Floating-Point Register

This instruction is an alias for MOVIZ and MOVXI instructions. The second operand is
translated by the assembler such that the instruction becomes:

MOVIZ RaH, #16FHiHex
MOVX1 RaH, #16FLoHex

RaH
#32F

floating-point destination register (ROH to R7H)
immediate float value represented in floating-point representation

Opcode

Description

Flags

LSW: 1110 1000 0000 OIll (opcode of MOVIZ RaH, #16FHiHex)
MSWz 1111 1111 1111 laaa

LSW: 1110 1000 0000 1111 (opcode of MOVXI RaH, #16FLoHex)
MSWz 1111 1111 1111 laaa

Note: This instruction accepts the immediate operand only in floating-point
representation. To specify the immediate value as a hex value (IEEE 32-bit floating-
point format) use the MOVI32 RaH, #32FHex instruction.

Load the 32-bits of RaH with the immediate float value represented by #32F.

#32F is a float value represented in floating-point representation. The assembler will only
accept a float value represented in floating-point representation. That is, 3.0 can only be
represented as #3.0. #0x40400000 will result in an error.

RaH = #32F

This instruction modifies the following flags in the STF register:

Flag TF

Zl NI ZF NF LUF LVF

Modified No

No No No No No No

Pipeline

Example

See also

Depending on #32FH, this instruction takes one or two cycles. If all of the lower 16-bits
of the IEEE 32-bit floating-point format of #32F are zeros, then the assembler will
convert MOVF32 into only MOVIZ instruction. If the lower 16-bits of the IEEE 32-bit
floating-point format of #32F are not zeros, then the assembler will convert MOVF32 into
MOVIZ and MOVXI instructions.
MOVF32 R1H, #3.0 ; R1H = 3.0 (0x40400000)
; Assembler converts this instruction as
; MOVIZ R1H, #0x4040
; R2H = 0.0 (0x00000000)
; Assembler converts this instruction as
; MOVIZ R2H, #0x0
MOVF32 R3H, #12.265 ; R3H = 12.625 (0x41443D71)
; Assembler converts this instruction as
; MOVIZ R3H, #0x4144
; MOVXI R3H, #0x3D71

MOVF32 R2H, #0.0

MOVIZ RaH, #16FHiHex
MOVXI RaH, #16FLoHex
MOVI32 RaH, #32FHex

MOVIZF32 RaH, #16FHi

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU) 99

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MOVI32 RaH, #32FHex — Load the 32-bits of a 32-bit Floating-Point Register with the immediate www.ti.com

MOVI32 RaH, #32FHex Load the 32-bits of a 32-bit Floating-Point Register with the immediate

Operands

This instruction is an alias for MOVIZ and MOVXI instructions. The second operand is
translated by the assembler such that the instruction becomes:

MOVIZ RaH, #16FHiHex
MOVX1 RaH, #16FLoHex

RaH
#32FHex

floating-point register (ROH to R7H)
A 32-bit immediate value that represents an IEEE 32-bit floating-point value.

Opcode

Description

Flags

LSW: 1110 1000 0000 OIll (opcode of MOVIZ RaH, #16FHiHex)
MSWz 1111 1111 1111 laaa

LSW: 1110 1000 0000 1111 (opcode of MOVXI RaH, #16FLoHex)
MSWz 1111 1111 1111 laaa

Note: This instruction only accepts a hex value as the immediate operand. To specify the
immediate value with a floating-point representation use the MOVF32 RaH, #32F
instruction.

Load the 32-bits of RaH with the immediate 32-bit hex value represented by #32Fhex.

#32Fhex is a 32-bit immediate hex value that represents the IEEE 32-bit floating-point
value of a floating-point number. The assembler will only accept a hex immediate value.
That is, 3.0 can only be represented as #0x40400000. #3.0 will result in an error.

RaH = #32FHex

This instruction modifies the following flags in the STF register:

Flag

TF

Zl NI ZF NF LUF LVF

Modified

No

No No No No No No

Pipeline

Example

See also

Depending on #32FHex, this instruction takes one or two cycles. If all of the lower 16-
bits of #32FHex are zeros, then assembler will convert MOVI32 to the MOVIZ
instruction. If the lower 16-bits of #32FHex are not zeros, then assembler will convert
MOVI32 to a MOVIZ and a MOVXI instruction.

MOVI32 R1H, #0x40400000 ; R1H = 0x40400000
; Assembler converts this instruction as
; MOVIZ R1H, #0x4040
MOVI32 R2H, #0x00000000 ; R2H = 0x00000000
; Assembler converts this instruction as
; MOVIZ R2H, #0x0
MOVI32 R3H, #0x40004001 ; R3H = 0x40004001
; Assembler converts this instruction as
; MOVIZ R3H, #0x4000 ; MOVXI R3H, #0x4001
MOVI32 R4H, #0x00004040 ; R4H = 0x00004040
; Assembler converts this instruction as
; MOVIZ R4H, #0x0000 ; MOVXI R4H, #0x4040

MOVIZ RaH, #16FHiHex
MOVXI RaH, #16FLoHex
MOVF32 RaH, #32F

MOVIZF32 RaH, #16FHi

100 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MOVIZ RaH, #16FHiHex — Load the Upper 16-bits of a 32-bit Floating-Point Register

MOVIZ RaH, #16FHiHex Load the Upper 16-bits of a 32-bit Floating-Point Register

Operands
RaH floating-point register (ROH to R7H)
#16FHiHex A 16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit floating-point value.
The low 16-bits of the mantissa are assumed to be all 0.
Opcode
LSW: 1110 1000 0000 Ol
MSW: TIEL IIIT I111 laaa
Description Note: This instruction only accepts a hex value as the immediate operand. To specify the
immediate value with a floating-point representation use the MOVIZF32 pseudo
instruction.
Load the upper 16-bits of RaH with the immediate value #16FHiHex and clear the low
16-bits of RaH.
#16FHiHex is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-
bit floating-point value. The low 16-bits of the mantissa are assumed to be all 0. The
assembler will only accept a hex immediate value. That is, -1.5 can only be represented
as #0xBFCO. #-1.5 will result in an error.
By itself, MOVIZ is useful for loading a floating-point register with a constant in which the
lowest 16-bits of the mantissa are 0. Some examples are 2.0 (0x40000000), 4.0
(0x40800000), 0.5 (0x3F000000), and -1.5 (OXBFCO00000). If a constant requires all 32-
bits of a floating-point register to be initialized, then use MOVIZ along with the MOVXI
instruction.
RaH[31:16] = #16FHiHex
RaH[15:0] = O
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a single-cycle instruction.
Example
; Load ROH with -1.5 (OxBFC00000)
MOVIZ ROH, #OxBFCO ; ROH = OxBFCO0000
; Load ROH with pi = 3.141593 (0x40490FDB)
MOVIZ ROH, #0x4049 ; ROH = 0x40490000
MOVX1 ROH, #OXOFDB ; ROH = Ox40490FDB
See also MOVIZF32 RaH, #16FHi

MOVXI RaH, #16FLoHex

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU) 101

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MOVIZF32 RaH, #16FHi — Load the Upper 16-bits of a 32-bit Floating-Point Register www.ti.com

MOVIZF32 RaH, #16FHi Load the Upper 16-bits of a 32-bit Floating-Point Register

Operands
RaH floating-point register (ROH to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.
Opcode
LSW: 1110 1000 0000 OI1I1
MSW: TIEL IIIT I111 laaa
Description Load the upper 16-bits of RaH with the value represented by #16FHi and clear the low
16-bits of RaH.
#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (OxBFC00000). #16FHi can be specified in hex or float. That is, -1.5 can be
represented as #-1.5 or #0xBFCO.
MOVIZF32 is an alias for the MOVIZ RaH, #16FHiHex instruction. In the case of
MOVIZF32 the assembler will accept either a hex or float as the immediate value and
encodes it into a MOVIZ instruction. For example, MOVIZF32 RaH, #-1.5 will be
encoded as MOVIZ RaH, 0xBFCO.
RaH[31:16] = #16FHi
RaH[15:0] = O
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a single-cycle instruction.
Example
MOVIZF32 ROH, #3.0 ; ROH = 3.0 = 0x40400000
MOVIZF32 R1H, #1.0 ; R1H = 1.0 = 0x3F800000
MOVIZF32 R2H, #2.5 ; R2H = 2.5 = 0x40200000
MOVIZF32 R3H, #-5.5 ; R3H = -5.5 = 0xCOB0000O
MOVIZF32 R4H, #OxCOBO ; R4H = -5.5 = 0xCOB0O000O
Load R5H with pi = 3.141593 (0x40490000)
MOVIZF32 R5H, #3.141593 ; R5H = 3.140625 (0x40490000)
Load ROH with a more accurate pi = 3.141593 (0x40490FDB)
MOVIZF32 ROH,#0x4049 ; ROH = 0x40490000
MOVXI ROH,#OxOFDB ; ROH = 0x40490FDB
See also MOVIZ RaH, #16FHiHex
MOVXI RaH, #16FLoHex
102 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MOVSTO FLAG — Load Selected STF Flags into STO

MOVSTO FLAG

Load Selected STF Flags into STO

Operands
FLAG Selected flag
Opcode LSW: 1010 1101 FFFF FFFF
Description Load selected flags from the STF register into the STO register of the 28x CPU where

Restrictions

FLAG is one or more of TF, Cl, ZI, ZF, NI, NF, LUF or LVF. The specified flag maps to
the STO register as follows:

e Set OV =1if LVF or LUF is set. Otherwise clear OV.
e Set N =1if NF or Nl is set. Otherwise clear N.

e SetZ=1if ZF or Zl is set. Otherwise clear Z.

e SetC=1if TF is set. Otherwise clear C.

 SetTC =1if TF is set. Otherwise clear TF.
If any STF flag is not specified, then the corresponding STO register bit is not modified.

Do not use the MOVSTO instruction in the delay slots for pipelined operations. Doing so
can yield invalid results. To avoid this, the proper number of NOPs or non-pipelined
instructions must be inserted before the MOVSTO operation.
; The following is INVALID

MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)

MOVSTO TF ; INVALID, do not use MOVSTO in a delay slot

; The following is VALID

MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
MOVSTO TF : VALID

Flags This instruction modifies the following flags in the STF register:

Flag TF Zl NI ZF NF LUF LVF

Modified No No No No No Yes Yes
When the flags are moved to the C28x STO register, the LUF or LVF flags are
automatically cleared if selected.

Pipeline This is a single-cycle instruction.

Example Program flow is controlled by C28x instructions that read status flags in the status
register 0 (STO) . If a decision needs to be made based on a floating-point operation, the
information in the STF register needs to be loaded into STO flags (Z,N,0V,TC,C) so that
the appropriate branch conditional instruction can be executed. The MOVSTO FLAG
instruction is used to load the current value of specified STF flags into the respective bits
of STO. When this instruction executes, it will also clear the latched overflow and
underflow flags if those flags are specified.

Loop:
MOV32 ROH,*XAR4++
MOV32 R1H,*XAR3++
CMPF32 R1H, ROH
MOVSTO ZF, NF
BF Loop, GT ; Loop if (R1H > ROH)

See also MOV32 mem32, STF
MOV32 STF, mem32

SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU) 103

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MOVXI RaH, #16FLoHex — Move Immediate to the Low 16-bits of a Floating-Point Register

13 TEXAS
INSTRUMENTS

www.ti.com

MOVXI RaH, #16FLoHex Move Immediate to the Low 16-bits of a Floating-Point Register

Operands
Ra floating-point register (ROH to R7H)
#16FLoHex A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit floating-point value. The
upper 16-bits will not be modified.
Opcode LSW: 1110 1000 0000 Z1h0K MSW: LLIL LEIL LI laaa
Description Load the low 16-bits of RaH with the immediate value #16FLoHex. #16FLoHex
represents the lower 16-bits of an IEEE 32-bit floating-point value. The upper 16-bits of
RaH will not be modified. MOVXI can be combined with the MOVIZ or MOVIZF32
instruction to initialize all 32-bits of a RaH register.
RaH[15:0] = #16FLoHex
RaH[31:16] = Unchanged
Flags
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a single-cycle instruction.
Example ; Load ROH with pi = 3.141593 (0x40490FDB)
MOVIZ ROH,#0x4049 ; ROH = 0x40490000
MOVXI ROH,#O0xOFDB ; ROH = 0x40490FDB
See also MOVIZ RaH, #16FHiHex

MOVIZF32 RaH, #16FHi

104 Floating Point Unit (FPU)

Copyright © 2014-2019, Texas Instruments Incorporated

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

MPYF32 RaH, RbH, RcH — 32-bit Floating-Point Multiply

MPYF32 RaH, RbH, RcH 32-bit Floating-Point Multiply

Operands

RaH
RbH
RcH

floating-point destination register (ROH to R7H)
floating-point source register (ROH to R7H)
floating-point source register (ROH to R7H)

Opcode

Description

Flags

LSW: 1110 0111 0000 0000
MSW: 0000 000c ccbb baaa

Multiply the contents of two floating-point registers.
RaH = RbH * RcH

This instruction modifies the following flags in the STF register:.

Flag TF

VA| NI ZF NF LUF LVF

Modified No

No No No No Yes Yes

Pipeline

Example

See also

The STF register flags are modified as follows:
* LUF =1 if MPYF32 generates an underflow condition.
 LVF =1 if MPYF32 generates an overflow condition.

This is a 2 pipeline cycle (2p) instruction. That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32 completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Calculate Y = A * B:

MOVL XAR4, #A

MOV32 ROH, *XAR4 ; Load ROH with A
MOVL XAR4, # B

MOV32 R1H, *XAR4 ; Load R1H with B
MPYF32 ROH,R1H,ROH ; Multiply A * B
MOVL XAR4, #Y

; <--MPYF32 complete

MOV32 *XAR4,ROH ; Save the result

MPYF32 RaH, #16FHi, RbH

MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH
MPYF32 RdH, ReH, RfH || MOV32 RaH, mem32

MPYF32 RdH, ReH, RfH || MOV32 mem32, RaH

MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 105
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MPYF32 RaH, #16FHi, RoH — 32-bit Floating-Point Multiply

13 TEXAS
INSTRUMENTS

www.ti.com

MPYF32 RaH, #16FHi, RbH 32-bit Floating-Point Multiply

Operands

RaH floating-point destination register (ROH to R7H)

#16FHi A 16-bit immediate value that represents the

upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.

RcH floating-point source register (ROH to R7H)

Opcode LSW: 1110 1000 0111 1111
MSWz 1111 1111 1lbb baaa

Description Multiply RbH with the floating-point value represented by the immediate operand. Store

the result of the addition in RaH.
#16FHi is a 16-bit immediate value that

represents the upper 16-bits of an IEEE 32-bit

floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.

Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0Ox3F000000), and -1.5
(OxBFCO00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFCO.

RaH = RbH * #16FHi:0

This instruction can also be written as MPYF32 RaH, RbH, #16FHi.

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF

NF LUF LVF

Modified No No No No

No Yes Yes

The STF register flags are modified as f

ollows:

e LUF =1 if MPYF32 generates an underflow condition.
* LVF =1if MPYF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

MPYF32 RaH, #16FHi, RbH ; 2 pip
NOP ; 1 cyc

;<=M
NOP

Any instruction in the delay slot must no
as a source operand.

Example 1
MOVIZF32 R3H, #2.0 ; R3H =
MPYF32 R4H, #3.0, R3H ; R4H =
MOVL XAR1, #O0xB006 ; <= N
; <—— M
MOV32 *XAR1, R4H ; Save

Example 2 ;Same as above example but #16FHi is
MOVIZF32 R3H, #2.0 ; R3H =
MPYF32 R4H, #0x4040, R3H ; R4H =

; 3.0 is

; IEEE 7

MOVL XAR1, #0OxBOO6 ; <-- No

; <-—— MP

eline cycles (2p)
le delay or non-conflicting instruction
PYF32 completes, RaH updated

t use RaH as a destination register or use RaH

2.0 (0x40000000)

3.0 * R3H
on conflicting instruction

PYF32 complete, R4H = 6.0 (0x40C00000)
the result in memory location 0xB0O06

represented in Hex
2.0 (0x40000000)
0x4040 * R3H
represented as 0x40400000 in
54 32-bit format
n conflicting instruction
YF32 complete, R4H = 6.0 (0x40C00000)

MOV32 *XAR1, R4H ; Save the result in memory location 0xB006

106 Floating Point Unit (FPU)

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com MPYF32 RaH, #16FHi, RoH — 32-bit Floating-Point Multiply
See also MPYF32 RaH, RbH, #16FHi
MPYF32 RaH, RbH, RcH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH
SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 107

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MPYF32 RaH, RbH, #16FHi — 32-bit Floating-Point Multiply

13 TEXAS
INSTRUMENTS

www.ti.com

MPYF32 RaH, RbH, #16FHi 32-bit Floating-Point Multiply

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.
Opcode LSW: 1110 1000 0111 1111
MSW: 1111 1111 1lbb baaa
Description Multiply RbH with the floating-point value represented by the immediate operand. Store
the result of the addition in RaH.
#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0Ox3F000000), and -1.5
(OxBFCO00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFCO.
RaH = RbH * #16FHi:0
This instruction can also be writen as MPYF32 RaH, #16FHi, RbH.
Flags This instruction modifies the following flags in the STF register:.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
e LUF =1 if MPYF32 generates an underflow condition.
* LVF =1if MPYF32 generates an overflow condition.
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
MPYF32 RaH, RbH, #16FHi ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example 1
MOVIZF32 R3H, #2.0 ; R3H = 2.0 (0x40000000)
MPYF32 R4H, R3H, #3.0 : R4H = R3H * 3.0
MOVL XAR1, #0xB0OOS8 ; <-- Non conflicting instruction
; <-- MPYF32 complete, R4H = 6.0 (0x40C00000)
MOV32 *XAR1, R4H ; Save the result in memory location 0xB008
Example 2 ;Same as above example but #16FHi is represented in Hex

MOVIZF32 R3H, #2.0 ; R3H = 2.0 (0x40000000)

MPYF32 R4H, R3H, #0x4040 ; R4H = R3H * 0x4040

; 3.0 is represented as 0x40400000 in

; IEEE 754 32-bit format
MOVL XAR1, #0xB0OOS8 ; <-- Non conflicting instruction

; <-- MPYF32 complete, R4H = 6.0 (0x40C00000)
MOV32 *XAR1, R4H ; Save the result in memory location 0xB008

108 Floating Point Unit (FPU)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com MPYF32 RaH, RbH, #16FHi — 32-bit Floating-Point Multiply
See also MPYF32 RaH, #16FHi, RbH
MPYF32 RaH, RbH, RcH
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU) 109

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MPYF32 RaH, RbH, RcH JADDF32 RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add www.ti.com

MPYF32 RaH, RbH, RcH |ADDF32 RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add

Operands
RaH floating-point destination register for MPYF32 (ROH to R7H)
RaH cannot be the same register as RdH
RbH floating-point source register for MPYF32 (ROH to R7H)
RcH floating-point source register for MPYF32 (ROH to R7H)
RdH floating-point destination register for ADDF32 (ROH to R7H)
RdH cannot be the same register as RaH
ReH floating-point source register for ADDF32 (ROH to R7H)
RfH floating-point source register for ADDF32 (ROH to R7H)
Opcode LSW: 1110 0111 0100 OOff
MSW: feee dddc ccbb baaa
Description Multiply the contents of two floating-point registers with parallel addition of two registers.

Restrictions

RaH = RbH * RcH
RdH = ReH + RfH

This instruction can also be written as:
MACF32 RaH, RbH, RcH, RdH, ReH, RfH

The destination register for the MPYF32 and the ADDF32 must be unique. That is, RaH
cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
e LUF =1if MPYF32 or ADDF32 generates an underflow condition.
e LVF=1if MPYF32 or ADDF32 generates an overflow condition.
Pipeline Both MPYF32 and ADDF32 take 2 pipeline cycles (2p) That is:
MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|1 ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32, ADDF32 complete, RaH, RdH updated
NOP
Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.
110 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MPYF32 RaH, RbH, RcH |JADDF32 RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add

Example ;

See also

Perform 5 multiply and accumulate operations:

1st multiply: A = X0
2nd multiply: B = X1
3rd multiply: C = X2
4th multiply: D = X3
5th multiply: E = X3

Result = A+ B + C +

MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MPYF32 R2H, ROH, R1H
MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MPYF32 R3H, ROH, R1H
MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MACF32 R3H, R2H, R2H,
MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MACF32 R3H, R2H, R2H,
MOV32 ROH, *XAR4
MOV32 R1H, *XAR5

MPYF32 R2H, ROH, R1H
ADDF32 R3H, R3H, R2H
NOP

ADDF32 R3H, R3H, R2H

MOV32 @Result, R3H

* YO
* Y1
* Y2
* Y3
* Y3
D+E
; ROH = X0
; R1H = YO
; R2H = A = X0 * YO
; In parallel ROH = X1
; RIH = Y1
; RBH =B = X1 * Y1
; In parallel ROH = X2
; RIH = Y2
; RBH=A+B
; R2H = C = X2 * Y2
ROH, R1H ; In parallel ROH = X3
; RIH = Y3
; RBH= (A +B) +C
; R2H =D = X3 * Y3
ROH, R1H ; In parallel ROH = X4

R1H = Y4

; R2H = E = X4 * Y4

in parallel R3H =

(A+B+C)+D

; Wait for MPYF32 || ADDF32 to complete

MACF32 R3H, R2H, RdH, ReH, RfH
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32

R3H =

(A+B+ C+ D) + E NOP

Wait for ADDF32 to complete

Store the result

MACF32 R7H, R3H, mem32, *XAR7++
MACF32 R7H, R6H, RdH, ReH, RfH

MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

111

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MPYF32 RdH, ReH, RfH |[MOV32 RaH, mem32 — 32-bit Floating-Point Multiply with Parallel Move www.ti.com

MPYF32 RdH, ReH, RfH [[MOV32 RaH, mem32 32-bit Floating-Point Multiply with Parallel Move

Operands

RdH floating-point destination register for the MPYF32 (ROH to R7H)
RdH cannot be the same register as RaH

ReH floating-point source register for the MPYF32 (ROH to R7H)
RfH floating-point source register for the MPYF32 (ROH to R7H)

RaH floating-point destination register for the MOV32 (ROH to R7H)
RaH cannot be the same register as RdH

mem32 pointer to a 32-bit memory location. This will be the source of the MOV32.

Opcode LSW: 1110 0011 0000 fffe
MSW: eedd daaa mem32

Description Multiply the contents of two floating-point registers and load another.

RdH = ReH * RfH
RaH = [mem32]

Restrictions The destination register for the MPYF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:.

Flag TF VA| NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The STF register flags are modified as follows:
 LUF =1 if MPYF32 generates an underflow condition.
* LVF =1if MPYF32 generates an overflow condition.

The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);

ZF = 0;

if(RaH(30:23) == 0) { ZF = 1; NF = 0; }

NI = RaH(31);

Zl = 0;

if(RaH(31:0) == 0) ZI = 1;

Pipeline MPYF32 takes 2 pipeline-cycles (2p) and MOV32 takes a single cycle. That is:

MPYF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 RaH, mem32 ; 1 cycle
; <-- MOV32 completes, RaH updated
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32 completes, RdH updated
NOP

Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.

112 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com MPYF32 RdH, ReH, RfH ||[MOV32 RaH, mem32 — 32-bit Floating-Point Multiply with Parallel Move
Example Calculate Y = M1*X1 + B1. This example assumes that M1, X1, B1 and Y1 are all on the
same data page.
MOVW DP, #M1 ; Load the data page
MOV32 ROH, @M1 ; Load ROH with M1
MOV32 R1H,@X1 ; Load R1H with X1
MPYF32 R1H,R1H,ROH ; Multiply M1*X1
|| MOV32 ROH,@B1 ; and in parallel load ROH with Bl
; <-- MOV32 complete
NOP ; Wait 1 cycle for MPYF32 to complete
; <-- MPYF32 complete
ADDF32 R1H,R1H,ROH ; Add M*X1 to Bl and store in R1H
NOP ; Wait 1 cycle for ADDF32 to complete
; <-- ADDF32 complete
MOV32 @Y1,R1H ; Store the result
Calculate Y = (A*B) * C:
MOVL XAR4, #A
MOV32 ROH, *XAR4 ; Load ROH with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
MOVL XAR4, #C
MPYF32 R1H,R1H,ROH ; Calculate R1H = A * B
|1 MOV32 ROH, *XAR4 ; and in parallel load R2H with C
; <-- MOV32 complete
MOVL XAR4, #Y
; <-- MPYF32 complete
MPYF32 R2H,R1H,ROH ; Calculate Y = (A * B) * C
NOP ; Wait 1 cycle for MPYF32 to complete
; MPYF32 complete
MOV32 *XAR4,R2H
See also MPYF32 RdH, ReH, RfH || MOV32 mem32, RaH

MACF32 R3H, R2H, RdH,
MACF32 R7H, R6H, RdH,

ReH, RfH || MOV32 RaH, mem32
ReH, RfH || MOV32 RaH, mem32

MACF32 R7H, R3H, mem32, *XAR7++

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Floating Point Unit (FPU)

Copyright © 2014-2019, Texas Instruments Incorporated

113

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MPYF32 RdH, ReH, RfH |[MOV32 mem32, RaH — 32-bit Floating-Point Multiply with Parallel Move www.ti.com

MPYF32 RdH, ReH, RfH [[MOV32 mem32, RaH 32-bit Floating-Point Multiply with Parallel Move

Operands
RdH floating-point destination register for the MPYF32 (ROH to R7H)
ReH floating-point source register for the MPYF32 (ROH to R7H)
RfH floating-point source register for the MPYF32 (ROH to R7H)
mem32 pointer to a 32-bit memory location. This will be the destination of the MOV32.
RaH floating-point source register for the MOV32 (ROH to R7H)
Opcode LSW: 1110 0000 0000 fffe
MSW: eedd daaa mem32
Description Multiply the contents of two floating-point registers and move from memory to register.
RdH = ReH * RfH, [mem32] = RaH
Flags This instruction modifies the following flags in the STF register:
Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
 LUF =1 if MPYF32 generates an underflow condition.
* LVF =1if MPYF32 generates an overflow condition.
Pipeline MPYF32 takes 2 pipeline-cycles (2p) and MOV32 takes a single cycle. That is:
MPYF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|1 MOV32 mem32, RaH ; 1 cycle
; <-- MOV32 completes, mem32 updated
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32 completes, RdH updated
NOP
Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.
Example
MOVL XAR1, #0xC0O03 ; XAR1 = 0xCO003
MOVIZF32 R3H, #2.0 ; R3H = 2.0 (0x40000000)
MPYF32 R3H, R3H, #5.0 ; R3H = R3H * 5.0
MOVIZF32 R1H, #5.0 ; RIH = 5.0 (0x40A00000)
; <-- MPYF32 complete, R3H = 10.0 (0x41200000)
MPYF32 R3H, R1H, R3H ; R3H = R1H * R3H
|| MOV32 *XAR1, R3H ; and in parallel store previous R3 value
; MOV32 complete, [0xC003] = 0x4120,
; [0xC002] = 0x0000
NOP ; 1 cycle delay for MPYF32 to complete
; <-- MPYF32 , R3H = 50.0 (0x42480000)
See also MPYF32 RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R3H, mem32, *XAR7++
114 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MPYF32 RaH, RbH, RcH ||SUBF32 RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Subtract

MPYF32 RaH, RbH, RcH ||SUBF32 RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel
Subtract

Operands

RaH floating-point destination register for MPYF32 (ROH to R7H)
RaH cannot be the same register as RdH

RbH floating-point source register for MPYF32 (ROH to R7H)
RcH floating-point source register for MPYF32 (ROH to R7H)

RdH floating-point destination register for SUBF32 (ROH to R7H)
RdH cannot be the same register as RaH

ReH floating-point source register for SUBF32 (ROH to R7H)
RfH floating-point source register for SUBF32 (ROH to R7H)

Opcode LSW: 1110 0111 0101 OOff MSW: feee dddc ccbb baaa

Description Multiply the contents of two floating-point registers with parallel subtraction of two
registers.

RaH RbH * RcH,
RdH ReH - RfH

Restrictions The destination register for the MPYF32 and the SUBF32 must be unique. That is, RaH
cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:.

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
 LUF =1if MPYF32 or SUBF32 generates an underflow condition.
* LVF=1if MPYF32 or SUBF32 generates an overflow condition.

Pipeline MPYF32 and SUBF32 both take 2 pipeline-cycles (2p). That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|l SUBF32 RdH, ReH, RFfH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32, SUBF32 complete. RaH, RdH updated
NOP

Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.

Example

MOVIZF32 R4H, #5.0 ; R4H

MOVIZF32 R5H, #3.0 ; R5H

MPYF32 R6H, R4H, R5H ; R6H = R4H * R5H

|l SUBF32 R7H, R4H, R5H ; R7H = R4H - R5H NOP

; 1 cycle delay for MPYF32 || SUBF32 to complete
; <-- MPYF32 || SUBF32 complete,
; R6H = 15.0 (0x41700000), R7H = 2.0 (0x40000000)

5.0 (0x40A00000)
3.0 (0x40400000)

See also SUBF32 RaH, RbH, RcH
SUBF32 RdH, ReH, RfH || MOV32 RaH, mem32
SUBF32 RdH, ReH, RfH || MOV32 mem32, RaH

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 115

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

NEGF32 RaH, RbH{, CNDF} — Conditional Negation

13 TEXAS
INSTRUMENTS

www.ti.com

NEGF32 RaH, RbH{, CNDF} Conditional Negation

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
CNDF condition tested
Opcode LSW: 1110 0110 1010 CNDF
MSW: 0000 0000 00bb baaa
Description if (CNDF == true) {RaH = - RbH }
else {RaH = RbH }
CNDF is one of the following conditions:
Encode @ CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF ==
0001 EQ Equal to zero ZF ==
0010 GT Greater than zero ZF == 0 AND NF ==
0011 GEQ Greater than or equal to zero NF ==
0100 LT Less than zero NF ==
0101 LEQ Less than or equal to zero ZF == 1 AND NF ==
1010 TF Test flag set TF ==
1011 NTF Test flag not set TF ==
1100 LU Latched underflow LUF ==
1101 Lv Latched overflow LVF ==
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag modification ~ None

™ Values not shown are reserved.
@ This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified
when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction modifies the following flags in the STF register:
Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No
Pipeline This is a single-cycle instruction.
Example MOVIZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; R1H = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (OxBFC00000)
MPYF32 R4H, R1H, R2H ; R4H = -6.0
MPYF32 R5H, ROH, R1H ; R5H = 20.0
; <-- R4H valid
CMPF32 R4H, #0.0 ; NF=1
; <-- R5H valid
NEGF32 R4H, R4H, LT ; if NF = 1, R4H = 6.0
CMPF32 R5H, #0.0 ; NF=0
NEGF32 R5H, R5H, GEQ ; if NF = 0, R4H = -20.0
See also ABSF32 RaH, RbH
116 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

POP RB — Pop the RB Register from the Stack

POP RB Pop the RB Register from the Stack
Operands
RB repeat block register
Opcode LSW: 1111 1111 1111 0001
Description Restore the RB register from stack. If a high-priority interrupt contains a RPTB
instruction, then the RB register must be stored on the stack before the RPTB block and
restored after the RTPB block. In a low-priority interrupt RB must always be saved and
restored. This save and restore must occur when interrupts are disabled.
Flags This instruction does not affect any flags floating-point Unit:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a single-cycle instruction.
Example A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a

high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
_Interrupt: ; RAS = RA, RA =0
PUSH RB
ISR

; Save RB register only if a RPTB block is used in the

RPTB #BlockEnd, AL ; Execute the block AL+l times

BlockEnd ; End of block to be repeated

POP RB ; Restore RB register
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.

; Repeat Block within a Low-Priority Interrupt (Interruptible)

_Interrupt: ; RAS = RA, RA =0
ﬁOéH RB ; Always save RB register
éLéC INTM ; Enable interrupts only after saving RB
; ISR may or may not include a RPTB block
ééfc INTM ; Disable interrupts before restoring RB
ﬁéﬁ RB ; Always restore RB register
iééT ; RA = RAS, RAS = 0

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU) 117

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
POP RB — Pop the RB Register from the Stack www.ti.com
See also PUSH RB
RPTB label, #RC
RPTB label, loc16
118 Floating Point Unit (FPU) SPRUHS1C-October 2014 —-Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

i3 TEXAS
INSTRUMENTS

www.ti.com

PUSH RB — Push the RB Register onto the Stack

PUSH RB

Operands

Push the RB Register onto the Stack

RB

repeat block register

Opcode

Description

Flags

LSw: 1111 1111 1111 0000

Save the RB register on the stack. If a high-priority interrupt contains a RPTB instruction,
then the RB register must be stored on the stack before the RPTB block and restored
after the RTPB block. In a low-priority interrupt RB must always be saved and restored.
This save and restore must occur when interrupts are disabled.

This instruction does not affect any flags floating-point Unit:

Flag TF

ZI NI ZF NF LUF LVF

Modified No

No No No No No No

Pipeline

Example

See also

This is a single-cycle instruction for the first iteration, and zero cycles thereafter.

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.

; Repeat Block within a ngh Priority Interrupt (Non-Interruptible)
_Interrupt: ; RAS = RA, RA =0

PUSH RB
ISR

; Save RB register only if a RPTB block is used in the

RPTB #BlockEnd, AL ; Execute the block AL+1 times

BlockEnd ; End of block to be repeated

POP RB ; Restore RB register
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.

; Repeat Block within a Low-Priority Interrupt (Interruptible)
_Interrupt: ; RAS = RA, RA=0

PUSH RB ; Always save RB register
éLéC INTM ; Enable interrupts only after saving RB
; ISR may or may not include a RPTB block
éé%C INTM ; Disable interrupts before restoring RB
ﬁéé RB ; Always restore RB register

IRET ; RA = RAS, RAS = 0

POP RB
RPTB label, #RC
RPTB label, loc16

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU) 119

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
RESTORE — Restore the Floating-Point Registers www.ti.com
RESTORE Restore the Floating-Point Registers
Operands
none This instruction does not have any operands
Opcode LSW: 1110 0101 0110 0010
Description Restore the floating-point register set (ROH - R7H and STF) from their shadow registers.

Restrictions

The SAVE and RESTORE instructions should be used in high-priority interrupts. That is
interrupts that cannot themselves be interrupted. In low-priority interrupt routines the
floating-point registers should be pushed onto the stack.

The RESTORE instruction cannot be used in any delay slots for pipelined operations.
Doing so will yield invalid results. To avoid this, the proper number of NOPs or non-
pipelined instructions must be inserted before the RESTORE operation.
; The following is INVALID

MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)

RESTORE ; INVALID, do not use RESTORE in a delay slot

; The following is VALID

MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
RESTORE ; VALID
Flags Restoring the status register will overwrite all flags:
Flag TF VAl NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes
Pipeline This is a single-cycle instruction.
120 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com RESTORE — Restore the Floating-Point Registers

Example The following example shows a complete context save and restore for a high-priority
interrupt. Note that the CPU automatically stores the following registers: ACC, P, XT,
STO, ST1, IER, DP, ARO, AR1 and PC. If an interrupt is low priority (that is it can be
interrupted), then push the floating point registers onto the stack instead of using the
SAVE and RESTORE operations.

; Interrupt Save
_HighestPrioritylISR: ; Uninterruptable
ASP ; Align stack
PUSH RB ; Save RB register if used in the ISR
PUSH AR1H:AROH ; Save other registers if used
PUSH XAR2
PUSH XAR3
PUSH XAR4
PUSH XAR5
PUSH XAR6
PUSH XAR7
PUSH XT
SPM 0 ; Set default C28 modes
CLRC AMODE
CLRC PAGEO,OWM
SAVE RNDF32=1 ; Save all FPU registers
; set default FPU modes

; Interrupt Restore

RESTORE ; Restore all FPU registers
POP XT ; restore other registers
POP XAR7

POP XAR6

POP XAR5

POP XAR4

POP XAR3

POP XAR2

POP AR1H:AROH

POP RB ; restore RB register
NASP ; un-align stack

IRET ; return from interrupt

See also SAVE FLAG, VALUE

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU) 121

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

RPTB label, loc16 — Repeat A Block of Code www.ti.com

RPTB label, loc16

Repeat A Block of Code

Operands
label This label is used by the assembler to determine the end of the repeat block and to calculate RSIZE.
This label should be placed immediately after the last instruction included in the repeat block.
loc16 16-bit location for the repeat count value.
Opcode LSW: 1011 0101 Obbb bbbb
MSW: 0000 0000 locl6
Description Initialize repeat block loop, repeat count from [loc16]

Restrictions

* The maximum block size is <127 16-bit words.

* An even aligned block must be = 9 16-bit words.

* An odd aligned block must be = 8 16-bit words.

» Interrupts must be disabled when saving or restoring the RB register.
* Repeat blocks cannot be nested.

» Any discontinuity type operation is not allowed inside a repeat block. This includes all
call, branch, or TRAP instructions. Interrupts are allowed.

» Conditional execution operations are allowed.

Flags This instruction does not affect any flags in the floating-point unit;
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This instruction takes four cycles on the first iteration and zero cycles thereafter. No
special pipeline alignment is required.
Example The minimum size for the repeat block is 9 words if the block is even-aligned and 8
words if the block is odd-aligned. If you have a block of 8 words, as in the following
example, you can make sure the block is odd aligned by proceeding it by a .align 2
directive and a NOP instruction. The .align 2 directive will make sure the NOP is even-
aligned. Since a NOP is a 16-bit instruction the RPTB will be odd-aligned. For blocks of
9 or more words, this is not required.
; Repeat Block of 8 Words (Interruptible)
; find the largest element and put its address in XAR6
.align 2
NOP
RPTB VECTOR_MAX_END, AR7 ; Execute the block AR7+1 times
MOVL ACC, XARO
MOV32 R1H,*XARO++ ; min size = 8, 9 words
MAXF32 ROH,R1H ; max size = 127 words
MOVSTO NF,ZF
MOVL XAR6 ,ACC,LT
VECTOR_MAX_END: ; label indicates the end
; RA is cleared
When an interrupt is taken the repeat active (RA) bit in the RB register is automatically
copied to the repeat active shadow (RAS) bit. When the interrupt exits, the RAS bit is
automatically copied back to the RA bit. This allows the hardware to keep track if a
repeat loop was active whenever an interrupt is taken and restore that state
automatically.
122 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com RPTB label, loc16 — Repeat A Block of Code
A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
; Interrupt: ; RAS = RA, RA=0
PUSH RB ; Save RB register only if a RPTB block is used in the
ISR
RPTB #BlockEnd, AL ; Execute the block AL+1 times
BlockEnd ; End of block to be repeated
POP RB ; Restore RB register
IRET ; RA = RAS, RAS = 0
A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
; Interrupt: ; RAS = RA, RA=0
PUSH RB ; Always save RB register
CLRC INTM ; Enable interrupts only after saving RB
; ISR may or may not include a RPTB block
SETC INTM ; Disable interrupts before restoring RB
POP RB ; Always restore RB register
IRET ; RA = RAS, RAS = 0
See also POP RB
PUSH RB
RPTB label, #RC
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU) 123

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

RPTB label, #RC — Repeat a Block of Code www.ti.com

RPTB label, #RC

Repeat a Block of Code

Operands
label This label is used by the assembler to determine the end of the repeat block and to calculate RSIZE.
This label should be placed immediately after the last instruction included in the repeat block.
#RC 16-bit location
Opcode LSW: 1011 0101 1bbb bbbb
MSW: cccc ccecc ccce ccce
Description Repeat a block of code. The repeat count is specified as a immediate value.

Restrictions

Flags

* The maximum block size is <127 16-bit words.

* An even aligned block must be = 9 16-bit words.

* An odd aligned block must be = 8 16-bit words.

» Interrupts must be disabled when saving or restoring the RB register.
* Repeat blocks cannot be nested.

» Any discontinuity type operation is not allowed inside a repeat block. This includes all
call, branch or TRAP instructions. Interrupts are allowed.

» Conditional execution operations are allowed.

This instruction does not affect any flags int the floating-point unit:

Flag TF

Zl NI ZF NF LUF LVF

Modified No

No No No No No No

Pipeline

Example

This instruction takes one cycle on the first iteration and zero cycles thereafter. No
special pipeline alignment is required.

The minimum size for the repeat block is 8 words if the block is even aligned and 9
words if the block is odd aligned. If you have a block of 8 words, as in the following
example, you can make sure the block is odd aligned by proceeding it by a .align 2
directive and a NOP instruction. The .align 2 directive will make sure the NOP is even
aligned. Since a NOP is a 16-bit instruction the RPTB will be odd aligned. For blocks of
9 or more words, this is not required.

; Repeat Block (Interruptible)
; find the largest element and put its address in XAR6
.align 2

NOP
RPTB VECTOR_MAX_END, #(4-1) ; Execute the block 4 times
MOVL ACC, XARO
MOV32 R1H,*XARO++ ; 8 or 9 words block size 127 words
MAXF32 ROH,R1H
MOVSTO NF,ZF
MOVL XAR6,ACC,LT
VECTOR_MAX_END: ; RE indicates the end address
; RA is cleared

When an interrupt is taken the repeat active (RA) bit in the RB register is automatically
copied to the repeat active shadow (RAS) bit. When the interrupt exits, the RAS bit is
automatically copied back to the RA bit. This allows the hardware to keep track if a
repeat loop was active whenever an interrupt is taken and restore that state
automatically.

124 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com RPTB label, #RC — Repeat a Block of Code
A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
; Interrupt: ; RAS = RA, RA=0
PUSH RB ; Save RB register only if a RPTB block is used in the
ISR
RPTB #BlockEnd, #5 ; Execute the block 5+1 times
BlockEnd ; End of block to be repeated
POP RB ; Restore RB register
IRET ; RA = RAS, RAS = 0
A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
; Interrupt: ; RAS = RA, RA =0
PUSH RB ; Always save RB register
CLRC INTM ; Enable interrupts only after saving RB

; ISR may or may not include a RPTB block

SETC INTM ; Disable interrupts before restoring RB
POP RB ; Always restore RB register
IRET ; RA = RAS, RAS = 0

See also POP RB
PUSH RB
RPTB label, loc16

SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU) 125

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

SAVE FLAG, VALUE — Save Register Set to Shadow Registers and Execute SETFLG www.ti.com

SAVE FLAG, VALUE Save Register Set to Shadow Registers and Execute SETFLG

Operands
FLAG 11 bit mask indicating which floating-point status flags to change.
VALUE 11 bit mask indicating the flag value; 0 or 1.
Opcode LSW: 1110 0110 O1FF FFFF
MSW: FFFF FVWW VWW WW
Description This operation copies the current working floating-point register set (ROH to R7H and

Restrictions

Flags

STF) to the shadow register set and combines the SETFLG FLAG, VALUE operation in
a single cycle. The status register is copied to the shadow register before the flag values
are changed. The STF[SHDWM] flag is set to 1 when the SAVE command has been
executed. The SAVE and RESTORE instructions should be used in high-priority
interrupts. That is interrupts that cannot themselves be interrupted. In low-priority
interrupt routines the floating-point registers should be pushed onto the stack.

Do not use the SAVE instruction in the delay slots for pipelined operations. Doing so can
yield invalid results. To avoid this, the proper number of NOPs or non-pipelined
instructions must be inserted before the SAVE operation.

; The following is INVALID
MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
SAVE RNDF32=1 ; INVALID, do not use SAVE in a delay slot
; The following is VALID
MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
SAVE RNDF32=1 ; VALID

This instruction modifies the following flags in the STF register:

Flag TF

Zl NI ZF NF LUF LVF

Modified Yes

Yes Yes Yes Yes Yes Yes

Pipeline

Example

Any flag can be modified by this instruction.
This is a single-cycle instruction.

To make it easier and more legible, the assembler will accept a FLAG=VALUE syntax for
the STFLG operation as shown below:
SAVE RNDF32=0, TF=1, ZF=0 ; FLAG = 01001000100, VALUE = XOXXOXXX1XX
MOVSTO TF, ZF, LUF ; Copy the indicated flags to STO
; Note: X means this flag will not be modified.
; The assembler will set these X values to O.

The following example shows a complete context save and restore for a high priority
interrupt. Note that the CPU automatically stores the following registers: ACC, P, XT,
STO, ST1, IER, DP, ARO, AR1 and PC.

126 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

SAVE FLAG, VALUE — Save Register Set to Shadow Registers and Execute SETFLG

_HighestPrioritylISR:
;Align stack

ASP

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
SPM

CLRC AMODE

RB

ARIH:AROH ;

XAR2
XAR3
XAR4
XAR5
XARG
XAR7
XT
0

CLRC PAGEO,OWM

SAVE RNDF32=0

REST
POP
POP
POP
POP
POP
POP
POP
POP
POP
NASP

See also RESTORE
SETFLG FLAG,

ORE
XT
XAR7
XARG
XARS
XAR4
XAR3
XAR2

AR1H:AROH

RB

Save RB register if used in the ISR
Save other registers if used

Set default C28 modes

Save all FPU registers
set default FPU modes

Restore all FPU registers
restore other registers

restore RB register
un-align stack IRET
return from interrupt

VALUE

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

127

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

SETFLG FLAG, VALUE — Set or clear selected floating-point status flags www.ti.com

SETFLG FLAG, VALUE Set or clear selected floating-point status flags

Operands

FLAG 11 bit mask indicating which floating-point status flags to change.
VALUE 11 bit mask indicating the flag value; 0 or 1.

Opcode LSW: 1110 0110 OOFF FFFF
MSW: FFFF FVWW VWW WW

Description The SETFLG instruction is used to set or clear selected floating-point status flags in the
STF register. The FLAG field is an 11-bit value that indicates which flags will be
changed. That is, if a FLAG bit is set to 1 it indicates that flag will be changed; all other
flags will not be modified. The bit mapping of the FLAG field is shown below:

10 9 8 7 6 5 4 3 2 1 0
reserved | RNDF32 ‘ reserved ‘ reserved ‘ TF ‘ Zl | NI | ZF ‘ NF ‘ LUF | LVF
The VALUE field indicates the value the flag should be set to; 0 or 1.

Restrictions Do not use the SETFLG instruction in the delay slots for pipelined operations. Doing so
can yield invalid results. To avoid this, the proper number of NOPs or non-pipelined
instructions must be inserted before the SETFLG operation.

; The following is INVALID
MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
SETFLG RNDF32=1 ; INVALID, do not use SETFLG in a delay slot
; The following is VALID
MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
SETFLG RNDF32=1 ; VALID

Flags This instruction modifies the following flags in the STF register:

Flag TF Zl NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes
Any flag can be modified by this instruction.

Pipeline This is a single-cycle instruction.

Example To make it easier and legible, the assembler will accept a FLAG=VALUE syntax for the
STFLG operation as shown below:

SETFLG RNDF32=0, TF=1, ZF=0 ; FLAG = 01001001000, VALUE = XOXX1XXOXXX
MOVSTO TF, ZF, LUF ; Copy the indicated flags to STO
; X means this flag is not modified.
; The assembler will set X values to O
See also SAVE FLAG, VALUE
128 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com SUBF32 RaH, RbH, RcH — 32-bit Floating-Point Subtraction

SUBF32 RaH, RbH, RcH 32-bit Floating-Point Subtraction

Operands

RaH floating-point destination register (ROH to R1)
RbH floating-point source register (ROH to R1)
RcH floating-point source register (ROH to R1)

Opcode LSW: 1110 0111 0010 0000
MSW: 0000 000c ccbb baaa

Description Subtract the contents of two floating-point registers
RaH = RbH - RcH

Flags This instruction modifies the following flags in the STF register:

Flag TF Zl NI ZF NF LUF LVF

Modified No No No No No Yes Yes

The STF register flags are modified as follows:
 LUF =1 if MPYF32 generates an underflow condition.
* LVF =1if MPYF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

SUBF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- SUBF32 completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Example Calculate Y -A+B - C:

MOVL XAR4, #A

MOV32 ROH, *XAR4 ; Load ROH with A

MOVL XAR4, #B

MOV32 R1H, *XAR4 ; Load R1H with B

MOVL XAR4, #C

ADDF32 ROH,R1H,ROH ; Add A + B and in parallel
|1 MOV32 R2H,*XAR4 ; Load R2H with C

; <-- ADDF32 complete
SUBF32 ROH,ROH,R2H ; Subtract C from (A + B)
NOP

; <-- SUBF32 completes
MOV32 *XAR4,ROH ; Store the result

See also SUBF32 RaH, #16FHi, RbH
SUBF32 RdH, ReH, RfH || MOV32 RaH, mem32
SUBF32 RdH, ReH, RfH || MOV32 mem32, RaH
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH

SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU)

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

129

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

SUBF32 RaH, #16FHi, RbH — 32-bit Floating Point Subtraction www.ti.com

SUBF32 RaH, #16FHi, RbH 32-bit Floating Point Subtraction

Operands

RaH
#16FHi

RbH

floating-point destination register (ROH to R1)

A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.

floating-point source register (ROH to R1)

Opcode

Description

Flags

LSW: 1110 1000 1111 1111
MSWz 1111 1111 1lbb baaa

Subtract RbH from the floating-point value represented by the immediate operand. Store
the result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.

Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0Ox3F000000), and -1.5
(OxBFCO00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFCO.

RaH = #16FHi:0 - RbH

This instruction modifies the following flags in the STF register:

Flag TF

VA| NI ZF NF LUF LVF

Modified No

No No No No Yes Yes

Pipeline

Example

See also

The STF register flags are modified as follows:
e LUF =1 if MPYF32 generates an underflow condition.
e« LVF =1 if MPYF32 generates an overflow condition.

This is a 2 pipeline cycle (2p) instruction. That is:

SUBF32 RaH, #16FHi, RbH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- SUBF32 completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Calculate Y =2.0 - (A + B):

MOVL XAR4, #A
MOV32 ROH, *XAR4 ; Load ROH with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
ADDF32 ROH,R1H,ROH ; Add A + B and in parallel
NOP

; <-- ADDF32 complete
SUBF32 ROH,#2.0,R2H ; Subtract (A + B) from 2.0
NOP

; <-- SUBF32 completes
MOV32 *XAR4,ROH ; Store the result

SUBF32 RaH, RbH, RcH

SUBF32 RdH, ReH, RfH || MOV32 RaH, mem32
SUBF32 RdH, ReH, RfH || MOV32 mem32, RaH
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH

130 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com SUBF32 RdH, ReH, RfH |[MOV32 RaH, mem32 — 32-bit Floating-Point Subtraction with Parallel Move

SUBF32 RdH, ReH, RfH |[MOV32 RaH, mem32 32-bit Floating-Point Subtraction with Parallel Move

Operands
RdH floating-point destination register (ROH to R7H) for the SUBF32 operation
RdH cannot be the same register as RaH
ReH floating-point source register (ROH to R7H) for the SUBF32 operation
RfH floating-point source register (ROH to R7H) for the SUBF32 operation
RaH floating-point destination register (ROH to R7H) for the MOV32 operation
RaH cannot be the same register as RdH
mema32 pointer to 32-bit source memory location for the MOV32 operation
Opcode LSW: 1110 0011 0010 fffe
MSW: eedd daaa mem32
Description Subtract the contents of two floating-point registers and move from memory to a floating-
point register.
RdH = ReH - RfH, RaH = [mem32]
Restrictions The destination register for the SUBF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RdH.
Flags This instruction modifies the following flags in the STF register:
Flag TF VA| NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes
The STF register flags are modified as follows:
» LUF =1 if SUBF32 generates an underflow condition.
* LVF =1 if SUBF32 generates an overflow condition.
The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) { ZF = 1; NF = 0; }
NI = RaH(31);
Zl = 0;
if(RaH(31:0) == 0) ZI = 1;
Pipeline SUBF32 is a 2 pipeline-cycle instruction (2p) and MOV32 takes a single cycle. That is:
SUBF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|1 MOV32 RaH, mem32 ; 1 cycle
; <-- MOV32 completes, RaH updated
NOP ; 1 cycle delay or non-conflicting instruction
; <-- SUBF32 completes, RdH updated
NOP
Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU) 131

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
SUBF32 RdH, ReH, RfH [MOV32 RaH, mem32 — 32-bit Floating-Point Subtraction with Parallel Move www.ti.com
Example
MOVL XAR1, #0xCO00 ; XAR1 = 0xCO00
SUBF32 ROH, R1H, R2H ; (A) ROH = R1H - R2H
|1 MOV32 R3H, *XAR1 ;
; <-- R3H valid
MOV32 R4H, *+XAR1[2] ;
; <-- (A) completes, ROH valid, R4H valid
ADDF32 R5H, R4H, R3H ; (B) R5H = R4H + R3H
|1 MOV32 *+XAR1[4], ROH ;
; <-- ROH stored
MOVL XAR2, #OxXEO0O00 ;
<-- (B) completes, R5H valid
MOV32 *XAR2, R5H ;
; <-- R5H stored
See also SUBF32 RaH, RbH, RcH
SUBF32 RaH, #16FHi, RbH
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH
132 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com SUBF32 RdH, ReH, RfH |[MOV32 mem32, RaH — 32-bit Floating-Point Subtraction with Parallel Move

SUBF32 RdH, ReH, RfH |[MOV32 mem32, RaH 32-bit Floating-Point Subtraction with Parallel Move

Operands
RdH floating-point destination register (ROH to R7H) for the SUBF32 operation
ReH floating-point source register (ROH to R7H) for the SUBF32 operation
RfH floating-point source register (ROH to R7H) for the SUBF32 operation
mema32 pointer to 32-bit destination memory location for the MOV32 operation
RaH floating-point source register (ROH to R7H) for the MOV32 operation
Opcode LSW: 1110 0000 0010 fffe
MSW: eedd daaa mem32
Description Subtract the contents of two floating-point registers and move from a floating-point
register to memory.
RdH = ReH - RfH,
[mem32] = RaH
Flags This instruction modifies the following flags in the STF register:SUBF32 RdH, ReH, RfH
[| MOV32 RaH, mem32
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
e LUF =1 if SUBF32 generates an underflow condition.
 LVF =1 if SUBF32 generates an overflow condition.
Pipeline SUBF32 is a 2 pipeline-cycle instruction (2p) and MOV32 takes a single cycle. That is:
SUBF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 mem32, RaH ; 1 cycle
; <-- MOV32 completes, mem32 updated
NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, RdH updated
NOP
Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.
Example ADDF32 R3H, R6H, R4H ; (A) R3H = R6H + R4H and R7H = 13
Il Mov32 R7H, *-SP[2] :
; <-- R7H valid
SUBF32 R6H, R6H, R4H ; (B) R6H = R6H - R4H
; <-- ADDF32 (A) completes, R3H valid
SUBF32 R3H, R1H, R7H ; (C) R3H = R1H - R7H and store R3H (A)
[l MOV32 *+XAR5[2], R3H ;
; <-- SUBF32 (B) completes, R6H valid
; <-- MOV32 completes, (A) stored
ADDF32 R4H, R7H, R1H ; RAH = D = R7H + R1H and store R6H (B)
|1 MOV32 *+XAR5[6], R6H ;
; <-- SUBF32 (C) completes, R3H valid
; <-- MOV32 completes, (B) stored
MOV32 *+XAR5[0], R3H ; store R3H (C)
; <-- MOV32 completes, (C) stored
; <-- ADDF32 (D) completes, R4H valid
MOV32 *+XAR5[4], R4H ; store R4H (D)
; <-- MOV32 completes, (D) stored
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU) 133

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

SUBF32 RdH, ReH, RfH [MOV32 mem32, RaH — 32-bit Floating-Point Subtraction with Parallel Move www.ti.com

SUBF32 RaH, RbH, RcH

SUBF32 RaH, #16FHi, RbH

SUBF32 RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH

See also

SPRUHS1C-October 2014 —Revised November 2019

134 Floating Point Unit (FPU)
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

SWAPF RaH, RbH{, CNDF} — Conditional Swap

SWAPF RaH, RbH{, CNDF} Conditional Swap

Operands
RaH floating-point register (ROH to R7H)
RbH floating-point register (ROH to R7H)
CNDF condition tested
Opcode LSW: 1110 0110 1110 CNDF
MSW: 0000 0000 00bb baaa
Description Conditional swap of RaH and RbH.
if (CNDF == true) swap RaH and RbH
CNDF is one of the following conditions:
Encode @ CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF ==
0001 EQ Equal to zero ZF ==
0010 GT Greater than zero ZF == 0 AND NF ==
0011 GEQ Greater than or equal to zero NF ==
0100 LT Less than zero NF ==
0101 LEQ Less than or equal to zero ZF == 1 AND NF ==
1010 TF Test flag set TF ==
1011 NTF Test flag not set TF ==
1100 LU Latched underflow LUF ==
1101 LV Latched overflow LVF ==
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag modification ~ None

™ Values not shown are reserved.
@ This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified

when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected
Pipeline This is a single-cycle instruction.
Example ;Find the largest element and put it in R1H

MOVL XAR1, #0xBOOO ;
MOV32 R1H, *XAR1 ; Initialize R1H

.align 2

NOP

RPTB LOOP_END, #(10-1)
MOV32 R2H, *XARL++
CMPF32 R2H, R1H

SWAPF R1H, R2H, GT

NOP
NOP
LOOP_END:

Execute the block 10 times
Update R2H with next element
Compare R2H with R1H

Swap R1H and R2H if R2 > R1
For minimum repeat block size
For minimum repeat block size

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

135

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

TESTTF CNDF — Test STF Register Flag Condition www.ti.com

TESTTF CNDF Test STF Register Flag Condition

Operands
CNDF condition to test
Opcode LSW: 1110 0101 1000 CNDF
Description Test the floating-point condition and if true, set the TF flag. If the condition is false, clear
the TF flag. This is useful for temporarily storing a condition for later use.
if (CNDF == true) TF = 1; else TF = 0;
CNDF is one of the following conditions:
Encode @ CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF ==
0001 EQ Equal to zero ZF ==
0010 GT Greater than zero ZF == 0 AND NF ==
0011 GEQ Greater than or equal to zero NF ==
0100 LT Less than zero NF ==
0101 LEQ Less than or equal to zero ZF == 1 AND NF ==
1010 TF Test flag set TF ==
1011 NTF Test flag not set TF ==
1100 LU Latched underflow LUF ==
1101 LV Latched overflow LVF ==
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag modification ~ None

@ values not shown are reserved.

@ This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified
when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified Yes No No No No No No
TF = 0; 1f (CNDF == true) TF = 1;
Note: If (CNDF == UNC or UNCF), the TF flag will be set to 1.
Pipeline This is a single-cycle instruction.
Example CMPF32 ROH, #0.0 ; Compare ROH against O
TESTTF LT ; Set TF if ROH less than 0 (NF == 0)
ABS ROH, ROH ; Get the absolute value of ROH
; Perform calculations based on ABS ROH
MOVSTO TF ; Copy TF to TC in STO
SBF End, NTC ; Branch to end if TF was not set
NEGF32 ROH, ROH
End
See also

136 Floating Point Unit (FPU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

UI16TOF32 RaH, mem16 — Convert unsigned 16-bit integer to 32-bit floating-point value

UI16TOF32 RaH, mem16 Convert unsigned 16-bit integer to 32-bit floating-point value

Operands
RaH floating-point destination register (ROH to R7H)
mem16 pointer to 16-bit source memory location
Opcode LSW: 1110 0010 1100 0100
MSW: 0000 Oaaa meml6
Description RaH = UI16ToF32[mem16]
Flags This instruction does not affect any flags:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
UI16TOF32 RaH, meml16 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- UI16TOF32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.
Example ; float32 y,m,b;
; AdcRegs.RESULTO is an unsigned int
; Calculate: y = (float)AdcRegs.ADCRESULTO * m + b;
MOVW DP @0x01C4
UI16TOF32 ROH, @8 ; ROH = (float)AdcRegs.RESULTO
MOV32 R1H, *-SP[6] ; RIH =M
; <-- Conversion complete, ROH valid
MPYF32 ROH, R1H, ROH ; ROH = (float)X * M
MOV32 R1H, *-SP[8] ; RIH =B
; <-- MPYF32 complete, ROH valid
ADDF32 ROH, ROH, R1H ; ROH = Y = (float)X * M + B
NOP
; <-- ADDF32 complete, ROH valid
MOV32 *-[SP], ROH ; Store Y
See also F32TOI16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
[16TOF32 RaH, RbH
I16TOF32 RaH, mem16
UI16TOF32 RaH, RbH
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU) 137

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

UI16TOF32 RaH, RbH — Convert unsigned 16-bit integer to 32-bit floating-point value

13 TEXAS
INSTRUMENTS

www.ti.com

UI16TOF32 RaH, RbH Convert unsigned 16-bit integer to 32-bit floating-point value

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1000 1111
MSW: 0000 0000 OObb baaa
Description RaH = UI16ToF32[RbH]
Flags This instruction does not affect any flags:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
UI16TOF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- UI16TOF32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.
Example MOVXI R5H, #Ox800F ; R5H[15:0] = 32783 (Ox800F)
UI16TOF32 R6H, R5H ; R6H = UI16TOF32 (R5H[15:0])
NOP ; 1 cycle delay for UI16TOF32 to complete
; R6H = 32783.0 (0x47000F00)
See also F32TOI16 RaH, RbH

F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
116 TOF32 RaH, RbH

116 TOF32 RaH, mem16
UI16TOF32 RaH, mem16

138 Floating Point Unit (FPU)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

UI32TOF32 RaH, mem32 — Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

UI32TOF32 RaH, mem32 Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

Operands
RaH floating-point destination register (ROH to R7H)
mem32 pointer to 32-bit source memory location
Opcode LSW: 1110 0010 1000 0100
MSW: 0000 Oaaa mem32
Description RaH = UI32ToF32[mem32]
Flags This instruction does not affect any flags:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
UI32TOF32 RaH, mem32 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay non-conflicting instruction
; <-- UI32TOF32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.
Example ; unsigned long X
; float Y, M, B
; Calculate Y = (float)X * M + B
UI32TOF32 ROH, *-SP[2] ; ROH = (float)X
MOV32 R1H, *-SP[6] ; RIH =M
; <-- Conversion complete, ROH valid
MPYF32 ROH, R1H, ROH ; ROH = (float)X * M
MOV32 R1H, *-SP[8] ; RIH =B
; <-- MPYF32 complete, ROH valid
ADDF32 ROH, ROH, R1H ; ROH =Y = (float)X * M + B
NOP
; <-- ADDF32 complete, ROH valid
MOV32 *-[SP], ROH ; Store Y
See also F32T0OI132 RaH, RbH
F32TOUI32 RaH, RbH
I32TOF32 RaH, mem32
I32TOF32 RaH, RbH
UI32TOF32 RaH, RbH
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU) 139

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

UI32TOF32 RaH, RbH — Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

13 TEXAS
INSTRUMENTS

www.ti.com

UI32TOF32 RaH, RbH Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

Operands
RaH floating-point destination register (ROH to R7H)
RbH floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1000 1011
MSW: 0000 0000 OObb baaa
Description RaH = UI32ToF32[RbH]
Flags This instruction does not affect any flags:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
UI32TOF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- UI32TOF32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.
Example MOVIZ R3H, #0x8000 ; R3H[31:16] = 0x8000
MOVX1 R3H, #0x1111 ; R3H[15:0] = Ox1111
; R3H = 2147488017
UI32TOF32 R4H, R3H ; R4H = UI32TOF32 (R3H)
NOP ; 1 cycle delay for UI32TOF32 to complete
; R4H = 2147488017.0 (O0x4F000011)
See also F32T0OI132 RaH, RbH

F32TOUI32 RaH, RbH
I32TOF32 RaH, mem32
I32TOF32 RaH, RbH
UI32TOF32 RaH, mem32

140 Floating Point Unit (FPU)

Copyright © 2014-2019, Texas Instruments Incorporated

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

ZERO RaH — Zero the Floating-Point Register RaH

ZERO RaH Zero the Floating-Point Register RaH
Operands
RaH floating-point register (ROH to R7H)
Opcode LSW: 1110 0101 1001 Oaaa
Description Zero the indicated floating-point register:
RaH = O
Flags This instruction modifies the following flags in the STF register:
Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected.
Pipeline This is a single-cycle instruction.
Example ;For(i = 0; 0 < n; i++)
{
; real += (x[2*i1] * y[2*i]) - (x[2*i+1] * y[2*i+1]);
imag += (x[2*i] * y[2*i+1]) + (x[2*i+1] * y[2*i]);
3}
;Assume AR7 = n-1
ZERO R4H ; R4H = real = 0
ZERO R5H ; R5H = imag = 0O
LOOP
MOV AL, AR7
MOV ACC, AL << 2
MOV ARO, ACC
MOV32 ROH, *+XAR4[ARO] ; ROH = x[2*i]
MOV32 R1H, *+XARS5[ARO] ; R1H = y[2*i]
ADD ARO, #2
MPYF32 R6H, ROH, R1H; ; R6H = x[2*i] * y[2*i]
|1 MOV32 R2H, *+XAR4[ARO] ; R2H = x[2*i+1]
MPYF32 R1H, R1H, R2H ; R1H = y[2*i] * x[2*i+2]
[1 MOV32 R3H, *+XAR5[ARO] ; R3H = y[2*i+1]
MPYF32 R2H, R2H, R3H ; R2H = x[2*i+1] * y[2*i+1]
|1 ADDF32 R4H, R4H, R6H ; R4H += x[2*i] * y[2*i]
MPYF32 ROH, ROH, R3H ; ROH = x[2*i] * y[2*i+1]
|l ADDF32 R5H, R5H, R1H ; R5H += y[2*i] * x[2*i+2]
SUBF32 R4H, R4H, R2H ; R4H -= x[2*i+1] * y[2*i+1]
ADDF32 R5H, R5H,ROH ; RBH += x[2*i] * y[2*i+1]
BANZ LOOP , AR7--
See also ZEROA

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

141

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

ZEROA — Zero All Floating-Point Registers

I

TEXAS
INSTRUMENTS

www.ti.com

ZEROA Zero All Floating-Point Registers
Operands
none
Opcode LSW: 1110 0101 0110 0011
Description Zero all floating-point registers:
ROH = 0
R1H = O
R2H = 0
R3H = 0
R4H = 0
R5H = 0
R6H = 0
R7H = 0
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected.
Pipeline This is a single-cycle instruction.
Example ;For(i = 05 i < nj; i++)
i{
; real += (x[2*1] * y[2*1]) - (x[2*i+1] * y[2*i+1]);
; imag += (x[2*i] * y[2*i+1]) + (x[2*i+1] * y[2*i]);
33
;Assume AR7 = n-1
ZEROA ; Clear all RaH registers
LOOP
MOV AL, AR7
MOV ACC, AL << 2
MOV ARO, ACC
MOV32 ROH, *+XAR4[ARO] ; ROH = x[2*i]
MOV32 R1H, *+XAR5[ARO] ; R1H = y[2*i]
ADD ARO,#2
MPYF32 R6H, ROH, R1H; ; R6H = x[2*i] * y[2*i]
|1 MOV32 R2H, *+XAR4[ARO] ; R2H = x[2*i+1]
MPYF32 R1H, R1H, R2H ; R1H = y[2*i] * x[2*i+2]
|1 MOV32 R3H, *+XAR5[ARO] ; R3H = y[2*i+1]
MPYF32 R2H, R2H, R3H ; R2H = x[2*i+1] * y[2*i+1]
|| ADDF32 R4H, R4H, R6H ; R4H += x[2*i] * y[2*i]
MPYF32 ROH, ROH, R3H ; ROH = x[2*i] * y[2*i+1]
|| ADDF32 R5H, R5H, R1H ; RBH += y[2*i] * x[2*i+2]
SUBF32 R4H, R4H, R2H ; RAH -= x[2*i+1] * y[2*i+1]
ADDF32 R5H, R5H,ROH ; RBH += x[2*i] * y[2*i+1]
BANZ LOOP , AR7--
See also ZERO RaH

142 Floating Point Unit (FPU)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

Chapter 2
I ’.{‘IE)S(’?IEUMENTS SPRUHS1C-October 2014—Revised November 2019

Floating Point Unit (FPUG4)

The TMS320C2000™ DSP family consists of fixed-point and floating-point digital signal processors.
TMS320C2000™ Digital Signal Processors combine control peripheral integration and ease of use of a
microcontroller (MCU) with the processing power and C efficiency of TI's leading DSP technology. This
chapter provides an overview of the architectural structure and components of the C28x plus floating-point
unit (FPU64) CPU.

Topic Page

200 O © V= Y = P 144

2.2 Components of the C28x plus Floating-Point CPU (FPUB4).........cccccvvvviniieiininninnnnnn. 145

P B O = U I o= To 1= (= = A PP 148

2 1 =] o= 154

2.5 Floating Point Unit (FPUB4) INSTrUCtiON Set......cvuiuieieiiiiiiiiieieeeieieee e eeneneenes 162
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 143

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

Overview www.ti.com

2.1

211

Overview

The C28x plus floating-point (C28x+FPU64) processor extends the capabilities of the C28x fixed-point
CPU by adding registers and instructions to support IEEE single-precision and double-precision floating
point operations. This device draws from the best features of digital signal processing; reduced instruction
set computing (RISC); and microcontroller architectures, firmware, and tool sets. The DSP features
include a modified Harvard architecture and circular addressing. The RISC features are single-cycle
instruction execution, register-to-register operations, and modified Harvard architecture (usable in Von
Neumann mode). The microcontroller features include ease of use through an intuitive instruction set, byte
packing and unpacking, and bit manipulation. The modified Harvard architecture of the CPU enables
instruction and data fetches to be performed in parallel. The CPU can read instructions and data while it
writes data simultaneously to maintain the single-cycle instruction operation across the pipeline. The CPU
does this over six separate address/data buses.

Throughout this document the following notations are used:

e (C28x refers to the C28x fixed-point CPU.

» C28x plus Floating-Point and C28x+FPU both refer to the C28x CPU with enhancements to support
IEEE single-precision floating-point operations.

» (C28x+FPU64 refer to the C28x CPU with enhancements to support IEEE single-precision and double-
precision floating-point operations. FPU64 extensions supports all existing FPU single precision
floating point instructions.

Compatibility with the C28x Fixed-Point CPU

No changes have been made to the C28x base set of instructions, pipeline, or memory bus architecture.
Therefore, programs written for the C28x CPU and C28x CPU + FPU are completely compatible with the
C28x CPU + FPU64 and all of the features of the C28x documented in TMS320C28x DSP CPU and
Instruction Set Reference Guide (literature number SPRU430) apply to the C28x CPU + FPU64.

Figure 2-1 shows basic functions of the FPU64.

2.1.1.1 Floating-Point Code Development

When developing C28x floating-point code for C28x+FPU64, use Code Composer Studio 8.0, or later. For
C28x+FPU64 (double precision), the TI C28x C/C++ Compiler v18.9.0.STS or later is required to generate
C28x native floating-point opcodes. To build floating-point code use the compiler switches:-v28 and - -
float_support = fpu64.

NOTE: In Code Composer Studio 8.0 the float_support option is in the build options under compiler->
advanced: floating point support. Without the float_support flag, or with float_support = none, the compiler
will generate fixed-point code. These compilers are available via Code Composer Studio update advisor or
as a separate download. When building for C28x, using CCS project properties General entry, “Runtime
support library <automatic>", will automatically select the correct RTS library during link. This is just linker
option —llibc.a. If any are not yet built then the linker will automatically build the necessary RTS library.

144

Floating Point Unit (FPU64) SPRUHS1C-October 2014 —-Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430

13 TEXAS
INSTRUMENTS

www.ti.com

Components of the C28x plus Floating-Point CPU (FPU64)

22 Co

Figure 2-1. FPU64 Functional Block Diagram

Program address bus (22) >
Memory

bus

Program data bus (32) |

ANl

Read address bus (32)

L[[]

Read data bus (32) |

Existing
memory,
peripherals,
interfaces

C28x

FPU

LVE
LU 1 pIE

Memory | Write data bus (32)
bus

\Write address bus (32)

mponents of the C28x plus Floating-Point CPU (FPU64)

The C28x+FPUG64 contains:

A central processing unit for generating data and program-memory addresses; decoding and executing
instructions; performing arithmetic, logical, and shift operations; and controlling data transfers among
CPU registers, data memory, and program memory

A floating-point unit (FPU64) for IEEE single-precision or double-precision floating point operations.

Emulation logic for monitoring and controlling various parts and functions of the device and for testing
device operation. This logic is identical to that on the C28x fixed-point CPU.

Signals for interfacing with memory and peripherals, clocking and controlling the CPU and the
emulation logic, showing the status of the CPU and the emulation logic, and using interrupts. This logic
is identical to the C28x fixed-point CPU.

Some features of the C28x+FPU64 central processing unit are:

Fixed-Point instructions are pipeline protected. This pipeline for fixed-point instructions is identical to
that on the C28x fixed-point CPU. The CPU implements an 8-phase pipeline that prevents a write to
and a read from the same location from occurring out of order. See Figure 2-5.

Some floating-point instructions require pipeline alignment. This alignment is done through software to
allow the user to improve performance by taking advantage of required delay slots.

Independent register space. These registers function as system-control registers, math registers, and
data pointers. The system-control registers are accessed by special instructions.

Arithmetic logic unit (ALU). The 32-bit ALU performs 2s-complement arithmetic and Boolean logic
operations.

Floating point unit (FPU64). The 64-bit FPU performs IEEE single-precision and IEEE double-precision

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU64) 145
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

Components of the C28x plus Floating-Point CPU (FPU64) www.ti.com

221

222

2.2.3

224

floating-point operations.

» Address register arithmetic unit (ARAU). The ARAU generates data memory addresses and
increments or decrements pointers in parallel with ALU operations.

» Barrel shifter. This shifter performs all left and right shifts of fixed-point data. It can shift data to the left
by up to 16 bits and to the right by up to 16 bits.

» Fixed-Point Multiplier. The multiplier performs 32-bit x 32-bit 2s-complement multiplication with a 64-bit
result. The multiplication can be performed with two signed numbers, two unsigned numbers, or one
signed number and one unsigned number.

Emulation Logic

The emulation logic is identical to that on the C28x fixed-point CPU. This logic includes the following
features:

» Debug-and-test direct memory access (DT-DMA). A debug host can gain direct access to the content
of registers and memory by taking control of the memory interface during unused cycles of the
instruction pipeline.

» A counter for performance benchmarking.
» Multiple debug events. Any of the following debug events can cause a break in program execution:
— A breakpoint initiated by the ESTOPO or ESTOPL instruction.

— An access to a specified program-space or data-space location.
When a debug event causes the C28x to enter the debug-halt state, the event is called a break event.

* Real-time mode of operation.

For more details about these features, refer to the TMS320C28x DSP CPU and Instruction Set Reference
Guide (literature number SPRU430.

Memory Map

Like the C28x, the C28x+FPU64 uses 32-bit data addresses and 22-bit program addresses. This allows
for a total address reach of 4G words (1 word = 16 bits) in data space and 4M words in program space.
Memory blocks on all C28x+FPU64 designs are uniformly mapped to both program and data space. For
specific details about each of the map segments, see the data sheet for your device.

On-Chip Program and Data

All C28x+FPU64 based devices contain at least two blocks of single access on-chip memory referred to
as M0 and M1. Each of these blocks is 1K words in size. MO is mapped at addresses 0x0000 — Ox03FF
and M1 is mapped at addresses 0x0400 — 0xO7FF. Like all other memory blocks on the C28x+FPU64
devices, MO and M1 are mapped to both program and data space. Therefore, you can use MO and M1 to
execute code or for data variables. At reset, the stack pointer is set to the top of block M1. Depending on
the device, it may also have additional random-access memory (RAM), read-only memory (ROM), external
interface zones, or flash memory.

CPU Interrupt Vectors

The C28x+FPU64 interrupt vectors are identical to those on the C28x CPU. Sixty-four addresses in
program space are set aside for a table of 32 CPU interrupt vectors. The CPU vectors can be mapped to
the top or bottom of program space by way of the VMAP bit. For more information about the CPU vectors,
see TMS320C28x DSP CPU and Instruction Set Reference Guide (literature number SPRU430). For
devices with a peripheral interrupt expansion (PIE) block, the interrupt vectors will reside in the PIE vector
table and this memory can be used as program memory.

146

Floating Point Unit (FPU64) SPRUHS1C-October 2014 —-Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430
http://www.ti.com/lit/pdf/spru430

13 TEXAS
INSTRUMENTS

www.ti.com Components of the C28x plus Floating-Point CPU (FPU64)

2.2.5 Memory Interface

The C28x+FPU64 memory interface is identical to that on the C28x. The C28x+FPU64 memory map is
accessible outside the CPU by the memory interface, which connects the CPU logic to memories,
peripherals, or other interfaces. The memory interface includes separate buses for program space and
data space. This means an instruction can be fetched from program memory while data memory is being
accessed. The interface also includes signals that indicate the type of read or write being requested by the
CPU. These signals can select a specified memory block or peripheral for a given bus transaction. In
addition to 16-bit and 32-bit accesses, the C28x+FPU64 supports special byte-access instructions that can
access the least significant byte (LSByte) or most significant byte (MSByte) of an addressed word. Strobe
signals indicate when such an access is occurring on a data bus.

2.2.5.1 Address and Data Buses

Like the C28x, the memory interface has three address buses:
 PAB: Program address bus
The PAB carries addresses for reads and writes from program space. PAB is a 22-bit bus.
 DRAB: Data-read address bus
The 32-bit DRAB carries addresses for reads from data space.
« DWAB: Data-write address bus
The 32-bit DWAB carries addresses for writes to data space.

The memory interface also has three data buses:
 PRDB: Program-read data bus

The PRDB carries instructions during reads from program space. PRDB is a 32-hit bus.
 DRDB: Data-read data bus

The DRDB carries data during reads from data space. DRDB is a 32-bit bus.
 DWDB: Data-/Program-write data bus

The 32-bit DWDB carries data during writes to data space or program space.

A program-space read and a program-space write cannot happen simultaneously because both use the
PAB. Similarly, a program-space write and a data-space write cannot happen simultaneously because
both use the DWDB. Transactions that use different buses can happen simultaneously. For example, the
CPU can read from program space (using PAB and PRDB), read from data space (using DRAB and
DRDB), and write to data space (using DWAB and DWDB) at the same time. This behavior is identical to
the C28x CPU.

2.2.5.2 Alignment of 32-Bit Accesses to Even Addresses

The C28x+FPU64 CPU expects memory wrappers or peripheral-interface logic to align any 32-bit read or
write to an even address. If the address-generation logic generates an odd address, the CPU will begin
reading or writing at the previous even address. This alignment does not affect the address values
generated by the address-generation logic.

Most instruction fetches from program space are performed as 32-hit read operations and are aligned
accordingly. However, alignment of instruction fetches are effectively invisible to a programmer. When
instructions are stored to program space, they do not have to be aligned to even addresses. Instruction
boundaries are decoded within the CPU.

You need to be concerned with alignment when using instructions that perform 32-bit reads from or writes
to data space.

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU64) 147

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

CPU Register Set www.ti.com

2.3 CPU Register Set

The C28x+FPU64 architecture is the same as the C28x CPU with an extended register and instruction set
to support IEEE single-precision and double-precision floating point operations. This section describes the
extensions to the C28x architecture

2.3.1 CPU Registers

Devices with the C28x+FPUG64 include the standard C28x register set plus an additional set of floating-
point unit registers. The additional floating-point unit registers are the following:

» Eight floating-point result registers, RnH (where n = 0 - 7) for single-precision floating point operations

» Eight floating-point result registers, RnH:RnL (where n = 0 - 7) for double-precision floating point
operations

* Floating-point Status Register (STF)
* Repeat Block Register (RB)

All of the floating-point registers except the repeat block register are shadowed. This shadowing can be
used in high priority interrupts for fast context save and restore of the floating-point registers.

Figure 2-2 shows a diagram of both register sets and Table 2-1 shows a register summary. For
information on the standard C28x register set, see the TMS320C28x DSP CPU and Instruction Set
Reference Guide (literature number SPRU430).

Figure 2-2. C28x With FPU64 Floating-Point Registers

Standard C28x Register Set 32-bit FPU Registers Additional 32-bit FPU Registers
ACC (32-bit) ROH (32-bit) ROL (32-bit)
P (32-bit)
R1H (32-bit R1L (32-bit)
XT (32-bit) (32-it)
-bi R2L (32-bit
XARO (32-610) R2H (32-bit) ()
XAR1 (32-bit) R3H (32-bit) R3L (32-bit)
XAR2 (32-bit)
XAR3 (32-bit) R4H (32-bit) R4L (32-bit)
XAR4 (32-bit R5H (32-bit) R5L (32-bit)
XARS5 (32-bit)
XARG (32-bit) R6H (32-bit) R6L (32-bit)
XARY7 (32-bit) -
R7H (32-bit) R7L (32-bit)
PC (22-bit)
FPU Status Register (STF
RPC (22-bit) gister (STF)
DP (16-bit) Repeat Block Register (RB)
SP (16-bit) FPU registers ROH - R7H and STF
are shadowed for fast context
STO (16-bit) save and restore
ST1 (16-bit)
IER (16-bit)
IFR (16-bit)
DBGIER (16-bit)
148 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430

13 TEXAS

INSTRUMENTS

www.ti.com

CPU Register Set

Table 2-1. 28x Plus Floating-Point FPU64 CPU Register Summary

Register C28x CPU | C28x + FPU64 Size Description Value After Reset
ACC Yes Yes 32 bits Accumulator 0x00000000
AH Yes Yes 16 bits High half of ACC 0x0000
AL Yes Yes 16 bits Low half of ACC 0x0000
XARO Yes Yes 32 bits Auxiliary register 0 0x00000000
XAR1 Yes Yes 32 bits Auxiliary register 1 0x00000000
XAR2 Yes Yes 32 bits Auxiliary register 2 0x00000000
XAR3 Yes Yes 32 bits Auxiliary register 3 0x00000000
XAR4 Yes Yes 32 bits Auxiliary register 4 0x00000000
XAR5 Yes Yes 32 bits Auxiliary register 5 0x00000000
XAR6 Yes Yes 32 bits Auxiliary register 6 0x00000000
XAR7 Yes Yes 32 bits Auxiliary register 7 0x00000000
ARO Yes Yes 16 bits Low half of XARO 0x0000
AR1 Yes Yes 16 bits Low half of XAR1 0x0000
AR2 Yes Yes 16 bits Low half of XAR2 0x0000
AR3 Yes Yes 16 bits Low half of XAR3 0x0000
AR4 Yes Yes 16 bits Low half of XAR4 0x0000
AR5 Yes Yes 16 bits Low half of XAR5 0x0000
ARG Yes Yes 16 bits Low half of XAR6 0x0000
AR7 Yes Yes 16 bits Low half of XAR7 0x0000
DP Yes Yes 16 bits Data-page pointer 0x0000
IFR Yes Yes 16 bits Interrupt flag register 0x0000
IER Yes Yes 16 bits Interrupt enable register 0x0000
DBGIER Yes Yes 16 bits Debug interrupt enable register 0x0000
P Yes Yes 32 bits Product register 0x00000000
PH Yes Yes 16 bits High half of P 0x0000
PL Yes Yes 16 bits Low half of P 0x0000
PC Yes Yes 22 bits Program counter O0x3FFFCO
RPC Yes Yes 22 bits Return program counter 0x00000000
SP Yes Yes 16 bits Stack pointer 0x0400
STO Yes Yes 16 bits Status register 0 0x0000
ST1 Yes Yes 16 bits Status register 1 0x080B™
XT Yes Yes 32 bits Multiplicand register 0x00000000
T Yes Yes 16 bits High half of XT 0x0000
TL Yes Yes 16 bits Low half of XT 0x0000
ROH No Yes 32 bits 32 Bits Floating point single / double precision 0.0

result register 0
R1H No Yes 32 hits 32 Bits Floating point single / double precision 0.0

result register 1
R2H No Yes 32 bits 32 Bits Floating point single / double precision 0.0

result register 2
R3H No Yes 32 hits 32 Bits Floating point single / double precision 0.0

result register 3
R4H No Yes 32 bits 32 Bits Floating point single / double precision 0.0

result register 4
R5H No Yes 32 hits 32 Bits Floating point single / double precision 0.0

result register 5
R6H No Yes 32 bits 32 Bits Floating point single / double precision 0.0

result register 6

@ Reset value shown is for devices without the VMAP signal and MOM1MAP signal pinned out. On these devices both of these signals are

tied high internal to the device.

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64) 149

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

CPU Register Set

13 TEXAS
INSTRUMENTS

www.ti.com

Table 2-1. 28x Plus Floating-Point FPU64 CPU Register Summary (continued)

Register C28x CPU | C28x + FPU64 Size Description Value After Reset
R7H No Yes 32 bits 32 Bits Floating point single / double precision 0.0
result register 7
ROL No Yes 32 bits 32 Bits Floating point double precision result 0.0
register 0
R1L No Yes 32 bits 32 Bits Floating point double precision result 0.0
register 1
R2L No Yes 32 bits 32 Bits Floating point double precision result 0.0
register 2
R3L No Yes 32 bits 32 Bits Floating point double precision result 0.0
register 3
R4L No Yes 32 bits 32 Bits Floating point double precision result 0.0
register 4
R5L No Yes 32 bits 32 Bits Floating point double precision result 0.0
register 5
R6L No Yes 32 bits 32 Bits Floating point double precision result 0.0
register 6
R7L No Yes 32 bits 32 Bits Floating point double precision result 0.0
register 7
STF No Yes 32 bits Floating-point status register 0x00000000
RB No Yes 32 bits Repeat block register 0x00000000

2.3.1.1 Floating-Point Status Register (STF)
The floating-point status register (STF) reflects the results of floating-point operations.
basic rules for floating point operation flags:
1.
2.

Zero and negative flags are set based on moves to registers.
Zero and negative flags are set based on the result of compare, minimum, maximum, negative and

absolute value operations.

There are three

Overflow and underflow flags are set by math instructions such as multiply, add, subtract and 1/x.
These flags may also be connected to the peripheral interrupt expansion (PIE) block on your device.
This can be useful for debugging underflow and overflow conditions within an application.

As on the C28x, program flow is controlled by C28x instructions that read status flags in the status register
0 (STO) . If a decision needs to be made based on a floating-point operation, the information in the STF
register needs to be loaded into STO flags (Z,N,0OV,TC,C) so that the appropriate branch conditional
instruction can be executed. The MOVSTO FLAG instruction is used to load the current value of specified
STF flags into the respective bits of STO. When this instruction executes, it will also clear the latched
overflow and underflow flags if those flags are specified.

Example 2-1. Moving STF Flags to the STO Register

Loop:

MOV32 ROH,*XAR4++
MOV32 R1H,*XAR3++
CMPF32 R1H, ROH
MOVSTO ZF, NF

BF

Loop, GT

; Move ZF and NF to STO

; Loop if (R1H > ROH)

150 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

CPU Register Set

Figure 2-3. Floating-point Unit Status Register (STF)

31 30 16
‘ SHDWS ‘ Reserved ‘
R/W-0 R-0
15 11 10 9 8 7 6 5 4 3 2 1 0
\ Reserved |RND64 |[RND32 | Reseved | TF | 2z [N | zZF | NF [WF [LvF |
R-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-2. Floating-point Unit Status (STF) Register Field Descriptions

Bits Field Value Description
31 SHDWS Shadow Mode Status Bit
This bit is forced to 0 by the RESTORE instruction.
1 This bit is set to 1 by the SAVE instruction.
This bit is not affected by loading the status register either from memory or from the shadow values.
30-11 Reserved 0 Reserved for future use
10 RND64 Round 64-hit Floating-Point Mode
0 If this bit is zero, the MPYF64, ADDF64 and SUBF64 instructions will round to zero (truncate).
1 If this bit is one, the MPYF64, ADDF64 and SUBF64 instructions will round to the nearest even value.
9 RND32 Round 32-hit Floating-Point Mode
0 If this bit is zero, the MPYF32, ADDF32 and SUBF32 instructions will round to zero (truncate).
1 If this bit is one, the MPYF32, ADDF32 and SUBF32 instructions will round to the nearest even value.
8-7 Reserved 0 Reserved for future use
6 TF Test Flag
The TESTTF instruction can modify this flag based on the condition tested. The SETFLG and SAVE
instructions can also be used to modify this flag.
0 The condition tested with the TESTTF instruction is false.
1 The condition tested with the TESTTF instruction is true.
5 ZI Zero Integer Flag
The following instructions modify this flag based on the integer value stored in the destination register:
MOV32, MOVD32, MOVDD32
The SETFLG and SAVE instructions can also be used to modify this flag.
0 The integer value is not zero.
1 The integer value is zero.
4 NI Negative Integer Flag
The following instructions modify this flag based on the integer value stored in the destination register:
MOV32, MOVD32, MOVDD32
The SETFLG and SAVE instructions can also be used to modify this flag.
0 The integer value is not negative.
1 The integer value is negative.
3 ZF Zero Floating-Point Flag @ @
The_ following instructions modify this flag based on the floating-point value stored in the destination
'r\tﬂeg;s/téazr MOVD32, MOVDD32, ABSF32, NEGF32, ABSF64, NEGF64,CMPF64, MAXF64, MINF64
The CMPF32, MAXF32, MINF32, CMPF64,MAXF64, and MINF64 instructions modify this flag based
on the result of the operation.
The SETFLG and SAVE instructions can also be used to modify this flag
0 The floating-point value is not zero.
1 The floating-point value is zero.

@ A negative zero floating-point value is treated as a positive zero value when configuring the ZF and NF flags.
@ A DeNorm floating-point value is treated as a positive zero value when configuring the ZF and NF flags.

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Floating Point Unit (FPU64) 151

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

CPU Register Set

13 TEXAS
INSTRUMENTS

www.ti.com

Table 2-2. Floating-point Unit Status (STF) Register Field Descriptions (continued)

Bits Field Value Description
2 NF Negative Floating-Point Flag ® @
The following instructions modify this flag based on the floating-point value stored in the destination
register:
MOV32, MOVD32, MOVDD32, ABSF32, NEGF32, ABSF64, NEGF64, CMPF64, MAXF64 and MINF64
The CMPF32, MAXF32, MINF32, CMPF64,MAXF64, and MINF64 instructions modify this flag based
on the result of the operation.
The SETFLG and SAVE instructions can also be used to modify this flag.
0 The floating-point value is not negative.
The floating-point value is negative.
1 LUF Latched Underflow Floating-Point Flag
The following instructions will set this flag to 1 if an underflow occurs:
MPYF32, ADDF32, SUBF32, MACF32, EINVF32, EISQRTF32, MPYF64, ADDF64, SUBF64,
MACF64, EINVF64, EISQRTF64
0 An underflow condition has not been latched. If the MOVSTO instruction is used to copy this bit to STO,
then LUF will be cleared.
1 An underflow condition has been latched.
0 LVF Latched Overflow Floating-Point Flag
The following instructions will set this flag to 1 if an overflow occurs:
MPYF32, ADDF32, SUBF32, MACF32, EINVF32, EISQRTF32, MPYF64, ADDF64, SUBF64,
MACF64, EINVF64, EISQRTF64
0 An overflow condition has not been latched. If the MOVSTO instruction is used to copy this bit to STO,
then LVF will be cleared.
1 An overflow condition has been latched.

152 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com CPU Register Set

2.3.1.2 Repeat Block Register (RB)

The repeat block instruction (RPTB) is a new instruction for C28x+FPU64. This instruction allows you to
repeat a block of code as shown in Example 2-2.

Example 2-2. The Repeat Block (RPTB) Instruction uses the RB Register

; Find the largest element and put its address in XAR6
MOV32 ROH, *XARO++;
.align 2 ; Aligns the next instruction to an even address

NOP ; Makes RPTB odd aligned - required for a block size of 8
RPTB VECTOR_MAX_END, AR7 ; RAis set to 1

MOVL ACC, XARO

MOV32 R1H,*XARO++ ; RSIZE reflects the size of the RPTB block

MAXF32 ROH,R1H ; In this case the block size is 8

MOVSTO NF,ZF

MOVL XAR6,ACC, LT

VECTOR_MAX_END: ; RE indicates the end address. RA is cleared

The C28x+FPU64 hardware automatically populates the RB register based on the execution of a RPTB
instruction. This register is not normally read by the application and does not accept debugger writes.

Figure 2-4. Repeat Block Register (RB)

31 30 29 23 22 16
| RAs | RA | RSIZE \ RE |
RO RO R-0 R-0
15 0
| RC |
R-0

LEGEND: R = Read only; -n = value after reset

Table 2-3. Repeat Block (RB) Register Field Descriptions

Bits Field Value Description
31 RAS Repeat Block Active Shadow Bit

When an interrupt occurs the repeat active, RA, bit is copied to the RAS bit and the RA bit is cleared.
When an interrupt return instruction occurs, the RAS bit is copied to the RA bit and RAS is cleared.

0 A repeat block was not active when the interrupt was taken.
A repeat block was active when the interrupt was taken.
30 RA Repeat Block Active Bit
0 This bit is cleared when the repeat counter, RC, reaches zero.

When an interrupt occurs the RA bit is copied to the repeat active shadow, RAS, bit and RA is cleared.
When an interrupt return, IRET, instruction is executed, the RAS bit is copied to the RA bit and RAS is
cleared.

1 This bit is set when the RPTB instruction is executed to indicate that a RPTB is currently active.
29-23 RSIZE Repeat Block Size

This 7-bit value specifies the number of 16-bit words within the repeat block. This field is initialized
when the RPTB instruction is executed. The value is calculated by the assembler and inserted into the
RPTB instruction's RSIZE opcode field.

0-7 lllegal block size.

8/9-0x7F | A RPTB block that starts at an even address must include at least 9 16-bit words and a block that
starts at an odd address must include at least 8 16-bit words. The maximum block size is 127 16-bit
words. The codegen assembler will check for proper block size and alignment.

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU64) 153

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

Pipeline www.ti.com

Table 2-3. Repeat Block (RB) Register Field Descriptions (continued)

Bits

Field Value Description

22-16 RE Repeat Block End Address

This 7-bit value specifies the end address location of the repeat block. The RE value is calculated by
hardware based on the RSIZE field and the PC value when the RPTB instruction is executed.

RE = lower 7 bits of (PC + 1 + RSIZE)

15-0

RC Repeat Count

0 The block will not be repeated,; it will be executed only once. In this case the repeat active, RA, bit will
not be set.

1- This 16-bit value determines how many times the block will repeat. The counter is initialized when the
OxFFFF | RPTB instruction is executed and is decremented when the PC reaches the end of the block. When
the counter reaches zero, the repeat active bit is cleared and the block will be executed one more
time. Therefore the total number of times the block is executed is RC+1.

24

241

Pipeline

The pipeline flow for C28x instructions is identical to that of the C28x CPU described in TMS320C28x
DSP CPU and Instruction Set Reference Guide (SPRU430). Some floating-point instructions, however,
use additional execution phases and thus require a delay to allow the operation to complete. This pipeline
alignment is achieved by inserting NOPs or non-conflicting instructions when required. Software control of
delay slots allows you to improve performance of an application by taking advantage of the delay slots and
filling them with non-conflicting instructions. This section describes the key characteristics of the pipeline
with regards to floating-point instructions. The rules for avoiding pipeline conflicts are small in number and
simple to follow and the C28x+FPU64 assembler will help you by issuing errors for conflicts.

Pipeline Overview

The C28x + FPUG64 pipeline is identical to the C28x pipeline for all standard C28x instructions. In the
decode? stage (D2), it is determined if an instruction is a C28x instruction or a floating-point unit
instruction. The pipeline flow is shown in Figure 2-5. Notice that stalls due to normal C28x pipeline stalls
(D2) and memory waitstates (R2 and W) will also stall any C28x FPU64 instruction. Some C28x FPU64
instructions are single cycle and will complete in the FPU E1 or W stage which aligns to the C28x pipeline.
Some instructions will take an additional execute cycle (E2,E3). For these instructions you must wait a
cycle or two cycles for the result from the instruction to be available. The rest of this section will describe
when delay cycles are required. Keep in mind that the assembly tools for the C28x+FPU64 will issue an
error if a delay slot has not been handled correctly.

Figure 2-5. FPU64 Pipeline
Fetch Decode Read Exe Write

C28x Pipeline F1 F2 D1 D2 R1 R2 E W W

D R E1

|

¢ ! »
Load |« T >

| |

A 4

|
Store 1« t

CMP/MIN/MAX/NEG/ABS [———>

MPY/ADD/SUB/MACF32 ::

A 4

|
MPY/ADD/SUBF64 !: >

154

Floating Point Unit (FPU64) SPRUHS1C-October 2014 —-Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430

13 TEXAS
INSTRUMENTS

www.ti.com Pipeline

2.4.2 General Guidelines for Floating-Point Pipeline Alignment

While the C28x+FPU64 assembler will issue errors for pipeline conflicts, you may still find it useful to
understand when software delays are required. This section describes three guidelines you can follow
when writing C28x+FPU64 assembly code.

Floating-point instructions that require delay slots have a 'p' after their cycle count. For example '2p’
stands for 2 pipelined cycles,'3p' stands for 3 pipelined cycles. This means that an instruction can be
started every cycle, but the result of the instruction will only be valid one or two instructions later.

There are three general guidelines to determine if an instruction needs a delay slot:

1. Single-precision floating-point math operations (multiply, addition, subtraction, 1/x and MAC) require 1
delay slot.

2. Double-precision Floating-point math operations (multiply, addition, subtraction, 1/x) require 2 delay
slots.

3. Single-precision conversion instructions between integer and floating-point formats require 1 delay slot.

4. Double-precision Conversion instructions between integer and floating-point formats require 2 delay
slots.

5. Everything else does not require a delay slot. This includes minimum, maximum, compare, load, store,
negative and absolute value instructions.

There are two exceptions to these rules. First, moves between the CPU and FPU registers require special
pipeline alignment that is described later in this section. These operations are typically infrequent. Second,
the MACF32 R7H, R3H, mem32, *XAR7 instruction has special requirements that make it easier to use.
Refer to the MACF32 instruction description for details.

An example of the 32-bit ADDF32 instruction is shown in Example 2-3. ADDF32 is a 2p instruction and
therefore requires one delay slot. The destination register for the operation, ROH, will be updated one
cycle after the instruction for a total of 2 cycles. Therefore, a NOP or instruction that does not use ROH
must follow this instruction.

Any memory stall or pipeline stall will also stall the floating-point unit. This keeps the floating-point unit
aligned with the C28x pipeline and there is no need to change the code based on the waitstates of a
memory block.

Please note that on certain devices instructions make take additional cycles to complete under specific
conditions. These exceptions will be documented in the device errata.

Example 2-3. 2p Instruction Pipeline Alignment

ADDF32 ROH, #1.5, R1H ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, ROH updated
NOP ; Any instruction
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 155

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

Pipeline www.ti.com

2.4.3 Moves from FPU Registers to C28x Registers

When transferring from the floating-point unit registers to the C28x CPU registers, additional pipeline
alignment is required as shown in Example 2-4 and Example 2-5.

Example 2-4. Floating-Point to C28x Register Software Pipeline Alignment

; MINF32: 32-bit floating-point minimum: single-cycle operation
; An alignment cycle is required before copying ROH to ACC

MINF32 ROH, R1H ; Single-cycle instruction
; <-- ROH is valid

NOP ; Alignment cycle

MOV32 @ACC, ROH ; Copy ROH to ACC

For 1-cycle FPU instructions, one delay slot is required between a write to the floating-point register and
the transfer instruction as shown in Example 2-4. For 2p FPU instructions, two delay slots are required
between a write to the floating-point register and the transfer instruction as shown in Example 2-5. For 3p
FPU instructions, three delay slots are required between a write to the floating-point register and the
transfer instruction.

Example 2-5. Floating-Point to C28x Register Software Pipeline Alignment

There is an exception for moves from FPU register to C28x register for the result of
ADDF32/SUBF32/MPYF32 instructions. They are 2p cycle instructions but 3 NOPs are needed.
This has gone into errata also.

Please refer to page 13 - http://www.ti.com/lit/er/sprz272k/sprz272k.pdf

; ADDF32: 32-bit floating-point addition: 2p operation
; An alignment cycle is required before copying ROH to ACC

ADDF32 ROH, R1H, #2 ; ROH = R1H + 2, 2 pipeline cycle instruction
NOP ; 1 delay cycle or non-conflicting instruction
; <-- ROH is valid
NOP ; Alignment cycle
NOP ; 3rd NOP
MOV32 @ACC, ROH ; Copy ROH to ACC
156 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com Pipeline

2.4.4 Moves from C28x Registers to FPU Registers

Transfers from the standard C28x CPU registers to the floating-point registers require four alignment
cycles. For the 2833x, 2834x, 2806x, 28M35xx and 28M26xx, the four alignment cycles can be filled with
NOPs or any non-conflicting instruction except for F32TOUI32 RaH, RbH, FRACF32 RaH , RbH,
UI16TOF32 RaH , mem16 and UI16TOF32 RaH , RbH. These instructions cannot replace any of the four
alignment NOPs. On newer devices any non-conflicting instruction can go into the four alignment cycles.
Please refer to the device errata for specific exceptions to these rules.

Example 2-6. C28x Register to Floating-Point Register Software Pipeline Alignment

; Four alignment cycles are required after copying a standard 28x CPU
; register to a floating-point register.

MOV32 ROH,@ACC ; Copy ACC to ROH

NOP

NOP

NOP

NOP ; Wait 4 cycles
ADDF32 R2H,R1H,ROH ; ROH is valid

2.4.5 Parallel Instructions

Parallel instructions are single opcodes that perform two operations in parallel. This can be a math
operation in parallel with a move operation, or two math operations in parallel. Math operations with a
parallel move are referred to as 2p/1 or 3p/1 instructions. The math portion of the operation takes two or
three pipelined cycles while the move portion of the operation is single cycle. This means that NOPs or
other non conflicting instructions must be inserted to align the math portion of the operation. An example
of an add with parallel move instruction is shown in Example 2-7.

Example 2-7. 2p/1 Parallel Instruction Software Pipeline Alignment

; ADDF32 || MOV32 instruction: 32-bit floating-point add with parallel move
ADDF32 is a 2p operation
; MOV32 is a 1 cycle operation

ADDF32 ROH, R1H, #2 ; ROH = R1H + 2, 2 pipeline cycle operation
|] MOV32 R1H, @val ; R1H gets the contents of Val, single cycle operation
; <-- MOV32 completes here (R1H is valid)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes here (ROH is valid)
NOP ; Any instruction
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 157

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

Pipeline www.ti.com

Parallel math instructions are referred to as 2p/2p or 3p/3p instructions. Both math operations take 2 or 3
cycles to complete. This means that NOPs or other non conflicting instructions must be inserted to align
the both math operations. An example of a multiply with parallel add instruction is shown in Example 2-8.

Example 2-8. 2p/2p Parallel Instruction Software Pipeline Alignment

; MPYF32 || ADDF32 instruction: 32-bit floating-point multiply with parallel add
; MPYF32 is a 2p operation
; ADDF32 is a 2p cycle operation
MPYF32 ROH, R1H, R3H ; ROH R1H * R3H, 2 pipeline cycle operation
|| ADDF32 R1H, R2H, R4H ; R1H = R2H + R4H, 2 pipeline cycle operation

NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32 and ADDF32 complete here (ROH and R1H are valid)
NOP ; Any instruction

2.4.6 Invalid Delay Instructions

Most instructions can be used in delay slots as long as source and destination register conflicts are
avoided. The C28x+FPU64 assembler will issue an error anytime you use an conflicting instruction within
a delay slot. The following guidelines can be used to avoid these conflicts.

NOTE: Destination register conflicts in delay slots:

Any operation used for pipeline alignment delay must not use the same destination register
as the instruction requiring the delay. See Example 2-9.

In Example 2-9 the MPYF32 instruction uses R2H as its destination register. The next instruction should
not use R2H as its destination. Since the MOV32 instruction uses the R2H register a pipeline conflict will
be issued by the assembler. This conflict can be resolved by using a register other than R2H for the
MOV32 instruction as shown in Example 2-10.

Example 2-9. Destination Register Conflict

; Invalid delay instruction. Both instructions use the same destination register
MPYF32 R2H, R1H, ROH ; 2p instruction
MOV32 R2H, mem32 ; Invalid delay instruction

Example 2-10. Destination Register Conflict Resolved

; Valid delay instruction
MPYF32 R2H, R1H, ROH ; 2p instruction MOV32 R1H, mem32
MOV32 R3H, mem32 ; Valid delay

; <-- MPYF32 completes, R2H valid

158 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

NOTE: Instructions in delay slots cannot use the instruction's destination register as a source

register.

Any operation used for pipeline alignment delay must not use the destination register of the
instruction requiring the delay as a source register as shown in Example 2-11. For parallel

instructions, the current value of a register can be used in the parallel operation before it is
overwritten as shown in Example 2-13.

In Example 2-11 the MPYF32 instruction again uses R2H as its destination register. The next instruction
should not use R2H as its source since the MPYF32 will take an additional cycle to complete. Since the

ADDF32 instruction uses the R2H register a pipeline conflict will be issued by the assembler. This conflict

can be resolved by using a register other than R2H or by inserting a non-conflicting instruction between

the MPYF32 and ADDF32 instructions. Since the SUBF32 does not use R2H this instruction can be
moved before the ADDF32 as shown in Example 2-12.

Example 2-11. Destination/Source Register Conflict

; Invalid delay instruction.

MPYF32 R2H, R1H, ROH
ADDF32 R3H, R3H, R2H
SUBF32 R4H, R1H, ROH

ADDF32 should not use R2H as a source operand

; 2p instruction
; Invalid delay instruction

Example 2-12. Destination/Source Register Conflict Resolved

; Valid delay instruction.
MPYF32 R2H, R1H, ROH
SUBF32 R4H, R1H, ROH
ADDF32 R3H, R3H, R2H
NOP

; 2p instruction

; Valid delay for MPYF32

; <-- MPYF32 completes, R2H valid

<-- SUBF32 completes, R4H valid

It should be noted that a source register for the 2nd operation within a parallel instruction can be the same

as the destination register of the first operation. This is because the two operations are started at the

same time. The 2nd operation is not in the delay slot of the first operation. Consider Example 2-13 where
the MPYF32 uses R2H as its destination register. The MOV32 is the 2nd operation in the instruction and
can freely use R2H as a source register. The contents of R2H before the multiply will be used by MOV32.

Example 2-13. Parallel Instruction Destination/Source Exception

; Valid parallel operation.
MPYF32 R2H, R1H, ROH
Il MOV32 mem32, R2H

NOP

2p/1 instruction

<-- Uses R2H before the MPYF32
<-- mem32 updated

<-- Delay for MPYF32

<-- R2H updated

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

159

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

Pipeline www.ti.com

Likewise, the source register for the 2nd operation within a parallel instruction can be the same as one of
the source registers of the first operation. The MPYF32 operation in Example 2-14 uses the R1H register
as one of its sources. This register is also updated by the MOV32 register. The multiplication operation will
use the value in R1H before the MOV32 updates it.

Example 2-14. Parallel Instruction Destination/Source Exception

; Valid parallel instruction
MPYF32 R2H, R1H, ROH ; 2p/1 instruction
|| MOV32 R1H, mem32 ; valid
NOP ; <-- MOV32 completes, R1H valid
; <-- MPYF32, R2H valid

NOTE: Operations within parallel instructions cannot use the same destination register.
When two parallel operations have the same destination register, the result is invalid.

For example, see Example 2-15.

If both operations within a parallel instruction try to update the same destination register as shown in
Example 2-15 the assembler will issue an error.

Example 2-15. Invalid Destination Within a Parallel Instruction

Invalid parallel instruction. Both operations use the same destination register
MPYF32 R2H, R1H, ROH ; 2p/1 instruction
|| MOV32 R2H, mem32 ; Invalid

Some instructions access or modify the STF flags. Because the instruction requiring a delay slot will also
be accessing the STF flags, these instructions should not be used in delay slots. These instructions are
SAVE, SETFLG, RESTORE and MOVSTO.

NOTE: Do not use SAVE, SETFLG, RESTORE, or the MOVSTO instruction in a delay slot.

160 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com Pipeline

2.4.7 Optimizing the Pipeline

The following example shows how delay slots can be used to improve the performance of an algorithm.
The example performs two Y = MX+B operations. In Example 2-16, no optimization has been done. The Y
= MX+B calculations are sequential and each takes 7 cycles to complete. Notice there are NOPs in the
delay slots that could be filled with non-conflicting instructions. The only requirement is these instructions
must not cause a register conflict or access the STF register flags.

Example 2-16. Floating-Point Code Without Pipeline Optimization

; Using NOPs for alignment cycles, calculate the following:

> Yl M1*X1 + Bl
; Y2 = M2*X2 + B2

; Calculate Y1

MOV32 ROH, @M1 ; Load ROH with M1 - single cycle
MOV32 R1H,@X1 ; Load R1H with X1 - single cycle
MPYF32 R1H,R1H,ROH ; RIH = M1 * X1 - 2p operation
|l MOV32 ROH,@B1 ; Load ROH with B1 - single cycle
NOP ; Wait for MPYF32 to complete
; <-- MPYF32 completes, R1H is valid
ADDF32 R1H,R1H,ROH ; RIH = R1H + ROH - 2p operation
NOP ; Wait for ADDF32 to complete
; <-- ADDF32 completes, R1H is valid
MOV32 @Y1,R1H ; Save R1H in Y1 - single cycle

; Calculate Y2

MOV32 ROH, @M2 ; Load ROH with M2 - single cycle
MOvV32 R1H,@X2 ; Load R1H with X2 - single cycle
MPYF32 R1H,R1H,ROH ; RIH = M2 * X2 - 2p operation
|l MOV32 ROH,@B2 ; Load ROH with B2 - single cycle
NOP ; Wait for MPYF32 to complete
; <-- MPYF32 completes, R1H is valid
ADDF32 R1H,R1H,ROH ; RIH = R1H + ROH
NOP ; Wait for ADDF32 to complete
; <-- ADDF32 completes, R1H is valid
MOV32 @y2,R1H ; Save R1H in Y2
; 14 cycles
; 48 bytes

The code shown in Example 2-17 was generated by the C28x+FPU64 compiler with optimization enabled.
Notice that the NOPs in the first example have now been filled with other instructions. The code for the
two Y = MX+B calculations are now interleaved and both calculations complete in only nine cycles.

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU64) 161

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

Floating Point Unit (FPU64) Instruction Set www.ti.com

Example 2-17. Floating-Point Code With Pipeline Optimization

; Using non-conflicting instructions for alignment cycles,
; calculate the following:

; Y1 = M1*X1 + Bl
; Y2 = M2*X2 + B2
MOV32 R2H, @X1 ; Load R2H with X1 - single cycle
MOV32 R1H, @M1 ; Load R1H with M1 - single cycle
MPYF32 R3H,R2H,R1H ; R3H = M1 * X1 - 2p operation
|1 MOV32 ROH, @M2 ; Load ROH with M2 - single cycle
MOV32 R1H,@X2 ; Load R1H with X2 - single cycle
; <-- MPYF32 completes, R3H is valid
MPYF32 ROH,R1H,ROH ; ROH = M2 * X2 - 2p operation
|| Mov32 R4H,@B1 ; Load R4H with Bl - single cycle
; <-- MOV32 completes, R4H is valid
ADDF32 R1H,R4H,R3H ; R1IH = B1 + M1*X1 - 2p operation
|| Mov32 R2H,@B2 ; Load R2H with B2 - single cycle
; <-- MPYF32 completes, ROH is valid
ADDF32 ROH,R2H,ROH ; ROH = B2 + M2*X2 - 2p operation
; <-- ADDF32 completes, R1H is valid
MOV32 @Y1,R1H ; Store Y1
; <-- ADDF32 completes, ROH is valid
MOov32 @Y2,ROH ; Store Y2
; 9 cycles
; 36 bytes
2.5 Floating Point Unit (FPU64) Instruction Set

This chapter describes the assembly language instructions of the TMS320C28x plus floating-point
processor FPU64. Also described are parallel operations, conditional operations, resource constraints, and
addressing modes. The instructions listed here are an extension to the standard C28x instruction set. For
information on standard C28x instructions, see the TMS320C28x DSP CPU and Instruction Set Reference
Guide (literature number SPRU430).

2.5.1 Instruction Descriptions
This section gives detailed information on the instruction set. This section lists all the single precision
floating point instructions and note that these are identical to the instructions available in C28x + FPU.
Each instruction may present the following information:
e Operands
* Opcode
» Description
» Exceptions
* Pipeline
» Examples
* See also
The example INSTRUCTION is shown to familiarize you with the way each instruction is described. The
example describes the kind of information you will find in each part of the individual instruction description
and where to obtain more information. On the C28x+FPU64 instructions, follow the same format as the
C28x. The source operand(s) are always on the right and the destination operand(s) are on the left.
The explanations for the syntax of the operands used in the instruction descriptions for the TMS320C28x
plus floating-point processor are given in Table 2-4. For information on the operands of standard C28x
instructions, see the TMS320C28x DSP CPU and Instruction Set Reference Guide (SPRU430).

162 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430
http://www.ti.com/lit/pdf/spru430

I

TEXAS

INSTRUMENTS

www.ti.com

Floating Point Unit (FPU64) Instruction Set

Table 2-4. Operand Nomenclature

Symbol Description

#16FHi 16-bit immediate (hex or float) value that represents the upper 16-bits of an IEEE 32-bit floating-point value.
Lower 16-bits of the mantissa are assumed to be zero.

#16FHiHex 16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit floating-point value.
Lower 16-bits of the mantissa are assumed to be zero.

#16FLoHex A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit floating-point value

#32Fhex 32-bit immediate value that represents an IEEE 32-bit floating-point value

#32F Immediate float value represented in floating-point representation

#0.0 Immediate zero

#RC 16-bit immediate value for the repeat count

*(0:16bitAddr) 16-bit immediate address, zero extended

CNDF Condition to test the flags in the STF register

FLAG Selected flags from STF register (OR) 11 bit mask indicating which floating-point status flags to change

label Label representing the end of the repeat block

mem16 Pointer (using any of the direct or indirect addressing modes) to a 16-bit memory location

mema32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

RaH ROH to R7H registers

RbH ROH to R7H registers

RcH ROH to R7H registers

RdH ROH to R7H registers

ReH ROH to R7H registers

RfH ROH to R7H registers

RaL ROL to R7L registers

RbL ROL to R7L registers

RcL ROL to R7L registers

RdL ROL to R7L registers

ReL ROL to R7L registers

RfL ROL to R7L registers

RB Repeat Block Register

STF FPU Status Register

VALUE Flag value of 0 or 1 for selected flag (OR) 11 bit mask indicating the flag value; O or 1

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Floating Point Unit (FPU64)

Copyright © 2014-2019, Texas Instruments Incorporated

163

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

INSTRUCTION dest1, sourcel, source2 — Short Description www.ti.com

INSTRUCTION destl, sourcel, source2 Short Description

Operands
destl description for the 1st operand for the instruction
sourcel description for the 2nd operand for the instruction
source2 description for the 3rd operand for the instruction
Each instruction has a table that gives a list of the operands and a short description.
Instructions always have their destination operand(s) first followed by the source
operand(s).
Opcode This section shows the opcode for the instruction.
Description Detailed description of the instruction execution is described. Any constraints on the

Restrictions

operands imposed by the processor or the assembler are discussed.

Any constraints on the operands or use of the instruction imposed by the processor are
discussed.

Pipeline This section describes the instruction in terms of pipeline cycles as described in
Section 2.4.

Example Examples of instruction execution. If applicable, register and memory values are given
before and after instruction execution. All examples assume the device is running with
the OBJMODE set to 1. Normally the boot ROM or the c-code initialization will set this
bit.

See Also Lists related instructions.

164 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com Floating Point Unit (FPU64) Instruction Set

2.5.2 Instructions

The instructions are listed alphabetically, preceded by a summary.

Table 2-5. Summary of Instructions

Title Page
ABSF32 RaH, RbH —32-bit Floating-Point ADSOIULE ValUEoiiiiiiiiii i e st s e i e s inn e s saaneeaanns 169
ADDF32 RaH, #16FHi, RbH —32-bit Floating-Point Additioncevieiieiiiiiiii e 170
ADDF32 RaH, RbH, #16FHi —32-bit Floating-Point Additionoevieiieiiiiiir s aaas 172
ADDF32 RaH, RbH, RcH —32-bit Floating-Point Addition ... e e r e e neeaaas 174
ADDF32 RdH, ReH, RfH |[MOV32 mem32, RaH —32-bit Floating-Point Addition with Parallel Move 176
ADDF32 RdH, ReH, RfH [MOV32 RaH, mem32 —32-hit Floating-Point Addition with Parallel Move 178
CMPF32 RaH, RbH —32-bit Floating-Point Compare for Equal, Less Than or Greater Thanccovvieviieniinnannns. 180
CMPF32 RaH, #16FHi —32-bit Floating-Point Compare for Equal, Less Than or Greater Than..........oceevvviinnninnnns 181
CMPF32 RaH, #0.0 —32-bit Floating-Point Compare for Equal, Less Than or Greater Thanc.ccvvviieriiiiineninnnns 183
EINVF32 RaH, RbH —32-bit Floating-Point Reciprocal ApProXimationevvessriserseerinsirssriseie i 184
EISQRTF32 RaH, RbH —32-bit Floating-Point Square-Root Reciprocal APproXimationvveevveirieerieirieeiinens 186
F32TOI16 RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit INtegerccvviiiiieeiiiiii i e rranneeeans 188
F32TOI16R RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Integer and Roundcoviiivvviiiinnerinnnnnn. 189
F32TOI32 RaH, RbH —Convert 32-bit Floating-Point Value to 32-bit INtegerc.cvviiiiiiiiiiiiiii i e 190
F32TOUI16 RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Unsigned Integerccvvviiiiiiiiiniiiinnnss 191
F32TOUI16R RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round 192
F32TOUI32 RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Unsigned INntegercvvvivviiiiiiniineinnenn. 193
FRACF32 RaH, RbH —Fractional Portion of a 32-hit Floating-Point Valuecccviiiiiiiiiii i vnnneeeeaas 194
116 TOF32 RaH, RbH —Convert 16-bit Integer to 32-bit Floating-Point Valueciiiiiiiiiiiiiiiiie i eieeeenas 195
116 TOF32 RaH, mem16 —Convert 16-bit Integer to 32-bit Floating-Point Valuecccoviiiiiiiiiiiiiiiiiiiieens 196
I32TOF32 RaH, mem32 —Convert 32-bit Integer to 32-bit Floating-Point Valueccoviiiiiiiiiiiiiiiiiiiiiaeens 197
1I32TOF32 RaH, RbH — Convert 32-bit Integer to 32-bit Floating-Point Valuecoovviiiiiiiiiiiiinieas 198
MACF32 R3H, R2H, RdH, ReH, RfH —32-bit Floating-Point Multiply with Parallel Addccoooviiiiiiiiiiiinenns 199
MACF32 R3H, R2H, RdH, ReH, RfH ||[MOV32 RaH, mem32 —32-bit Floating-Point Multiply and Accumulate with

L Tie= 111 1Y/ 1Y 201
MACF32 R7H, R3H, mem32, *XAR7++ —32-bit Floating-Point Multiply and Accumulateccevviiiiiiniineiinnnn. 203
MACF32 R7H, R6H, RdH, ReH, RfH —32-bit Floating-Point Multiply with Parallel Add........cccvvviiieiiiiiiiiineenns 205
MACF32 R7H, R6H, RdH, ReH, RfH ||[MOV32 RaH, mem32 —32-bit Floating-Point Multiply and Accumulate with

L 1= 111 Y1 1Y 207
MAXF32 RaH, RbH —32-hit Floating-Point MaXimUMeeeeiiieesssseessssaseessaneessasnsessasnneesssnnnessssnnessnnnns 209
MAXF32 RaH, #16FHi —32-bit Floating-Point MaXimUMeeiiiiees i i e s sssne e ssaneesannnnesaannnessannns 210
MAXF32 RaH, RbH ||[MOV32 RcH, RdH —32-bit Floating-Point Maximum with Parallel Moveccooiiiiiiiinnnenn 211
MINF32 RaH, RbH —32-bit Floating-Point MinimuUMcoeeeiiiie i riee s s s srian s ssaanns s aaanansaannes 212
MINF32 RaH, #16FHi — 32-bit Floating-Point MiNImMUM e e e e e e e e ennnns 213
MINF32 RaH, RbH [[MOV32 RcH, RdH —32-bit Floating-Point Minimum with Parallel Moveccovvviiiiiiiiinneen. 214
MOV16 mem16, RaH —Move 16-bit Floating-Point Register Contents t0 MeMOIY ...vvvivereireieeeriinnreransnneeraannnens 215
MOV32 *(0:16bitAddr), loc32 —Move the Contents of I0C32 t0 MEMOIY ...vviiiiiiiiiiie it aiiessaanneesaannnennn 216
MOV32 ACC, RaH —Move 32-bit Floating-Point Register Contents t0 ACC.....uvueiiiiiierririisiiiiirsirainsessaannesas 217
MOV32 loc32, *(0:16bitAddr) —Move 32-bit Value from Memory t0 I0C32.....vuuiiiiiiiiiiie i i rnaeee s 218
MOV32 mem32, RaH —Move 32-bit Floating-Point Register Contents to MEMOIYcvvvieeiiririseinieiriiserineas 219
MOV32 mem32, STF —Move 32-bit STF RegiSter t0 MEMOIY ...iueiiietiitiiie i ieini s sars e saeanaes 221
MOV32 P, RaH —Move 32-bit Floating-Point Register CONtENtS t0 Puueiiiiiiieiiiiiee i e rnnnnesssnnnresannnnennnns 222
MOV32 RaH, ACC —Move the Contents of ACC to a 32-bit Floating-Point Registeroviiiiiiiiiiiiiiiiiieniineens 223
MOV32 RaH, mem32 {, CNDF} —Conditional 32-Dit MOVEiiiueiiiiiieiiiiie i i s s s sr e e aaas 224

SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 165

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
Floating Point Unit (FPU64) Instruction Set www.ti.com
Table 2-5. Summary of Instructions (continued)

MOV32 RaH, P —Move the Contents of P to a 32-bit Floating-Point RegiSterccvvviiiiiiiiiiiiiiiiiiiineeas 226
MOV32 RaH, RbH {, CNDF} —Conditional 32-Dit MOVEuueeiiieieeisaieeesaateessannressaannessaannesaaannessaanneesnnns 227
MOV32 RaH, XARn —Move the Contents of XARn to a 32-bit Floating-Point Registercccevviiiiiiiiiiieniinnnns 228
MOV32 RaH, XT —Move the Contents of XT to a 32-bit Floating-Point Registercccvviiiiiiiiiiiiiiiiiiiiiieens 229
MOV32 STF, mem32 —Move 32-bit Value from Memory to the STF RegiStercvviiiiiiiiiiii i riaee e 230
MOV32 XARn, RaH —Move 32-bit Floating-Point Register Contents t0 XARNcvviiiiiiiiiiiiininianaeeas 231
MOV32 XT, RaH —Move 32-bit Floating-Point Register CONteNts 10 XT ...uuiiuriinerineinierinrisisesinrnnre s 232
MOVD32 RaH, mem32 —Move 32-bit Value from Memory with Data COPY ...uveivueirieriinsiinriiieerisisiesinrianeeas 233
MOVF32 RaH, #32F —Load the 32-hits of a 32-bit Floating-Point REQISIErviiieieiiiiiiiiiie i raieeerannneees 234
MOVI32 RaH, #32FHex —Load the 32-bits of a 32-bit Floating-Point Register with the immediatecoutes 235
MOVIZ RaH, #16FHiHex —Load the Upper 16-bits of a 32-bit Floating-Point Registerccovviiiiiiiiiiiiiniinnens 236
MOVIZF32 RaH, #16FHi —Load the Upper 16-bits of a 32-bit Floating-Point Registercccoviiiiiiiiiiiiiiiinesns 237
MOVSTO FLAG —Load Selected STF FIAgs iNTO STO .uuuuueiruurirnneineinnesassissssisssasssisssanesassiasssinssasssnn 238
MOVXI RaH, #16FLoHex —Move Immediate to the Low 16-bits of a Floating-Point Registerccvvvvviiiiiineinnnnn. 239
MPYF32 RaH, RbH, RcH —32-bit Floating-Point MURIPIYeeeiiii i cs e s e e s erinr e s s nnnn e e snanneeanns 240
MPYF32 RaH, #16FHi, RbH —32-bit Floating-Point MUILIPIYiveeeeiiii i 241
MPYF32 RaH, RbH, #16FHi —32-bit Floating-Point MUIIPLY ... e e 243
MPYF32 RaH, RbH, RcH ||ADDF32 RdH, ReH, RfH —32-bit Floating-Point Multiply with Parallel Add.................... 245
MPYF32 RdH, ReH, RfH |[MOV32 RaH, mem32 —32-bit Floating-Point Multiply with Parallel Move...................... 247
MPYF32 RdH, ReH, RfH |[MOV32 mem32, RaH —32-bit Floating-Point Multiply with Parallel Move...................... 249
MPYF32 RaH, RbH, RcH ||SUBF32 RdH, ReH, RfH —32-bit Floating-Point Multiply with Parallel Subtract.............. 250
NEGF32 RaH, RbH{, CNDF} —Conditional Negationcu.ueeiiiuiesiiiineiiissssriinsssssasssssannssssainssssannssssnnns 251
POP RB —Pop the RB Register from the StACKueiiiiiiiiiiii i i s aaar s s rnr e rranns 252
PUSH RB —Push the RB Register ont0o the STaCKoiiiiiiii i i e s r e e ranns 254
RESTORE —Restore the Floating-PoiNt REGISIEIS +...uuiiusiiiiiiie i raees 255
RPTB label, 10c16 —Repeat A BIOCK Of COUE . .vuuiuiteiiiiieesieeessaaeeseaane e ssaaane s saaneessannnessaannesssannnessnnnes 257
RPTB label, #RC —Repeat @ BlOCK Of COO .. uutiiiiiieiiiieisiatesssite s sasne e saannessasnnessaanneessannsesssnnnnssennnes 259
SAVE FLAG, VALUE —Save Register Set to Shadow Registers and Execute SETFLGcccevviiiiiieiiiiiineiinnnns 261
SETFLG FLAG, VALUE —Set or clear selected floating-point status flagsvvvieiiiiiiiiiiiiiiii e 263
SUBF32 RaH, RbH, RcH —32-bit Floating-Point SUBIrACON ... e aee e 264
SUBF32 RaH, #16FHi, RbH —32-bit Floating Point SUDIractioncviiiiiiii i e e e eaeee e 265
SUBF32 RdH, ReH, RfH |[MOV32 RaH, mem32 —32-bit Floating-Point Subtraction with Parallel Move 266
SUBF32 RdH, ReH, RfH [MOV32 mem32, RaH —32-hit Floating-Point Subtraction with Parallel Move 268
SWAPF RaH, RbH{, CNDF} —CoNditioNal SWaP ... uuuueteiiieiniieesisiiansisnisesssssssssansssssannnssssansssssannnsssnns 270
TESTTF CNDF —Test STF Register Flag Conditioneeiiiieeiiiiieiiiiss i s istsssaiss s ssasssssannsssaannness 271
UI16TOF32 RaH, mem16 —Convert unsigned 16-bit integer to 32-bit floating-point value..........c.cooeeviiiiiiiiiinnsn. 272
UI16TOF32 RaH, RbH —Convert unsigned 16-bit integer to 32-bit floating-point value..........ccvviiiiiiiiiiniinnenn, 273
UI32TOF32 RaH, mem32 —Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value..........ccovevviiiiiiiniinnnn, 274
UI32TOF32 RaH, RbH —Convert Unsigned 32-bit Integer to 32-bit Floating-Point Valueccovviiiivviiiieeniinnnnn. 275
ZERO RaH —Zero the Floating-Point Register RAHeiiiiiiiiiiiiiiii i s s s anr s snannes 276
ZEROA —Zero All Floating-Point RegISIEIS. ..ttt st st ess e saaan e s ss s s saans s s aaannessaannnesss 277
MOV32 RaL, mem32{, CNDF} —Conditional 32-Dit MOV,ciiiiiiiiiiiii it rrare e s s ananneanns 278
MOVDD32 RaL,mem32 —Move From Register To Memory 32-bit MOVEovuviiiiiiiiiiiiiini s 279
MOVDD32 RaH,mem32 —Move From Register To Memory 32-bit MOVE......ocvviiiiiiiiiiiiiiiinii i 280
MOV32 mem32,RaL —Move From Memory to Register 32-bit MOVEceiiiiiiii i s reae e s s nneeeas 281
MOVIX RaL ,#161 —Load the Upper 16-bits of a 32-bit Floating-Point REgIStEriviiiiiiiiiiiiiiiiiirii e 282
MOVXI RaL, #161 —Load the Lower 16-bits of a 32-bit Floating-Point RegiStercceviiiiiiiiiiiiiiiiiriineens 283
MPYF64 Rd,Re,Rf |[MOV32 RaL,mem32 —64-bit Floating-Point Multiply with Parallel Moveccccoivviiinnns. 284
MPYF64 Rd,Re,Rf |[MOV32 mem32,RaL —64-bit Floating-Point Multiply with Parallel Moveccovviiiiiiiinnnn, 285

166 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com Floating Point Unit (FPU64) Instruction Set
Table 2-5. Summary of Instructions (continued)
ADDF64 Rd,Re,Rf || MOV32 RaL, mem32 —64-bit Floating-Point Addition with Parallel Movecc.ccvieiiiiinnnn. 286
ADDF64 Rd,Re,Rf [MOV32 mem32, RaL —64-bit Floating-Point Addition with Parallel Move.........cccoviiievviiinnnn.. 287
SUBF64 Rd,Re,Rf [MOV32 RalL,mem32 —64-bit Floating-Point Subtraction with Parallel Move..............cceeevvnnn 288
SUBF64 Rd,Re,Rf [MOV32 mem32, RaL —64-bit Floating-Point Subtraction with Parallel Movecccevvinnn 289

MACF64 R3,R2,Rd,Re,Rf [MOV32 RaL, mem32 —64-bit Floating-Point Multiply and Accumulate with Parallel Move 290
MACF64 R7,R6,Rd,Re,Rf [MOV32 RalL, mem32 —64-bit Floating-Point Multiply and Accumulate with Parallel Move 291

MPYF64 Rd,Re,Rf |[MOV32 RaH,mem32 —64-bit Floating-Point Multiply with Parallel Moveccovviviiiiiinnn, 292
MPYF64 Rd,Re,Rf |[MOV32 mem32, RaH —64-bit Floating-Point Multiply with Parallel Moveccvoivviiiiinnnn, 293
ADDF64 Rd,Re,Rf [MOV32 RaH,mem32 —64-hit Floating-Point Addition with Parallel Movecccoviiievviiinnenn. 294
ADDF64 Rd,Re,Rf [MOV32 mem32, RaH —64-bit Floating-Point Addition with Parallel Movec.cciiiviiinannn. 295
SUBF64 Rd,Re,Rf [MOV32 RaH,mem32 —64-bit Floating-Point Subtraction with Parallel Move..............cccvvinnn 296
SUBF64 Rd,Re,Rf [MOV32 mem32, RaH —64-bit Floating-Point Subtraction with Parallel Move..............ccevinnn 297

MACF64 R3,R2,Rd,Re,Rf [MOV32 RaH, mem32 —64-bit Floating-Point Multiply and Accumulate with Parallel Move 298
MACF64 R7,R6,Rd,Re,Rf [MOV32 RaH, mem32 —64-hit Floating-Point Multiply and Accumulate with Parallel Move 299

MPYF64 Ra,Rb,Rc ||ADDF64 Rd,Re,Rf —64-hit Floating-Point Multiply with Parallel Addition..........c.vcvveevviinnnn.. 300
MPYF64 Ra,Rb,Rc ||SUBF64 Rd,Re,Rf —64-bit Floating-Point Multiply with Parallel Subtractionccevviianns 301
MPYF64 Ra,Rb,Rc —64-bit Floating-Point MUIIPIYcuiei i rae e nraaas 302
ADDF64 Ra,Rb,Rc —64-bit Floating-Point AdditioNeeeiii it r i r e s s ee s raanna e s aanns 303
SUBF64 Ra,Rb,Rc —64-bit Floating-Point SUBIIACHION ... e r e s r e e rnnneeens 304
MPYF64 Ra,Rb,#16F OR MPYF64 Ra,#16F, Rb —64-bit Floating-Point MUItiplyccceeiiiiiiiiiicii v eeeeens 305
ADDF64 Ra,Rb,#16F OR ADDF64 Ra,#16F, Rb —64-hit Floating-Point Addition........ccevviiiiiiiiiiiiiie e eiaeenas 306
SUBF64 Ra,#16F,Rb —64-bit Floating-Point SUDLraCHONeeeiiiiiiiii i aee e s 307
CMPF64 Ra, Rb —64-bit Floating-Point Compare for Equal, Less Than or Greater Than........cccevvviiiieiiiiinneiinnans 308
CMPF64 Ra,#16F —64-bit Floating-Point Compare for Equal, Less Than or Greater Thancccvvviiiiiiiiineninnnns 309
CMPF64 Ra,#0.0 —64-bit Floating-Point Compare for Equal, Less Than or Greater Thancccvviiiieiiiiiineninnns 310
MAXF64 Ra, Rb —64-hit Floating-Point MaxXimUIMcuiiiresiiieessaessssaeeessaneessannnessaannessaannesssannnersnnnes 311
MAXF64 Ra, Rb |[MOV64 Rc,Rd —64-bit Floating-Point Maximum with Parallel MOVecccvvviiiiiiiiiiineeiiineens 312
MAXF64 Ra, #16F —64-bit Floating-Point MaxXimUIMceeesiiieiiii i sr i ssis s asaar s ssaansesaanes 313
MINF64 Ra, Rb —64-bit Floating-Point MinimMUMouiiei it e s s s s s ss s s saannesannnes 314
MINF64 Ra, Rb |[MOV64 Rc,Rd —64-bit Floating-Point Minimum with Parallel MOVeccciiiiiiiiiiiiiiiiiieens 315
MINF64 Ra, #16F —64-bit Floating-Point MiNIMUM ... e s s s e s sn e e s saanne s sannnnesaannes 316
F64TOI32 RaH,Rb —Convert 64-bit Floating-Point Value to 32-bit INntegerioveiiiiiiiiiiiiiiiii s 317
F64TOUI32 RaH,Rb —Convert 64-bit Floating-Point Value to 32-bit Unsigned INntegeriovevviiiiiieiiiiieereninnens 318
I32TOF64 Ra,mem32 —Convert 32-bit Integer to 64-bit Floating-Point Valuecoiiiiiiiiiiiiiiiicii e 319
I32TOF64 Ra,RbH —Convert 32-bit Integer to 64-bit Floating-Point Valuec.coiiiiiiiiiiiiiiii i reieeeas 320
UI32TOF64 Ra,mem32 —Convert unsigned 32-bit Integer to 64-bit Floating-Point Valuecocovviiiiiiiiiiinnsn. 321
F64TOI64 Ra,Rb —Convert 64-bit Floating-Point Value to 64-bit INtEgervvviiriiiiiiiii s 322
F64TOUI64 Ra,Rb —Convert 64-bit Floating-Point Value to 64-bit unsigned Integerccvvvviiiiiiiiiiiniinnen, 323
164TOF64 Ra,Rb —Convert 64-bit Integer to 64-bit Floating-Point Valueccceviiiiiiiiiiii i cie s ssnneeenas 324
UI64TOF64 Ra,Rb —Convert 64-bit unsigned Integer to 64-bit Floating-Point Valuecocevviiiiiiiiiiiiiinnns 325
164TOF64 Ra,Rb —Convert 64-bit Integer to 64-bit Floating-Point Valuecccoiiiiiiiiiiiiiiii e 326
UI64TOF64 Ra,Rb —Convert 64-bit unsigned Integer to 64-bit Floating-Point Valuecocoviiiiiiiiiiiiiiiiiaesns 327
FRACF64 Ra,Rb —Fractional Portion of a 64-bit Floating-Point Valuecccviiiiiiiiiiiiiiiiii i ernaaneeenas 328
F64TOF32 RaH,Rb —Convert 64-bit Floating-Point Value to 32-bit Floating-Point Valueccovviiiiiiiiiiniinenn, 329
F32TOF64 Ra,RbH —Convert 32-bit Floating-Point Value to 64-bit Floating-Point Valuecccvcvivvvviiiieennnnnnn. 330
F32TOF64 Ra, mem32 —Convert 32-bit Floating-Point Value to 64-bit Floating-Point Valuecccoivvviiinannn. 331
F32DTOF64 Ra, mem32 —Convert 32-bit Floating-Point Value to 64-bit Floating-Point Valuecccocvvvinneen. 332
ABSF64 Ra, Rb —64-bit Floating-Point ADSOIULE ValUE ..o s e e s r e naanes 333
NEGF64 Ra, Rb{, CNDF} —Conditional Negationcveeriurirussiiseinnerissirsssisrisssrisssanesassiasssinssansrnn 334
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 167

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
Floating Point Unit (FPU64) Instruction Set www.ti.com
Table 2-5. Summary of Instructions (continued)
MOV64 Ra, Rb{, CNDF} —Conditional 64-Dit MOVE ..ot i i e s eae e ssan e ssaanr s saann e e sannnesannns 335
EISQRTF64 Ra, Rb —64-bit Floating-Point Square-Root Reciprocal ApproxXimationveveevieeivieirieriiineiinea, 336
EINVF64 Ra, Rb —64-bit Floating-Point Reciprocal APpProXimationc.eevveiseesssssseessesnsessesneesssnneessesnneesens 337
168 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

ABSF32 RaH, RbH — 32-bit Floating-Point Absolute Value

ABSF32 RaH, RbH 32-bit Floating-Point Absolute Value

Operands
RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
Opcode
LSW: 1110 0110 1001 0101
MSW: 0000 0000 0O0bb baaa
Description The absolute value of RbH is loaded into RaH. Only the sign bit of the operand is
modified by the ABSF32 instruction.
if (RbH < 0) {RaH = -RbH}
else {RaH = RbH}
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The STF register flags are modified as follows:
NF = 0;
ZF = 0;
if (RaH[30:23] == 0) ZF = 1;
Pipeline This is a single-cycle instruction.
Example MOVIZF32 R1H, #-2.0 ; R1IH = -2.0 (0xC0O000000)
ABSF32 R1H, R1H ; R1H = 2.0 (0x40000000), ZF = NF = 0
MOVIZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
ABSF32 ROH, ROH ; ROH = 5.0 (0x40A00000), ZF = NF = 0
MOVIZF32 ROH, #0.0 ; ROH = 0.0
ABSF32 R1H, ROH ; RIH=0.0ZF =1, NF=0
See also NEGF32 RaH, RbH{, CNDF}

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU64)

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

169

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

ADDF32 RaH, #16FHi, RoH — 32-bit Floating-Point Addition www.ti.com

ADDF32 RaH, #16FHi, RbH 32-bit Floating-Point Addition

Operands

RaH
#16FHi

RbH

Floating-point destination register (ROH to R7H)

A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.

Floating-point source register (ROH to R7H)

Opcode

Description

Flags

LSW: 1110 1000 1011 1111
MSWz 1111 1111 11bb baaa

Add RbH to the floating-point value represented by the immediate operand. Store the
result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.

Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0Ox3F000000), and -1.5
(OxBFCO00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFCO.

RaH = RbH + #16FHi:0
This instruction can also be written as ADDF32 RaH, RbH, #16FHi.

This instruction modifies the following flags in the STF register:

Flag TF

Zl NI ZF NF LUF LVF

Modified No

No No No No Yes Yes

Pipeline

Example

The STF register flags are modified as follows:
 LUF =1 if ADDF32 generates an underflow condition.
* LVF =1 if ADDF32 generates an overflow condition.

This is a 2 pipeline-cycle instruction (2p). That is:

ADDF32 RaH, #16FHi, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

; Add to R1H the value 2.0 in 32-bit floating-point format
ADDF32 ROH, #2.0, R1H ; ROH = 2.0 + R1H
NOP ; Delay for ADDF32 to complete
; <-- ADDF32 completes, ROH updated
NOP ;

; Add to R3H the value -2.5 in 32-bit floating-point format
ADDF32 R2H, #-2.5, R3H ; R2H = -2.5 + R3H
NOP ; Delay for ADDF32 to complete
; <-- ADDF32 completes, R2H updated
NOP ;

; Add to R5H the value Ox3FC00000 (1.5)
ADDF32 R5H, #0x3FCO, R5H ; R5H = 1.5 + R5H
NOP ; Delay for ADDF32 to complete
; <-- ADDF32 completes, R5H updated

170 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

ADDF32 RaH, #16FHi, RoH — 32-bit Floating-Point Addition

NOP

See also ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, RbH, RcH
ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32
ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU64) 171
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

ADDF32 RaH, RbH, #16FHi — 32-bit Floating-Point Addition www.ti.com

ADDF32 RaH, RbH, #16FHi 32-bit Floating-Point Addition

Operands

RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.

Opcode
LSW: 1110 1000 1011 1111
MSW: IILL 1111 11bb baaa

Description Add RbH to the floating-point value represented by the immediate operand. Store the
result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.

Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0Ox3F000000), and -1.5
(OxBFCO00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFCO.

RaH = RbH + #16FHi:0
This instruction can also be written as ADDF32 RaH, #16FHi, RbH.

Flags This instruction modifies the following flags in the STF register:

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
 LUF =1 if ADDF32 generates an underflow condition.
* LVF =1 if ADDF32 generates an overflow condition.

Pipeline This is a 2 pipeline-cycle instruction (2p). That is:

ADDF32 RaH, #16FHi, RbH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example
; Add to R1H the value 2.0 in 32-bit floating-point format
ADDF32 ROH, R1H, #2.0 ; ROH = R1H + 2.0
NOP ; Delay for ADDF32 to complete
; <-- ADDF32 completes, ROH updated
NOP ;
; Add to R3H the value -2.5 in 32-bit floating-point format
ADDF32 R2H, R3H, #-2.5 ; R2H = R3H + (-2.5)
NOP ; Delay for ADDF32 to complete
; <-- ADDF32 completes, R2H updated
NOP ;
; Add to R5H the value Ox3FC00000 (1.5)
ADDF32 R5H, R5H, #0x3FCO ; R5H = R5H + 1.5
NOP ; Delay for ADDF32 to complete
; <-- ADDF32 completes, R5H updated

172 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

ADDF32 RaH, RbH, #16FHi — 32-bit Floating-Point Addition

NOP

See also ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, RbH, RcH
ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32
ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU64) 173
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

ADDF32 RaH, RbH, RcH — 32-bit Floating-Point Addition www.ti.com

ADDF32 RaH, RbH, RcH 32-bit Floating-Point Addition

Operands

RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
RcH Floating-point source register (ROH to R7H)

Opcode
LSW: 1110 0111 0001 0000
MSW: 0000 000c ccbb baaa

Description Add the contents of RcH to the contents of RbH and load the result into RaH.
RaH = RbH + RcH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
 LUF =1 if ADDF32 generates an underflow condition.
 LVF =1 if ADDF32 generates an overflow condition.

Pipeline This is a 2 pipeline-cycle instruction (2p). That is:

ADDF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example Calculate Y = M1*X1 + B1. This example assumes that M1, X1, B1 and Y are all on the
same data page.

MOVW DP, #M1 ; Load the data page
MOV32 ROH,@M1 ; Load ROH with M1
MOV32 R1H,@X1 ; Load R1H with X1
MPYF32 R1H,R1H,ROH ; Multiply M1*X1
|] MOV32 ROH,@B1 ; and in parallel load ROH with Bl
NOP ; <-- MOV32 complete
; <-- MPYF32 complete
ADDF32 R1H,R1H,ROH ; Add M*X1 to Bl and store in R1H
NOP
; <-- ADDF32 complete
Mov32 @Y1,R1H ; Store the result

Calculate Y =A+B

MOVL XAR4, #A
MOV32 ROH, *XAR4 ; Load ROH with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
ADDF32 ROH,R1H,ROH ; Add A + B ROH=ROH+R1H
MOVL XAR4, #Y

; < -- ADDF32 complete
MOV32 *XAR4,ROH ; Store the result

See also ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, #16F, RbH
ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32

174 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com ADDF32 RaH, RbH, RcH — 32-bit Floating-Point Addition
ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 175

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

ADDF32 RdH, ReH, RfH |[MOV32 mem32, RaH — 32-bit Floating-Point Addition with Parallel Move www.ti.com

ADDF32 RdH, ReH, RfH ||[MOV32 mem32, RaH 32-bit Floating-Point Addition with Parallel Move

Operands

RdH
ReH
RfH
mem32
RaH

Floating-point destination register for the ADDF32 (ROH to R7H)
Floating-point source register for the ADDF32 (ROH to R7H)

Floating-point source register for the ADDF32 (ROH to R7H)

pointer to a 32-bit memory location. This will be the destination of the MOV32.
Floating-point source register for the MOV32 (ROH to R7H)

Opcode

Description

Flags

LSW: 1110 0000 0001 fffe
MSW: eedd daaa mem32

Perform an ADDF32 and a MOV32 in parallel. Add RfH to the contents of ReH and store
the result in RdH. In parallel move the contents of RaH to the 32-bit location pointed to
by mem32. mem32 addresses memory using any of the direct or indirect addressing
modes supported by the C28x CPU.

RdH = ReH + RfH,

[mem32] = RaH

This instruction modifies the following flags in the STF register:

Flag TF

Zl NI ZF NF LUF LVF

Modified No

No No No No Yes Yes

Pipeline

Example

The STF register flags are modified as follows:
 LUF =1 if ADDF32 generates an underflow condition.
* LVF =1 if ADDF32 generates an overflow condition.

ADDF32 is a 2 pipeline-cycle instruction (2p) and MOV32 takes a single cycle. That is:

ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|l MOV32 mem32, RaH ; 1 cycle
; <-- MOV32 completes, mem32 updated
NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, RdH updated
NOP

Any instruction in the delay slot must not use RdH as a destination register or use RdH
as a source operand.

ADDF32 R3H, R6H, R4H ; (A) R3H = R6H + R4H and R7H = 13
|| MOV32 R7H, *-SP[2] ;
; <-- R7H vali
SUBF32 R6H, R6H, R4H ; (B) R6H = R6H - R4H
; <-- ADDF32 (A) completes, R3H valid
SUBF32 R3H, R1H, R7H ; (C) R3H = R1H - R7H and store R3H (A)
|| MOV32 *+XAR5[2], R3H ;
; <-- SUBF32 (B) completes, R6H valid
; <-- MOV32 completes, (A) stored
ADDF32 R4H, R7H, R1H ; R4H = D = R7H + R1H and store R6H (B)
|] MOV32 *+XAR5[6], R6H ;
; <-- SUBF32 (C) completes, R3H valid
; <-- MOV32 completes, (B) stored
MOV32 *+XAR5[0], R3H ; store R3H (C)
; <-- MOV32 completes, (C) stored
; <-- ADDF32 (D) completes, R4H valid

MOV32 *+XAR5[4], R4H store R4H (D) ;

176

Floating Point Unit (FPU64) SPRUHS1C-October 2014 —-Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com ADDF32 RdH, ReH, RfH |[MOV32 mem32, RaH — 32-bit Floating-Point Addition with Parallel Move
; <-- MOV32 completes, (D) stored

See also ADDF32 RaH, #16FHi, RbH
ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, RbH, RcH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH
ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32

SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 177

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

ADDF32 RdH, ReH, RfH ||[MOV32 RaH, mem32 — 32-bit Floating-Point Addition with Parallel Move www.ti.com

ADDF32 RdH, ReH, RfH ||[MOV32 RaH, mem32 32-bit Floating-Point Addition with Parallel Move

Operands
RdH Floating-point destination register for the ADDF32 (ROH to R7H).
RdH cannot be the same register as RaH.
ReH Floating-point source register for the ADDF32 (ROH to R7H)
RfH Floating-point source register for the ADDF32 (ROH to R7H)
RaH Floating-point destination register for the MOV32 (ROH to R7H).
RaH cannot be the same register as RdH.
mem32 pointer to a 32-bit memory location. This is the source for the MOV32.
Opcode
LSW: 1110 0011 0001 fffe
MSW: eedd daaa mem32
Description Perform an ADDF32 and a MOV32 operation in parallel. Add RfH to the contents of ReH

Restrictions

and store the result in RdH. In parallel move the contents of the 32-bit location pointed to
by mem32 to RaH. mem32 addresses memory using any of the direct or indirect
addressing modes supported by the C28x CPU.

RdH ReH + RfH,
RaH [mem32]

The destination register for the ADDF32 and the MOV32 must be unique. That is, RaH
and RdH cannot be the same register.

Any instruction in the delay slot must not use RdH as a destination register or use RdH
as a source operand.

Flags This instruction modifies the following flags in the STF register:
Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes
The STF register flags are modified as follows:
 LUF =1 if ADDF32 generates an underflow condition.
 LVF =1 if ADDF32 generates an overflow condition.
The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) { ZF = 1; NF = 0; }
NI = RaH(31);
Zl = 0;
if(RaH(31:0) == 0) ZI = 1;
Pipeline The ADDF32 takes 2 pipeline cycles (2p) and the MOV32 takes a single cycle. That is:
ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 RaH, mem32 ; 1 cycle
; <-- MOV32 completes, RaH updated NOP
; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, RdH updated
NOP
178 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com ADDF32 RdH, ReH, RfH |[MOV32 RaH, mem32 — 32-bit Floating-Point Addition with Parallel Move
Example Calculate Y =A+B - C:
MOVL XAR4, #A
MOV32 ROH, *XAR4 ; Load ROH with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
MOVL XAR4, #C
ADDF32 ROH,R1H,ROH ; Add A + B and in parallel
|1 MOV32 R2H, *XAR4 ; Load R2H with C
; <-- MOV32 complete
MOVL XAR4,#Y
; ADDF32 complete
SUBF32 ROH,ROH,R2H ; Subtract C from (A + B)
NOP ;
<-- SUBF32 completes
MOV32 *XAR4,ROH ; Store the result
See also ADDF32 RaH, #16FHi, RbH
ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, RbH, RcH
ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 179

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

CMPF32 RaH, RbH — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than www.ti.com

CMPF32 RaH, RbH 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands
RaH Floating-point source register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
Opcode
LSW: 1110 0110 1001 0100
MSW: 0000 0000 0Obb baaa
Description Set ZF and NF flags on the result of RaH - RbH. The CMPF32 instruction is performed
as a logical compare operation. This is possible because of the IEEE format offsetting
the exponent. Basically the bigger the binary number, the bigger the floating-point value.
Special cases for inputs:
* Negative zero will be treated as positive zero.
e A denormalized value will be treated as positive zero.
* Not-a-Number (NaN) will be treated as infinity.
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The STF register flags are modified as follows:
IT(RaH == RbH) {ZF=1, NF=0}
If(RaH > RbH) {ZF=0, NF=0}
If(RaH < RbH) {ZF=0, NF=1}
Pipeline This is a single-cycle instruction.
Example
; Behavior of ZF and NF flags for different comparisons
MOVIZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
CMPF32 R1H, ROH ; ZF = 0, NF = 1
CMPF32 ROH, R1H ; ZF = 0, NF = 0
CMPF32 ROH, ROH ; ZF = 1, NF = 0
; Using the result of a compare for loop control
Loop:
MOV32 ROH,*XAR4++ ; Load ROH
MOV32 R1H,*XAR3++ ; Load R1H
CMPF32 R1H, ROH ; Set/clear ZF and NF
MOVSTO ZF, NF ; Copy ZF and NF to STO Z and N bits
BF Loop, GT ; Loop if R1H > ROH
See also CMPF32 RaH, #16FHi
CMPF32 RaH, #0.0
MAXF32 RaH, #16FHi
MAXF32 RaH, RbH
MINF32 RaH, #16FHi
MINF32 RaH, RbH
180 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com CMPF32 RaH, #16FHi — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

CMPF32 RaH, #16FHi 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands

RaH Floating-point source register (ROH to R7H)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.

Opcode
LSW: 1110 1000 0001 OlIl
MSW: TLILL LLIL 1111 laaa

Description Compare the value in RaH with the floating-point value represented by the immediate
operand. Set the ZF and NF flags on (RaH - #16FHi:0).

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0OxBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFCO.

The CMPF32 instruction is performed as a logical compare operation. This is possible
because of the IEEE floating-point format offsets the exponent. Basically the bigger the
binary number, the bigger the floating-point value.

Special cases for inputs:

* Negative zero will be treated as positive zero.

« Denormalized value will be treated as positive zero.

* Not-a-Number (NaN) will be treated as infinity.

Flags This instruction modifies the following flags in the STF register:

Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The STF register flags are modified as follows:
If(RaH == #16FHi:0) {ZF=1, NF=0}
If(RaH > #16FHi:0) {ZF=0, NF=0}
If(RaH < #16FHi:0) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction

Example ; Behavior of ZF and NF flags for different comparisons
MOVIZF32 R1H, #-2.0 ; R1H = -2.0 (0xC0O000000)
MOVIZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
CMPF32 R1H, #-2.2 ; ZF =0, NF=0
CMPF32 ROH, #6.5 ; ZF =0, NF =1
CMPF32 ROH, #5.0 ; ZF =1, NF=0

; Using the result of a compare for loop control

Loop:
MOV32 R1H,*XAR3++ ; Load R1H
CMPF32 R1H, #2.0 ; Set/clear ZF and NF
MOVSTO ZF, NF ; Copy ZF and NF to STO Z and N bits
BF Loop, GT ; Loop if R1H > #2.0

See also CMPF32 RaH, #0.0
CMPF32 RaH, RbH
MAXF32 RaH, #16FHi

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU64) 181

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

CMPF32 RaH, #16FHi — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than www.ti.com

MAXF32 RaH, RbH
MINF32 RaH, #16FHi
MINF32 RaH, RbH

182 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

CMPF32 RaH, #0.0 — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

CMPF32 RaH, #0.0

32-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands
RaH Floating-point source register (ROH to R7H)
#0.0 zero
Opcode LSW: 1110 0101 1010 Oaaa
Description Set the ZF and NF flags on (RaH - #0.0). The CMPF32 instruction is performed as a
logical compare operation. This is possible because of the IEEE floating-point format
offsets the exponent. Basically the bigger the binary number, the bigger the floating-point
value.
Special cases for inputs:
* Negative zero will be treated as positive zero.
» Denormalized value will be treated as positive zero.
* Not-a-Number (NaN) will be treated as infinity.
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The STF register flags are modified as follows:
If(RaH == #0.0) {ZF=1, NF=0}
If(RaH > #0.0) {ZF=0, NF=0}
If(RaH < #0.0) {ZF=0, NF=1}
Pipeline This is a single-cycle instruction.
Example ; Behavior of ZF and NF flags for different comparisons
MOVIZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOVIZF32 R1H, #-2.0 ; R1H = -2.0 (OxC0000000)
MOVIZF32 R2H, #0.0 ; R2H = 0.0 (0x00000000)
CMPF32 ROH, #0.0 :ZF =0, NF=0
CMPF32 R1H, #0.0 ; ZF =0, NF=1
CMPF32 R2H, #0.0 ; ZF =1, NF=0
; Using the result of a compare for loop control
Loop:
MOV32 R1H,*XAR3++ ; Load R1H
CMPF32 R1H, #0.0 ; Set/clear ZF and NF
MOVSTO ZF, NF ; Copy ZF and NF to STO Z and N bits
BF Loop, GT ; Loop if R1H > #0.0
See also CMPF32 RaH, #0.0
CMPF32 RaH, #16FHi
MAXF32 RaH, #16FHi
MAXF32 RaH, RbH
MINF32 RaH, #16FHi
MINF32 RaH, RbH
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 183

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

EINVF32 RaH, RbH — 32-bit Floating-Point Reciprocal Approximation www.ti.com

EINVF32 RaH, RbH 32-bit Floating-Point Reciprocal Approximation

Operands
RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
Opcode
LSW: 1110 0110 1001 0011
MSW: 0000 0000 0O0bb baaa
Description This operation generates an estimate of 1/X in 32-bit floating-point format accurate to
approximately 8 bits. This value can be used in a Newton-Raphson algorithm to get a
more accurate answer. That is:
Ye = Estimate(1/X);
Ye = Ye*(2.0 - Ye*X)
Ye = Ye*(2.0 - Ye*X)
After two iterations of the Newton-Raphson algorithm, you will get an exact answer
accurate to the 32-bit floating-point format. On each iteration the mantissa bit accuracy
approximately doubles. The EINVF32 operation will not generate a negative zero,
DeNorm or NaN value.
RaH = Estimate of 1/RbH
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
» LUF =1 if EINVF32 generates an underflow condition.
* LVF =1 if EINVF32 generates an overflow condition.
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
EINVF32 RaH, RbH ; 2p
NOP ; 1 cycle delay or non-conflicting instruction
; <-- EINVF32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
184 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

EINVF32 RaH, RbH — 32-bit Floating-Point Reciprocal Approximation

Example Calculate Y = A/B. A fast division routine similar to that shown below can be found in the
C28x FPU Fast RTS Library (SPRC664).

MOVL XAR4, #A
MOV32 ROH, *XAR4
MOVL XAR4, #B
MOV32 R1H, *XAR4

LCR DIV

MOV32 *XAR4, ROH

DIV:
EINVF32 R2H, R1H
CMPF32 ROH, #0.0
MPYF32 R3H, R2H, R1H
NOP
SUBF32 R3H, #2.0, R3H
NOP
MPYF32 R2H, R2H, R3H
NOP
MPYF32 R3H, R2H, R1H
CMPF32 R1H, #0.0
SUBF32 R3H, #2.0, R3H
NEGF32 ROH, ROH, EQ
MPYF32 R2H, R2H, R3H
NOP
MPYF32 ROH, ROH, R2H
LRETR

See also EISQRTF32 RaH, RbH

Load ROH with A

Load R1H with

w

Calculate ROH = ROH / R1H

R2H =
Check
R3H =

; R3H =

R2H =

R3H =
Check
R3H =
Fixes
R2H =

ROH =

Ye = Estimate(1/B)
ifFA==0

Ye*B

2.0 - Ye*B

Ye = Ye*(2.0 - Ye*B)

Ye*B
ifB==0.0
2.0 - Ye*B

sign for A/0.0
Ye = Ye*(2.0 - Ye*B)

Y = A*Ye = A/B

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Floating Point Unit (FPU64)

Copyright © 2014-2019, Texas Instruments Incorporated

185

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://focus.ti.com/docs/toolsw/folders/print/sprc664.html

13 TEXAS
INSTRUMENTS

EISQRTF32 RaH, RbH — 32-bit Floating-Point Square-Root Reciprocal Approximation www.ti.com

EISQRTF32 RaH, RbH 32-bit Floating-Point Square-Root Reciprocal Approximation

Operands
RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
Opcode
LSW: 1110 0110 1001 0010
MSW: 0000 0000 0O0bb baaa
Description This operation generates an estimate of 1/sqrt(X) in 32-bit floating-point format accurate
to approximately 8 bits. This value can be used in a Newton-Raphson algorithm to get a
more accurate answer. That is:
Ye = Estimate(1/sqrt(X));
Ye = Ye*(1.5 - Ye*Ye*X/2.0)
Ye = Ye*(1.5 - Ye*Ye*X/2.0)
After 2 iterations of the Newton-Raphson algorithm, you will get an exact answer
accurate to the 32-bit floating-point format. On each iteration the mantissa bit accuracy
approximately doubles. The EISQRTF32 operation will not generate a negative zero,
DeNorm or NaN value.
RaH = Estimate of 1/sqrt (RbH)
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
 LUF =1if EISQRTF32 generates an underflow condition.
 LVF =1 if EISQRTF32 generates an overflow condition.
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
EINVF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- EISQRTF32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
186 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

EISQRTF32 RaH, RbH — 32-bit Floating-Point Square-Root Reciprocal Approximation

Example Calculate the square root of X. A square-root routine similar to that shown below can be
found in the C28x FPU Fast RTS Library (SPRC664).

;Y = sgre(X)

; Ye
; Ye
; Ye
Py =
_sqrt:

Estimate(1/sqrt(X));
Ye*(1.5 - Ye*Ye*X*0.5)
Ye*(1.5 - Ye*Ye*X*0.5)

X*Ye

EISQRTF32 R1H, ROH

MPYF32 R2H, ROH, #0.5
MPYF32 R3H, R1H, R1H
NOP
MPYF32 R3H, R3H, R2H
NOP
SUBF32 R3H, #1.5, R3H
NOP
MPYF32 R1H, R1H, R3H
NOP
MPYF32 R3H, R1H, R2H
NOP
MPYF32 R3H, R1H, R3H
NOP
SUBF32 R3H, #1.5, R3H
CMPF32 ROH, #0.0
MPYF32 R1H, R1H, R3H
NOP
MOV32 R1H, ROH, EQ
MPYF32 ROH, ROH, R1H
LRETR

See also EINVF32 RaH, RbH

ROH = X on entry

R1H = Ye = Estimate(1/sqrt(X))

R2H = X*0.5
R3H = Ye*Ye

R3H = Ye*Ye*X*0.5

; RBH = 1.5 - Ye*Ye*X*0.5

R2H = Ye = Ye*(1.5 - Ye*Ye*X*0.5)

R3H = Ye*X*0.5
R3H = Ye*Ye*X*0.5

R3H = 1.5 - Ye*Ye*X*0.5
Check if X == 0

R2H = Ye = Ye*(1.5 - Ye*Ye*X*0.5)

If X is zero, change the Ye estimate to O

ROH = Y = X*Ye = sqrt(X)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

187

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://focus.ti.com/docs/toolsw/folders/print/sprc664.html

I

F32TOI16 RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Integer

TEXAS
INSTRUMENTS

www.ti.com

F32TOI16 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Integer

Operands
RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1000 1100
MSW: 0000 0000 OObb baaa
Description Convert a 32-hit floating point value in RbH to a 16-bit integer and truncate. The result
will be stored in RaH.
RaH(15:0) = F32TO116(RbH)
RaH(31:16) = sign extension of RaH(15)
Flags This instruction does not affect any flags:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TO116 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- F32T0I116 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVIZF32 ROH, #5.0 ; ROH = 5.0 (Ox40A00000)
F32TO116 R1H, ROH ; R1H(15:0) = F32TOI116(ROH)
; R1H(31:16) = Sign extension of R1H(15)
MOVIZF32 R2H, #-5.0 ; R2H = -5.0 (OxCOA00000)
; <-- F32T0116 complete, R1H(15:0) = 5 (0x0005)
: R1H(31:16) = 0 (0x0000)
F32TO116 R3H, R2H ; R3H(15:0) = F32TO116(R2H)
; R3H(31:16) = Sign extension of R3H(15)
NOP ; 1 Cycle delay for F32T0I116 to complete
; <-- F32T0116 complete, R3H(15:0) = -5 (OxFFFB)
; R3H(31:16) = (OXFFFF)
See also F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
116 TOF32 RaH, RbH
I16TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH
188 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

F32TOI16R RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Integer and Round

F32TOI16R RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Integer and Round

Operands
RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1000 1100
MSW: 1000 0000 OObb baaa
Description Convert the 32-bit floating point value in RbH to a 16-bit integer and round to the nearest
even value. The result is stored in RaH.
RaH(15:0) = F32Tol16round(RbH)
RaH(31:16) = sign extension of RaH(15)
Flags This instruction does not affect any flags:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TO116R RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- F32TOI16R completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example
MOVIZ ROH, #O0x3FD9 ; ROH [31:16] = Ox3FD9
MOVX1 ROH, #0x999A ; ROH [15:0] = Ox999A
; ROH = 1.7 (Ox3FD9999A)
F32TOI16R R1H, ROH ; R1H(15:0) = F32TOl16round (ROH)
; R1H(31:16) = Sign extension of R1H(15)
MOVF32 R2H, #-1.7 ; R2H = -1.7 (OxBFD9999A)
; <- F32TOI116R complete, R1H(15:0) = 2 (0x0002)
: R1H(31:16) = 0 (0x0000)
F32TOI16R R3H, R2H ; R3H(15:0) = F32TOl16round (R2H)
; R3H(31:16) = Sign extension of R2H(15)
NOP ; 1 Cycle delay for F32TOI16R to complete
; <-- F32TOI16R complete, R1H(15:0) = -2 (OxFFFE)
; R1H(31:16) = (OXFFFF)
See also F32TOI16 RaH, RbH

F32TOUI16 RaH, RbH

F32TOUI16R RaH, RbH

[16TOF32 RaH, RbH

116 TOF32 RaH, mem16
UI16TOF32 RaH, mem16

UI16TOF32 RaH, RbH

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Floating Point Unit (FPU64)

Copyright © 2014-2019, Texas Instruments Incorporated

189

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

F32TOI32 RaH, RbH — Convert 32-bit Floating-Point Value to 32-bit Integer

I

TEXAS
INSTRUMENTS

www.ti.com

F32TOI32 RaH, RbH Convert 32-bit Floating-Point Value to 32-bit Integer

Operands
RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1000 1000
MSW: 0000 0000 OObb baaa
Description Convert the 32-bit floating-point value in RbH to a 32-bit integer value and truncate.
Store the result in RaH.
RaH = F32TOI132(RbH)
Flags This instruction does not affect any flags:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32T0132 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- F32T0132 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example
MOVF32 R2H, #11204005.0 ; R2H = 11204005.0 (Ox4B2AF5A5)
F32T0132 R3H, R2H ; R3H = F32T0132 (R2H)
MOVF32 R4H, #-11204005.0 ; R4H = -11204005.0 (OxCB2AF5A5)
; <-- F32T0132 complete,
; R3H = 11204005 (OxO00AAF5A5)
F32TO132 R5H, R4H ; R5H = F32T0132 (R4H)
NOP ; 1 Cycle delay for F32TOI132 to complete
; <-- F32T0132 complete,
; R5H = -11204005 (OxFF550A5B)
See also F32TOUI32 RaH, RbH

I32TOF32 RaH, RbH

I32TOF32 RaH, mem32
UI32TOF32 RaH, RbH
UI32TOF32 RaH, mem32

190 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

F32TOUI16 RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

F32TOUI16 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

Operands
RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1000 1110
MSW: 0000 0000 0Obb baaa
Description Convert the 32-bit floating point value in RbH to an unsigned 16-bit integer value and
truncate to zero. The result will be stored in RaH. To instead round the integer to the
nearest even value use the F32TOUI16R instruction. The instruction will saturate the
float to what can fit in 16bit integer and then convert to 16bit. For example 300000 will
be saturated to 65535.
RaH(15:0) = F32ToUI16(RbH) RaH(31:16) = 0x0000
Flags This instruction does not affect any flags:
Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TOU116 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- F32TOUI16 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example
MOVIZF32 R4H, #9.0 ; R4H = 9.0 (0x41100000)
F32TOUI16 R5H, R4H ; R5H (15:0) = F32T0OUI16 (R4H)
; R5H (31:16) = 0x0000
MOVIZF32 R6H, #-9.0 ; RBH = -9.0 (0xC1100000)
; <-- F32TOUI16 complete, R5H (15:0) = 9.0 (0x0009)
; R5H (31:16) = 0.0 (0x0000)
F32TOU116 R7H, R6H ; R7H (15:0) = F32T0OUI16 (R6H)
; R7H (31:16) = 0x0000
NOP ; 1 Cycle delay for F32TOUI16 to complete
; <-- F32TOUI16 complete, R7H (15:0) = 0.0 (0x0000)
; R7H (31:16) = 0.0 (0x0000)
See also F32TOI16 RaH, RbH

F32TOUI16R RaH, RbH
F32TOUI16R RaH, RbH
[16TOF32 RaH, RbH
[16TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64) 191

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

F32TOUI16R RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round

13 TEXAS
INSTRUMENTS

www.ti.com

F32TOUI16R RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round

Operands
RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1000 1110
MSW: 1000 0000 00bb baaa
Description Convert the 32-bit floating-point value in RbH to an unsigned 16-bit integer and round to
the closest even value. The result will be stored in RaH. To instead truncate the
converted value, use the F32TOUI16 instruction. The instruction will saturate the float to
what can fit in 16bit integer and then convert to 16bit. For example 300000 will be
saturated to 65535.
RaH(15:0) = F32ToUl16round(RbH)
RaH(31:16) = 0x0000
Flags This instruction does not affect any flags:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline

Example

See also

This is a 2 pipeline cycle (2p) instruction. That is:

F32TOUI16R RaH, RbH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- F32TOUI16R completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

MOVIZ R5H, #0x412C ; R5H
MOVXI R5H, #0xCCCD ; R5H = OxCCCD
; R5H = 10.8 (0x412CCCCD)
F32TOUI16R R6H, R5H ; R6H (15:0) = F32TOUI16round (R5H)
; R6H (31:16) = 0x0000
MOVF32 R7H, #-10.8 ; R7H = -10.8 (0x0xC12CCCCD)
; <-- F32TOUI16R complete,
; R6H (15:0) = 11.0 (Ox000B)
; R6H (31:16) = 0.0 (0x0000)
F32TOUI16R ROH, R7H ; ROH (15:0) = F32TOUl1l6round (R7H)
; ROH (31:16) = 0x0000
NOP ; 1 Cycle delay for F32TOUI16R to complete
; <-- F32TOUI16R complete,
; ROH (15:0) = 0.0 (0x0000)
; ROH (31:16) = 0.0 (0x0000)

0x412C

F32TOI16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
[16TOF32 RaH, RbH
[16TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

192 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

F32TOUI32 RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

F32TOUI32 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

Operands
RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1000 1010
MSW: 0000 0000 00bb baaa
Description Convert the 32-bit floating-point value in RbH to an unsigned 32-bit integer and store the
result in RaH.
RaH = F32ToU132(RbH)
Flags This instruction does not affect any flags:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TOUI32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- F32TOUI32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVIZF32 R6H, #12.5 ; R6H = 12.5 (0x41480000)
F32TOUI32 R7H, R6H ; R7H = F32TOUI32 (R6H)
MOVIZF32 R1H, #-6.5 ; R1H = -6.5 (OxCOD00000)
; <-- F32TOUI32 complete, R7H = 12.0 (0x0000000C)
F32TOUI32 R2H, R1IH ; R2H = F32TOUI132 (R1H)
NOP ; 1 Cycle delay for F32TOUI32 to complete
; <-- F32T0OUI32 complete, R2H = 0.0 (0x00000000)
See also F32T0OI32 RaH, RbH

I32TOF32 RaH, RbH
I32TOF32 RaH, mem32
UI32TOF32 RaH, RbH
UI32TOF32 RaH, mem32

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU64) 193

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

FRACF32 RaH, RbH — Fractional Portion of a 32-bit Floating-Point Value

13 TEXAS
INSTRUMENTS

www.ti.com

FRACF32 RaH, RbH Fractional Portion of a 32-bit Floating-Point Value

Operands
RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1111 0001
MSW: 0000 0000 OObb baaa
Description Returns in RaH the fractional portion of the 32-bit floating-point value in RbH
Flags This instruction does not affect any flags:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
FRACF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- FRACF32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVIZF32 R2H, #19.625 ; R2H = 19.625 (0x419D0000)
FRACF32 R3H, R2H ; R3H = FRACF32 (R2H)
NOP ; 1 Cycle delay for FRACF32 to complete
; <—- FRACF32 complete, R3H = 0.625 (0x3F200000)
See also

194 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019

Copyright © 2014-2019, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com 116 TOF32 RaH, RbH — Convert 16-bit Integer to 32-bit Floating-Point Value

116 TOF32 RaH, RbH Convert 16-bit Integer to 32-bit Floating-Point Value

Operands

RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)

Opcode LSW: 1110 0110 1000 1101
MSW: 0000 0000 00bb baaa

Description Convert the 16-bit signed integer in RbH to a 32-bit floating point value and store the
result in RaH.

RaH = 116ToF32 RbH

Flags This instruction does not affect any flags:

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

116TOF32 RaH, RbH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- 116TOF32 completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVIZ ROH, #0x0000 ; ROH[31:16] = 0.0 (0x0000)
MOVXI ROH, #0x0004 ; ROH[15:0] = 4.0 (0x0004)
116TOF32 R1H, ROH ; R1H = 116TOF32 (ROH)
MOVIZ R2H, #0x0000 ; R2H[31:16] = 0.0 (0x0000)
; <--116TOF32 complete, R1H = 4.0 (0x40800000)
MOVX1 R2H, #OXFFFC ; R2H[15:0] = -
4.0 (OXFFFC) 116TOF32 R3H, R2H ; R3H = 116TOF32 (R2H)
NOP ; 1 Cycle delay for 116TOF32 to complete
; <-- 116TOF32 complete, R3H = -4.0 (0OxC0800000)

See also F32TOIl16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
116 TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU64) 195

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

116 TOF32 RaH, mem16 — Convert 16-bit Integer to 32-bit Floating-Point Value

I

TEXAS
INSTRUMENTS

www.ti.com

I16TOF32 RaH, mem16 Convert 16-bit Integer to 32-bit Floating-Point Value

Operands

RaH
mem316

Floating-point destination register (ROH to R7H)
16-bit source memory location to be converted

Opcode

Description

Flags

LSW: 1110 0010 1100 1000
MSW: 0000 Oaaa meml6

Convert the 16-bit signed integer indicated by the mem16 pointer to a 32-bit floating-

point value and store the result in RaH.
116ToF32[mem16]

RaH =

This instruction does not affect any flags:

Flag TF

Zl

NI

ZF

NF

LUF

LVF

Modified No

No

No

No

No

No

No

Pipeline

Example

See also

This is a 2 pipeline cycle (2p) instruction. That is:

116TOF32 RaH, meml6 ; 2 pipeline cycles (2p)
; 1 cycle delay or non-conflicting instruction
; <-- 116TOF32 completes, RaH updated

NOP

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

MOVW DP, #0x0280 ;

MOV @0, #0x0004

116TOF32 ROH, @0 ;

MOV @1, #OXFFFC

116TOF32 R1H, @1
NOP

; R1H =

DP = 0x0280

: [0x00A000] = 4.0 (0x0004)

ROH = 116TOF32 [0x00A000]

; [0x00A001] = -4.0 (OXFFFC)

; <--116TOF32 complete, ROH = 4.0 (0x40800000)
116TOF32 [0x00A001]

1 Cycle delay for 116TOF32 to complete

F32TOI16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
[16TOF32 RaH, RbH
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

; <-- 116TOF32 complete, R1H

-4.0 (0xC0800000)

196

Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

I32TOF32 RaH, mem32 — Convert 32-bit Integer to 32-bit Floating-Point Value

1I32TOF32 RaH, mem32

Convert 32-bit Integer to 32-bit Floating-Point Value

Operands
RaH Floating-point destination register (ROH to R7H)
mema32 32-bit source for the MOV32 operation. mem32 means that the operation can only address memory
using any of the direct or indirect addressing modes supported by the C28x CPU
Opcode LSW: 1110 0010 1000 1000
MSW: 0000 Oaaa mem32
Description Convert the 32-bit signed integer indicated by the mem32 pointer to a 32-bit floating
point value and store the result in RaH.
RaH = 132ToF32[mem32]
Flags This instruction does not affect any flags:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
132TOF32 RaH, mem32 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- 132TOF32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example MOVW DP, #0x0280 ; DP = 0x0280
MOV @0, #0x1111 ; [Ox00A000] = 4369 (0x1111)
MOV @1, #0x1111 ; [OxO0A001] = 4369 (0x1111)
; Value of the 32 bit signed integer present in
; OxO00A001 and OxO00AO000 is +286331153 (0x11111111)
132TOF32 R1H, @0 ; R1H = I132TOF32 (0x11111111)
NOP ; 1 Cycle delay for 132TOF32 to complete
; <-- I132TOF32 complete, R1H = 286331153 (0x4D888888)
See also F32TOI32 RaH, RbH

F32TOUI32 RaH, RbH
I32TOF32 RaH, RbH
UI32TOF32 RaH, RbH
UI32TOF32 RaH, mem32

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU64) 197

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

I32TOF32 RaH, RbH — Convert 32-bit Integer to 32-bit Floating-Point Value

I

TEXAS
INSTRUMENTS

www.ti.com

I32TOF32 RaH, RbH Convert 32-bit Integer to 32-bit Floating-Point Value

Operands

RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)

Opcode LSW: 1110 0110 1000 1001
MSW: 0000 0000 00bb baaa

Description Convert the signed 32-bit integer in RbH to a 32-bit floating-point value and store the

result in RaH.
RaH = 132ToF32(RbH)

Flags This instruction does not affect any flags:

Flag TF Zl NI ZF NF LUF

LVF

Modified No No No No No No

No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

132TOF32 RaH, RbH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- 132TOF32 completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH

as a source operand.

Example MOVIZ R2H, #0x1111 ; R2H[31:16] = 4369 (0x1111)
MOVXI R2H, #0x1111 ; R2H[15:0] = 4369 (0x1111)
; Value of the 32 bit signed integer present
; In R2H is +286331153 (0x11111111)
132TOF32 R3H, R2H ; R3H = 132TOF32 (R2H)
NOP ; 1 Cycle delay for 132TOF32 to complete

; <-- I32TOF32 complete, R3H = 286331153 (0x4D888888)

See also F32T0OI32 RaH, RbH
F32TOUI32 RaH, RbH
I32TOF32 RaH, mem32
UI32TOF32 RaH, RbH
UI32TOF32 RaH, mem32

198 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MACF32 R3H, R2H, RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add

MACF32 R3H, R2H, RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add

Operands This instruction is an alias for the parallel multiply and add instruction. The operands are
translated by the assembler such that the instruction becomes:

MPYF32 RdH, ReH, RfH
|| ADDF32 R3H, R3H, R2H

R3H floating-point destination and source register for the ADDF32
R2H Floating-point source register for the ADDF32 operation (ROH to R7H)
RdH Floating-point destination register for MPYF32 operation (ROH to R7H)
RdH cannot be R3H
ReH Floating-point source register for MPYF32 operation (ROH to R7H)
RfH Floating-point source register for MPYF32 operation (ROH to R7H)
Opcode LSW: 1110 0111 0100 OOff
MSW: feee dddc ccbb baaa
Description This instruction is an alias for the parallel multiply and add, MACF32 || ADDF32,
instruction.
RdH = ReH * RfH
R3H = R3H + R2H
Restrictions The destination register for the MPYF32 and the ADDF32 must be unique. That is, RdH
cannot be R3H.
Flags This instruction modifies the following flags in the STF register:.
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
e LUF =1if MPYF32 or ADDF32 generates an underflow condition.
e LVF=1if MPYF32 or ADDF32 generates an overflow condition.

Pipeline Both MPYF32 and ADDF32 take 2 pipeline cycles (2p) That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|1 ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32, ADDF32 complete, RaH, RdH updated
NOP

Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU64) 199

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MACF32 R3H, R2H, RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add

13 TEXAS
INSTRUMENTS

www.ti.com

Example ;
; 1st multiply: A = X0
; 2nd multiply: B = X1
; 3rd multiply: C = X2
; 4th multiply: D = X3
; 5th multiply: E = X3

Result = A+ B + C +

MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MPYF32 R2H, ROH, R1H
] MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MPYF32 R3H, ROH, R1H
1 MOV32 ROH, *XAR4++
MOV32 R1H, *XARG++

MACF32 R3H, R2H, R2H, ROH, R1H

] MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MACF32 R3H, R2H, R2H, ROH, R1H

|| MOV32 ROH, *XAR4
MOV32 R1H, *XAR5

; The next MACF32 is an alias for

: MPYF32 || ADDF32

MACF32 R3H, R2H, R2H, ROH, R1H

NOP

ADDF32 R3H, R3H, R2H
NOP
MOV32 @Result, R3H

* YO
* Y1l
* Y2
* Y3
* Y3

D +

Perform 5 multiply and accumulate operations:

ROH = XO
R1H = YO
R2H = A = X0 * YO

In parallel ROH = X1

R1H = Y1
R3H = B = X1 * Y1
In parallel ROH = X2

R1H = Y2
R3H = A + B
R2H = C = X2 * Y2

In parallel ROH = X3

R1H = Y3

R3H = (A+B) +C
R2H = D = X3 * Y3

In parallel ROH = X4

; RIH = Y4

R2H = E = X4 * Y4
in parallel R3H = (A+B +C) + D
Wait for MPYF32 || ADDF32 to complete

R3H = (A+B+C+D) +E
Wait for ADDF32 to complete

; Store the result

See also MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R3H, mem32, *XAR7++
MACF32 R7H, R6H, RdH, ReH, RfH
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH
200 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MACF32 R3H, R2H, RdH, ReH, RfH |[MOV32 RaH, mem32 — 32-bit Floating-Point Multiply and Accumulate
with Parallel Move

MACF32 R3H, R2H, RdH, ReH, RfH ||[MOV32 RaH, mem32 32-bit Floating-Point Multiply and
Accumulate with Parallel Move

Operands
R3H floating-point destination/source register R3H for the add operation
R2H Floating-point source register R2H for the add operation
RdH Floating-point destination register (ROH to R7H) for the multiply operation
RdH cannot be the same register as RaH
ReH Floating-point source register (ROH to R7H) for the multiply operation
RfH Floating-point source register (ROH to R7H) for the multiply operation
RaH Floating-point destination register for the MOV32 operation (ROH to R7H).
RaH cannot be R3H or the same register as RdH.
mema32 32-bit source for the MOV32 operation
Opcode LSW: 1110 0011 0011 fffe
MSW: eedd daaa mem32
Description Multiply and accumulate the contents of floating-point registers and move from register
to memory. The destination register for the MOV32 cannot be the same as the
destination registers for the MACF32.
R3H = R3H + R2H,
RdH = ReH * RfH,
RaH = [mem32]
Restrictions The destination registers for the MACF32 and the MOV32 must be unique. That is, RaH
cannot be R3H and RaH cannot be the same register as RdH.
Flags This instruction modifies the following flags in the STF register:
Flag TF Z NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes
The STF register flags are modified as follows:
 LUF =1 if MACF32 (add or multiply) generates an underflow condition.
* LVF =1 if MACF32 (add or multiply) generates an overflow condition.
MOV32 sets the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) { ZF = 1; NF = 0; }
NI = RaH(31);
Zl = 0;
if(RaH(31:0) == 0) ZI = 1;
Pipeline The MACF32 takes 2 pipeline cycles (2p) and the MOV32 takes a single cycle. That is:
MACF32 R3H, R2H, RdH, ReH, RfH ; 2 pipeline cycles (2p)
|l MOV32 RaH, mem32 ; 1 cycle
; <-- MOV32 completes, RaH updated
NOP ; 1 cycle delay for MACF32
; <-- MACF32 completes, R3H, RdH updated
NOP
Any instruction in the delay slot for this version of MACF32 must not use R3H or RdH as
a destination register or R3H or RdH as a source operand.
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 201

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MACF32 R3H, R2H, RdH, ReH, RfH ||[MOV32 RaH, mem32 — 32-bit Floating-Point Multiply and Accumulate with Parallel

Move www.ti.com
Example ; Perform 5 multiply and accumulate operations:
; 1ST multiply: A = X0 * YO
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; ATH multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
; Result =A+B +C+ D+ E
MOV32 ROH, *XAR4++ ; ROH = XO
MOV32 R1H, *XAR5++ ; R1IH = YO
; R2H = A = X0 * YO
MPYF32 R2H, ROH, R1H ; In parallel ROH = X1
Il MOV32 ROH, *XAR4++
MOV32 RI1H, *XAR5++ ; RIH = Y1
; RBH =B = X1 * VY1
MPYF32 R3H, ROH, R1H ; In parallel ROH = X2
|l MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y2
; RBH=A+B
; R2H = C = X2 * Y2
MACF32 R3H, R2H, R2H, ROH, R1H ; In parallel ROH = X3
|l MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y3
; RBH= (A +B) +C
; R2H =D = X3 * Y3
MACF32 R3H, R2H, R2H, ROH, R1H ; In parallel ROH = X4
|l MOV32 ROH, *XAR4
MOV32 R1H, *XAR5 ; RIH = Y4
; RRH=E = X4 * Y4
MPYF32 R2H, ROH, R1H ; in parallel R3BH = (A +B +C) + D
|l ADDF32 R3H, R3H, R2H
NOP ; Wait for MPYF32 || ADDF32 to complete
ADDF32 R3H, R3H, R2H ; RBH=(CA+B+C+D)+E
NOP ; Wait for ADDF32 to complete
MOV32 @Result, R3H ; Store the result
See also MACF32 R3H, R2H, RdH, ReH, RfH
MACF32 R7H, R3H, mem32, *XAR7++
MACF32 R7H, R6H, RdH, ReH, RfH
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH
202 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MACF32 R7H, R3H, mem32, *XAR7++ — 32-bit Floating-Point Multiply and Accumulate

MACF32 R7H, R3H, mem32, *XAR7++ 32-bit Floating-Point Multiply and Accumulate

Operands
R7H Floating-point destination register
R3H Floating-point destination register
mema32 pointer to a 32-bit source location
*XAR7++ 32-bit location pointed to by auxiliary register 7, XAR7 is post incremented.

Opcode LSW: 1110 0010 0101 0000
MSW: 0001 1111 mem32

Description Perform a multiply and accumulate operation. When used as a standalone operation, the
MACF32 will perform a single multiply as shown below:

Cycle 1: R3H = R3H + R2H, R2H = [mem32] * [XAR7++]

This instruction is the only floating-point instruction that can be repeated using the single
repeat instruction (RPT |[). When repeated, the destination of the accumulate will
alternate between R3H and R7H on each cycle and R2H and R6H are used as
temporary storage for each multiply.

Cycle 1: R3H = R3H + R2H, R2H = [mem32] * [XAR7++]

Cycle 2: R7H = R7H + R6H, R6H = [mem32] * [XAR7++]

Cycle 3: R3H = R3H + R2H, R2H = [mem32] * [XAR7++]

Cycle 4: R7H = R7H + R6H, R6H = [mem32] * [XAR7++]

etc...

Restrictions R2H and R6H will be used as temporary storage by this instruction.

Flags This instruction modifies the following flags in the STF register:

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
* LUF =1 if MACF32 generates an underflow condition.
* LVF =1 if MACF32 generates an overflow condition.

Pipeline When repeated the MACF32 takes 3 + N cycles where N is the number of times the
instruction is repeated. When repeated, this instruction has the following pipeline
restrictions:

<instructionl> ; No restriction
<instruction2> ; Cannot be a 2p instruction that writes
; to R2H, R3H, R6H or R7H
RPT #(N-1) ; Execute N times, where N is even
[l MACF32 R7H, R3H, *XAR6++, *XAR7++
<instruction3> ; No restrictions.
; Can read R2H, R3H, R6H and R7H
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 203

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MACF32 R7H, R3H, mem32, *XAR7++ — 32-bit Floating-Point Multiply and Accumulate

13 TEXAS
INSTRUMENTS

www.ti.com

Example

See also

MACF32 can also be used standalone. In this case, the instruction takes 2 cycles and

the following pipeline restrictions apply:

<instructionl> ;
<instruction2> ;

MACF32 R7H, R3H, *XAR6, *XAR7 ;

No restriction

Cannot be a 2p instruction that writes
to R2H, R3H, R6H or R7H

R3H = R3H + R2H, R2H = [mem32] * [XAR7++]

- <

R2H and R3H are valid (note: no delay
NOP

ZERO R2H
ZERO R3H
registers
ZERO R6H
ZERO R7H
RPT #3
|1 MACF32 R7H, R3H, *XAR6++, *XAR7++
ADDF32 R7H, R7H, R3H
NOP
NOP

required)

; Zero the accumulation registers
; and temporary multiply storage

; Repeat MACF32 N+1 (4) times

; Final accumulate
; <-- ADDF32 completes, R7H valid

Cascading of RPT || MACF32 is allowed as long as the first and subsequent counts are
even. Cascading is useful for creating interruptible windows so that interrupts are not
delayed too long by the RPT instruction. For example:

ZERO R2H
ZERO R3H
registers
ZERO R6H
ZERO R7H
RPT #3

; Zero the accumulation registers
; and temporary multiply storage

; Execute MACF32 N+1 (4) times

|| MACF32 R7H, R3H, *XAR6++, *XAR7++ RPT #5 ; Execute MACF32 N+1 (6) times
|l MACF32 R7H, R3H, *XAR6++, *XAR7++ RPT #N ; Repeat MACF32 N+1 times where N+1

IS even

|| MACF32 R7H, R3H, *XAR6++, *XAR7++
ADDF32 R7H, R7H, R3H
NOP

; Final accumulate

; <-- ADDF32 completes, R7H valid

MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

204 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MACF32 R7H, R6H, RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add

MACF32 R7H, R6H, RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add

Operands This instruction is an alias for the parallel multiply and add instruction. The operands are
translated by the assembler such that the instruction becomes:

MPYF32 RdH, RaH, RbH || ADDF32 R7H, R7H, R6H

R7H floating-point destination and source register for the ADDF32
R6H Floating-point source register for the ADDF32 operation (ROH to R7H)
RdH Floating-point destination register for MPYF32 operation (ROH to R7H)
RdH cannot be R3H
ReH Floating-point source register for MPYF32 operation (ROH to R7H)
RfH Floating-point source register for MPYF32 operation (ROH to R7H)
Opcode LSW: 1110 0111 0100 OOff
MSW: feee dddc ccbb baaa
Description This instruction is an alias for the parallel multiply and add, MACF32 || ADDF32,
instruction.
RdH = RaH * RbH
R7H = R6H + R6H
Restrictions The destination register for the MPYF32 and the ADDF32 must be unique. That is, RdH
cannot be R7H.
Flags This instruction modifies the following flags in the STF register:.
Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
* LUF =1if MPYF32 or ADDF32 generates an underflow condition.
 LVF=1if MPYF32 or ADDF32 generates an overflow condition.

Pipeline Both MPYF32 and ADDF32 take 2 pipeline cycles (2p) That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|| ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32, ADDF32 complete, RaH, RdH updated
NOP

Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU64) 205

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MACF32 R7H, R6H, RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add

13 TEXAS
INSTRUMENTS

www.ti.com

Example

See also

Perform 5 multiply and accumulate operations:

1st multiply: A = X0 * YO
2nd multiply: B = X1 * Y1
3rd multiply: C = X2 * Y2
4th multiply: D = X3 * Y3
5th multiply: E = X3 * Y3

Result =A+B +C+ D+ E

MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MPYF32 R6H, ROH, R1H
MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MPYF32 R7H, ROH, R1H
MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MACF32 R7H, R6H, R6H, ROH, R1H
MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MACF32 R7H, R6H, R6H, ROH, R1H
MOV32 ROH, *XAR4
MOV32 R1H, *XAR5

; Next MACF32 is an alias for

: MPYF32 || ADDF32

MACF32 R3H, R2H, RdH, ReH, RfH

MACF32 R7H, R6H, R6H, ROH, R1H

NOP
ADDF32 R7H, R7H, R6H
NOP
MOV32 @Result, R7H

ROH = XO
R1H = YO
R6H = A = X0 * YO

In parallel ROH = X1

R1H = Y1
R7H = B = X1 * Y1
In parallel ROH = X2

R1H = Y2
R7TH = A + B
R6H = C = X2 * Y2

In parallel ROH = X3

R1H = Y3

R7H = (A + B) + C
R6H = D = X3 * Y3

In parallel ROH = X4

; RIH = Y4

; RBH = E = X4 * Y4

in parallel R7TH = (A+ B + C) + D
Wait for MPYF32 || ADDF32 to complete
R7H = (A+B+C+D) +E

Wait for ADDF32 to complete

Store the result

MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32

MACF32 R7H, R3H, mem32, *XAR7++

MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

206 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MACF32 R7H, R6H, RdH, ReH, RfH |[MOV32 RaH, mem32 — 32-bit Floating-Point Multiply and Accumulate
with Parallel Move

MACF32 R7H, R6H, RdH, ReH, RfH ||[MOV32 RaH, mem32 32-bit Floating-Point Multiply and
Accumulate with Parallel Move

Operands
R7H floating-point destination/source register R7H for the add operation
R6H Floating-point source register R6H for the add operation
RdH Floating-point destination register (ROH to R7H) for the multiply operation.
RdH cannot be the same register as RaH.
ReH Floating-point source register (ROH to R7H) for the multiply operation
RfH Floating-point source register (ROH to R7H) for the multiply operation
RaH Floating-point destination register for the MOV32 operation (ROH to R7H).
RaH cannot be R3H or the same as RdH.
mema32 32-bit source for the MOV32 operation
Opcode LSW: 1110 0011 1100 fffe
MSW: eedd daaa mem32
Description Multiply/accumulate the contents of floating-point registers and move from register to
memory. The destination register for the MOV32 cannot be the same as the destination
registers for the MACF32.
R7H = R7H + R6H
RdH = ReH * RfH,
RaH = [mem32]
Restrictions The destination registers for the MACF32 and the MOV32 must be unique. That is, RaH
cannot be R7H and RaH cannot be the same register as RdH.
Flags This instruction modifies the following flags in the STF register:
Flag TF Z NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes
The STF register flags are modified as follows:
 LUF =1 if MACF32 (add or multiply) generates an underflow condition.
* LVF =1 if MACF32 (add or multiply) generates an overflow condition.
The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) {ZF = 1;
NF = 0;} NI = RaH(31);
Zl = 0;
if(RaH(31:0) == 0) ZI = 1;
Pipeline The MACF32 takes 2 pipeline cycles (2p) and the MOV32 takes a single cycle. That is:
MACF32 R7H, R6H, RdH, ReH, RfH ; 2 pipeline cycles (2p)
|1 MOV32 RaH, mem32 ; 1 cycle
; <-- MOV32 completes, RaH updated
NOP ; 1 cycle delay
; <-- MACF32 completes, R7H, RdH updated
NOP
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 207

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MACF32 R7H, R6H, RdH, ReH, RfH ||[MOV32 RaH, mem32 — 32-bit Floating-Point Multiply and Accumulate with Parallel

Move www.ti.com
Example Perform 5 multiply and accumulate operations:
; 1st multiply: A = X0 * YO
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4th multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
; Result = A+B +C+ D +
MOV32 ROH, *XAR4++ ; ROH = XO
MOV32 R1H, *XAR5++ ; R1IH = YO
; RBH = A = X0 * YO
MPYF32 R6H, ROH, R1H ; In parallel ROH = X1
Il MOV32 ROH, *XAR4++
MOV32 RI1H, *XAR5++ ; RIH = Y1
; RTH =B = X1 * Y1
MPYF32 R7H, ROH, R1H ; In parallel ROH = X2
|l MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y2
; RTH = A + B
; RBH = C = X2 * Y2
MACF32 R7H, R6H, R6H, ROH, R1H ; In parallel ROH = X3
|l MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++ ; RIH = Y3
; R7TH = (A + B) + C
; RBH = D = X3 * Y3
MACF32 R7H, R6H, R6H, ROH, R1H ; In parallel ROH = X4
|l MOV32 ROH, *XAR4
MOV32 R1H, *XAR5 ; RIH = Y4
; RBH = E = X4 * Y4
MPYF32 R6H, ROH, R1H ; in parallel R7TH = (A + B + C) + D
|| ADDF32 R7H, R7H, R6H
NOP ; Wait for MPYF32 || ADDF32 to complete
ADDF32 R7H, R7H, R6H ; RTH= (A+B +C +D) + E
NOP ; Wait for ADDF32 to complete
MOV32 @Result, R7H ; Store the result
See also MACF32 R7H, R3H, mem32, *XAR7++
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH
208 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MAXF32 RaH, RbH — 32-bit Floating-Point Maximum

MAXF32 RaH, RbH

32-bit Floating-Point Maximum

Operands
RaH floating-point source/destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1001 0110
MSW: 0000 0000 00bb baaa
Description if(RaH < RbH) RaH = RbH
Special cases for the output from the MAXF32 operation:
» NaN output will be converted to infinity
* A denormalized output will be converted to positive zero.
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RbH){ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}
Pipeline This is a single-cycle instruction.
Example
MOV IZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOV I1ZF32 R1H, #-2.0 ; R1H = -2.0 (0xC0000000)
MOV 1ZF32 R2H, #-1.5 ; R2H = -1.5 (OxBFC00000)
MAXF32 R2H, R1H ; R2H = -1.5, ZF = NF = 0
MAXF32 R1H, R2H ; RIH = -1.5, ZF =0, NF = 1
MAXF32 R2H, ROH ; R2H= 5.0, ZF =0, NF=1
MAXF32 ROH, R2H ; R2H= 5.0, ZF=1, NF=0
See also CMPF32 RaH, RbH

CMPF32 RaH, #16FHi
CMPF32 RaH, #0.0

MAXF32 RaH, RbH || MOV32 RcH, RdH
MAXF32 RaH, #16FHi

MINF32 RaH, RbH

MINF32 RaH, #16FHi

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

209

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MAXF32 RaH, #16FHi — 32-bit Floating-Point Maximum www.ti.com

MAXF32 RaH, #16FHi 32-bit Floating-Point Maximum

Operands
RaH floating-point source/destination register (ROH to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.
Opcode LSW: 1110 1000 0010 OI1Il
MSW: IEEL IEEL 1111 laaa
Description Compare RaH with the floating-point value represented by the immediate operand. If the
immediate value is larger, then load it into RaH.
if(RaH < #16FHi:0) RaH = #16FHi:0
#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0OxBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFCO.
Special cases for the output from the MAXF32 operation:
» NaN output will be converted to infinity
* A denormalized output will be converted to positive zero.
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.

if(RaH == #16FHi:0){ZF=1, NF=0}

if(RaH > #16FHi:0) {ZF=0, NF=0}

if(RaH < #16FHi:0) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example MOV IZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; RIH = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (OxBFC0O0000)
MAXF32 ROH, #5.5 ; ROH= 5.5, ZF =0, NF =1
MAXF32 R1H, #2.5 s RIH= 4.0, ZF =0, NF=0
MAXF32 R2H, #-1.0 ; R2H = -1.0, ZF = 0, NF = 1
MAXF32 R2H, #-1.0 ; R2H = -1.5, ZF =1, NF =0

See also MAXF32 RaH, RbH
MAXF32 RaH, RbH || MOV32 RcH, RdH
MINF32 RaH, RbH
MINF32 RaH, #16FHi

210 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MAXF32 RaH, RbH |[MOV32 RcH, RdH — 32-bit Floating-Point Maximum with Parallel Move

MAXF32 RaH, RbH |[MOV32 RcH, RdH 32-bit Floating-Point Maximum with Parallel Move

Operands
RaH floating-point source/destination register for the MAXF32 operation (ROH to R7H)
RaH cannot be the same register as RcH
RbH Floating-point source register for the MAXF32 operation (ROH to R7H)
RcH Floating-point destination register for the MOV32 operation (ROH to R7H)
RcH cannot be the same register as RaH
RdH Floating-point source register for the MOV32 operation (ROH to R7H)
Opcode LSW: 1110 0110 1001 1100
MSW: 0000 dddc ccbb baaa
Description If RaH is less than RbH, then load RaH with RbH. Thus RaH will always have the
maximum value. If RaH is less than RbH, then, in parallel, also load RcH with the
contents of RdH.
if(RaH < RbH) { RaH = RbH; RcH = RdH; }
The MAXF32 instruction is performed as a logical compare operation. This is possible
because of the IEEE floating-point format offsets the exponent. Basically the bigger the
binary number, the bigger the floating-point value.
Special cases for the output from the MAXF32 operation:
* NaN output will be converted to infinity
* A denormalized output will be converted to positive zero.
Restrictions The destination register for the MAXF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RcH.
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RbH){ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}
Pipeline This is a single-cycle instruction.
Example MOV 1ZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOV IZF32 R1H, #4.0 ; RIH = 4.0 (0x40800000)
MOV IZF32 R2H, #-1.5 ; R2H = -1.5 (OxBFC00000)
MOV 1ZF32 R3H, #-2.0 ; R3H =-2.0 (OxC0000000)
MAXF32 ROH, R1H ; ROH = 5.0, R3H = -1.5, ZF = 0, NF = 0
Il mov32 R3H, R2H
MAXF32 R1H, ROH ; RIH = 5.0, R3H = -1.5, ZF = 0, NF = 1
Il Mov32 R3H, R2H
MAXF32 ROH, R1H ; ROH = 5.0, R2H = -1.5, ZF = 1, NF = 0
Il Mov32 R2H, R1H
See also MAXF32 RaH, RbH
MAXF32 RaH, #16FHi
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 211

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
MINF32 RaH, RbH — 32-bit Floating-Point Minimum www.ti.com
MINF32 RaH, RbH 32-bit Floating-Point Minimum
Operands
RaH floating-point source/destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1001 0111
MSW: 0000 0000 00bb baaa
Description if(RaH > RbH) RaH = RbH
Special cases for the output from the MINF32 operation:
» NaN output will be converted to infinity
* A denormalized output will be converted to positive zero.
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RbH){ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}
Pipeline This is a single-cycle instruction.
Example MOVIZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; R1H = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (OxBFC00000)
MINF32 ROH, R1H ; ROH = 4.0, ZF = 0, NF =0
MINF32 R1H, R2H ; RIH = -1.5, ZF =0, NF= 0
MINF32 R2H, R1H ; R2H = -1.5, ZF =1, NF=0
MINF32 R1H, ROH ; R2H = -1.5, ZF = 0, NF = 1
See also MAXF32 RaH, RbH
MAXF32 RaH, #16FH
MINF32 RaH, #16FHi
MINF32 RaH, RbH || MOV32 RcH, RdH
212 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MINF32 RaH, #16FHi — 32-bit Floating-Point Minimum

MINF32 RaH, #16FHi 32-bit Floating-Point Minimum

Operands

RaH floating-point source/destination register (ROH to R7H)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.

Opcode LSW: 1110 1000 0011 OI11
MSW- 1111 1111 1111 laaa

Description Compare RaH with the floating-point value represented by the immediate operand. If the
immidate value is smaller, then load it into RaH.

if(RaH > #16FHi:0) RaH = #16FHi:0

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0OxBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFCO.

Special cases for the output from the MINF32 operation:

» NaN output will be converted to infinity

» A denormalized output will be converted to positive zero.

Flags This instruction modifies the following flags in the STF register:

Flag TF VA| NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.

if(RaH == #16FHi:0){ZF=1, NF=0}

if(RaH > #16FHi:0) {ZF=0, NF=0}

if(RaH < #16FHi:0) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example MOVIZF32 ROH, #5.0 ; ROH
MOVIZF32 R1H, #4.0 ; R1H
MOVIZF32 R2H, #-1.5 ; R2H
MINF32 ROH, #5.5 ; ROH
MINF32 R1H, #2.5 ; R1H
MINF32 R2H, #-1.0 ; R2H
MINF32 R2H, #-1.5 ; R2H

(0x40A00000)
(0x40800000)
(OXBFC00000)
ZF = 0, NF
ZF = 0, NF
ZF = 0, NF
ZF = 1, NF

L I | A VB VA |
()]
[6 ¢ NN No o)

o mn
OPr O

See also MAXF32 RaH, #16FHi
MAXF32 RaH, RbH
MINF32 RaH, RbH
MINF32 RaH, RbH || MOV32 RcH, RdH

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU64) 213

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MINF32 RaH, RbH [MOV32 RcH, RdH — 32-bit Floating-Point Minimum with Parallel Move www.ti.com

MINF32 RaH, RbH ||[MOV32 RcH, RdH 32-bit Floating-Point Minimum with Parallel Move

Operands
RaH floating-point source/destination register for the MIN32 operation (ROH to R7H)
RaH cannot be the same register as RcH
RbH Floating-point source register for the MIN32 operation (ROH to R7H)
RcH Floating-point destination register for the MOV32 operation (ROH to R7H)
RcH cannot be the same register as RaH
RdH Floating-point source register for the MOV32 operation (ROH to R7H)
Opcode LSW: 1110 0110 1001 1101
MSW: 0000 dddc ccbb baaa
Description if(RaH > RbH) { RaH = RbH; RcH = RdH; }

Restrictions

Special cases for the output from the MINF32 operation:
» NaN output will be converted to infinity
» A denormalized output will be converted to positive zero.

The destination register for the MINF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RcH.

Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RbH){ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}
Pipeline This is a single-cycle instruction.
Example
MOV 1ZF32 ROH, #5.0 ; ROH = 5.0 (0x40A00000)
MOV IZF32 R1H, #4.0 ; RIH = 4.0 (0x40800000)
MOV 1ZF32 R2H, #-1.5 ; R2H = -1.5 (OxBFC00000)
MOV 1ZF32 R3H, #-2.0 ; R3H = -2.0 (0xC0O000000)
MINF32 ROH, R1H ; ROH = 4.0, R3H = -1.5, ZF = 0, NF = 0
Il mMov32 R3H, R2H
MINF32 R1H, ROH ; RIH = 4.0, R3H = -1.5, ZF = 1, NF = 0
Il mov32 R3H, R2H
MINF32 R2H, R1H ; R2H = -1.5, R1H = 4.0, ZF = 1, NF = 1
Il Mov32 R1H, R3H
See also MINF32 RaH, RbH
MINF32 RaH, #16FHi
214 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MOV16 mem16, RaH — Move 16-bit Floating-Point Register Contents to Memory

MOV16 mem16, RaH Move 16-bit Floating-Point Register Contents to Memory

Operands
mem16 points to the 16-bit destination memory
RaH Floating-point source register (ROH to R7H)
Opcode LSW: 1110 0010 0001 0011
MSW: 0000 Oaaa meml6
Description Move 16-bit value from the lower 16-bits of the floating-point register (RaH[15:0]) to the
location pointed to by mem16.
[mem16] = RaH[15:0]
Flags No flags STF flags are affected.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a single-cycle instruction.
Example MOVW DP, #0x02CO ; DP = 0x02CO
MOVXI R4H, #0x0003 ; R4H = 3.0 (0x0003)
MOV16 @0, R4H ; [0x00B00O0O] = 3.0 (0x0003
See also MOVIZ RaH, #16FHiHex

MOVIZF32 RaH, #16FHi
MOVXI RaH, #16FLoHex

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

215

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
MOV32 *(0:16bitAddr), loc32 — Move the Contents of loc32 to Memory www.ti.com
MOV32 *(0:16bitAddr), loc32 Move the Contents of loc32 to Memory
Operands
0:16bitAddr 16-bit immediate address, zero extended
loc32 32- bit source location
Opcode LSW: 1011 1101 loc32
MSWz ERRL REED RRED IO
Description Move the 32-bit value in loc32 to the memory location addressed by 0:16bitAddr. The
EALLOW bit in the ST1 register is ignored by this operation.
[0:16bitAddr] = [loc32]
Flags This instruction does not modify any STF register flags.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a two-cycle instruction.
Example MOVIZ R5H, #0x1234 ; REH[31:16] = 0x1234
MOVXI R5H, #OXABCD ; R5H[15:0] = OxABCD
NOP ; 1 Alignment Cycle
MOV32 ACC, R5H ; ACC = O0x1234ABCD
MOV32 *(0xA000), @ACC ; [O0x00A000] = ACC NOP
; 1 Cycle delay for MOV32 to complete
; <-- MOV32 *(0:16bitAddr), loc32 complete,
; [Ox00A000] = OxABCD, [0x00A001] = 0x1234
See also MOV32 mem32, RaH
MOV32 mem32, STF
MOV32 loc32, *(0:16bitAddr)
216 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

MOV32 ACC, RaH — Move 32-bit Floating-Point Register Contents to ACC

MOV32 ACC, RaH

Operands

Move 32-bit Floating-Point Register Contents to ACC

ACC
RaH

28x accumulator
Floating-point source register (ROH to R7H)

Opcode

Description

Flags

LSW: 1011 1111 loc32
MSWz 10LL 11D D11 1111

If the condition is true, then move the 32-bit value referenced by mem32 to the floating-
point register indicated by RaH.

ACC = RaH

No STF flags are affected.

Flag TF

Zl NI ZF NF LUF LVF

Modified No

No No No No No No

Pipeline

Example

See also

Z and N flag in status register zero (STO) of the 28x CPU are affected.

While this is a single-cycle instruction, additional pipeline alignment is required when
copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:
MINF32 ROH,R1H ; Single-cycle instruction

NOP ; 1 alignment cycle

MOV32 @ACC,ROH ; Copy ROH to ACC

NOP ; Any instruction

If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:

ADDF32 R2H, R1H, ROH ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete
; <-- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle MOV32 ACC, R2H
; copy R2H into ACC, takes 2 cycles
; <-- MOV32 completes, ACC is valid
NOP ; Any instruction

ADDF32 R2H, R1H, ROH ;
NOP ;

pipeline instruction (2p)
cycle delay for ADDF32 to complete
; -- ADDF32 completes, R2H is valid
NOP ; alignment cycle
MOV32 ACC, R2H ; copy R2H into ACC, takes 2 cycles

; <-- MOV32 completes, ACC is valid
NOP ; Any instruction
MOVIZF32 ROH, #2.5 ; ROH = 2.5 = 0x40200000
F32TOUI32 ROH, ROH
NOP ; Delay for conversion instruction

; < -- Conversion complete, ROH valid
NOP ; Alignment cycle
MOV32 P, ROH ; P = 2 = 0x00000002

P ARFRPDN

MOV32 P, RaH
MOV32 XARn, RaH
MOV32 XT, RaH

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU64) 217

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MOV32 loc32, *(0:16bitAddr) — Move 32-bit Value from Memory to loc32

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 loc32, *(0:16bitAddr) Move 32-bit Value from Memory to loc32

Operands
loc32 destination location
0:16bitAddr 16-bit address of the 32-bit source value
Opcode LSW: 1011 1111 loc32
MSW: TREE TRRE LRRE HRRd
Description Copy the 32-bit value referenced by 0:16bitAddr to the location indicated by loc32.
[1oc32] = [0:16bitAddr]
Flags No STF flags are affected. If loc32 is the ACC register, then the Z and N flag in status
register zero (STO) of the 28x CPU are affected.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 cycle instruction.
Example MOVW DP, #0x0300 ; DP = 0x0300
MOV @0, #OXFFFF ; [0x00C000] = OXFFFF;
MOV @1, #0x1111 ; [0x00C001] = 0x1111;
MOV32 @ACC, *(0xCO00) ; AL = [0x00C000], AH = [0x00C001]
NOP ; 1 Cycle delay for MOV32 to complete
; <-- MOV32 complete, AL = OxFFFF, AH = 0x1111
See also MOV32 RaH, mem32{, CNDF}

MOV32 *(0:16bitAddr), loc32
MOV32 STF, mem32
MOVD32 RaH, mem32

218 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

MOV32 mem32, RaH — Move 32-bit Floating-Point Register Contents to Memory

MOV32 mem32, RaH Move 32-bit Floating-Point Register Contents to Memory

Operands
RaH floating-point register (ROH to R7H)
mem32 points to the 32-bit destination memory
Opcode LSW: 1110 0010 0000 0011
MSW: 0000 Oaaa mem32
Description Move from memory to STF.
[mem32] = RaH
Flags This instruction modifies the following flags in the STF register:
Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected.
Pipeline This is a single-cycle instruction.
Example ; Perform 5 multiply and accumulate operations:

; 1st multiply: A = X0 * YO
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4th multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3

; Result =A+B+C+D+E

MOV32 ROH, *XAR4++ ; ROH
MOV32 R1H, *XAR5++ ; R1H

X0
YO

: RBH = A = X0 * YO
MPYF32 R6H, ROH, R1H : In parallel ROH = X1

Il MOV32 ROH, *XAR4++
MOV32 R1H, *XARS5++ ; R1IH = Y1

; RTH =B = X1 * Y1

MPYF32 R7H, ROH, R1H ; In parallel ROH = X2
Il MOV32 ROH, *XARA++
MOV32 R1H, *XAR5++ ; R1H = Y2

:R7TH=A+ B
; R6H = C = X2 * Y2
MACF32 R7H, R6H, R6H, ROH, RIH ; In parallel ROH = X3
Il MOV32 ROH, *XARA++
MOV32 R1H, *XAR5++ ; R1H = Y3

; RBH= (A +B) +C
; RBH = D = X3 * Y3
MACF32 R7H, R6H, R6H, ROH, R1H ; In parallel ROH = X4
Il MOV32 ROH, *XAR4

MOV32 RI1H, *XAR5 ; RIH = Y4
; RBH = E = X4 * Y4
MPYF32 R6H, ROH, R1H ; in parallel R7TH = (A + B + C) + D
Il ADDF32 R7H, R7H, R2H
NOP ; Wait for MPYF32 || ADDF32 to complete

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

219

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

MOV32 mem32, RaH — Move 32-bit Floating-Point Register Contents to Memory www.ti.com

ADDF32 R7H, R7H, R6H ; RTH= (A + B + C + D) + E NOP

; Wait for ADDF32 to complete

MOV32 @Result, R7H ; Store the result

See also MOV32 *(0:16bitAddr), loc32
MOV32 mem32, STF

220 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 mem32, STF — Move 32-bit STF Register to Memory

MOV32 mem32, STF Move 32-bit STF Register to Memory

Operands
STF floating-point status register
mem32 points to the 32-bit destination memory
Opcode LSW: 1110 0010 0000 0000
MSW: 0000 0000 mem32
Description Copy the floating-point status register, STF, to memory.
[mem32] = STF
Flags This instruction modifies the following flags in the STF register:
Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected.
Pipeline This is a single-cycle instruction.
Example 1 MOVW DP, #0x0280 ; DP = 0x0280
MOVIZF32 ROH, #2.0 ; ROH = 2.0 (0x40000000)
MOVIZF32 R1H, #3.0 ; R1H = 3.0 (0x40400000)
CMPF32 ROH, R1H ; ZF = 0, NF = 1, STF = 0x00000004
MOV32 @0, STF ; [0x00A000] = 0x00000004
Example 2
MOV32 *SP++, STF ; Store STF in stack
MOVF32 R2H, #3.0 ; R2H = 3.0 (0x40400000)
MOVF32 R3H, #5.0 ; R3H = 5.0 (0x40A00000)
CMPF32 R2H, R3H ; ZF = 0, NF = 1, STF = 0x00000004
MOV32 R3H, R2H, LT ; R3H = 3.0 (0x40400000)
MOv32 STF, *--SP ; Restore STF from stack
See also MOV32 mem32, RaH

MOV32 *(0:16bitAddr), loc32

MOVSTO FLAG

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Floating Point Unit (FPU64)

Copyright © 2014-2019, Texas Instruments Incorporated

221

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
MOV32 P, RaH — Move 32-bit Floating-Point Register Contents to P www.ti.com
MOV32 P, RaH Move 32-bit Floating-Point Register Contents to P
Operands
P 28x product register P
RaH Floating-point source register (ROH to R7H)
Opcode LSW: 1011 1111 loc32
MSWz 10RLE 100D B0RD LLN]
Description Move the 32-bit value in RaH to the 28x product register P.
P = RaH
Flags No flags affected in floating-point unit.
Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when
copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:
MINF32 ROH,R1H ; Single-cycle instruction
NOP ; 1 alignment cycle
MOV32 @ACC,ROH ; Copy ROH to ACC
NOP ; Any instruction
If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:
ADDF32 R2H, R1H, ROH ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete
; <-- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle
MOV32 ACC, R2H ; copy R2H into ACC, takes 1 cycle
; <-- MOV32 completes, ACC is valid NOP ; Any instruction
Example MOVIZF32 ROH, #2.5 ; ROH = 2.5 = 0x40200000
F32TOU132 ROH, ROH
NOP ; Delay for conversion instruction
; <-- Conversion complete, ROH valid
NOP ; Alignment cycle
MOV32 P, ROH ; P = 2 = 0x00000002
See also MOV32 ACC, RaH
MOV32 XARn, RaH
MOV32 XT, RaH
222 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 RaH, ACC — Move the Contents of ACC to a 32-bit Floating-Point Register

MOV32 RaH, ACC

Move the Contents of ACC to a 32-bit Floating-Point Register

Operands
RaH Floating-point destination register (ROH to R7H)
ACC accumulator
Opcode LSW: 1011 1101 loc32
MSW: TREE TRRE LRRE HRRd
Description Move the 32-bit value in ACC to the floating-point register RaH.
RaH = ACC
Flags This instruction does not modify any STF register flags.

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four

alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, I16 TOF32, F32TOUI32,
and F32TOI32.
MOV32 ROH,@ACC ; Copy ACC to ROH
NOP ; Wait 4 cycles
NOP ; Do not use FRACF32, UI16TOF32
NOP ; 116TOF32, F32TOUI32 or F32T0132
NOP ;
; <-- ROH 1is valid
Example MOV AH, #0x0000
MOV AL, #0x0200 ; ACC = 512
MOV32 ROH, ACC
NOP
NOP
NOP
NOP UI32TOF32 ROH, ROH ; ROH = 512.0 (0x44000000)
See also MOV32 RaH, P

MOV32 RaH, XARn
MOV32 RaH, XT

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU64)

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

223

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MOV32 RaH, mem32 {, CNDF} — Conditional 32-bit Move www.ti.com

MOV32 RaH, mem32 {, CNDF} Conditional 32-bit Move

Operands
RaH Floating-point destination register (ROH to R7H)
mem32 pointer to the 32-bit source memory location
CNDF optional condition.
Opcode LSW: 1110 0010 1010 CNDF
MSW: 0000 Oaaa mem32
Description If the condition is true, then move the 32-bit value referenced by mem32 to the floating-
point register indicated by RaH.
if (CNDF == TRUE) RaH = [mem32]
CNDF is one of the following conditions:
Encode @ CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF ==
0001 EQ Equal to zero ZF ==
0010 GT Greater than zero ZF == 0 AND NF ==
0011 GEQ Greater than or equal to zero NF ==
0100 LT Less than zero NF ==
0101 LEQ Less than or equal to zero ZF == 1 AND NF ==
1010 TF Test flag set TF ==
1011 NTF Test flag not set TF ==
1100 LU Latched underflow LUF ==
1101 LV Latched overflow LVF ==
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag modification ~ None

@ Values not shown are reserved.
@ This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified
when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No

i F(CNDF == UNCF)

{
NF = RaH(31); ZF = 0;
if(RaH[30:23] == 0) { ZF = 1; NF = 0; } NI = RaH[31]; ZI = O;
if(RaH[31:0] == 0) ZI = 1;

3

else No flags modified;

Pipeline This is a single-cycle instruction.

224 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 RaH, mem32 {, CNDF} — Conditional 32-bit Move

Example

See also

MOVW DP, #0x0300 ; DP = 0x0300
MoV @0, #0x5555 ; [0x00C000] = 0x5555
MoV @1, #0x5555 ; [0x00C001] = 0x5555

MOVIZF32 R3H, #7.0 ; RBH = 7.0 (0x40E00000)
MOVIZF32 R4H, #7.0 ; R4H = 7.0 (Ox40E00000)
MAXF32 R3H, R4H ; ZF =1, NF =0

MOvV32 R1H, @0, EQ ; R1H = 0x55555555

MOV32 RaH, RbH{, CNDF}
MOVD32 RaH, mem32

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

225

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MOV32 RaH, P — Move the Contents of P to a 32-bit Floating-Point Register

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 RaH, P Move the Contents of P to a 32-bit Floating-Point Register
Operands
RaH floating-point register (ROH to R7H)
P product register
Opcode
LSW: 1011 1101 loc32
MSW: TREE RRRL LRRL Hnl
Description Move the 32-bit value in the product register, P, to the floating-point register RaH.
RaH = P
Flags This instruction does not modify any STF register flags.

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four

alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, I16TOF32, F32TOUI32,
and F32TOI32.
MOV32 ROH,@P ; Copy P to ROH
NOP ; Wait 4 alignment cycles
NOP ; Do not use FRACF32, UI16TOF32
NOP ; 116TOF32, F32TOUI32 or F32T0132
NOP ;
; <-- ROH is valid
; Instruction can use ROH as a source
Example MOV PH, #0x0000
MOV PL, #0x0200 ; P =512
MOV32 ROH, P
NOP
NOP
NOP
NOP
UI32TOF32 ROH, ROH ; ROH = 512.0 (0x44000000)
See also MOV32 RaH, ACC

MOV32 RaH, XARn
MOV32 RaH, XT

226 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

i3 TEXAS
INSTRUMENTS

www.ti.com MOV32 RaH, RbH {, CNDF} — Conditional 32-bit Move

MOV32 RaH, RbH {, CNDF} Conditional 32-bit Move

Operands
RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
CNDF optional condition.
Opcode LSW: 1110 0110 1100 CNDF
MSW: 0000 0000 00bb baaa
Description If the condition is true, then move the 32-bit value referenced by mem32 to the floating-
point register indicated by RaH.
if (CNDF == TRUE) RaH = RbH
CNDF is one of the following conditions:
Encode @ CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF==0
0001 EQ Equal to zero ZF==1
0010 GT Greater than zero ZF == 0 AND NF ==
0011 GEQ Greater than or equal to zero NF ==
0100 LT Less than zero NF ==
0101 LEQ Less than or equal to zero ZF == 1 AND NF ==
1010 TF Test flag set TF==1
1011 NTF Test flag not set TF==0
1100 LU Latched underflow LUF ==
1101 Lv Latched overflow LVF ==
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag modification ~ None

@ values not shown are reserved.

@ This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified
when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No
iF(CNDF == UNCF) { NF = RaH(31); ZF = 0;
iT(RaH[30:23] == 0) {ZF = 1; NF = 0;} NI = RaH(31); ZI = 0;
if(RaH[31:0] == 0) ZI = 1; } else No flags modified;
Pipeline This is a single-cycle instruction.
Example MOVIZF32 R3H, #8.0 ; R3H = 8.0 (0x41000000)
MOVIZF32 R4H, #7.0 ; R4H = 7.0 (0Ox40E00000)
MAXF32 R3H, R4H ; ZF = 0, NF = 0
MOV32 R1H, R3H, GT ; R1H = 8.0 (0x41000000)
See also MOV32 RaH, mem32{, CNDF}

SPRUHS1C-October 2014 —Revised November 2019 227

Submit Documentation Feedback

Floating Point Unit (FPU64)

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MOV32 RaH, XARn — Move the Contents of XARn to a 32-bit Floating-Point Register

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 RaH, XARn Move the Contents of XARn to a 32-bit Floating-Point Register

Operands
RaH floating-point register (ROH to R7H)
XARN auxiliary register (XARO - XAR7)
Opcode LSW: 1011 1101 loc32
MSW: TREE TRRE LRRE HRRd
Description Move the 32-bit value in the auxiliary register XARn to the floating point register RaH.
RaH = XARn
Flags This instruction does not modify any STF register flags.

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four

alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, I16 TOF32, F32TOUI32,
and F32TOI32.
MOV32 ROH,@XAR7 ; Copy XAR7 to ROH
NOP ; Wait 4 alignment cycles
NOP ; Do not use FRACF32, UI16TOF32
NOP ; 116TOF32, F32TOUI32 or F32TOI32
NOP ;
; <-- ROH is valid
ADDF32 R2H,R1H ,ROH ; Instruction can use ROH as a source
Example MOVL XAR1, #0x0200 ; XARl = 512
MOV32 ROH, XAR1
NOP
NOP
NOP
NOP
UI32TOF32 ROH, ROH ; ROH = 512.0 (0x44000000)
See also MOV32 RaH, ACC

MOV32 RaH, P
MOV32 RaH, XT

228 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 RaH, XT — Move the Contents of XT to a 32-bit Floating-Point Register

MOV32 RaH, XT

Move the Contents of XT to a 32-bit Floating-Point Register

Operands
RaH floating-point register (ROH to R7H)
XT auxiliary register (XARO - XAR7)
Opcode LSW: 1011 1101 loc32
MSW: TREE TRRE LRRE HRRd
Description Move the 32-bit value in temporary register, XT, to the floating-point register RaH.
RaH = XT
Flags This instruction does not modify any STF register flags.

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four

alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, I16 TOF32, F32TOUI32,
and F32TOI32.
MOV32 ROH, XT ; Copy XT to ROH
NOP ; Wait 4 alignment cycles
NOP ; Do not use FRACF32, UI16TOF32
NOP ; 116TOF32, F32TOUI32 or F32TOI32
NOP ;
; <-- ROH is valid
ADDF32 R2H,R1H,ROH ; Instruction can use ROH as a sourc
Example MOVIZF32 R6H, #5.0 ; R6H = 5.0 (0x40A00000)
NOP ; 1 Alignment cycle
MOV32 XT, R6H ; XT = 5.0 (0x40A00000)
MOV32 R1H, XT ; R1IH = 5.0 (0x40A00000)
See also MOV32 RaH, ACC

MOV32 RaH, P
MOV32 RaH, XARn

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU64)

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

229

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MOV32 STF, mem32 — Move 32-bit Value from Memory to the STF Register

www.ti.com

MOV32 STF, mem32 Move 32-bit Value from Memory to the STF Register

Operands
STF floating-point unit status register
mem32 pointer to the 32-bit source memory location
Opcode
LSW: 1110 0010 1000 0000
MSW: 0000 0000 mem32
Description Move from memory to the floating-point unit's status register STF.
STF = [mem32]
Flags This instruction modifies the following flags in the STF register:
Flag TF ZI NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes

Pipeline

Example 1

Example 2

See also

Restoring status register will overwrite all flags.

This is a single-cycle instruction.

MOVW DP, #0x0300 ; DP = 0x0300

MOV @2, #0x020C ; [0x00C002] = 0x020C
MOV @3, #0x0000 ; [0x00C003] = 0x0000
MOV32 STF, @2 ; STF = 0x0000020C

MOV32 *SP++, STF ; Store STF in stack

MOVF32 R2H, #3.0 ; R2H = 3.0 (0x40400000)

MOVF32 R3H, #5.0 ; R3H = 5.0 (0x40A00000)

CMPF32 R2H, R3H ; ZF = 0, NF = 1, STF = 0x00000004
MOV32 R3H, R2H, LT ; R3H = 3.0 (0x40400000)

Mov32 STF, *--SP ; Restore STF from stack

MOV32 mem32, STF
MOVSTO FLAG

230 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 XARn, RaH — Move 32-bit Floating-Point Register Contents to XARnN

MOV32 XARn, RaH

Move 32-bit Floating-Point Register Contents to XARn

Operands
XARN 28x auxiliary register (XARO - XAR7)
RaH Floating-point source register (ROH to R7H)
Opcode LSW: 1011 1111 loc32
MSW: BIRE DLRLL BRED DRI
Description Move the 32-bit value from the floating-point register RaH to the auxiliary register XARnN.
XARn = RaH
Flags No flags affected in floating-point unit.

Flag TF VA| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when

copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:
MINF32 ROH,R1H ; Single-cycle instruction
NOP ; 1 alignment cycle
MOV32 @ACC,ROH ; Copy ROH to ACC
NOP ; Any instruction
If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:
ADDF32 R2H, R1H, ROH ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete
; <-- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle
MOV32 ACC, R2H ; copy R2H into ACC, takes 1 cycle
; <-- MOV32 completes, ACC is valid
NOP ; Any instruction
Example MOVIZF32 ROH, #2.5 ; ROH = 2.5 = 0x40200000
F32TOU132 ROH, ROH
NOP ; Delay for conversion instruction
; <-- Conversion complete, ROH valid
NOP ; Alignment cycle
MOV32 XARO, ROH ; XARO = 2 = 0x00000002
See also MOV32 ACC, RaH

MOV32 P, RaH
MOV32 XT, RaH

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU64) 231

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
MOV32 XT, RaH — Move 32-bit Floating-Point Register Contents to XT www.ti.com
MOV32 XT, RaH Move 32-bit Floating-Point Register Contents to XT
Operands
XT temporary register
RaH Floating-point source register (ROH to R7H)
Opcode
LSW: 1011 1111 loc32
MSW: 10RED BRRE LERL 011l
Description Move the 32-bit value in RaH to the temporary register XT.
XT = RaH
Flags No flags affected in floating-point unit.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when

copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:
MINF32 ROH,R1H ; Single-cycle instruction
NOP ; 1 alignment cycle
MOV32 @XT,ROH ; Copy ROH to ACC NOP
; Any instruction
If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:
ADDF32 R2H, R1H, ROH ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete
; <-- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle
MOV32 XT, R2H ; copy R2H into ACC, takes 1 cycle
; <-- MOV32 completes, ACC is valid
NOP ; Any instruction
Example
MOVI1ZF32 ROH, #2.5 ; ROH = 2.5 = 0x40200000
F32TOUI132 ROH, ROH
NOP ; Delay for conversion instruction
; <-- Conversion complete, ROH valid
NOP ; Alignment cycle
MOvV32 XT, ROH ; XT = 2 = 0x00000002
See also MOV32 ACC, RaH
MOV32 P, RaH
MOV32 XARnN, RaH
232 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MOVD32 RaH, mem32 — Move 32-bit Value from Memory with Data Copy

MOVD32 RaH, mem32 Move 32-bit Value from Memory with Data Copy

Operands
RaH floating-point register (ROH to R7H)
mem32 pointer to the 32-bit source memory location
Opcode LSW: 1110 0010 0010 0011
MSW: 0000 Oaaa mem32
Description Move the 32-bit value referenced by mem32 to the floating-point register indicated by
RaH.
RaH = [mem32] [mem32+2] = [mem32]
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No
NF = RaH[31];
ZF = 0;
if(RaH[30:23] == 0){ ZF = 1; NF = 0; }
NI = RaH[31];
Zl = 0;
if(RaH[31:0] == 0) ZI = 1;
Pipeline This is a single-cycle instruction.
Example MOVW DP, #0x02CO ; DP = 0x02CO
MOV @2, #0x0000 ; [0x00B002] = 0x0000
MOV @3, #0x4110 ; [0x00B0O03] = 0x4110
MOVD32 R7H, @2 ; R7H = 0x41100000,
; [0x00B004] = 0x0000, [0x00BOO5] = 0x4110
See also MOV32 RaH, mem32 {,CNDF}

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

233

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MOVF32 RaH, #32F — Load the 32-bits of a 32-bit Floating-Point Register www.ti.com

MOVF32 RaH, #32F Load the 32-bits of a 32-bit Floating-Point Register

Operands

This instruction is an alias for MOVIZ and MOVXI instructions. The second operand is
translated by the assembler such that the instruction becomes:

MOVIZ RaH, #16FHiHex
MOVX1 RaH, #16FLoHex

RaH
#32F

Floating-point destination register (ROH to R7H)
immediate float value represented in floating-point representation

Opcode

Description

Flags

LSW: 1110 1000 0000 OIll (opcode of MOVIZ RaH, #16FHiHex)
MSWz 1111 1111 1111 laaa

LSW: 1110 1000 0000 1111 (opcode of MOVXI RaH, #16FLoHex)
MSWz 1111 1111 1111 laaa

Note: This instruction accepts the immediate operand only in floating-point
representation. To specify the immediate value as a hex value (IEEE 32-bit floating-
point format) use the MOVI32 RaH, #32FHex instruction.

Load the 32-bits of RaH with the immediate float value represented by #32F.

#32F is a float value represented in floating-point representation. The assembler will only
accept a float value represented in floating-point representation. That is, 3.0 can only be
represented as #3.0. #0x40400000 will result in an error.

RaH = #32F

This instruction modifies the following flags in the STF register:

Flag TF

Zl NI ZF NF LUF LVF

Modified No

No No No No No No

Pipeline

Example

See also

Depending on #32FH, this instruction takes one or two cycles. If all of the lower 16-bits
of the IEEE 32-bit floating-point format of #32F are zeros, then the assembler will
convert MOVF32 into only MOVIZ instruction. If the lower 16-bits of the IEEE 32-bit
floating-point format of #32F are not zeros, then the assembler will convert MOVF32 into
MOVIZ and MOVXI instructions.

MOVF32 R1H, #3.0 ; R1IH = 3.0 (0x40400000)
; Assembler converts this instruction as
; MOVIZ R1H, #0x4040

MOVF32 R2H, #0.0 ; R2H = 0.0 (0x00000000)
; Assembler converts this instruction as
; MOVIZ R2H, #0x0

MOVF32 R3H, #12.265 ; R3H = 12.625 (0x41443D71)
; Assembler converts this instruction as
; MOVIZ R3H, #0x4144
; MOVX1 R3H, #0x3D71

MOVIZ RaH, #16FHiHex
MOVXI RaH, #16FLoHex
MOVI32 RaH, #32FHex

MOVIZF32 RaH, #16FHi

234 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

MOVI32 RaH, #32FHex — Load the 32-bits of a 32-bit Floating-Point Register with the immediate

MOVI32 RaH, #32FHex Load the 32-bits of a 32-bit Floating-Point Register with the immediate

Operands

This instruction is an alias for MOVIZ and MOVXI instructions. The second operand is
translated by the assembler such that the instruction becomes:

MOVIZ RaH, #16FHiHex
MOVX1 RaH, #16FLoHex

RaH
#32FHex

floating-point register (ROH to R7H)
A 32-bit immediate value that represents an IEEE 32-bit floating-point value.

Opcode

Description

Flags

LSW:
MSW:

1110 1000 0000 OIll (opcode of MOVIZ RaH, #16FHiHex)
1L e it laaa

LSW:
MSW:

1110 1000 0000 1111 (opcode of MOVXI RaH, #16FLoHex)
1L e it laaa

Note: This instruction only accepts a hex value as the immediate operand. To specify the

immediate value with a floating-point representation use the MOVF32 RaH, #32F
instruction.

Load the 32-bits of RaH with the immediate 32-bit hex value represented by #32Fhex.
#32Fhex is a 32-bit immediate hex value that represents the IEEE 32-bit floating-point

value of a floating-point number. The assembler will only accept a hex immediate value.

That is, 3.0 can only be represented as #0x40400000. #3.0 will result in an error.
RaH = #32FHex

This instruction modifies the following flags in the STF register:

Flag TF

Zl NI ZF NF LUF LVF

Modified No

No No No No No No

Pipeline

Example

See also

Depending on #32FHex, this instruction takes one or two cycles. If all of the lower 16-
bits of #32FHex are zeros, then assembler will convert MOVI32 to the MOVIZ
instruction. If the lower 16-bits of #32FHex are not zeros, then assembler will convert
MOVI32 to a MOVIZ and a MOVXI instruction.

MOVI32 R1H, #0x40400000 ; R1H = 0x40400000
; Assembler converts
; MOVIZ R1H, #0x4040
MOVI32 R2H, #0x00000000 ; R2H = 0x00000000
; Assembler converts
; MOVIZ R2H, #0x0
; R3H = 0x40004001
; Assembler converts
; MOVIZ R3H, #0x4000 ;
MOVI32 R4H, #0x00004040 ; R4H = 0x00004040
; Assembler converts
; MOVIZ R4H, #0x0000 ;

this instruction as

this instruction as

MOVI32 R3H, #0x40004001
this instruction as
MOVXI R3H, #0x4001

this instruction as
MOVXI R4H, #0x4040

MOVIZ RaH, #16FHiHex
MOVXI RaH, #16FLoHex
MOVF32 RaH, #32F

MOVIZF32 RaH, #16FHi

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU64)

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

235

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MOVIZ RaH, #16FHiHex — Load the Upper 16-bits of a 32-bit Floating-Point Register

13 TEXAS
INSTRUMENTS

www.ti.com

MOVIZ RaH, #16FHiHex Load the Upper 16-bits of a 32-bit Floating-Point Register

Operands
RaH floating-point register (ROH to R7H)
#16FHiHex A 16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit floating-point value.
The low 16-bits of the mantissa are assumed to be all 0.
Opcode
LSW: 1110 1000 0000 Ol
MSW: TIEL IIIT I111 laaa
Description Note: This instruction only accepts a hex value as the immediate operand. To specify the
immediate value with a floating-point representation use the MOVIZF32 pseudo
instruction.
Load the upper 16-bits of RaH with the immediate value #16FHiHex and clear the low
16-bits of RaH.
#16FHiHex is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-
bit floating-point value. The low 16-bits of the mantissa are assumed to be all 0. The
assembler will only accept a hex immediate value. That is, -1.5 can only be represented
as #0xBFCO. #-1.5 will result in an error.
By itself, MOVIZ is useful for loading a floating-point register with a constant in which the
lowest 16-bits of the mantissa are 0. Some examples are 2.0 (0x40000000), 4.0
(0x40800000), 0.5 (0x3F000000), and -1.5 (OXBFCO00000). If a constant requires all 32-
bits of a floating-point register to be initialized, then use MOVIZ along with the MOVXI
instruction.
RaH[31:16] = #16FHiHex
RaH[15:0] = O
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a single-cycle instruction.
Example
; Load ROH with -1.5 (OxBFC00000)
MOVIZ ROH, #OxBFCO ; ROH = OxBFCO0000
; Load ROH with pi = 3.141593 (0x40490FDB)
MOVIZ ROH, #0x4049 ; ROH = 0x40490000
MOVX1 ROH, #OXOFDB ; ROH = Ox40490FDB
See also MOVIZF32 RaH, #16FHi

MOVXI RaH, #16FLoHex

236 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MOVIZF32 RaH, #16FHi — Load the Upper 16-bits of a 32-bit Floating-Point Register

MOVIZF32 RaH, #16FHi Load the Upper 16-bits of a 32-bit Floating-Point Register

Operands
RaH floating-point register (ROH to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.
Opcode
LSW: 1110 1000 0000 OI1I1
MSW: TIEL IIIT I111 laaa
Description Load the upper 16-bits of RaH with the value represented by #16FHi and clear the low
16-bits of RaH.
#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (OxBFC00000). #16FHi can be specified in hex or float. That is, -1.5 can be
represented as #-1.5 or #0xBFCO.
MOVIZF32 is an alias for the MOVIZ RaH, #16FHiHex instruction. In the case of
MOVIZF32 the assembler will accept either a hex or float as the immediate value and
encodes it into a MOVIZ instruction. For example, MOVIZF32 RaH, #-1.5 will be
encoded as MOVIZ RaH, 0xBFCO.
RaH[31:16] = #16FHi
RaH[15:0] = O
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a single-cycle instruction.
Example
MOVIZF32 ROH, #3.0 ; ROH = 3.0 = 0x40400000
MOVIZF32 R1H, #1.0 ; R1H = 1.0 = 0x3F800000
MOVIZF32 R2H, #2.5 ; R2H = 2.5 = 0x40200000
MOVIZF32 R3H, #-5.5 ; R3H = -5.5 = 0xCOB0000O
MOVIZF32 R4H, #OxCOBO ; R4H = -5.5 = 0xCOB0O000O
Load R5H with pi = 3.141593 (0x40490000)
MOVIZF32 R5H, #3.141593 ; R5H = 3.140625 (0x40490000)
Load ROH with a more accurate pi = 3.141593 (0x40490FDB)
MOVIZF32 ROH,#0x4049 ; ROH = 0x40490000
MOVXI ROH,#OxOFDB ; ROH = 0x40490FDB
See also MOVIZ RaH, #16FHiHex
MOVXI RaH, #16FLoHex
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 237

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MOVSTO FLAG — Load Selected STF Flags into STO www.ti.com

MOVSTO FLAG

Load Selected STF Flags into STO

Operands
FLAG Selected flag
Opcode LSW: 1010 1101 FFFF FFFF
Description Load selected flags from the STF register into the STO register of the 28x CPU where

Restrictions

FLAG is one or more of TF, Cl, ZI, ZF, NI, NF, LUF or LVF. The specified flag maps to
the STO register as follows:

e Set OV =1if LVF or LUF is set. Otherwise clear OV.
e Set N =1if NF or Nl is set. Otherwise clear N.

e SetZ=1if ZF or Zl is set. Otherwise clear Z.

e SetC=1if TF is set. Otherwise clear C.

 SetTC =1if TF is set. Otherwise clear TF.
If any STF flag is not specified, then the corresponding STO register bit is not modified.

Do not use the MOVSTO instruction in the delay slots for pipelined operations. Doing so
can yield invalid results. To avoid this, the proper number of NOPs or non-pipelined
instructions must be inserted before the MOVSTO operation.
; The following is INVALID

MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)

MOVSTO TF ; INVALID, do not use MOVSTO in a delay slot

; The following is VALID

MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
MOVSTO TF : VALID

Flags This instruction modifies the following flags in the STF register:

Flag TF Zl NI ZF NF LUF LVF

Modified No No No No No Yes Yes
When the flags are moved to the C28x STO register, the LUF or LVF flags are
automatically cleared if selected.

Pipeline This is a single-cycle instruction.

Example Program flow is controlled by C28x instructions that read status flags in the status
register 0 (STO) . If a decision needs to be made based on a floating-point operation, the
information in the STF register needs to be loaded into STO flags (Z,N,0V,TC,C) so that
the appropriate branch conditional instruction can be executed. The MOVSTO FLAG
instruction is used to load the current value of specified STF flags into the respective bits
of STO. When this instruction executes, it will also clear the latched overflow and
underflow flags if those flags are specified.

Loop:
MOV32 ROH,*XAR4++
MOV32 R1H,*XAR3++
CMPF32 R1H, ROH
MOVSTO ZF, NF
BF Loop, GT ; Loop if (R1H > ROH)

See also MOV32 mem32, STF
MOV32 STF, mem32

238 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

MOVXI RaH, #16FLoHex — Move Immediate to the Low 16-bits of a Floating-Point Register

MOVXI RaH, #16FLoHex Move Immediate to the Low 16-bits of a Floating-Point Register

Operands
Ra floating-point register (ROH to R7H)
#16FLoHex A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit floating-point value. The
upper 16-bits will not be modified.
Opcode LSW: 1110 1000 0000 Z1h0K MSW: LLIL LEIL LI laaa
Description Load the low 16-bits of RaH with the immediate value #16FLoHex. #16FLoHex
represents the lower 16-bits of an IEEE 32-bit floating-point value. The upper 16-bits of
RaH will not be modified. MOVXI can be combined with the MOVIZ or MOVIZF32
instruction to initialize all 32-bits of a RaH register.
RaH[15:0] = #16FLoHex
RaH[31:16] = Unchanged
Flags
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a single-cycle instruction.
Example ; Load ROH with pi = 3.141593 (0x40490FDB)
MOVIZ ROH,#0x4049 ; ROH = 0x40490000
MOVXI ROH,#O0xOFDB ; ROH = 0x40490FDB
See also MOVIZ RaH, #16FHiHex

MOVIZF32 RaH, #16FHi

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

239

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
MPYF32 RaH, RbH, RcH — 32-bit Floating-Point Multiply www.ti.com
MPYF32 RaH, RbH, RcH 32-bit Floating-Point Multiply
Operands
RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
RcH Floating-point source register (ROH to R7H)
Opcode
LSW: 1110 0111 0000 0000
MSW: 0000 000c ccbb baaa
Description Multiply the contents of two floating-point registers.
RaH = RbH * RcH
Flags This instruction modifies the following flags in the STF register:.
Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
* LUF =1 if MPYF32 generates an underflow condition.
 LVF =1 if MPYF32 generates an overflow condition.
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.
Example Calculate Y = A * B:
MOVL XAR4, #A
MOV32 ROH, *XAR4 ; Load ROH with A
MOVL XAR4, # B
MOV32 R1H, *XAR4 ; Load R1H with B
MPYF32 ROH,R1H,ROH ; Multiply A * B
MOVL XAR4, #Y
; <--MPYF32 complete
MOV32 *XAR4,ROH ; Save the result
See also MPYF32 RaH, #16FHi, RbH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH
MPYF32 RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RdH, ReH, RfH || MOV32 mem32, RaH
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
240 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MPYF32 RaH, #16FHi, RoH — 32-bit Floating-Point Multiply

MPYF32 RaH, #16FHi, RbH 32-bit Floating-Point Multiply

Operands

RaH Floating-point destination register (ROH to R7H)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.

RcH Floating-point source register (ROH to R7H)

Opcode LSW: 1110 1000 0111 1111
MSWz 1111 1111 1lbb baaa

Description Multiply RbH with the floating-point value represented by the immediate operand. Store

the result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit

floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is

most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0Ox3F000000), and -1.5

(OxBFCO00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFCO.

RaH = RbH * #16FHi:0

This instruction can also be written as MPYF32 RaH, RbH, #16FHi.

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF

NF

LUF LVF

Modified No No No No

No

Yes Yes

The STF register flags are modified as f

ollows:

e LUF =1 if MPYF32 generates an underflow condition.
* LVF =1if MPYF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

MPYF32 RaH, #16FHi, RbH ; 2 pip

eline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32 completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH

as a source operand.

Example 1
MOVIZF32 R3H, #2.0 ; R3H
MPYF32 R4H, #3.0, R3H ; R4H

2.0 (0x40000000)
3.0 * R3H

MOVL XAR1, #0xB0O06 ; <-- Non conflicting instruction

; <-- MPYF32 complete, R4H

MOV32 *XAR1, R4H ; Save

Example 2 ;Same as above example but #16FHi is
MOVIZF32 R3H, #2.0 ; R3H =
MPYF32 R4H, #0x4040, R3H ; R4H =

= 6.0 (0x40C00000)

the result in memory location 0xB0O06

represented in Hex
2.0 (0x40000000)
0x4040 * R3H

; 3.0 is represented as 0x40400000 in

; IEEE 7

54 32-bit format

MOVL XAR1, #0xB0O06 ; <-- Non conflicting instruction

; <-—— MP

YF32 complete, R4H

= 6.0 (0x40C00000)

MOV32 *XAR1, R4H ; Save the result in memory location 0xB006

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

241

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
MPYF32 RaH, #16FHi, RboH — 32-bit Floating-Point Multiply www.ti.com
See also MPYF32 RaH, RbH, #16FHi
MPYF32 RaH, RbH, RcH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH
242 Floating Point Unit (FPU64) SPRUHS1C-October 2014 —-Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

MPYF32 RaH, RbH, #16FHi — 32-bit Floating-Point Multiply

MPYF32 RaH, RbH, #16FHi 32-bit Floating-Point Multiply

Operands

RaH
RbH
#16FHi

Floating-point destination register (ROH to R7H)
Floating-point source register (ROH to R7H)

A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.

Opcode

Description

Flags

LSW: 1110 1000 0111 1111
MSWz 1111 1111 1lbb baaa

Multiply RbH with the floating-point value represented by the immediate operand. Store
the result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.

Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0Ox3F000000), and -1.5
(OxBFCO00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFCO.

RaH = RbH * #16FHi:0
This instruction can also be writen as MPYF32 RaH, #16FHi, RbH.

This instruction modifies the following flags in the STF register:.

Flag TF

ZI NI ZF NF LUF LVF

Modified No

No No No No Yes Yes

Pipeline

Example 1

Example 2

The STF register flags are modified as follows:
e LUF =1 if MPYF32 generates an underflow condition.
* LVF =1if MPYF32 generates an overflow condition.

This is a 2 pipeline cycle (2p) instruction. That is:

MPYF32 RaH, RbH, #16FHi ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32 completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

MOVIZF32 R3H, #2.0 ; R3H = 2.0 (0x40000000)
MPYF32 R4H, R3H, #3.0 ; R4H = R3H * 3.0
MOVL XAR1, #0xB0OOS8 ; <-- Non conflicting instruction
; <-- MPYF32 complete, R4H = 6.0 (0x40C00000)
MOV32 *XAR1, R4H ; Save the result in memory location 0xB008
;Same as above example but #16FHi is represented in Hex
MOVIZF32 R3H, #2.0 ; R3H = 2.0 (0x40000000)

MPYF32 R4H, R3H, #0x4040 ; R4H = R3H * 0x4040

; 3.0 is represented as 0x40400000 in

; IEEE 754 32-bit format
MOVL XAR1, #0xB0OOS8 ; <-- Non conflicting instruction

; <-- MPYF32 complete, R4H = 6.0 (0x40C00000)
MOV32 *XAR1, R4H ; Save the result in memory location 0xB008

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU64) 243

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
MPYF32 RaH, RbH, #16FHi — 32-bit Floating-Point Multiply www.ti.com
See also MPYF32 RaH, #16FHi, RbH
MPYF32 RaH, RbH, RcH
244 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

) Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MPYF32 RaH, RbH, RcH |JADDF32 RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add

MPYF32 RaH, RbH, RcH |ADDF32 RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add

Operands
RaH Floating-point destination register for MPYF32 (ROH to R7H)
RaH cannot be the same register as RdH
RbH Floating-point source register for MPYF32 (ROH to R7H)
RcH Floating-point source register for MPYF32 (ROH to R7H)
RdH Floating-point destination register for ADDF32 (ROH to R7H)
RdH cannot be the same register as RaH
ReH Floating-point source register for ADDF32 (ROH to R7H)
RfH Floating-point source register for ADDF32 (ROH to R7H)
Opcode LSW: 1110 0111 0100 OOff
MSW: feee dddc ccbb baaa
Description Multiply the contents of two floating-point registers with parallel addition of two registers.
RaH = RbH * RcH
RdH = ReH + RfH
This instruction can also be written as:
MACF32 RaH, RbH, RcH, RdH, ReH, RfH
Restrictions The destination register for the MPYF32 and the ADDF32 must be unique. That is, RaH
cannot be the same register as RdH.
Flags This instruction modifies the following flags in the STF register:.
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
e LUF =1if MPYF32 or ADDF32 generates an underflow condition.
e LVF=1if MPYF32 or ADDF32 generates an overflow condition.
Pipeline Both MPYF32 and ADDF32 take 2 pipeline cycles (2p) That is:
MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|1 ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32, ADDF32 complete, RaH, RdH updated
NOP
Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 245

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MPYF32 RaH, RbH, RcH JADDF32 RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add

13 TEXAS
INSTRUMENTS

www.ti.com

Example ;

See also

1st
; 2nd
; 3rd
; 4th
; 5th

X0
X1
X2
X3
X3

multiply:
multiply:
multiply:
multiply:
multiply:

mooOw>
I mn

Result = A+ B + C +

MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MPYF32 R2H, ROH, R1H
1 MOV32 ROH, *XAR4++
MOV32 R1H, *XARG++

MPYF32 R3H, ROH, R1H
] MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MACF32 R3H, R2H, R2H,
] MOV32 ROH, *XAR4++
MOV32 R1H, *XAR5++

MACF32 R3H, R2H, R2H,
|| MOV32 ROH, *XAR4
MOV32 R1H, *XAR5

MPYF32 R2H, ROH, R1H
|| ADDF32 R3H, R3H, R2H
NOP

ADDF32 R3H, R3H, R2H

MOV32 @Result, R3H

MACF32 R3H, R2H, RdH,

Perform 5 multiply and accumulate operations:

* YO
* Y1l
* Y2
* Y3
* Y3
D+ E
; ROH = X0
; R1IH = YO
; R2H = A = X0 * YO
; In parallel ROH = X1
; RIH = Y1
; RBH =B = X1 * VY1
; In parallel ROH = X2
; RIH = Y2
; RBH=A+B
; R2H = C = X2 * Y2
ROH, R1H ; In parallel ROH = X3
; RIH = Y3
; RBH=(CA+B) +C
; R2H =D = X3 * Y3
ROH, R1H ; In parallel ROH = X4
; RIH = Y4
; R2H=E = X4 * Y4
; in parallel R3H = (A+B +C) + D
; Wait for MPYF32 || ADDF32 to complete
; RBH=(CA+B + C+ D) + E NOP
; Wait for ADDF32 to complete
; Store the result
ReH, RfH

MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R3H, mem32, *XAR7++

MACF32 R7H, R6H, RdH,

ReH, RfH

MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32

246

Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MPYF32 RdH, ReH, RfH ||[MOV32 RaH, mem32 — 32-bit Floating-Point Multiply with Parallel Move

MPYF32 RdH, ReH, RfH [[MOV32 RaH, mem32 32-bit Floating-Point Multiply with Parallel Move

Operands
RdH Floating-point destination register for the MPYF32 (ROH to R7H)
RdH cannot be the same register as RaH
ReH Floating-point source register for the MPYF32 (ROH to R7H)
RfH Floating-point source register for the MPYF32 (ROH to R7H)
RaH Floating-point destination register for the MOV32 (ROH to R7H)
RaH cannot be the same register as RdH
mem32 pointer to a 32-bit memory location. This will be the source of the MOV32.
Opcode LSW: 1110 0011 0000 fffe
MSW: eedd daaa mem32
Description Multiply the contents of two floating-point registers and load another.
RdH = ReH * RfH
RaH = [mem32]
Restrictions The destination register for the MPYF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RdH.
Flags This instruction modifies the following flags in the STF register:.
Flag TF Zl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes
The STF register flags are modified as follows:
 LUF =1 if MPYF32 generates an underflow condition.
* LVF =1if MPYF32 generates an overflow condition.
The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) { ZF = 1; NF = 0; }
NI = RaH(31);
Zl = 0;
if(RaH(31:0) == 0) ZI = 1;
Pipeline MPYF32 takes 2 pipeline-cycles (2p) and MOV32 takes a single cycle. That is:
MPYF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 RaH, mem32 ; 1 cycle
; <-- MOV32 completes, RaH updated
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32 completes, RdH updated
NOP
Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 247

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MPYF32 RdH, ReH, RfH |[MOV32 RaH, mem32 — 32-bit Floating-Point Multiply with Parallel Move

13 TEXAS
INSTRUMENTS

www.ti.com

Example Calculate Y = M1*X1 + B1. This example assumes that M1, X1, B1 and Y1 are all on the
same data page.
MOVW DP, #M1 ; Load the data page
MOV32 ROH,@M1 ; Load ROH with M1
MOV32 R1H,@X1 ; Load R1H with X1
MPYF32 R1H,R1H,ROH ; Multiply M1*X1
|| MOV32 ROH,@B1 ; and in parallel load ROH with Bl
; <-- MOV32 complete
NOP ; Wait 1 cycle for MPYF32 to complete
; <-- MPYF32 complete
ADDF32 R1H,R1H,ROH ; Add M*X1 to Bl and store in R1H
NOP ; Wait 1 cycle for ADDF32 to complete
; <-- ADDF32 complete
MOV32 @Y1,R1H ; Store the result
Calculate Y = (A*B) * C:
MOVL XAR4, #A
MOV32 ROH, *XAR4 ; Load ROH with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
MOVL XAR4, #C
MPYF32 R1H,R1H,ROH ; Calculate R1H = A * B
|1 MOV32 ROH, *XAR4 ; and in parallel load R2H with C
; <-- MOV32 complete
MOVL XAR4, #Y
; <-- MPYF32 complete
MPYF32 R2H,R1H,ROH ; Calculate Y = (A * B) * C
NOP ; Wait 1 cycle for MPYF32 to complete
; MPYF32 complete
MOV32 *XAR4,R2H
See also MPYF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R3H, mem32, *XAR7++
248 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MPYF32 RdH, ReH, RfH |[MOV32 mem32, RaH — 32-bit Floating-Point Multiply with Parallel Move

MPYF32 RdH, ReH, RfH [[MOV32 mem32, RaH 32-bit Floating-Point Multiply with Parallel Move

Operands

RdH Floating-point destination register for the MPYF32 (ROH to R7H)

ReH Floating-point source register for the MPYF32 (ROH to R7H)

RfH Floating-point source register for the MPYF32 (ROH to R7H)

mem32 pointer to a 32-bit memory location. This will be the destination of the MOV32.
RaH Floating-point source register for the MOV32 (ROH to R7H)

Opcode LSW: 1110 0000 0000 fffe
MSW: eedd daaa mem32

Description Multiply the contents of two floating-point registers and move from memory to register.
RdH = ReH * RfH, [mem32] = RaH

Flags This instruction modifies the following flags in the STF register:

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
 LUF =1 if MPYF32 generates an underflow condition.
* LVF =1if MPYF32 generates an overflow condition.

Pipeline MPYF32 takes 2 pipeline-cycles (2p) and MOV32 takes a single cycle. That is:

MPYF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|1 MOV32 mem32, RaH ; 1 cycle
; <-- MOV32 completes, mem32 updated
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32 completes, RdH updated
NOP

Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.

Example
MOVL XAR1, #0xC0O03 ; XAR1 = 0xCO003
MOVIZF32 R3H, #2.0 ; R3H 2.0 (0x40000000)
MPYF32 R3H, R3H, #5.0 ; R3H R3H * 5.0
MOVIZF32 R1H, #5.0 ; R1H 5.0 (0x40A00000)
; <-- MPYF32 complete, R3H = 10.0 (0x41200000)
MPYF32 R3H, R1H, R3H ; R3H = R1H * R3H
|| MOV32 *XAR1, R3H ; and in parallel store previous R3 value
; MOV32 complete, [0xC003] = 0x4120,
; [0xC002] = 0x0000
NOP ; 1 cycle delay for MPYF32 to complete
; <-- MPYF32 , R3H = 50.0 (0x42480000)

See also MPYF32 RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R3H, mem32, *XAR7++

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU64) 249

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MPYF32 RaH, RbH, RcH |[SUBF32 RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Subtract www.ti.com

MPYF32 RaH, RbH, RcH ||SUBF32 RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel

Subtract
Operands
RaH Floating-point destination register for MPYF32 (ROH to R7H)
RaH cannot be the same register as RdH
RbH Floating-point source register for MPYF32 (ROH to R7H)
RcH Floating-point source register for MPYF32 (ROH to R7H)
RdH Floating-point destination register for SUBF32 (ROH to R7H)
RdH cannot be the same register as RaH
ReH Floating-point source register for SUBF32 (ROH to R7H)
RfH Floating-point source register for SUBF32 (ROH to R7H)
Opcode LSW: 1110 0111 0101 OOff MSW: feee dddc ccbb baaa
Description Multiply the contents of two floating-point registers with parallel subtraction of two

Restrictions

registers.
RaH = RbH * RcH,
RdH = ReH - RfH

The destination register for the MPYF32 and the SUBF32 must be unique. That is, RaH
cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:.
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The STF register flags are modified as follows:
 LUF =1if MPYF32 or SUBF32 generates an underflow condition.
* LVF=1if MPYF32 or SUBF32 generates an overflow condition.
Pipeline MPYF32 and SUBF32 both take 2 pipeline-cycles (2p). That is:
MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|l SUBF32 RdH, ReH, RFfH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32, SUBF32 complete. RaH, RdH updated
NOP
Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.
Example
MOVIZF32 R4H, #5.0 ; R4H = 5.0 (0x40A00000)
MOVIZF32 R5H, #3.0 ; R5H = 3.0 (0x40400000)
MPYF32 R6H, R4H, R5H ; R6H = R4H * R5H
[| SUBF32 R7H, R4H, R5H ; R7H = R4H - R5H NOP
; 1 cycle delay for MPYF32 || SUBF32 to complete
; <-- MPYF32 || SUBF32 complete,
; R6H = 15.0 (0x41700000), R7H = 2.0 (0x40000000)
See also SUBF32 RaH, RbH, RcH

SUBF32 RdH, ReH, RfH || MOV32 RaH, mem32
SUBF32 RdH, ReH, RfH || MOV32 mem32, RaH

250 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com NEGF32 RaH, RbH{, CNDF} — Conditional Negation

NEGF32 RaH, RbH{, CNDF} Conditional Negation

Operands
RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
CNDF condition tested
Opcode LSW: 1110 0110 1010 CNDF
MSW: 0000 0000 00bb baaa
Description if (CNDF == true) {RaH = - RbH }
else {RaH = RbH }
CNDF is one of the following conditions:
Encode @ CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF ==
0001 EQ Equal to zero ZF ==
0010 GT Greater than zero ZF == 0 AND NF ==
0011 GEQ Greater than or equal to zero NF ==
0100 LT Less than zero NF ==
0101 LEQ Less than or equal to zero ZF == 1 AND NF ==
1010 TF Test flag set TF ==
1011 NTF Test flag not set TF ==
1100 LU Latched underflow LUF ==
1101 Lv Latched overflow LVF ==
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag modification ~ None

@ values not shown are reserved.

@ This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified
when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF LUF LVF
Modified No No No Yes No No
Pipeline This is a single-cycle instruction.
Example MOVIZF32 ROH, #5.0 ; ROH = 5.0 (Ox40A00000)
MOVIZF32 R1H, #4.0 ; R1H = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (OxBFCO0000)
MPYF32 R4H, R1H, R2H ; R4H = -6.0
MPYF32 R5H, ROH, R1H ; R5H = 20.0
; <-- R4H valid
CMPF32 R4H, #0.0 D NF =1
; <-- R5H valid
NEGF32 R4H, R4H, LT ; if NF = 1, R4H = 6.0
CMPF32 R5H, #0.0 :NF=0
NEGF32 R5H, R5H, GEQ ; if NF = 0, R4H = -20.0

See also ABSF32 RaH, RbH

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

251

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

POP RB — Pop the RB Register from the Stack www.ti.com

POP RB Pop the RB Register from the Stack

Operands

RB repeat block register

Opcode LSW: 1111 1111 1111 0001

Description Restore the RB register from stack. If a high-priority interrupt contains a RPTB
instruction, then the RB register must be stored on the stack before the RPTB block and
restored after the RTPB block. In a low-priority interrupt RB must always be saved and
restored. This save and restore must occur when interrupts are disabled.

Flags This instruction does not affect any flags floating-point Unit:

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

Example A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.

; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
_Interrupt: ; RAS = RA, RA =0
PUSH RB ; Save RB register only if a RPTB block is used in the
ISR
RPTB #BlockEnd, AL ; Execute the block AL+1 times
BlockEnd ; End of block to be repeated
POP RB ; Restore RB register
IRET ; RA = RAS, RAS = 0
A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
_Interrupt: ; RAS = RA, RA =0
PUSH RB ; Always save RB register
CLRC INTM ; Enable interrupts only after saving RB
; ISR may or may not include a RPTB block
SETC INTM ; Disable interrupts before restoring RB
POP RB ; Always restore RB register
IRET ; RA = RAS, RAS = 0
252 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com POP RB — Pop the RB Register from the Stack
See also PUSH RB
RPTB label, #RC
RPTB label, loc16
SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU64) 253

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

i3 TEXAS
INSTRUMENTS

PUSH RB — Push the RB Register onto the Stack www.ti.com

PUSH RB

Operands

Push the RB Register onto the Stack

RB

repeat block register

Opcode

Description

Flags

LSw: 1111 1111 1111 0000

Save the RB register on the stack. If a high-priority interrupt contains a RPTB instruction,
then the RB register must be stored on the stack before the RPTB block and restored
after the RTPB block. In a low-priority interrupt RB must always be saved and restored.
This save and restore must occur when interrupts are disabled.

This instruction does not affect any flags floating-point Unit:

Flag TF

ZI NI ZF NF LUF LVF

Modified No

No No No No No No

Pipeline

Example

See also

This is a single-cycle instruction for the first iteration, and zero cycles thereafter.

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.

; Repeat Block within a ngh Priority Interrupt (Non-Interruptible)
_Interrupt: ; RAS = RA, RA =0

PUSH RB ; Save RB register only if a RPTB block is used in the
ISR

RPTB #BlockEnd, AL ; Execute the block AL+1 times

BlockEnd ; End of block to be repeated
POP RB ; Restore RB register
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.

; Repeat Block within a Low-Priority Interrupt (Interruptible)
_Interrupt: ; RAS = RA, RA=0

PUSH RB ; Always save RB register

éLéC INTM ; Enable interrupts only after saving RB
. ; ISR may or may not include a RPTB block
éé%C INTM ; Disable interrupts before restoring RB
ﬁéé RB ; Always restore RB register

iééT ; RA = RAS, RAS = 0

POP RB
RPTB label, #RC
RPTB label, loc16

254 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com RESTORE — Restore the Floating-Point Registers
RESTORE Restore the Floating-Point Registers
Operands
none This instruction does not have any operands
Opcode LSW: 1110 0101 0110 0010
Description Restore the floating-point register set (ROH - R7H and STF) from their shadow registers.

Restrictions

The SAVE and RESTORE instructions should be used in high-priority interrupts. That is

interrupts that cannot themselves be interrupted. In low-priority interrupt routines the
floating-point registers should be pushed onto the stack.

The RESTORE instruction cannot be used in any delay slots for pipelined operations.

Doing so will yield invalid results. To avoid this, the proper number of NOPs or non-
pipelined instructions must be inserted before the RESTORE operation.

; The following is INVALID
MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
RESTORE ; INVALID, do not use RESTORE in a delay slot

; The following is VALID

MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
RESTORE ; VALID
Flags Restoring the status register will overwrite all flags:
Flag TF VAl NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes
Pipeline This is a single-cycle instruction.
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 255

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

RESTORE — Restore the Floating-Point Registers

13 TEXAS
INSTRUMENTS

www.ti.com

Example

See also

The following example shows a complete context save and restore for a high-priority

interrupt. Note that the CPU automatically stores the following registers: ACC, P, XT,
STO, ST1, IER, DP, ARO, AR1 and PC. If an interrupt is low priority (that is it can be
interrupted), then push the floating point registers onto the stack instead of using the
SAVE and RESTORE operations.

; Interrupt

Save

_HighestPrioritylISR: ;

ASP

PUSH RB
PUSH AR1H
PUSH XAR2
PUSH XAR3
PUSH XAR4
PUSH XAR5
PUSH XAR6
PUSH XAR7
PUSH XT
SPM 0

Uninterruptable

; Align stack

-AROH ;

CLRC AMODE
CLRC PAGEO,OVM
SAVE RNDF32=1 ;

; Interrupt
RESTORE
POP XT
POP XAR7
POP XAR6
POP XAR5
POP XAR4
POP XAR3
POP XAR2
POP AR1H
POP RB
NASP

IRET

Restore

Save RB register if used in the ISR
Save other registers if used

Set default C28 modes

Save all FPU registers
set default FPU modes

; Restore all FPU registers

ZAROH

restore other registers

; restore RB register

SAVE FLAG, VALUE

un-align stack
return from interrupt

256

Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com RPTB label, loc16 — Repeat A Block of Code

RPTB label, loc16 Repeat A Block of Code

Operands
label This label is used by the assembler to determine the end of the repeat block and to calculate RSIZE.
This label should be placed immediately after the last instruction included in the repeat block.
loc16 16-bit location for the repeat count value.
Opcode LSW: 1011 0101 Obbb bbbb
MSW: 0000 0000 locl6
Description Initialize repeat block loop, repeat count from [loc16]

Restrictions
* The maximum block size is <127 16-bit words.
* An even aligned block must be = 9 16-bit words.
* An odd aligned block must be = 8 16-bit words.
» Interrupts must be disabled when saving or restoring the RB register.
* Repeat blocks cannot be nested.

» Any discontinuity type operation is not allowed inside a repeat block. This includes all
call, branch, or TRAP instructions. Interrupts are allowed.

» Conditional execution operations are allowed.

Flags This instruction does not affect any flags in the floating-point unit;
Flag TF bl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This instruction takes four cycles on the first iteration and zero cycles thereafter. No

special pipeline alignment is required.

Example The minimum size for the repeat block is 9 words if the block is even-aligned and 8
words if the block is odd-aligned. If you have a block of 8 words, as in the following
example, you can make sure the block is odd aligned by proceeding it by a .align 2
directive and a NOP instruction. The .align 2 directive will make sure the NOP is even-
aligned. Since a NOP is a 16-bit instruction the RPTB will be odd-aligned. For blocks of
9 or more words, this is not required.

; Repeat Block of 8 Words (Interruptible)
; find the largest element and put its address in XAR6
.align 2

NOP
RPTB VECTOR_MAX_END, AR7 ; Execute the block AR7+1 times
MOVL ACC, XARO
MOV32 R1H,*XARO++ ; min size
MAXF32 ROH,R1H ; max size
MOVSTO NF,ZF
MOVL XAR6 ,ACC,LT

VECTOR_MAX_END: ; label indicates the end

; RA is cleared

8, 9 words
127 words

When an interrupt is taken the repeat active (RA) bit in the RB register is automatically
copied to the repeat active shadow (RAS) bit. When the interrupt exits, the RAS bit is
automatically copied back to the RA bit. This allows the hardware to keep track if a
repeat loop was active whenever an interrupt is taken and restore that state
automatically.

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU64) 257

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

RPTB label, loc16 — Repeat A Block of Code

13 TEXAS
INSTRUMENTS

www.ti.com

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.

; Repeat Block within a High-Priority Interrupt (Non-Interruptible)

; Interrupt:
PUSH RB
ISR
RPTB #BlockEnd, AL
BlockEnd
POP RB

IRET

; RAS = RA, RA =0

; Save RB register only if a RPTB block is used in the

; Execute the block AL+1 times

; End of block to be repeated

; Restore RB register

; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.

; Repeat Block within a Low-Priority Interrupt (Interruptible)

; Interrupt:
PUSH RB

CLRC INTM

SETC INTM
POP RB

IRET

See also POP RB

PUSH RB
RPTB label, #RC

; RAS = RA, RA =0

Always save RB register

Enable interrupts only after saving RB

ISR may or may not include a RPTB block

Disable interrupts before restoring RB
Always restore RB register

RA = RAS, RAS = 0

258

Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com RPTB label, #RC — Repeat a Block of Code

RPTB label, #RC Repeat a Block of Code

Operands
label This label is used by the assembler to determine the end of the repeat block and to calculate RSIZE.
This label should be placed immediately after the last instruction included in the repeat block.
#RC 16-bit location
Opcode LSW: 1011 0101 1bbb bbbb
MSW: cccc ccecc ccce ccce
Description Repeat a block of code. The repeat count is specified as a immediate value.

Restrictions
* The maximum block size is <127 16-bit words.
* An even aligned block must be = 9 16-bit words.
* An odd aligned block must be = 8 16-bit words.
» Interrupts must be disabled when saving or restoring the RB register.
* Repeat blocks cannot be nested.

» Any discontinuity type operation is not allowed inside a repeat block. This includes all
call, branch or TRAP instructions. Interrupts are allowed.

» Conditional execution operations are allowed.

Flags This instruction does not affect any flags int the floating-point unit:
Flag TF bl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This instruction takes one cycle on the first iteration and zero cycles thereafter. No

special pipeline alignment is required.

Example The minimum size for the repeat block is 8 words if the block is even aligned and 9
words if the block is odd aligned. If you have a block of 8 words, as in the following
example, you can make sure the block is odd aligned by proceeding it by a .align 2
directive and a NOP instruction. The .align 2 directive will make sure the NOP is even
aligned. Since a NOP is a 16-bit instruction the RPTB will be odd aligned. For blocks of
9 or more words, this is not required.

; Repeat Block (Interruptible)
; find the largest element and put its address in XAR6
.align 2

NOP
RPTB VECTOR_MAX_END, #(4-1) ; Execute the block 4 times
MOVL ACC, XARO
MOV32 R1H,*XARO++ ; 8 or 9 words block size 127 words
MAXF32 ROH,R1H
MOVSTO NF,ZF
MOVL XAR6,ACC,LT
VECTOR_MAX_END: ; RE indicates the end address
; RA is cleared

When an interrupt is taken the repeat active (RA) bit in the RB register is automatically
copied to the repeat active shadow (RAS) bit. When the interrupt exits, the RAS bit is
automatically copied back to the RA bit. This allows the hardware to keep track if a
repeat loop was active whenever an interrupt is taken and restore that state
automatically.

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU64) 259

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

RPTB label, #RC — Repeat a Block of Code www.ti.com

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.

; Repeat Block within a High-Priority Interrupt (Non-Interruptible)

; Interrupt: ; RAS = RA, RA =0

PUSH RB ; Save RB register only if a RPTB block is used in the
ISR

RPTB #BlockEnd, #5 ; Execute the block 5+1 times

BlockEnd ; End of block to be repeated

POP RB ; Restore RB register

IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.

; Repeat Block within a Low-Priority Interrupt (Interruptible)

; Interrupt: ; RAS = RA, RA =0
PUSH RB ; Always save RB register
CLRC INTM ; Enable interrupts only after saving RB

; ISR may or may not include a RPTB block

SETC INTM ; Disable interrupts before restoring RB

POP RB ; Always restore RB register
IRET ; RA = RAS, RAS = 0
See also POP RB
PUSH RB
RPTB #RSIZE, loc16
260 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

SAVE FLAG, VALUE — Save Register Set to Shadow Registers and Execute SETFLG

SAVE FLAG, VALUE Save Register Set to Shadow Registers and Execute SETFLG

Operands
FLAG 11 bit mask indicating which floating-point status flags to change.
VALUE 11 bit mask indicating the flag value; 0 or 1.
Opcode LSW: 1110 0110 O1FF FFFF
MSW: FFFF FVWW VWW WW
Description This operation copies the current working floating-point register set (ROH to R7H and

Restrictions

Flags

STF) to the shadow register set and combines the SETFLG FLAG, VALUE operation in
a single cycle. The status register is copied to the shadow register before the flag values
are changed. The STF[SHDWM] flag is set to 1 when the SAVE command has been
executed. The SAVE and RESTORE instructions should be used in high-priority
interrupts. That is interrupts that cannot themselves be interrupted. In low-priority
interrupt routines the floating-point registers should be pushed onto the stack.

Do not use the SAVE instruction in the delay slots for pipelined operations. Doing so can
yield invalid results. To avoid this, the proper number of NOPs or non-pipelined
instructions must be inserted before the SAVE operation.

; The following is INVALID
MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
SAVE RNDF32=1 ; INVALID, do not use SAVE in a delay slot
; The following is VALID
MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
SAVE RNDF32=1 ; VALID

This instruction modifies the following flags in the STF register:

Flag TF

Zl NI ZF NF LUF LVF

Modified Yes

Yes Yes Yes Yes Yes Yes

Pipeline

Example

Any flag can be modified by this instruction.
This is a single-cycle instruction.

To make it easier and more legible, the assembler will accept a FLAG=VALUE syntax for
the STFLG operation as shown below:
SAVE RNDF32=0, TF=1, ZF=0 ; FLAG = 01001000100, VALUE = XOXXOXXX1XX
MOVSTO TF, ZF, LUF ; Copy the indicated flags to STO
; Note: X means this flag will not be modified.
; The assembler will set these X values to O.

The following example shows a complete context save and restore for a high priority
interrupt. Note that the CPU automatically stores the following registers: ACC, P, XT,
STO, ST1, IER, DP, ARO, AR1 and PC.

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU64) 261
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

SAVE FLAG, VALUE — Save Register Set to Shadow Registers and Execute SETFLG

13 TEXAS
INSTRUMENTS

www.ti.com

See also

_HighestPrioritylISR:
;Align stack

ASP

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
SPM

CLRC AMODE

RB

ARIH:AROH ;

XAR2
XAR3
XAR4
XAR5
XARG
XAR7
XT
0

CLRC PAGEO,OWM

SAVE RNDF32=0

REST
POP
POP
POP
POP
POP
POP
POP
POP
POP
NASP

ORE
XT
XAR7
XARG
XARS
XAR4
XAR3
XAR2

AR1H:AROH

RB

RESTORE
SETFLG FLAG,

Save RB register if used in the ISR
Save other registers if used

Set default C28 modes

Save all FPU registers
set default FPU modes

Restore all FPU registers
restore other registers

restore RB register
un-align stack IRET
return from interrupt

VALUE

262

Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019

Copyright © 2014-2019, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com SETFLG FLAG, VALUE — Set or clear selected floating-point status flags

SETFLG FLAG, VALUE Set or clear selected floating-point status flags

Operands
FLAG 11 bit mask indicating which floating-point status flags to change.
VALUE 11 bit mask indicating the flag value; 0 or 1.

Opcode LSW: 1110 0110 OOFF FFFF
MSW: FFFF FVWW VWW WW

Description The SETFLG instruction is used to set or clear selected floating-point status flags in the
STF register. The FLAG field is an 11-bit value that indicates which flags will be
changed. That is, if a FLAG bit is set to 1 it indicates that flag will be changed; all other
flags will not be modified. The bit mapping of the FLAG field is shown below:

10 9 8 7 6 5 4 3 2 1 0
reserved | RNDF32 ‘ reserved ‘ reserved ‘ TF ‘ Zl | NI | ZF ‘ NF ‘ LUF | LVF
The VALUE field indicates the value the flag should be set to; 0 or 1.

Restrictions Do not use the SETFLG instruction in the delay slots for pipelined operations. Doing so
can yield invalid results. To avoid this, the proper number of NOPs or non-pipelined
instructions must be inserted before the SETFLG operation.

; The following is INVALID
MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
SETFLG RNDF32=1 ; INVALID, do not use SETFLG in a delay slot
; The following is VALID
MPYF32 R2H, R1H, ROH ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
SETFLG RNDF32=1 ; VALID

Flags This instruction modifies the following flags in the STF register:

Flag TF Zl NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes
Any flag can be modified by this instruction.

Pipeline This is a single-cycle instruction.

Example To make it easier and legible, the assembler will accept a FLAG=VALUE syntax for the
STFLG operation as shown below:

SETFLG RNDF32=0, TF=1, ZF=0 ; FLAG = 01001001000, VALUE = XOXX1XXOXXX
MOVSTO TF, ZF, LUF ; Copy the indicated flags to STO
; X means this flag is not modified.
; The assembler will set X values to O
See also SAVE FLAG, VALUE
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 263

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

SUBF32 RaH, RbH, RcH — 32-bit Floating-Point Subtraction www.ti.com

SUBF32 RaH, RbH, RcH 32-bit Floating-Point Subtraction

Operands

RaH
RbH
RcH

Floating-point destination register (ROH to R1)
Floating-point source register (ROH to R1)
Floating-point source register (ROH to R1)

Opcode

Description

Flags

LSW: 1110 0111 0010 0000
MSW: 0000 000c ccbb baaa

Subtract the contents of two floating-point registers
RaH = RbH - RcH

This instruction modifies the following flags in the STF register:

Flag TF

Zl NI ZF NF LUF LVF

Modified No

No No No No Yes Yes

Pipeline

Example

See also

The STF register flags are modified as follows:
» LUF =1 if SUBF32 generates an underflow condition.
* LVF =1 if SUBF32 generates an overflow condition.

This is a 2 pipeline cycle (2p) instruction. That is:

SUBF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- SUBF32 completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Calculate Y -A+ B -C:

MOVL XAR4, #A

MOV32 ROH, *XAR4 ; Load ROH with A

MOVL XAR4, #B

MOV32 R1H, *XAR4 ; Load R1H with B

MOVL XAR4, #C

ADDF32 ROH,R1H,ROH ; Add A + B and in parallel
|1 MOV32 R2H,*XAR4 ; Load R2H with C

; <-- ADDF32 complete
SUBF32 ROH,ROH,R2H ; Subtract C from (A + B)
NOP

; <-- SUBF32 completes
MOV32 *XAR4,ROH ; Store the result

SUBF32 RaH, #16FHi, RbH

SUBF32 RdH, ReH, RfH || MOV32 RaH, mem32
SUBF32 RdH, ReH, RfH || MOV32 mem32, RaH
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH

264 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com SUBF32 RaH, #16FHi, RobH — 32-bit Floating Point Subtraction

SUBF32 RaH, #16FHi, RbH 32-bit Floating Point Subtraction

Operands

RaH Floating-point destination register (ROH to R1)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.

RbH Floating-point source register (ROH to R1)

Opcode LSW: 1110 1000 1111 1111
MSWz 1111 1111 1lbb baaa

Description Subtract RbH from the floating-point value represented by the immediate operand. Store
the result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.

Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0Ox3F000000), and -1.5
(OxBFCO00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFCO.

RaH = #16FHi:0 - RbH

Flags This instruction modifies the following flags in the STF register:

Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
e LUF =1 if MPYF32 generates an underflow condition.
e« LVF =1 if MPYF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

SUBF32 RaH, #16FHi, RbH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- SUBF32 completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Example Calculate Y =2.0 - (A + B):

MOVL XAR4, #A
MOV32 ROH, *XAR4 ; Load ROH with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
ADDF32 ROH,R1H,ROH ; Add A + B and in parallel
NOP

; <-- ADDF32 complete
SUBF32 ROH,#2.0,R2H ; Subtract (A + B) from 2.0
NOP

; <-- SUBF32 completes
MOV32 *XAR4,ROH ; Store the result

See also SUBF32 RaH, RbH, RcH
SUBF32 RdH, ReH, RfH || MOV32 RaH, mem32
SUBF32 RdH, ReH, RfH || MOV32 mem32, RaH
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU64) 265

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

SUBF32 RdH, ReH, RfH [MOV32 RaH, mem32 — 32-bit Floating-Point Subtraction with Parallel Move www.ti.com

SUBF32 RdH, ReH, RfH |[MOV32 RaH, mem32 32-bit Floating-Point Subtraction with Parallel Move

Operands
RdH Floating-point destination register (ROH to R7H) for the SUBF32 operation
RdH cannot be the same register as RaH
ReH Floating-point source register (ROH to R7H) for the SUBF32 operation
RfH Floating-point source register (ROH to R7H) for the SUBF32 operation
RaH Floating-point destination register (ROH to R7H) for the MOV32 operation
RaH cannot be the same register as RdH
mema32 pointer to 32-bit source memory location for the MOV32 operation
Opcode LSW: 1110 0011 0010 fffe
MSW: eedd daaa mem32
Description Subtract the contents of two floating-point registers and move from memory to a floating-

Restrictions

point register.
RdH = ReH - RfH, RaH = [mem32]

The destination register for the SUBF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The STF register flags are modified as follows:
» LUF =1 if SUBF32 generates an underflow condition.
* LVF =1 if SUBF32 generates an overflow condition.
The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) { ZF = 1; NF = 0; }
NI = RaH(31);
Zl = 0;
if(RaH(31:0) == 0) ZI = 1;

Pipeline SUBF32 is a 2 pipeline-cycle instruction (2p) and MOV32 takes a single cycle. That is:
SUBF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|1 MOV32 RaH, mem32 ; 1 cycle

; <-- MOV32 completes, RaH updated
NOP ; 1 cycle delay or non-conflicting instruction
; <-- SUBF32 completes, RdH updated

NOP
Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.

266 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com SUBF32 RdH, ReH, RfH |[MOV32 RaH, mem32 — 32-bit Floating-Point Subtraction with Parallel Move
Example
MOVL XAR1, #0xCO00 ; XAR1 = 0xCO000
SUBF32 ROH, R1H, R2H ; (A) ROH = R1H - R2H
|1 MOV32 R3H, *XAR1 ;
; <-- R3H valid
MOV32 R4H, *+XAR1[2] ;
; <-- (A) completes, ROH valid, R4H valid
ADDF32 R5H, R4H, R3H ; (B) R5H = R4H + R3H
|1 MOV32 *+XAR1[4], ROH ;
; <-- ROH stored
MOVL XAR2, #OxXEO0O00 ;
<-- (B) completes, R5H valid
MOV32 *XAR2, R5H ;
; <-- R5H stored
See also SUBF32 RaH, RbH, RcH

SUBF32 RaH, #16FHi, RbH
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Floating Point Unit (FPU64)

Copyright © 2014-2019, Texas Instruments Incorporated

267

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

SUBF32 RdH, ReH, RfH [MOV32 mem32, RaH — 32-bit Floating-Point Subtraction with Parallel Move www.ti.com

SUBF32 RdH, ReH, RfH |[MOV32 mem32, RaH 32-bit Floating-Point Subtraction with Parallel Move

Operands

RdH
ReH
RfH
mem32
RaH

Floating-point destination register (ROH to R7H) for the SUBF32 operation
Floating-point source register (ROH to R7H) for the SUBF32 operation
Floating-point source register (ROH to R7H) for the SUBF32 operation
pointer to 32-bit destination memory location for the MOV32 operation
Floating-point source register (ROH to R7H) for the MOV32 operation

Opcode

Description

Flags

LSW: 1110 0000 0010 fffe
MSW: eedd daaa mem32

Subtract the contents of two floating-point registers and move from a floating-point
register to memory.

RdH = ReH - RfH,
[mem32] = RaH

This instruction modifies the following flags in the STF register:SUBF32 RdH, ReH, RfH
[| MOV32 RaH, mem32

Flag TF

VA| NI ZF NF LUF LVF

Modified No

No No No No Yes Yes

Pipeline

Example

The STF register flags are modified as follows:
e LUF =1 if SUBF32 generates an underflow condition.
 LVF =1 if SUBF32 generates an overflow condition.

SUBF32 is a 2 pipeline-cycle instruction (2p) and MOV32 takes a single cycle. That is:

SUBF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 mem32, RaH ; 1 cycle
; <-- MOV32 completes, mem32 updated
NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, RdH updated
NOP

Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.

ADDF32 R3H, R6H, R4H ; (A) R3H = R6H + R4H and R7H = 13
Il Mov32 R7H, *-SP[2] :
; <-- R7H valid
SUBF32 R6H, R6H, R4H ; (B) R6H = R6H - R4H
; <-- ADDF32 (A) completes, R3H valid
SUBF32 R3H, R1H, R7H ; (C) R3H = R1H - R7H and store R3H (A)
[l MOV32 *+XAR5[2], R3H ;
; <-- SUBF32 (B) completes, R6H valid
; <-- MOV32 completes, (A) stored
ADDF32 R4H, R7H, R1H ; RAH = D = R7H + R1H and store R6H (B)
Il MOV32 *+XAR5[6], R6H ;
; <-- SUBF32 (C) completes, R3H valid
; <-- MOV32 completes, (B) stored
MOV32 *+XAR5[0], R3H ; store R3H (C)
; <-- MOV32 completes, (C) stored
; <-- ADDF32 (D) completes, R4H valid
MOV32 *+XAR5[4], R4H ; store R4H (D)
; <-- MOV32 completes, (D) stored

268

Floating Point Unit (FPU64) SPRUHS1C-October 2014 —-Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com SUBF32 RdH, ReH, RfH |[MOV32 mem32, RaH — 32-bit Floating-Point Subtraction with Parallel Move
See also SUBF32 RaH, RbH, RcH

SUBF32 RaH, #16FHi, RbH
SUBF32 RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH

SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU64) 269
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

SWAPF RaH, RbH{, CNDF} — Conditional Swap

13 TEXAS
INSTRUMENTS

www.ti.com

SWAPF RaH, RbH{, CNDF} Conditional Swap

Operands
RaH floating-point register (ROH to R7H)
RbH floating-point register (ROH to R7H)
CNDF condition tested
Opcode LSW: 1110 0110 1110 CNDF
MSW: 0000 0000 00bb baaa
Description Conditional swap of RaH and RbH.
if (CNDF == true) swap RaH and RbH
CNDF is one of the following conditions:
Encode @ CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF ==
0001 EQ Equal to zero ZF ==
0010 GT Greater than zero ZF == 0 AND NF ==
0011 GEQ Greater than or equal to zero NF ==
0100 LT Less than zero NF ==
0101 LEQ Less than or equal to zero ZF == 1 AND NF ==
1010 TF Test flag set TF ==
1011 NTF Test flag not set TF ==
1100 LU Latched underflow LUF ==
1101 LV Latched overflow LVF ==
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag modification ~ None

™ Values not shown are reserved.
@ This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified
when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected
Pipeline This is a single-cycle instruction.
Example ;Find the largest element and put it in R1H
MOVL XAR1, #0xB0OOO ;
MOV32 R1H, *XAR1 ; Initialize R1H
.align 2
NOP
RPTB LOOP_END, #(10-1); Execute the block 10 times
MOV32 R2H, *XAR1++ ; Update R2H with next element
CMPF32 R2H, R1H ; Compare R2H with R1H
SWAPF R1H, R2H, GT ; Swap R1H and R2H if R2 > R1
NOP ; For minimum repeat block size
NOP ; For minimum repeat block size
LOOP_END:
270 Floating Point Unit (FPU64) SPRUHS1C-October 2014 —-Revised November 2019

Copyright © 2014-2019, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

TESTTF CNDF — Test STF Register Flag Condition

TESTTF CNDF

Test STF Register Flag Condition

Operands
CNDF condition to test
Opcode LSW: 1110 0101 1000 CNDF
Description Test the floating-point condition and if true, set the TF flag. If the condition is false, clear
the TF flag. This is useful for temporarily storing a condition for later use.
if (CNDF == true) TF = 1; else TF = 0;
CNDF is one of the following conditions:
Encode @ CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF ==
0001 EQ Equal to zero ZF ==
0010 GT Greater than zero ZF == 0 AND NF ==
0011 GEQ Greater than or equal to zero NF ==
0100 LT Less than zero NF ==
0101 LEQ Less than or equal to zero ZF == 1 AND NF ==
1010 TF Test flag set TF ==
1011 NTF Test flag not set TF ==
1100 LU Latched underflow LUF ==
1101 LV Latched overflow LVF ==
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag modification ~ None

@ Values not shown are reserved.
@ This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified
when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified Yes No No No No No No
TF = 0; 1f (CNDF == true) TF = 1;
Note: If (CNDF == UNC or UNCF), the TF flag will be set to 1.
Pipeline This is a single-cycle instruction.
Example CMPF32 ROH, #0.0 ; Compare ROH against O
TESTTF LT ; Set TF if ROH less than 0 (NF == 0)
ABS ROH, ROH ; Get the absolute value of ROH
; Perform calculations based on ABS ROH
MOVSTO TF ; Copy TF to TC in STO
SBF End, NTC ; Branch to end if TF was not set
NEGF32 ROH, ROH
End
See also

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU64) 271

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

UI16TOF32 RaH, mem16 — Convert unsigned 16-bit integer to 32-bit floating-point value

13 TEXAS
INSTRUMENTS

www.ti.com

UI16TOF32 RaH, mem16 Convert unsigned 16-bit integer to 32-bit floating-point value

Operands

RaH
mem16

Floating-point destination register (ROH to R7H)
pointer to 16-bit source memory location

Opcode

Description

Flags

LSW: 1110 0010 1100 0100
MSW: 0000 Oaaa meml6

RaH = Ul116ToF32[meml16]

This instruction does not affect any flags:

Flag TF

VA| NI ZF NF

LUF LVF

Modified No

No No No No

No No

Pipeline

Example

See also

This is a 2 pipeline cycle (2p) instruction. That is:
UI16TOF32 RaH, meml16 ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- UI16TOF32 completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or as a

source operand.

; Float32 y,m,b;
; AdcRegs.RESULTO is an unsigned int

; Calculate: y = (float)AdcRegs.ADCRESULTO * m + b;

MOVW DP @0x01C4

UI16TOF32 ROH, @8 ; ROH = (float)AdcRegs.RESULTO

MOV32 R1H, *-SP[6] ; RIH = M

; <-- Conversion complete, ROH valid

MPYF32 ROH, R1H, ROH ; ROH = (float)X * M
MOV32 R1H, *-SP[8] ; RIH = B

; <-- MPYF32 complete, ROH valid
ADDF32 ROH, ROH, R1H ; ROH = Y = (float)X * M + B

NOP

; <-- ADDF32 complete, ROH valid

MOV32 *-[SP], ROH ; Store Y

F32TOI16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
[16TOF32 RaH, RbH
[16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

272 Floating Point Unit (FPU64)

Copyright © 2014-2019, Texas Instruments Incorporated

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

UI16TOF32 RaH, RbH — Convert unsigned 16-bit integer to 32-bit floating-point value

UI16TOF32 RaH, RbH Convert unsigned 16-bit integer to 32-bit floating-point value

Operands
RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1000 1111
MSW: 0000 0000 OObb baaa
Description RaH = UI16ToF32[RbH]
Flags This instruction does not affect any flags:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
UI16TOF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- UI16TOF32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.
Example MOVXI R5H, #Ox800F ; R5H[15:0] = 32783 (Ox800F)
UI16TOF32 R6H, R5H ; R6H = UI16TOF32 (R5H[15:0])
NOP ; 1 cycle delay for UI16TOF32 to complete
; R6H = 32783.0 (0x47000F00)
See also F32TOI16 RaH, RbH

F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
116 TOF32 RaH, RbH

116 TOF32 RaH, mem16
UI16TOF32 RaH, mem16

SPRUHS1C-October 2014 —Revised November 2019

Floating Point Unit (FPU64)

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

273

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

UI32TOF32 RaH, mem32 — Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

13 TEXAS
INSTRUMENTS

www.ti.com

UI32TOF32 RaH, mem32 Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

Operands
RaH Floating-point destination register (ROH to R7H)
mem32 pointer to 32-bit source memory location
Opcode LSW: 1110 0010 1000 0100
MSW: 0000 Oaaa mem32
Description RaH = UI32ToF32[mem32]
Flags This instruction does not affect any flags:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
UI32TOF32 RaH, mem32 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay non-conflicting instruction
; <-- UI32TOF32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.
Example ; unsigned long X
; float Y, M, B
; Calculate Y = (float)X * M + B
UI32TOF32 ROH, *-SP[2] ; ROH = (float)X
MOV32 R1H, *-SP[6] ; RIH =M
; <-- Conversion complete, ROH valid
MPYF32 ROH, R1H, ROH ; ROH = (float)X * M
MOV32 R1H, *-SP[8] ; RIH =B
; <-- MPYF32 complete, ROH valid
ADDF32 ROH, ROH, R1H ; ROH =Y = (float)X * M + B
NOP
; <-- ADDF32 complete, ROH valid
MOV32 *-[SP], ROH ; Store Y
See also F32T0OI132 RaH, RbH

F32TOUI32 RaH, RbH
I32TOF32 RaH, mem32
I32TOF32 RaH, RbH
UI32TOF32 RaH, RbH

274 Floating Point Unit (FPU64)

Copyright © 2014-2019, Texas Instruments Incorporated

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

UI32TOF32 RaH, RbH — Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

UI32TOF32 RaH, RbH Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

Operands
RaH Floating-point destination register (ROH to R7H)
RbH Floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1000 1011
MSW: 0000 0000 OObb baaa
Description RaH = UI32ToF32[RbH]
Flags This instruction does not affect any flags:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
UI32TOF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- UI32TOF32 completes, RaH updated
NOP
Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.
Example MOVIZ R3H, #0x8000 ; R3H[31:16] = 0x8000
MOVX1 R3H, #0x1111 ; R3H[15:0] = Ox1111
; R3H = 2147488017
UI32TOF32 R4H, R3H ; R4H = UI32TOF32 (R3H)
NOP ; 1 cycle delay for UI32TOF32 to complete
; R4H = 2147488017.0 (O0x4F000011)
See also F32T0OI132 RaH, RbH

F32TOUI32 RaH, RbH
I32TOF32 RaH, mem32
I32TOF32 RaH, RbH
UI32TOF32 RaH, mem32

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

275

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
ZERO RaH — Zero the Floating-Point Register RaH www.ti.com
ZERO RaH Zero the Floating-Point Register RaH
Operands
RaH floating-point register (ROH to R7H)
Opcode LSW: 1110 0101 1001 Oaaa
Description Zero the indicated floating-point register:
RaH = 0O
Flags This instruction modifies the following flags in the STF register:
Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected.
Pipeline This is a single-cycle instruction.
Example ;For(i = 0; 0 < n; i++)
H
; real += (x[2*i] * y[2*i]) - (x[2*i+1] * y[2*i+1]);
imag += (x[2*i] * y[2*i+1]) + (x[2*i+1] * y[2*i]);
3
;Assume AR7 = n-1
ZERO R4H ; R4H = real = 0
ZERO R5H ; R5H = imag = 0O
LOOP
MOV AL, AR7
MOV ACC, AL << 2
MOV ARO, ACC
MOV32 ROH, *+XAR4[ARO] ; ROH = x[2*i]
MOV32 R1H, *+XARS[ARO] ; R1H = y[2*i]
ADD ARO, #2
MPYF32 R6H, ROH, R1H; ; R6H = x[2*i] * y[2*i]
|1 MOV32 R2H, *+XAR4[ARO] ; R2H = x[2*i+1]
MPYF32 R1H, R1H, R2H ; R1H = y[2*i] * x[2*i+2]
[1 MOV32 R3H, *+XAR5[ARO] ; R3H = y[2*i+1]
MPYF32 R2H, R2H, R3H ; R2H = x[2*i+1] * y[2*i+1]
|1 ADDF32 R4H, R4H, R6H ; R4H += x[2*i] * y[2*i]
MPYF32 ROH, ROH, R3H ; ROH = x[2*i] * y[2*i+1]
|1 ADDF32 R5H, R5H, R1IH ; R5H += y[2*i] * x[2*i+2]
SUBF32 R4H, R4H, R2H ; R4H -= x[2*i+1] * y[2*i+1]
ADDF32 R5H, R5H,ROH ; RBH += x[2*i] * y[2*i+1]
BANZ LOOP , AR7--
See also ZEROA
276 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

ZEROA — Zero All Floating-Point Registers

ZEROA Zero All Floating-Point Registers
Operands
none
Opcode LSW: 1110 0101 0110 0011
Description Zero all floating-point registers:
ROH = 0
R1H = O
R2H = 0
R3H = 0
R4H = 0
R5H = 0
R6H = 0
R7H = 0
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected.
Pipeline This is a single-cycle instruction.
Example ;For(i = 05 i < nj; i++)
i{
; real += (x[2*1] * y[2*1]) - (x[2*i+1] * y[2*i+1]);
; imag += (x[2*i] * y[2*i+1]) + (x[2*i+1] * y[2*i]);
33
;Assume AR7 = n-1
ZEROA ; Clear all RaH registers
LOOP
MOV AL, AR7
MOV ACC, AL << 2
MOV ARO, ACC
MOV32 ROH, *+XAR4[ARO] ; ROH = x[2*i]
MOV32 R1H, *+XAR5[ARO] ; R1H = y[2*i]
ADD ARO,#2
MPYF32 R6H, ROH, R1H; ; R6H = x[2*i] * y[2*i]
|1 MOV32 R2H, *+XAR4[ARO] ; R2H = x[2*i+1]
MPYF32 R1H, R1H, R2H ; R1H = y[2*i] * x[2*i+2]
|1 MOV32 R3H, *+XAR5[ARO] ; R3H = y[2*i+1]
MPYF32 R2H, R2H, R3H ; R2H = x[2*i+1] * y[2*i+1]
|| ADDF32 R4H, R4H, R6H ; R4H += x[2*i] * y[2*i]
MPYF32 ROH, ROH, R3H ; ROH = x[2*i] * y[2*i+1]
|| ADDF32 R5H, R5H, R1H ; RBH += y[2*i] * x[2*i+2]
SUBF32 R4H, R4H, R2H ; RAH -= x[2*i+1] * y[2*i+1]
ADDF32 R5H, R5H,ROH ; RBH += x[2*i] * y[2*i+1]
BANZ LOOP , AR7--
See also ZEROA

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64) 277

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MOV32 RalL, mem32{, CNDF} — Conditional 32-bit Move

13 TEXAS
INSTRUMENTS

www.ti.com

MOV32 RaL, mem32{, CNDF} Conditional 32-bit Move

Operands
RaL Floating-point destination register (ROL to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
CNDF optional condition.
Opcode LSW: 1110 0010 1001 CNDF
MSW: 0000 Oaaa mem32
Description If the condition is true, then move the contents of memory referenced by mem32 to
floating-point register indicated by RalL.
if(CNDF == true) RaH = unchanged, RaL = [mem32]
CNDF is one of the following conditions:
Encode @ CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF ==
0001 EQ Equal to zero ZF ==
0010 GT Greater than zero ZF == 0 AND NF ==
0011 GEQ Greater than or equal to zero NF ==
0100 LT Less than zero NF ==
0101 LEQ Less than or equal to zero ZF == 1 AND NF ==
1010 TF Test flag set TF ==
1011 NTF Test flag not set TF ==
1100 LU Latched underflow LUF ==
1101 LV Latched overflow LVF ==
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag modification ~ None

@ values not shown are reserved.

@ This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified
when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction modifies the following flags in the STF register:

Flag TF VA| NI ZF NF

LUF LVF

Modified No Yes No Yes Yes

No No

iT(CNDF
{
NF RxH(31);
ZF 0;
if(RaH(30:20) == 0)
{ ZF = 1; NF = 0; }
if(RaL(31:0) = 0)
Zl = 0;

UNCF)

}

else
No flags modified;

Pipeline This is a single-cycle instruction.

278 Floating Point Unit (FPU64)

Copyright © 2014-2019, Texas Instruments Incorporated

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

MOVDD32 RaL,mem32 — Move From Register To Memory 32-bit Move

MOVDD32 RaL,mem32 Move From Register To Memory 32-bit Move

Operands
RaL Floating-point destination register (ROL to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSwW: 1110 0010 0100 0010
MSW: 0000 Oaaa mem32
Description RaH = [mem32], RaL = unchanged, [mem32+4] = [mem32].
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No Yes No Yes Yes No No
NF = RxH(31);
ZF = 0;
if(RaH(30:20) == 0)
{ZF = 1; NF = 0; }
if(RaL(31:0) != 0)
Z1 = 0;
Pipeline This is a single-cycle instruction.
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 279

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
MOVDD32 RaH,mem32 — Move From Register To Memory 32-bit Move www.ti.com
MOVDD32 RaH,mem32 Move From Register To Memory 32-bit Move
Operands
RaH Floating-point destination register (ROH to R7H)
mema32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSwW: 1110 0010 0100 0011
MSW: 0000 Oaaa mem32
Description RaH = [mem32], RaL = unchanged, [mem32+4] = [mem32].
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0)
{2ZF = 1; NF = 0; }
NI = RaH(31);
Z1 = 0;
if(RaH(31:0) == 0)
Zl = 1;
Pipeline This is a single-cycle instruction.
280 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MOV32 mem32,RaL — Move From Memory to Register 32-bit Move

MOV32 mem32,RaL Move From Memory to Register 32-bit Move

Operands
RaL Floating-point source register (ROL to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSwW: 1110 0010 0000 0010
MSW: 0000 Oaaa mem32
Description [mem32] = RaL.
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected.
Pipeline This is a single-cycle instruction.
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 281

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
MOVIX RaL,#161 — Load the Upper 16-bits of a 32-bit Floating-Point Register www.ti.com
MOVIX RaL,#16l Load the Upper 16-bits of a 32-bit Floating-Point Register
Operands
RaL Floating-point destination register (ROL to R7L)
#16l A 16-bit immediate value.
Opcode LSW: 1110 1001 0000 OIll
MSW:z 1101 1001 1111 laaa
Description RaL(15:0) = unchanged RalL(31:16) = #16l.
Flags This instruction modifies the following flags in the STF register:
Flag TF Vd| NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected.
Pipeline This is a single-cycle instruction.
282 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MOVXI RaL, #161 — Load the Lower 16-bits of a 32-bit Floating-Point Register

MOVXI RaL, #16l

Load the Lower 16-bits of a 32-bit Floating-Point Register

Operands
RaL Floating-point destination register (ROL to R7L)
#16l A 16-bit immediate value.
Opcode LSW: 1110 1001 0000 1111
MSW= 1LLL 1111 1111 laaa
Description RalL(15:0) = #161 RaL(31:16) = unchanged.
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No No No
No flags affected.
Pipeline This is a single-cycle instruction.

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

283

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MPYF64 Rd,Re,Rf |[MOV32 RaL,mem32 — 64-bit Floating-Point Multiply with Parallel Move www.ti.com

MPYF64 Rd,Re,Rf |[MOV32 RaL,mem32 64-bit Floating-Point Multiply with Parallel Move

Operands
Rd Floating-point destination register for the MPYF64 (RO to R7)
Re Floating-point source register for the MPYF64 (RO to R7)
Rf Floating-point source register for the MPYF64 (RO to R7)
RaL Floating-point destination register (ROL to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0011 1000 fffe
MSW: eedd daaa mem32
Description Multiply the contents of two floating-point registers and load another
Rd = Re * Rf, RaL = [mem32].
The destination register for the MOV32 cannot be the same as the destination registers
for the MPYF64.
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No Yes No Yes Yes Yes Yes
The LUF flag is set to 1 if the MPY operation generated an underflow condition.
The LVF flag is set to 1 if the MPY operation generated an overflow condition.
The ZI, ZF, NF flags are modified only by the respective MOV32 operations. Refer
to earlier descriptions of MOV32 operations for flag setting details.
Pipeline MPYF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.
284 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MPYF64 Rd,Re,Rf [MOV32 mem32,RaL — 64-bit Floating-Point Multiply with Parallel Move

MPYF64 Rd,Re,Rf |[MOV32 mem32,RaL 64-bit Floating-Point Multiply with Parallel Move

Operands
Rd Floating-point destination register for the MPYF64 (RO to R7)
Re Floating-point source register for the MPYF64 (RO to R7)
Rf Floating-point source register for the MPYF64 (RO to R7)
RaL Floating-point source register (ROL to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0000 1000 fffe
MSW: eedd daaa mem32
Description Multiply the contents of two floating-point registers and write from Register to memory.
Rd = Re * Rf, [mem32] = RaL
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The LUF flag is set to 1 if the MPY operation generated an underflow condition.
The LVF flag is set to 1 if the MPY operation generated an overflow condition.
Pipeline MPYF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 285

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

ADDF64 Rd,Re,Rf | MOV32 RaL, mem32 — 64-bit Floating-Point Addition with Parallel Move www.ti.com

ADDF64 Rd,Re,Rf || MOV32 RaL, mem32 64-bit Floating-Point Addition with Parallel Move

Operands
Rd Floating-point destination register for the ADDF64 (RO to R7)
Re Floating-point source register for the ADDF64 (RO to R7)
Rf Floating-point source register for the ADDF64 (RO to R7)
RaL Floating-point destination register (ROL to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0011 1001 fffe
MSW: eedd daaa mem32
Description Perform an ADDF64 and a MOV32 in parallel.
Rd = Re + Rf, RaL = [mem32]
The destination register for the MOV32 cannot be the same as the destination registers
for the ADDF64.
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No Yes No Yes Yes Yes Yes
The LUF flag is set to 1 if the ADD operation generated an underflow condition.
The LVF flag is set to 1 if the ADD operation generated an overflow condition.
The ZI, ZF, NF flags are modified only by the respective MOV32 operations. Refer
to earlier descriptions of MOV32 operations for flag setting details.
Pipeline ADDF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.
286 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

ADDF64 Rd,Re,Rf [MOV32 mem32, RaL — 64-bit Floating-Point Addition with Parallel Move

ADDF64 Rd,Re,Rf [MOV32 mem32, RaL 64-bit Floating-Point Addition with Parallel Move

Operands
Rd Floating-point destination register for the ADDF64 (RO to R7)
Re Floating-point source register for the ADDF64 (RO to R7)
Rf Floating-point source register for the ADDF64 (RO to R7)
RaL Floating-point source register (ROL to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0000 1001 fffe
MSW: eedd daaa mem32
Description Perform an ADDF64 and a MOV32 in parallel.
Rd = Re + Rf, [mem32] = RaL
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The LUF flag is set to 1 if the ADD operation generated an underflow condition.
The LVF flag is set to 1 if the ADD operation generated an overflow condition.
Pipeline ADDF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

287

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

SUBF64 Rd,Re,Rf [MOV32 RaL,mem32 — 64-bit Floating-Point Subtraction with Parallel Move www.ti.com

SUBF64 Rd,Re,Rf |[MOV32 RaL,mem32 64-bit Floating-Point Subtraction with Parallel Move

Operands
Rd Floating-point destination register for the SUBF64 (RO to R7)
Re Floating-point source register for the SUBF64 (RO to R7)
Rf Floating-point source register for the SUBF64 (RO to R7)
RaH Floating-point destination register (ROL to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0011 1010 fffe
MSW: eedd daaa mem32
Description Perform an SUBF64 and a MOV32 in parallel.
Rd = Re - Rf, RaL = [mem32]
The destination register for the MOV32 cannot be the same as the destination
registers for the SUBF64.
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No Yes No Yes Yes Yes Yes
The LUF flag is set to 1 if the SUB operation generated an underflow condition.
The LVF flag is set to 1 if the SUB operation generated an overflow condition.
The ZI, ZF, NF flags are modified only by the respective MOV32 operations. Refer
to earlier descriptions of MOV32 operations for flag setting details.
Pipeline SUBF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.
288 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

SUBF64 Rd,Re,Rf [MOV32 mem32, RaL — 64-bit Floating-Point Subtraction with Parallel Move

SUBF64 Rd,Re,Rf |[MOV32 mem32, RaL 64-bit Floating-Point Subtraction with Parallel Move

Operands
Rd Floating-point destination register for the SUBF64 (RO to R7)
Re Floating-point source register for the SUBF64 (RO to R7)
Rf Floating-point source register for the SUBF64 (RO to R7)
RaL Floating-point source register (ROL to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0000 1010 fffe
MSW: eedd daaa mem32
Description Perform an SUBF64 and a MOV32 in parallel.
Rd = Re - Rf, [mem32] = RaL
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The LUF flag is set to 1 if the SUB operation generated an underflow condition.
The LVF flag is set to 1 if the SUB operation generated an overflow condition.
Pipeline SUBF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 289

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MACF64 R3,R2,Rd,Re,Rf [MOV32 RaL, mem32 — 64-bit Floating-Point Multiply and Accumulate with Parallel Move
www.ti.com

MACF64 R3,R2,Rd,Re,Rf |[MOV32 RaL, mem32 64-bit Floating-Point Multiply and Accumulate with
Parallel Move

Operands
R3 Floating-point destination/source register R3 for the add operation
R2 Floating-point source register R2 for the add operation
Rd Floating-point destination register (RO to R7) for the multiply operation
Re Floating-point source register (RO to R7) for the multiply operation
Rf Floating-point source register (RO to R7) for the multiply operation
RaL Floating-point destination register (ROL to R7L)
mema32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0011 1011 fffe
MSW: eedd daaa mem32
Description Multiply and accumulate the contents of floating-point registers and move from register
to memory. The destination register for the MOV32 cannot be the same as the
destination registers for the MACF64.
R3 = R3 + R2, Rd = Re * Rf, RaL = [mem32]
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No Yes No Yes Yes Yes Yes
The LUF flag is set to 1 if the MAC operation generated an underflow condition.
The LVF flag is set to 1 if the MAC operation generated an overflow condition.
The ZI, ZF, NF flags are modified only by the respective MOV32 operations. Refer
to earlier descriptions of MOV32 operations for flag setting details.
Pipeline MACF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.
290 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MACF64 R7,R6,Rd,Re,Rf [MOV32 RaL, mem32 — 64-bit Floating-Point Multiply and Accumulate with Parallel
Move

MACF64 R7,R6,Rd,Re,Rf [MOV32 RaL, mem32 64-bit Floating-Point Multiply and Accumulate with
Parallel Move

Operands
R7 Floating-point destination/source register R7 for the add operation
R6 Floating-point source register R6 for the add operation
Rd Floating-point destination register (RO to R7) for the multiply operation
Re Floating-point source register (RO to R7) for the multiply operation
Rf Floating-point source register (RO to R7) for the multiply operation
RaL Floating-point destination register (ROL to R7L)
mema32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0011 1110 fffe
MSW: eedd daaa mem32
Description Multiply and accumulate the contents of floating-point registers and move from register
to memory. The destination register for the MOV32 cannot be the same as the
destination registers for the MACF64.
R7 = R7 + R6, Rd = Re * Rf, RaL = [mem32]
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No Yes No Yes Yes Yes Yes
The LUF flag is set to 1 if the MAC operation generated an underflow condition.
The LVF flag is set to 1 if the MAC operation generated an overflow condition.
The ZI, ZF, NF flags are modified only by the respective MOV32 operations. Refer
to earlier descriptions of MOV32 operations for flag setting details.
Pipeline MACF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 291

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MPYF64 Rd,Re,Rf [MOV32 RaH,mem32 — 64-bit Floating-Point Multiply with Parallel Move www.ti.com

MPYF64 Rd,Re,Rf |[MOV32 RaH,mem32 64-bit Floating-Point Multiply with Parallel Move

Operands
Rd Floating-point destination register for the MPYF64 (RO to R7)
Re Floating-point source register for the MPYF64 (RO to R7)
Rf Floating-point source register for the MPYF64 (RO to R7)
RaH Floating-point destination register (ROH to R7H)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0011 0100 fffe
MSW: eedd daaa mem32
Description Perform a MPYF64 and a MOV32 in parallel.
Rd = Re * Rf, RaH = [mem32]
The destination register for the MOV32 cannot be the same as the destination
registers for the MPYF64.
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes
The LUF flag is set to 1 if the MPY operation generated an underflow condition.
The LVF flag is set to 1 if the MPY operation generated an overflow condition.
The ZI, NI, ZF, NF flags are modified only by the respective MOV32 operations.
Refer to earlier descriptions of MOV32 operations for flag setting details.
Pipeline MPYF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.
292 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MPYF64 Rd,Re,Rf [MOV32 mem32, RaH — 64-bit Floating-Point Multiply with Parallel Move

MPYF64 Rd,Re,Rf [MOV32 mem32, RaH 64-bit Floating-Point Multiply with Parallel Move

Operands
Rd Floating-point destination register for the MPYF64 (RO to R7)
Re Floating-point source register for the MPYF64 (RO to R7)
Rf Floating-point source register for the MPYF64 (RO to R7)
RaH Floating-point source register (ROH to R7H)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0000 0100 fffe
MSW: eedd daaa mem32
Description Perform a MPYF64 and a MOV32 in parallel.
Rd = Re * Rf, [mem32] = RaH
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The LUF flag is set to 1 if the MPY operation generated an underflow condition.
The LVF flag is set to 1 if the MPY operation generated an overflow condition.
Pipeline MPYF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 293

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

ADDF64 Rd,Re,Rf [MOV32 RaH,mem32 — 64-bit Floating-Point Addition with Parallel Move www.ti.com

ADDF64 Rd,Re,Rf |[MOV32 RaH,mem32 64-bit Floating-Point Addition with Parallel Move

Operands
Rd Floating-point destination register for the ADDF64 (RO to R7)
Re Floating-point source register for the ADDF64 (RO to R7)
Rf Floating-point source register for the ADDF64 (RO to R7)
RaH Floating-point destination register (ROH to R7H)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0011 0101 fffe
MSW: eedd daaa mem32
Description Perform a ADDF64 and a MOV32 in parallel.
Rd = Re + Rf, RaH = [mem32]
The destination register for the MOV32 cannot be the same as the destination
registers for the ADDF64.
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes
The LUF flag is set to 1 if the ADD operation generated an underflow condition.
The LVF flag is set to 1 if the ADD operation generated an overflow condition.
The ZI, NI, ZF, NF flags are modified only by the respective MOV32 operations.
Refer to earlier descriptions of MOV32 operations for flag setting details.
Pipeline ADDF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.
294 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

ADDF64 Rd,Re,Rf [MOV32 mem32, RaH — 64-bit Floating-Point Addition with Parallel Move

ADDF64 Rd,Re,Rf |[MOV32 mem32, RaH 64-bit Floating-Point Addition with Parallel Move

Operands
Rd Floating-point destination register for the ADDF64 (RO to R7)
Re Floating-point source register for the ADDF64 (RO to R7)
Rf Floating-point source register for the ADDF64 (RO to R7)
RaH Floating-point source register (ROH to R7H)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0000 0101 fffe
MSW: eedd daaa mem32
Description Perform a ADDF64 and a MOV32 in parallel.
Rd = Re + Rf, [mem32] = RaH
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The LUF flag is set to 1 if the ADD operation generated an underflow condition.
The LVF flag is set to 1 if the ADD operation generated an overflow condition.
Pipeline ADDF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

295

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

SUBF64 Rd,Re,Rf [MOV32 RaH,mem32 — 64-bit Floating-Point Subtraction with Parallel Move www.ti.com

SUBF64 Rd,Re,Rf |[MOV32 RaH,mem32 64-bit Floating-Point Subtraction with Parallel Move

Operands
Rd Floating-point destination register for the SUBF64 (RO to R7)
Re Floating-point source register for the SUBF64 (RO to R7)
Rf Floating-point source register for the SUBF64 (RO to R7)
RaH Floating-point destination register (ROH to R7H)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0011 0110 fffe
MSW: eedd daaa mem32
Description Perform a SUBF64 and a MOV32 in parallel.
Rd = Re - Rf, RaH = [mem32]
The destination register for the MOV32 cannot be the same as the destination
registers for the SUBF64
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes
The LUF flag is set to 1 if the SUB operation generated an underflow condition.
The LVF flag is set to 1 if the SUB operation generated an overflow condition.
The ZI, NI, ZF, NF flags are modified only by the respective MOV32 operations.
Refer to earlier descriptions of MOV32 operations for flag setting details.
Pipeline SUBF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.
296 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

SUBF64 Rd,Re,Rf [MOV32 mem32, RaH — 64-bit Floating-Point Subtraction with Parallel Move

SUBF64 Rd,Re,Rf |[MOV32 mem32, RaH 64-bit Floating-Point Subtraction with Parallel Move

Operands
Rd Floating-point destination register for the SUBF64 (RO to R7)
Re Floating-point source register for the SUBF64 (RO to R7)
Rf Floating-point source register for the SUBF64 (RO to R7)
RaH Floating-point source register (ROH to R7H)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0000 0110 fffe
MSW: eedd daaa mem32
Description Perform a SUBF64 and a MOV32 in parallel.
Rd = Re - Rf, [mem32] = RaH
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The LUF flag is set to 1 if the SUB operation generated an underflow condition.
The LVF flag is set to 1 if the SUB operation generated an overflow condition.
Pipeline SUBF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 297

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MACF64 R3,R2,Rd,Re,Rf [MOV32 RaH, mem32 — 64-bit Floating-Point Multiply and Accumulate with Parallel Move
www.ti.com

MACF64 R3,R2,Rd,Re,Rf [MOV32 RaH, mem32 64-bit Floating-Point Multiply and Accumulate with
Parallel Move

Operands
R3 Floating-point destination/source register R3 for the add operation
R2 Floating-point source register R2 for the add operation
Rd Floating-point destination register (RO to R7) for the multiply operation
Re Floating-point source register (RO to R7) for the multiply operation
Rf Floating-point source register (RO to R7) for the multiply operation
RaH Floating-point destination register (ROH to R7H)
mema32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0011 0111 fffe
MSW: eedd daaa mem32
Description Multiply and accumulate the contents of floating-point registers and move from register
to memory. The destination register for the MOV32 cannot be the same as the
destination registers for the MACF64.
R3 = R3 + R2, Rd = Re * Rf, RaH = [mem32]
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes
The LUF flag is set to 1 if the MAC operation generated an underflow condition.
The LVF flag is set to 1 if the MAC operation generated an overflow condition.
The ZI1, N1, ZF, NF flags are modified only by the respective MOV32 operations.
Refer to earlier descriptions of MOV32 operations for flag setting details.
Pipeline MACF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.
298 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MACF64 R7,R6,Rd,Re,Rf [MOV32 RaH, mem32 — 64-bit Floating-Point Multiply and Accumulate with Parallel
Move

MACF64 R7,R6,Rd,Re,Rf [MOV32 RaH, mem32 64-bit Floating-Point Multiply and Accumulate with
Parallel Move

Operands
R7 Floating-point destination/source register R7 for the add operation
R6 Floating-point source register R6 for the add operation
Rd Floating-point destination register (RO to R7) for the multiply operation
Re Floating-point source register (RO to R7) for the multiply operation
Rf Floating-point source register (RO to R7) for the multiply operation
RaH Floating-point destination register (ROH to R7H)
mema32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0011 1101 fffe
MSW: eedd daaa mem32
Description Multiply and accumulate the contents of floating-point registers and move from register
to memory. The destination register for the MOV32 cannot be the same as the
destination registers for the MACF64.
R7 = R7 + R6, Rd = Re * Rf, RaH = [mem32]
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes
The LUF flag is set to 1 if the MAC operation generated an underflow condition.
The LVF flag is set to 1 if the MAC operation generated an overflow condition.
The ZI, NI1,ZF, NF flags are modified only by the respective MOV32 operations.
Refer to earlier descriptions of MOV32 operations for flag setting details.
Pipeline MACF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 299

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MPYF64 Ra,Rb,Rc ||JADDF64 Rd,Re,Rf — 64-bit Floating-Point Multiply with Parallel Addition www.ti.com

MPYF64 Ra,Rb,Rc ||[ADDF64 Rd,Re,Rf 64-bit Floating-Point Multiply with Parallel Addition

Operands
Ra Floating-point destination register for the MPYF64 (RO to R7)
Rb Floating-point source register for the MPYF64 (RO to R7)
Rc Floating-point source register for the MPYF64 (RO to R7)
Rd Floating-point destination register for ADDF64 (RO to R7)
Re Floating-point source register for ADDF64 (RO to R7)
Rf Floating-point source register for ADDF64 (RO to R7)
Opcode LSW: 1110 0111 1100 OOff
MSW: feee dddc ccbb baaa
Description Perform a MPYF64 and a ADDF64 in parallel.
Ra = Rb * Rc, Rd = Re + Rf
The destination register for the ADDF64 cannot be the same as the destination
registers for the MPYF64
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The LUF flag is set to 1 if either the MPY operation or ADD operation generated
an underflow condition.
The LVF flag is set to 1 if either the MPY operation or ADD operation generated
an overflow condition.
Pipeline MPYF64 takes 3 pipeline-cycles (3p) and ADDF64 takes 3 pipeline-cycles (3p)
300 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MPYF64 Ra,Rb,Rc ||[SUBF64 Rd,Re,Rf — 64-bit Floating-Point Multiply with Parallel Subtraction

MPYF64 Ra,Rb,Rc |[SUBF64 Rd,Re,Rf 64-bit Floating-Point Multiply with Parallel Subtraction

Operands
Ra Floating-point destination register for the MPYF64 (RO to R7)
Rb Floating-point source register for the MPYF64 (RO to R7)
Rc Floating-point source register for the MPYF64 (RO to R7)
Rd Floating-point destination register for SUBF64 (RO to R7)
Re Floating-point source register for SUBF64 (RO to R7)
Rf Floating-point source register for SUBF64 (RO to R7)
Opcode LSW: 1110 0111 1101 OOfFf
MSW: feee dddc ccbb baaa
Description Perform a MPYF64 and a SUBF64 in parallel.
Ra =Rb * Rc, Rd = Re - Rf
The destination register for the SUBF64 cannot be the same as the destination
registers for the MPYF64
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The LUF flag is set to 1 if either the MPY operation or SUB operation generated
an underflow condition.
The LVF flag is set to 1 if either the MPY operation or SUB operation generated
an overflow condition.
Pipeline MPYF64 takes 3 pipeline-cycles (3p) and SUBF64 takes 3 pipeline-cycles (3p)
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 301

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MPYF64 Ra,Rb,Rc — 64-bit Floating-Point Multiply

13 TEXAS
INSTRUMENTS

www.ti.com

MPYF64 Ra,Rb,Rc

64-bit Floating-Point Multiply

Operands
Ra Floating-point destination register for the MPYF64 (RO to R7)
Rb Floating-point source register for the MPYF64 (RO to R7)
Rc Floating-point source register for the MPYF64 (RO to R7)
Opcode LSW: 1110 0111 1000 0000
MSW: 0000 000c ccbb baaa
Description Ra=Rb * Rc
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The LUF flag is set to 1 if MPY operation generated an underflow condition.
The LVF flag is set to 1 if MPY operation generated an overflow condition.
Pipeline MPYF64 takes 3 pipeline-cycles (3p)

302 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

ADDF64 Ra,Rb,Rc — 64-bit Floating-Point Addition

ADDF64 Ra,Rb,Rc

64-bit Floating-Point Addition

Operands
Ra Floating-point destination register for the ADDF64 (RO to R7)
Rb Floating-point source register for the ADDF64 (RO to R7)
Rc Floating-point source register for the ADDF64 (RO to R7)
Opcode LSW: 1110 0111 1001 0000
MSW: 0000 000c ccbb baaa
Description Ra=Rb + Rc
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The LUF flag is set to 1 if ADD operation generated an underflow condition.
The LVF flag is set to 1 if ADD operation generated an overflow condition.
Pipeline ADDF64 takes 3 pipeline-cycles (3p)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

303

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

SUBF64 Ra,Rb,Rc — 64-bit Floating-Point Subtraction

13 TEXAS
INSTRUMENTS

www.ti.com

SUBF64 Ra,Rb,Rc

64-bit Floating-Point Subtraction

Operands
Ra Floating-point destination register for the SUBF64 (RO to R7)
Rb Floating-point source register for the SUBF64 (RO to R7)
Rc Floating-point source register for the SUBF64 (RO to R7)
Opcode LSW: 1110 0111 1010 0000
MSW: 0000 000c ccbb baaa
Description Ra=Rb - Rc
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes

Pipeline

The LUF flag is set to 1

if
The LVF flag is set to 1 if

SUBF64 takes 3 pipeline-cycles (3p)

SUB operation generated an underflow condition.
SUB operation generated an overflow condition.

304 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MPYF64 Ra,Rb,#16F OR MPYF64 Ra,#16F, Rb — 64-bit Floating-Point Multiply

MPYF64 Ra,Rb,#16F OR MPYF64 Ra,#16F, Rb 64-bit Floating-Point Multiply

Operands
Ra Floating-point destination register for the MPYF64 (RO to R7)
Rb Floating-point source register for the MPYF64 (RO to R7)
#16F 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The low
16-bits of the mantissa are assumed to be all 0.
Opcode LSW: 1110 1001 O111 1111
MSW:z 1111 1111 1lbb baaa
Description Ra = Rb * #16F:0
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The LUF flag is set to 1 if MPY operation generated an underflow condition.
The LVF flag is set to 1 if MPY operation generated an overflow condition.
Pipeline MPYF64 takes 3 pipeline-cycles (3p)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

305

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
ADDF64 Ra,Rb,#16F OR ADDF64 Ra,#16F, Rb — 64-bit Floating-Point Addition www.ti.com
ADDF64 Ra,Rb,#16F OR ADDF64 Ra,#16F, Rb 64-bit Floating-Point Addition
Operands
Ra Floating-point destination register for the ADDF64 (RO to R7)
Rb Floating-point source register for the ADDF64 (RO to R7)
#16F 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The low
16-bits of the mantissa are assumed to be all 0.
Opcode LSW: 1110 1001 1011 1111
MSW:z 1111 1111 1lbb baaa
Description Ra = Rb + #16F:0
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The LUF flag is set to 1 if ADD operation generated an underflow condition.
The LVF flag is set to 1 if ADD operation generated an overflow condition.
Pipeline ADDF64 takes 3 pipeline-cycles (3p)
306 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

SUBF64 Ra,#16F,Rb — 64-bit Floating-Point Subtraction

SUBF64 Ra,#16F,Rb 64-bit Floating-Point Subtraction

Operands
Ra Floating-point destination register for the SUBF64 (RO to R7)
Rb Floating-point source register for the SUBF64 (RO to R7)
#16F 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The low
16-bits of the mantissa are assumed to be all 0.
Opcode LSW: 1110 1001 1101 1111
MSW:z 1111 1111 1lbb baaa
Description Ra = #16F:0 - Rb
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
The LUF flag is set to 1 if SUB operation generated an underflow condition.
The LVF flag is set to 1 if SUB operation generated an overflow condition.
Pipeline SUBF64 takes 3 pipeline-cycles (3p)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64) 307

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

CMPF64 Ra, Rb — 64-bit Floating-Point Compare for Equal, Less Than or Greater Than www.ti.com

CMPF64 Ra, Rb

64-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands
Ra Floating-point source register (RO to R7)
Rb Floating-point source register (RO to R7)
Opcode LSW: 1110 0110 1001 1000
MSW: 0000 0000 00bb baaa
Description Set ZF and NF flags on the result of Ra - Rb. The CMPF64 instruction is performed as a
logical compare operation. This is possible because of the IEEE format offsetting the
exponent. Basically the bigger the binary number, the bigger the floating-point value.
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No

Pipeline

If(Ra == Rb/#16F/#0.0) ZF=1, NF=0
If(Ra > Rb/#16F/#0.0) ZF=0, NF=0
If(Ra < Rb/#16F/#0.0) ZF=0, NF=1

This is a single cycle instruction.

308 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

CMPF64 Ra,#16F — 64-bit Floating-Point Compare for Equal, Less Than or Greater Than

CMPF64 Ra,#16F

64-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands
Ra Floating-point source register (RO to R7)
#16F A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.
Opcode LSW: 1110 1001 0001 Olll
MSW: 1101 1111 1111 laaa
Description Set ZF and NF flags on the result of (Ra - #16F:0). The CMPF64 instruction is performed
as a logical compare operation. This is possible because of the IEEE format offsetting
the exponent. Basically the bigger the binary number, the bigger the floating-point value.
Flags This instruction modifies the following flags in the STF register:
Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No
If(Ra == #16F) ZF=1, NF=0
If(Ra > #16F) ZF=0, NF=0
If(Ra < #16F) ZF=0, NF=1
Pipeline This is a single cycle instruction.
SPRUHS1C-October 2014—Revised November 2019 Floating Point Unit (FPU64) 309

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

CMPF64 Ra,#0.0 — 64-bit Floating-Point Compare for Equal, Less Than or Greater Than www.ti.com

CMPF64 Ra,#0.0

64-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands
Ra Floating-point source register (RO to R7)
#0.0 zero
Opcode LSW: 1110 0101 1011 Oaaa
Description Set ZF and NF flags on the result of (Ra - #0.0). The CMPF64 instruction is performed
as a logical compare operation. This is possible because of the IEEE format offsetting
the exponent. Basically the bigger the binary number, the bigger the floating-point value.
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No

Pipeline

If(Ra == #0.0) ZF=1, NF=0
If(Ra > #0.0) ZF=0, NF=0
If(Ra < #0.0) ZF=0, NF=1

This is a single cycle instruction.

310 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MAXF64 Ra, Rb — 64-bit Floating-Point Maximum

MAXF64 Ra, Rb

64-bit Floating-Point Maximum

Operands
Ra Floating-point source register (RO to R7)
Rb Floating-point source register (RO to R7)
Opcode LSW: 1110 0110 1001 1010
MSW: 0000 0000 OObb baaa
Description if(Ra < Rb) Ra=Rb
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
If(Ra == Rb) ZF=1, NF=0
If(Ra > Rb) ZF=0, NF=0
If(Ra < Rb) ZF=0, NF=1
Pipeline MAXF64 takes 2 pipeline-cycles (2p).

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

311

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

MAXF64 Ra, Rb |[MOV64 Rc,Rd — 64-bit Floating-Point Maximum with Parallel Move www.ti.com

MAXF64 Ra, Rb [[MOV64 Rc,Rd 64-bit Floating-Point Maximum with Parallel Move

Operands
Ra floating-point source/destination register for the MAXF64 operation (RO to R7)
Rb Floating-point source register for the MAXF64 operation (RO to R7)
Rc Floating-point destination register for the MOV64 operation (RO to R7)
Rd Floating-point source register for the MOV64 operation (RO to R7)
Opcode LSW: 1110 0110 1001 1110
MSW: 0000 dddc ccbb baaa
Description if(Ra < Rb) { Ra = Rb; Rc = Rd; }
The destination register for the MOV64 cannot be the same as the destination
registers for the MAXF64
Flags This instruction modifies the following flags in the STF register:
Flag TF Z NI ZF NF LUF LVF
Modified No No No Yes Yes No No
If(Ra == Rb) ZF=1, NF=0
If(Ra > Rb) ZF=0, NF=0
If(Ra < Rb) ZF=0, NF=1
Pipeline MAXF64 in parallel with MOV64 takes 2 pipeline-cycles (2p).
312 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

MAXF64 Ra, #16F — 64-bit Floating-Point Maximum

MAXF64 Ra, #16F

64-bit Floating-Point Maximum

Operands
Ra floating-point source/destination register for the MAXF64 operation (RO to R7)
#16F A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.
Opcode LSW: 1110 1001 0010 Olll
MSW: 1LIL I1LD 1111 laaa
Description if(Ra < #16F:0) Ra = #16F:0
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
If(Ra == #16F) ZF=1, NF=0
If(Ra > #16F) ZF=0, NF=0
If(Ra < #16F) ZF=0, NF=1
Pipeline This instruction takes 2 pipeline-cycles (2p).

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

313

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MINF64 Ra, Rb — 64-bit Floating-Point Minimum

13 TEXAS
INSTRUMENTS

www.ti.com

MINF64 Ra, Rb 64-bit Floating-Point Minimum
Operands
Ra floating-point source/destination register for the MINF64 operation (RO to R7)
Rb Floating-point source register (RO to R7)
Opcode LSW: 1110 0110 1001 1011
MSW: 0000 0000 OObb baaa
Description if(Ra > Rb) Ra = Rb
Flags This instruction modifies the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
If(Ra == Rb) ZF=1, NF=0
If(Ra > Rb) ZF=0, NF=0
If(Ra < Rb) ZF=0, NF=1
Pipeline This instruction takes 2 pipeline-cycles (2p).

314 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com MINF64 Ra, Rb |[MOV64 Rc,Rd — 64-bit Floating-Point Minimum with Parallel Move

MINF64 Ra, Rb |[MOV64 Rc,Rd 64-bit Floating-Point Minimum with Parallel Move

Operands
Ra floating-point source/destination register for the MINF64 operation (RO to R7)
Rb Floating-point source register for the MINF64 operation (RO to R7)
Rc Floating-point destination register for the MOV64 operation (RO to R7)
Rd Floating-point source register for the MOV64 operation (RO to R7)
Opcode LSwW: 1110 0110 1001 1111
MSW: 0000 dddc ccbb baaa
Description if(Ra > Rb) { Ra = Rb; Rc = Rd; }
The destination register for the MOV64 cannot be the same as the destination
registers for the MINF64
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
If(Ra == Rb) ZF=1, NF=0
If(Ra > Rb) ZF=0, NF=0
If(Ra < Rb) ZF=0, NF=1
Pipeline MINF64 in parallel with MOV64 takes 2 pipeline-cycles (2p).
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 315

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

MINF64 Ra, #16F — 64-bit Floating-Point Minimum

13 TEXAS
INSTRUMENTS

www.ti.com

MINF64 Ra, #16F

64-bit Floating-Point Minimum

Operands
Ra floating-point source/destination register for the MINF64 operation (RO to R7)
#16F A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The
low 16-bits of the mantissa are assumed to be all 0.
Opcode LSW: 1110 1001 0011 Olll
MSW: 1LIL I1LD 1111 laaa
Description if(Ra > #16F:0) Ra = #16F:0
Flags This instruction modifies the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
If(Ra == #16F) ZF=1, NF=0
If(Ra > #16F) ZF=0, NF=0
If(Ra < #16F) ZF=0, NF=1
Pipeline This instruction takes 2 pipeline-cycles (2p).

316 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

F64TOI32 RaH,Rb — Convert 64-bit Floating-Point Value to 32-bit Integer

F64TOI32 RaH,Rb

Convert 64-bit Floating-Point Value to 32-bit Integer

Operands
RaH Floating-point destination register (ROH to R7H)
Rb Floating-point source register (RO to R7)
Opcode LSW: 1110 0110 1000 0100
MSW: 0000 0000 OObb baaa
Description RaH = F64Tol32(Rb)
Flags This instruction does not affect any flags in the STF register:
Flag TF Vd| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This instruction takes 2 pipeline-cycles (2p).

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

317

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

F64TOUI32 RaH,Rb — Convert 64-bit Floating-Point Value to 32-bit Unsigned Integer www.ti.com

F64TOUI32 RaH,Rb Convert 64-bit Floating-Point Value to 32-bit Unsigned Integer

Operands
RaH Floating-point destination register (ROH to R7H)
Rb Floating-point source register (RO to R7)
Opcode LSW: 1110 0110 1000 0110
MSW: 0000 0000 OObb baaa
Description RaH = F64ToUI32(Rb)
Flags This instruction does not affect any flags in the STF register:
Flag TF Vd| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This instruction takes 2 pipeline-cycles (2p).

318 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

I32TOF64 Ra,mem32 — Convert 32-bit Integer to 64-bit Floating-Point Value

I32TOF64 Ra,mem32 Convert 32-bit Integer to 64-bit Floating-Point Value

Operands

Ra Floating-point destination register (RO to R7)

mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0010 1000 1001

MSW: 0000 Oaaa mem32

Description Ra = 132ToF64[mem32]
Flags This instruction does not affect any flags in the STF register:

Flag TF VAl NI ZF NF LUF LVF

Modified No No No No No No No
Pipeline This instruction takes 2 pipeline-cycles (2p).

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64) 319

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

I32TOF64 Ra,RbH — Convert 32-bit Integer to 64-bit Floating-Point Value

I

TEXAS
INSTRUMENTS

www.ti.com

I32TOF64 Ra,RbH

Convert 32-bit Integer to 64-bit Floating-Point Value

Operands
Ra Floating-point destination register (RO to R7)
RbH Floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1000 0101
MSW: 0000 0000 OObb baaa
Description Ra = 132ToF64(RbH)
Flags This instruction does not affect any flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This instruction takes 2 pipeline-cycles (2p).

320 Floating Point Unit (FPU64)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

UI32TOF64 Ra,mem32 — Convert unsigned 32-bit Integer to 64-bit Floating-Point Value

UI32TOF64 Ra,mem32 Convert unsigned 32-bit Integer to 64-bit Floating-Point Value

Operands

Ra Floating-point destination register (RO to R7)

mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0010 1000 0101

MSW: 0000 Oaaa mem32

Description Ra = UI32ToF64[men32]
Flags This instruction does not affect any flags in the STF register:

Flag TF VAl NI ZF NF LUF LVF

Modified No No No No No No No
Pipeline This instruction takes 2 pipeline-cycles (2p).

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

321

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
F64TOI64 Ra,Rb — Convert 64-bit Floating-Point Value to 64-bit Integer www.ti.com
F64TOI64 Ra,Rb Convert 64-bit Floating-Point Value to 64-bit Integer
Operands
Ra Floating-point destination register (RO to R7)
Rb Floating-point source register (RO to R7)
Opcode LSW: 1110 0110 1000 0100
MSW: 0000 0000 OObb baaa
Description Ra = F64Tol64(Rb)
Flags This instruction does not affect any flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This instruction takes 2 pipeline-cycles (2p).
322 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

F64TOUI64 Ra,Rb — Convert 64-bit Floating-Point Value to 64-bit unsigned Integer

F64TOUI64 Ra,Rb

Convert 64-bit Floating-Point Value to 64-bit unsigned Integer

Operands
Ra Floating-point destination register (RO to R7)
Rb Floating-point source register (RO to R7)
Opcode LSW: 1110 0110 1000 0110
MSW: 1000 0000 OObb baaa
Description Ra = F64ToUI64(Rb)
Flags This instruction does not affect any flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This instruction takes 2 pipeline-cycles (2p).

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64) 323

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
164TOF64 Ra,Rb — Convert 64-bit Integer to 64-bit Floating-Point Value www.ti.com
I64TOF64 Ra,Rb Convert 64-bit Integer to 64-bit Floating-Point Value
Operands

Ra Floating-point destination register (RO to R7)
Rb Floating-point source register (RO to R7)
Opcode LSW: 1110 0110 1000 0101
MSW: 1000 0000 OObb baaa
Description Ra = 164ToF64(Rb)
Flags This instruction does not affect any flags in the STF register:
Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This instruction takes 2 pipeline-cycles (2p).
324 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

UlI64TOF64 Ra,Rb — Convert 64-bit unsigned Integer to 64-bit Floating-Point Value

UI64TOF64 Ra,Rb

Convert 64-bit unsigned Integer to 64-bit Floating-Point Value

Operands
Ra Floating-point destination register (RO to R7)
Rb Floating-point source register (RO to R7)
Opcode LSW: 1110 0110 1000 0111
MSW: 1000 0000 OObb baaa
Description Ra = UI64ToF64(Rb)
Flags This instruction does not affect any flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This instruction takes 2 pipeline-cycles (2p).

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64) 325

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
164TOF64 Ra,Rb — Convert 64-bit Integer to 64-bit Floating-Point Value www.ti.com
I64TOF64 Ra,Rb Convert 64-bit Integer to 64-bit Floating-Point Value
Operands

Ra Floating-point destination register (RO to R7)
Rb Floating-point source register (RO to R7)
Opcode LSW: 1110 0110 1000 0101
MSW: 1000 0000 OObb baaa
Description Ra = 164ToF64(Rb)
Flags This instruction does not affect any flags in the STF register:
Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This instruction takes 2 pipeline-cycles (2p).
326 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

UlI64TOF64 Ra,Rb — Convert 64-bit unsigned Integer to 64-bit Floating-Point Value

UI64TOF64 Ra,Rb

Convert 64-bit unsigned Integer to 64-bit Floating-Point Value

Operands
Ra Floating-point destination register (RO to R7)
Rb Floating-point source register (RO to R7)
Opcode LSW: 1110 0110 1000 0111
MSW: 1000 0000 OObb baaa
Description Ra = UI64ToF64(Rb)
Flags This instruction does not affect any flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This instruction takes 2 pipeline-cycles (2p).

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64) 327

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
FRACF64 Ra,Rb — Fractional Portion of a 64-bit Floating-Point Value www.ti.com
FRACF64 Ra,Rb Fractional Portion of a 64-bit Floating-Point Value
Operands
Ra Floating-point destination register (RO to R7)
Rb Floating-point source register (RO to R7)
Opcode LSW: 1110 0110 1111 0001
MSW: 1000 0000 OObb baaa
Description Returns in Ra the fractional portion of F64 value in Rb.
Flags This instruction does not affect any flags in the STF register:
Flag TF Vd| NI ZF NF LUF LVF
Modified No No No No No No No
Pipeline This instruction takes 2 pipeline-cycles (2p).
328 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

F64TOF32 RaH,Rb — Convert 64-bit Floating-Point Value to 32-bit Floating-Point Value

F64TOF32 RaH,Rb

Convert 64-bit Floating-Point Value to 32-bit Floating-Point Value

Operands

RaH Floating-point destination register (ROH to R7H)

Rb Floating-point source register (RO to R7)
Opcode LSW: 1110 0110 1001 0000

MSW: 0000 0000 OObb baaa
Description RaH = F64ToF32(Rb)
(if RNDF32 == 1, round to nearest)

Flags This instruction does not affect any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF

Modified No No No No No No No
Pipeline This instruction takes 2 pipeline-cycles (2p).

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

329

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
F32TOF64 Ra,RbH — Convert 32-bit Floating-Point Value to 64-bit Floating-Point Value www.ti.com
F32TOF64 Ra,RbH Convert 32-bit Floating-Point Value to 64-bit Floating-Point Value
Operands
Ra Floating-point destination register (RO to R7)
RbH Floating-point source register (ROH to R7H)
Opcode LSW: 1110 0110 1001 0001
MSW: 0000 0000 OObb baaa
Description Ra = F32ToF64(RbH)
Flags This instruction affects the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
NF = RaH(31);
ZF = 0;
if(RaH(30:20) == 0)
{2ZF = 1; NF = 0; }
Pipeline This instruction takes 1 cycle.
330 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

F32TOF64 Ra, mem32 — Convert 32-bit Floating-Point Value to 64-bit Floating-Point Value

F32TOF64 Ra, mem32 Convert 32-bit Floating-Point Value to 64-bit Floating-Point Value

Operands
Ra Floating-point destination register (RO to R7)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0010 1000 1100
MSW: 0000 Oaaa mem32
Description Ra = F32ToF64[mem32]
Flags This instruction affects the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
NF = RaH(31);
ZF = 0;
if(RaH(30:20) == 0)
{2ZF = 1; NF = 0; }
Pipeline This instruction takes 1 cycle.

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64) 331

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

F32DTOF64 Ra, mem32 — Convert 32-bit Floating-Point Value to 64-bit Floating-Point Value www.ti.com

F32DTOF64 Ra, mem32 Convert 32-bit Floating-Point Value to 64-bit Floating-Point Value

Operands
Ra Floating-point destination register (RO to R7)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
Opcode LSW: 1110 0010 0010 0001
MSW: 0000 Oaaa mem32
Description Ra = F32ToF64[mem32] ,
[mem32+2] = [mem32]
Flags This instruction affects the following flags in the STF register:
Flag TF VAl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
NF = RaH(31);
ZF = 0;
if(RaH(30:20) == 0)
{ZF =1; NF = 0; }
Pipeline This instruction takes 1 cycle.
332 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

ABSF64 Ra, Rb — 64-bit Floating-Point Absolute Value

ABSF64 Ra, Rb

64-bit Floating-Point Absolute Value

Operands
Ra Floating-point destination register (RO to R7)
Rb Floating-point source register (RO to R7)
Opcode LSW: 1110 0110 1001 1001
MSW: 0000 0000 OObb baaa
Description if(lRb<0){Ra=-Rb}
else {Ra=Rb}
Flags This instruction affects the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No Yes Yes No No
NF = 0; ZF = O;
if(RaH(30:20) == 0)
ZF = 1;
Pipeline This instruction takes 1 cycle.

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

333

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

NEGF64 Ra, Rb{, CNDF} — Conditional Negation

I

TEXAS
INSTRUMENTS

www.ti.com

NEGF64 Ra, Rb{, CNDF} Conditional Negation

Operands
Ra Floating-point destination register (RO to R7)
Rb Floating-point source register (RO to R7)
CNDF condition tested
Opcode LSW: 1110 0110 1011 CNDF
MSW: 0000 0000 00bb baaa
Description if(CNDF ==true) { Ra=-Rb }
else {Ra=Rb}
CNDF is one of the following conditions:
Encode @ CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF==0
0001 EQ Equal to zero ZF==1
0010 GT Greater than zero ZF == 0 AND NF==0
0011 GEQ Greater than or equal to zero NF==0
0100 LT Less than zero NF==1
0101 LEQ Less than or equal to zero ZF==1AND NF ==1
1010 TF Test flag set TF==1
1011 NTF Test flag not set TF==0
1100 LU Latched underflow LUF==1
1101 Lv Latched overflow LVF==1
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag modification ~ None

@ Values not shown are reserved.

@ This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified
when a conditional operation is executed. All other conditions will not modify these flags.

Flags

This instruction affects the following flags in the STF register:

Flag

Zl NI ZF

NF

LUF

LVF

Modified

No No Yes

Yes

No

No

Pipeline

iT(CNDF == UNCF)
{
NF = RaH(31); ZF = O;
iT(RaH(30:20) == 0)

{ZF = 1; NF = 0; }

}

else
No flags modified;

This instruction takes 1 cycle.

334 Floating Point Unit (FPU64)

Copyright © 2014-2019, Texas Instruments Incorporated

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

MOV64 Ra, Rb{, CNDF} — Conditional 64-bit Move

MOV64 Ra, Rb{, CNDF} Conditional 64-bit Move

Operands
Ra Floating-point destination register (RO to R7)
Rb Floating-point source register (RO to R7)
CNDF condition tested
Opcode LSW: 1110 0110 1101 CNDF
MSW: 0000 0000 00bb baaa
Description if(CNDF == true) Ra = Rb
CNDF is one of the following conditions:
Encode @ CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF ==
0001 EQ Equal to zero ZF ==
0010 GT Greater than zero ZF == 0 AND NF ==
0011 GEQ Greater than or equal to zero NF ==
0100 LT Less than zero NF ==
0101 LEQ Less than or equal to zero ZF == 1 AND NF ==
1010 TF Test flag set TF ==
1011 NTF Test flag not set TF ==
1100 LU Latched underflow LUF ==
1101 Lv Latched overflow LVF ==
1110 UNC Unconditional None
1111 UNCF @ Unconditional with flag modification ~ None

@ Values not shown are reserved.

@ This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified

when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction affects the following flags in the STF register:
Flag Zl NI ZF NF LUF LVF
Modified Yes Yes Yes Yes No No
iF(CNDF == UNCF)
{
NF = RaH(31); ZF = 0;
if(RaH(30:20) == 0)
{ZF =1; NF = 0; }
NI = RaH(31);
Zl = 0;
if(Ra(63:0) == 0)
Z1l = 1;
3
else
No flags modified.
Pipeline This instruction takes 1 cycle.

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

335

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

EISQRTF64 Ra, Rb — 64-bit Floating-Point Square-Root Reciprocal Approximation www.ti.com

EISQRTF64 Ra, Rb

64-bit Floating-Point Square-Root Reciprocal Approximation

Operands
Ra Floating-point destination register (RO to R7)
Rb Floating-point source register (RO to R7)
Opcode LSW: 1110 0110 1001 0010
MSW: 1000 0000 0Obb baaa
Description This operation generates an estimate of "1/sqrt(X)" in F64 format and then this value can
be used in a Newton-Raphson algorithm to get a more accurate answer. That is:
Ye = Estimate(1/sqrt(Xi));
Ye = Ye*(1.5 - Ye*Ye*Xi/2.0)
Ye = Ye*(1.5 - Ye*Ye*Xi/2.0)
After about ~4 iterations of the Newton-Raphson algorithm, you will get an exact answer
accurate to F64 format. On iteration the mantissa bit accuracy approximately doubles.
The EISQRTF64 operation will not generate a -ve, De-Norm or NaN value.
Ra = Estimate Of 1/sqrt(Rb)
Flags This instruction affects the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
Pipeline This instruction takes 2 pipe-line cycles (2p).
336 Floating Point Unit (FPU64) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

EINVF64 Ra, Rb — 64-bit Floating-Point Reciprocal Approximation

EINVF64 Ra, Rb

64-bit Floating-Point Reciprocal Approximation

Operands
Ra Floating-point destination register (RO to R7)
Rb Floating-point source register (RO to R7)
Opcode LSW: 1110 0110 1001 0011
MSW: 1000 0000 0Obb baaa
Description This operation generates an estimate of "1/X" in F64 format and then this value can be
used in a Newton-Raphson algorithm to get a more accurate answer. That is:
Ye = Estimate(1/X);
Ye = Ye*(2.0 - Ye*X)
Ye = Ye*(2.0 - Ye*X)
After about ~4 iterations of the Newton-Raphson algorithm, you will get an exact answer
accurate to F64 format. On iteration the mantissa bit accuracy approximately doubles.
The EINVF64 operation will not generate a -ve zero, De-Norm or NaN value.
Ra = Estimate Of 1/Rb
Flags This instruction affects the following flags in the STF register:
Flag TF Zl NI ZF NF LUF LVF
Modified No No No No No Yes Yes
Pipeline This instruction takes 2 pipe-line cycles (2p).
SPRUHS1C-October 2014—-Revised November 2019 Floating Point Unit (FPU64) 337

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

. Chapter 3
I ’.{‘IE)S(’?IEUMENTS SPRUHS1C-October 2014—Revised November 2019

Viterbi, Complex Math and CRC Unit (VCU)

The C28x Viterbi, Complex Math and CRC Unit (VCU) is a fully programmable block which accelerates
the performance of communications-based algorithms by up to a factor of 8X over C28x CPU alone. In
addition to eliminating the need for a second processor to manage the communications link, the
performance gains of the VCU provides headroom for future system growth and higher bit rates or,
conversely, enables devices to operate at a lower MHz to reduce system cost and power consumption.
This document provides an overview of the architectural structure and instruction set of the C28x VCU.

The VCU module described in this chapter is a Type 0/1 VCU. See the TMS320x28xx, 28xxx DSP
Peripheral Reference Guide (SPRU566) for a list of all devices with a VCU module of the same type, to
determine the differences between the types, and for a list of device-specific differences within a type.
This document describes the architecture, pipeline, instruction set, and interrupts of the C28x+VCU.

Topic Page
T N O 1Y = P 339
3.2 Components of the C28X PIUS VCU ...t eeeene e 340
K T N =11 0 11 = Lo B e o PP 341
O Lo] = T = P 344
G TS T o =] 11 = PP 351
G G T | =3 1 0 To3 o ST PR 356
T A = (o YU o [T o 1Y Yo = PP 461
338 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru566

13 TEXAS
INSTRUMENTS

www.ti.com Overview

3.1 Overview
The C28x with VCU (C28x+VCU) processor extends the capabilities of the C28x fixed-point or floating-
point CPU by adding registers and instructions to support the following algorithm types:
e Viterbi decoding

Viterbi decoding is commonly used in baseband communications applications. The viterbi decode
algorithm consists of three main parts: branch metric calculations, compare-select (viterbi butterfly) and
a traceback operation. Table 3-1 shows a summary of the VCU performance for each of these

operations.
Table 3-1. Viterbi Decode Performance
Viterbi Operation VCU Cycles
Branch Metric Calculation (code rate = 1/2) 1
Branch Metric Calculation (code rate = 1/3) 2p
Viterbi Butterfly (add-compare-select) 2O
Traceback per Stage 3@

@ C28x CPU takes 15 cycles per butterfly.
@ C28x CPU takes 22 cycles per stage.

e Cyclic redundancy check (CRC)

CRC algorithms provide a straightforward method for verifying data integrity over large data blocks,
communication packets, or code sections. The C28x+VCU can perform 8-, 16-, and 32-bit CRCs. For
example, the VCU can compute the CRC for a block length of 10 bytes in 10 cycles. A CRC result
register contains the current CRC which is updated whenever a CRC instruction is executed.

e« Complex math
Complex math is used in many applications. The VCU A few of which are:
— Fast fourier transform (FFT)

The complex FFT is used in spread spectrum communications, as well in many signal processing
algorithms.

— Complex filters

Complex filters improve data reliability, transmission distance, and power efficiency. The
C28x+VCU can perform a complex | and Q multiple with coefficients (four multiplies) in a single
cycle. In addition, the C28x+VCU can read/write the real and imaginary parts of 16-bit complex data
to memory in a single cycle.

Table 3-2 shows a summary of the VCU operations enabled by the VCU:

Table 3-2. Complex Math Performance

Complex Math Operation VCU Cycles Notes
Add Or Subtract 1 32 +/- 32 = 32-bit (Useful for filters)
Add or Subtract 1 16 +/- 32 = 15-hit (Useful for FFT)
Multiply 2p 16 x 16 = 32-hit
Multiply & Accumulate (MAC) 2p 32 + 32 = 32-hit, 16 x 16 = 32-hit
RPT MAC 2p+N Repeat MAC. Single cycle after the first operation.

This C28x+VCU draws from the best features of digital signal processing; reduced instruction set
computing (RISC); and microcontroller architectures, firmware, and tool sets. The C2000 features include
a modified Harvard architecture and circular addressing. The RISC features are single-cycle instruction
execution, register-to-register operations, and modified Harvard architecture (usable in Von Neumann
mode). The microcontroller features include ease of use through an intuitive instruction set, byte packing
and unpacking, and bit manipulation. The modified Harvard architecture of the CPU enables instruction
and data fetches to be performed in parallel. The CPU can read instructions and data while it writes data
simultaneously to maintain the single-cycle instruction operation across the pipeline. The CPU does this
over six separate address/data buses.

Throughout this document the following notations are used:

SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 339

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

i3 TEXAS
INSTRUMENTS

Components of the C28x plus VCU www.ti.com

» (C28x refers to the C28x fixed-point CPU.

* C28x plus Floating-Point and C28x+FPU both refer to the C28x CPU with enhancements to support
IEEE single-precision floating-point operations.

» (C28x plus VCU and C28x+VCU both refer to the C28x CPU with enhancements to support viterbi
decode, complex math and CRC.

* Some devices have both the FPU and the VCU. These are refered to as C28x+FPU+VCU.

3.2 Components of the C28x plus VCU

The VCU extends the capabilities of the C28x CPU and C28x+FPU processors by adding additional
instructions. No changes have been made to existing instructions, pipeline, or memory bus architecture.
Therefore, programs written for the C28x are completely compatible with the C28x+VCU. All of the
features of the C28x documented in TMS320C28x DSP CPU and Instruction Set Reference Guide
(literature number SPRU430) apply to the C28x+VCU. All features documented in the TMS320C28x
Floating Point Unit and Instruction Set Reference Guide (SPRUEO02) apply to the C28x+FPU+VCU.

Figure 3-1 shows the block diagram of the VCU.

Figure 3-1. C28x + VCU Block Diagram

Program address bus (22) >
Memory
bus | "Program data bus (32)
Read address bus (32) LI_>
Read data bus (32)
C28x
+
FPU
+
Vcu L
Existing
memory,
peripherals,
interfaces
LVF bl
LUF I
| PIE |
Memory | Write data bus (32)
bus
\Write address bus (32)

The C28x+VCU contains the same features as the C28x fixed-point CPU:

» A central processing unit for generating data and program-memory addresses; decoding and executing
instructions; performing arithmetic, logical, and shift operations; and controlling data transfers among
CPU registers, data memory, and program memory.

e Emulation logic for monitoring and controlling various parts and functions of the device and for testing
device operation. This logic is identical to that on the C28x fixed-point CPU.

» Signals for interfacing with memory and peripherals, clocking and controlling the CPU and the
emulation logic, showing the status of the CPU and the emulation logic, and using interrupts. This logic
is identical to the C28x fixed-point CPU.

340 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430

13 TEXAS
INSTRUMENTS

www.ti.com

Emulation Logic

Arithmetic logic unit (ALU). The 32-bit ALU performs 2s-complement arithmetic and Boolean logic
operations.

Address register arithmetic unit (ARAU). The ARAU generates data memory addresses and
increments or decrements pointers in parallel with ALU operations.

Fixed-Point instructions are pipeline protected. This pipeline for fixed-point instructions is identical to
that on the C28x fixed-point CPU. The CPU implements an 8-phase pipeline that prevents a write to
and a read from the same location from occurring out of order.

Barrel shifter. This shifter performs all left and right shifts of fixed-point data. It can shift data to the left
by up to 16 bits and to the right by up to 16 bits.

Fixed-Point Multiplier. The multiplier performs 32-bit x 32-bit 2s-complement multiplication with a 64-bit
result. The multiplication can be performed with two signed numbers, two unsigned numbers, or one
signed number and one unsigned number.

The VCU adds the following features:

Instructions to support Cyclic Redundancy Check (CRC) or a polynomial code checksum:
— CRC8

— CRC16

— CRC32

Clocked at the same rate as the main CPU (SYSCLKOUT).
Instructions to support a software implementation of a Viterbi Decoder
— Branch metrics calculations

— Add-Compare Select or Viterbi Butterfly

— Traceback

Complex Math Arithmetic Unit

— Add or Subtract

— Multiply

— Multiply and Accumulate (MAC)

— Repeat MAC (RPT || MAC)

Independent register space. These registers function as source and destination registers for VCU
instructions.

Some VCU instructions require pipeline alignment. This alignment is done through software to allow
the user to improve performance by taking advantage of required delay slots. See Section 3.5 for more
information.

Devices with the floating-point unit also include:

Floating point unit (FPU). The 32-bit FPU performs IEEE single-precision floating-point operations.
Dedicated floating-point registers.

3.3 Emulation Logic

The emulation logic is identical to that on the C28x fixed-point CPU. This logic includes the following
features. For more details about these features, refer to the TMS320C28x DSP CPU and Instruction Set
Reference Guide (literature number SPRU430):

Debug-and-test direct memory access (DT-DMA). A debug host can gain direct access to the content
of registers and memory by taking control of the memory interface during unused cycles of the
instruction pipeline

A counter for performance benchmarking.
Multiple debug events. Any of the following debug events can cause a break in program execution:
— A breakpoint initiated by the ESTOPO or ESTOPL instruction.

— An access to a specified program-space or data-space location. When a debug event causes the
C28x to enter the debug-halt state, the event is called a break event.

Real-time mode of operation.

SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 341
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

Emulation Logic www.ti.com

3.3.1

3.3.2

3.3.3

3.34

3.3.5

Memory Map

Like the C28x, the C28x+VCU uses 32-bit data addresses and 22-bit program addresses. This allows for a
total address reach of 4G words (1 word = 16 bits) in data space and 4M words in program space.
Memory blocks on all C28x+VCU designs are uniformly mapped to both program and data space. For
specific details about each of the map segments, see the data manual for a particular device device.

CPU Interrupt Vectors

The C28x+VCU interrupt vectors are identical to those on the C28x CPU. Sixty-four addresses in program
space are set aside for a table of 32 CPU interrupt vectors. For more information about the CPU vectors,
see TMS320C28x CPU and Instruction Set Reference Guide (literature number SPRU430). Typically the
CPU interrupt vectors are only used during the boot up of the device by the boot ROM. Once an
application has taken control it should initalize and enable the peripheral interrupt expansion block (PIE).

Memory Interface

The C28x+VCU memory interface is identical to that on the C28x. The C28x+VCU memory map is
accessible outside the CPU by the memory interface, which connects the CPU logic to memories,
peripherals, or other interfaces. The memory interface includes separate buses for program space and
data space. This means an instruction can be fetched from program memory while data memory is being
accessed. The interface also includes signals that indicate the type of read or write being requested by the
CPU. These signals can select a specified memory block or peripheral for a given bus transaction. In
addition to 16-bit and 32-bit accesses, the CPU supports special byte-access instructions that can access
the least significant byte (LSByte) or most significant byte (MSByte) of an addressed word. Strobe signals
indicate when such an access is occurring on a data bus.

Address and Data Buses

Like the C28x, the memory interface has three address buses:

e PAB: Program address bus: The 22-bit PAB carries addresses for reads and writes from program
space.

» DRAB: Data-read address bus: The 32-bit DRAB carries addresses for reads from data space.
 DWAB: Data-write address bus: The 32-bit DWAB carries addresses for writes to data space.

The memory interface also has three data buses:

» PRDB: Program-read data bus: The 32-bit PRDB carries instructions during reads from program
space.

» DRDB: Data-read data bus: The 32-bit DRDB carries data during reads from data space.

 DWDB: Data-/Program-write data bus: The 32-bit DWDB carries data during writes to data space or
program space.

A program-space read and a program-space write cannot happen simultaneously because both use the
PAB. Similarly, a program-space write and a data-space write cannot happen simultaneously because
both use the DWDB. Transactions that use different buses can happen simultaneously. For example, the
CPU can read from program space (using PAB and PRDB), read from data space (using DRAB and
DRDB), and write to data space (using DWAB and DWDB) at the same time. This behavior is identical to
the C28x CPU.

Alignment of 32-Bit Accesses to Even Addresses

The C28x+VPU expects memory wrappers or peripheral-interface logic to align any 32-bit read or write to

an even address. If the address-generation logic generates an odd address, the CPU will begin reading or
writing at the previous even address. This alignment does not affect the address values generated by the

address-generation logic.

Most instruction fetches from program space are performed as 32-bit read operations and are aligned
accordingly. However, alignment of instruction fetches are effectively invisible to a programmer. When
instructions are stored to program space, they do not have to be aligned to even addresses. Instruction
boundaries are decoded within the CPU.

342

Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014 —-Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com Emulation Logic

You need to be concerned with alignment when using instructions that perform 32-bit reads from or writes
to data space.

SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 343

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

Register Set

13 TEXAS
INSTRUMENTS

www.ti.com

3.4

Register Set

Devices with the C28x+VCU include the standard C28x register set plus an additional set of VCU specific
registers. The additional VCU registers are the following:

Result registers: VRO, VR1... VR8
Traceback registers: VTO, VT1
Configuraiton and status register: VSTATUS
CRC result register: VCRC

Repeat block register: RB

Figure 3-2 shows the register sets for the 28x CPU, the FPU and the VCU. The following section
discusses the VCU register set in detail.

Standard C28x Register Set

Figure 3-2. C28x + FPU + VCU Registers

Additional 32-bit FPU Registers

ACC (32-bit) ROH (32-bit)
P (32-bit)
R1H (32-bit
XT (32-bit) (32-bit
XARO (32-bit) R2H (32-bit)
XAR1 (32-bit) R3H (32-bif)
XAR?2 (32-bit)
XARS3 (32-bit) R4H (32-bit)
XAR4 (32-bit) RBH (32-bit)
XARS5 (32-bit)
XARG (32-bit) R6H (32-bit)
XAR?7 (32-bit)
R7H (32-bit)
PC (22-bit)
- FPU Status Register (STF)

RPC (22-bit)

DP (16-bit) Repeat Block Register (RB)

SP (16-bit) FPU registers ROH - R7H and STF

are shadowed for fast context

STO (16-bit) save and restore

ST1 (16-bit)

IER (16-bit)

IFR (16-bit)

DBGIER (16-bit)

3.4.1 VCU Register Set

Standard VCU Register Set

VRO

VR1

VR2

VR3

VR4

VR5

VR6

VR7

VR8

VTO

VT1

VSTATUS

VCRC

The table below describes the VCU module register set. The last three columns indicate whether the
particular module within the VCU can make use of the register.

344

Viterbi, Complex Math and CRC Unit (VCU)

Copyright © 2014-2019, Texas Instruments Incorporated

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com

Register Set

Table 3-3. VCU Register Set

Register Complex

Name Size Description Viterbi Math CRC
VRO 32-bits General purpose register 0 Yes Yes No
VR1 32-bits General purpose register 1 Yes Yes No
VR2 32-bits General purpose register 2 Yes Yes No
VR3 32-bits General purpose register 3 Yes Yes No
VR4 32-bits General purpose register 4 Yes Yes No
VR5 32-bits General purpose register 5 Yes Yes No
VR6 32-bits General purpose register 6 Yes Yes No
VR7 32-bits General purpose register 7 Yes Yes No
VR8 32-bits General purpose register 8 Yes No No
VTO 32-bits 32-bit transition bit register 0 Yes No No
VT1 32-bits 32-bit transition bit register 1 Yes No No
VSTATUS 32-bits VCU status and configuration register Yes Yes No
VCRC 32-bits Cyclic redundancy check (CRC) result register No No Yes

@ Debugger writes are not allowed to the VSTATUS register.

Table 3-4 lists the CPU registers available on devices with the C28x, the C28x+FPU, the C28x+VCU and

the C28x+FPU+VCU.

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU) 345

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

Register Set

13 TEXAS
INSTRUMENTS

www.ti.com

Table 3-4. 28x CPU Register Summary

Register C28x CPU C28x+FPU C28x+VCU C28x+FPU+VCU | Description

ACC Yes Yes Yes Yes Fixed-point accumulator

AH Yes Yes Yes Yes High half of ACC

AL Yes Yes Yes Yes Low half of ACC

XARO - XAR7 Yes Yes Yes Yes Auxiliary register 0 - 7

ARO - AR7 Yes Yes Yes Yes Low half of XARO - XAR7

DP Yes Yes Yes Yes Data-page pointer

IFR Yes Yes Yes Yes Interrupt flag register

IER Yes Yes Yes Yes Interrupt enable register
DBGIER Yes Yes Yes Yes Debug interrupt enable register
P Yes Yes Yes Yes Fixed-point product register

PH Yes Yes Yes Yes High half of P

PL Yes Yes Yes Yes Low half of P

PC Yes Yes Yes Yes Program counter

RPC Yes Yes Yes Yes Return program counter

SP Yes Yes Yes Yes Stack pointer

STO Yes Yes Yes Yes Status register 0

ST1 Yes Yes Yes Yes Status register 1

XT Yes Yes Yes Yes Fixed-point multiplicand register
T Yes Yes Yes Yes High half of XT

TL Yes Yes Yes Yes Low half of XT

ROH - R7H No Yes No Yes Floating-point Unit result registers
STF No Yes No Yes Floating-point Uint status register
RB No Yes Yes Yes Repeat block register

VRO - VR8 No No Yes Yes VCU general purpose registers
VTO, VT1 No No Yes Yes VCU transition bit register 0 and 1
VSTATUS No No Yes Yes VCU status and configuration
VCRC No No Yes Yes CRC result register

3.4.2 VCU Status Register (VSTATUS)

The VCU status register (VSTATUS) register is described in Figure 3-3. There is no single instruction to
directly transfer the VSTATUS register to a C28x register. To transfer the contents:

1. Store VSTATUS into memory using VMOV32 mem32, VSTATUS instruction
2. Load the value from memory into a main C28x CPU register.

Configuration bits within the VSTATUS registers are set or cleared using VCU instructions.

Figure 3-3. VCU Status Register (VSTATUS)

31 16
l Reserved ‘
R/W-0 R-0
15 14 13 12 11 10 9 4 0
| Reserved | OVRI | OVFR | RND | sSAT | SHIFTL SHIFTR |
R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

346 Viterbi, Complex Math and CRC Unit (VCU)

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com Register Set
Table 3-5. VCU Status (VSTATUS) Register Field Descriptions
Bits Field Value Description
31-14 Reserved 0 Reserved for future use
13 OVFI Overflow or Underflow Flag: Imaginary Part
0 No overflow or underflow has been detected.

Indiates an overflow or underflow has occurred during the computation of the imaginary part of
operations shown in Table 3-6. This bit will be set regardless of the value of the VSTATUS[SAT] bit.
OVRI bit will remain set until it is cleared by executing the VCLROVFI instruction.

12 OVFR Overflow or Underflow Flag: Real Part

0 No overflow or underflow has been detected.

Indicates overflow or underflow has occurred during a real number calculation for operations shown
in Table 3-6. This bit will be set regardless of the value of the VSTATUS[SAT] bit. This bit will remain
set until it is cleared by executing the VCLROVFR instruction.

11 RND Rounding

When a right-shift operation is performed the lower bits of the value will be lost. The RND bit
determines if the shifted value is rounded or if the shifted-out bits are simply truncated. This is
described in . Operations which use right-shift and rounding are shown in Table 3-6.

The RND bit is set by the VRNDON instruction and cleared by the VRNDOFF instruction.

0 Rounding is not performed. Bits shifted out right are truncated.

Rounding is performed. Refer to the instruction descriptions for information on how the operation is
affected by the RND bit.

10 SAT Saturation

This bit determines whether saturation will be performed for operations shown in Table 3-6.
The SAT bit is set by the VSATON instruction and is cleared by the VSATOFF instruction.

No saturation is performed.

Saturation is performed.
9-5 SHIFTL Left Shift

Operations which use left-shift are shown in Table 3-6
The shift SHIFTL field can be set or cleared by the VSETSHL instruction.

0 No left shift.
0x01 - Refer to the instruction description for information on how the operation is affected by the shift value.
Ox1F During the left-shift, the lower bits are filled with O's.
4-0 SHIFTR Right Shift

Operations which use right-shift and rounding are shown in Table 3-6.
The shift SHIFTR field can be set or cleared by the VSETSHR instruction.

0 No right shift.

0x01 - Refer to the instruction descriptions for information on how the operation is affected by the shift value.
Ox1F During the right-shift, the lower bits are lost, and the shifted value is sign extended. If rounding is
enabled (VSTATUS[RND] == 1) , then the value will be rounded instead of truncated.

Table 3-6 shows a summary of the operations that are affected by or modify bits in the VSTATUS register.

Table 3-6. Operation Interaction with VSTATUS Bits

Operation @ Description OVFI | OVFR | RND | SAT SHLIFT SHFLFT
VITDLADDSUB Viterbi Add and Subtract Low - Y - Y - -
VITDHADDSUB Viterbi Add and Subtract High - Y - Y - -
VITDLSUBADD Viterbi Subtract and Add Low - Y - Y - -
VITDHSUBADD Viterbi Subtract and Add High - Y - Y - -

VITBM2 Viterbi Branch Metric CR 1/2 - Y - Y - -
VITBM3 Viterbi Branch Metric CR 1/3 - Y - Y - -
VCADD Complex 32 + 32 =32 Y Y Y Y - Y
VCDADD16 Complex 16 + 32 = 32 Y Y Y Y Y Y

@ some parallel instructions also include these operations. In this case, the operation will also modify, or be affected by, VSTATUS
bits as when used as part of a parallel instruction.

SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 347
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
Register Set www.ti.com
Table 3-6. Operation Interaction with VSTATUS Bits (continued)
Operation @ Description OVFIl | OVFR | RND | SAT SHLIFT SHRIFT
VCDSUB16 Complex 16 - 32 = 32 Y Y Y Y Y Y
Complex 32 + 32 = 32,
VCMAC 16 x 16 = 32 Y Y Y Y - Y
VCMPY Complex 16 x 16 = 32 Y Y Y - -
VCSuUB Complex 32 -32 = 32 Y Y Y Y - Y
348 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com Register Set

3.4.3 Repeat Block Register (RB)

The repeat block instruction (RPTB) applies to devices with the C28x+FPU and the C28x+VCU. This
instruction allows you to repeat a block of code as shown in Example 3-1.

Example 3-1. The Repeat Block (RPTB) Instruction uses the RB Register

; Find the largest element and put its address in XAR6

; This example makes use of floating-point (C28x + FPU) instructions

MOV32 ROH, *XARO++;
.align 2 ; Aligns the next instruction to an even address
NOP ; Makes RPTB odd aligned - required for a block size of 8
RPTB VECTOR_MAX_END, AR7 ; RA is set to 1
MOVL ACC,XARO
MOV32 R1H,*XARO++ ; RSIZE reflects the size of the RPTB block
MAXF32 ROH,R1H ; in this case the block size is 8
MOVSTO NF,ZF
MOVL XAR6,ACC,LT
VECTOR_MAX_END: ; RE indicates the end address. RA is cleared

The C28x FPU or VCU automatically populates the RB register based on the execution of a RPTB
instruction. This register is not normally read by the application and does not accept debugger writes.

Figure 3-4. Repeat Block Register (RB)

3 30 29 23 2 16
| RAS | RA] RSIZE \ RE |
RO RO R-0 R-0
15 0
| RC |
R-0

LEGEND: R = Read only; -n = value after reset

Table 3-7. Repeat Block (RB) Register Field Descriptions

Bits Field Value Description
31 RAS Repeat Block Active Shadow Bit

When an interrupt occurs the repeat active, RA, bit is copied to the RAS bit and the RA bit is cleared.
When an interrupt return instruction occurs, the RAS bit is copied to the RA bit and RAS is cleared.

0 A repeat block was not active when the interrupt was taken.

A repeat block was active when the interrupt was taken.

30 RA Repeat Block Active Bit

0 This bit is cleared when the repeat counter, RC, reaches zero.

When an interrupt occurs the RA bit is copied to the repeat active shadow, RAS, bit and RA is cleared.
When an interrupt return, IRET, instruction is executed, the RAS bit is copied to the RA bit and RAS is
cleared.

1 This bit is set when the RPTB instruction is executed to indicate that a RPTB is currently active.
29-23 RSIZE Repeat Block Size

This 7-bit value specifies the number of 16-bit words within the repeat block. This field is initialized
when the RPTB instruction is executed. The value is calculated by the assembler and inserted into the
RPTB instruction's RSIZE opcode field.

0-7 lllegal block size.

8/9-0x7F | A RPTB block that starts at an even address must include at least 9 16-bit words and a block that
starts at an odd address must include at least 8 16-bit words. The maximum block size is 127 16-bit
words. The codegen assembler will check for proper block size and alignment.

SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 349

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

Register Set www.ti.com

Table 3-7. Repeat Block (RB) Register Field Descriptions (continued)

Bits Field Value Description
22-16 RE Repeat Block End Address

This 7-bit value specifies the end address location of the repeat block. The RE value is calculated by
hardware based on the RSIZE field and the PC value when the RPTB instruction is executed.

RE = lower 7 bits of (PC + 1 + RSIZE)

15-0 RC Repeat Count
0 The block will not be repeated,; it will be executed only once. In this case the repeat active, RA, bit will
not be set.
1- This 16-bit value determines how many times the block will repeat. The counter is initialized when the

OxFFFF | RPTB instruction is executed and is decremented when the PC reaches the end of the block. When
the counter reaches zero, the repeat active bit is cleared and the block will be executed one more
time. Therefore the total number of times the block is executed is RC+1.

350 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019
Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

I3 TEXAS
INSTRUMENTS
www.ti.com Pipeline
3.5 Pipeline
This section describes the VCU pipeline stages and presents cases where pipeline alignment must be
considered.
3.5.1 Pipeline Overview
The C28x VCU pipeline is identical to the C28x pipeline for all standard C28x instructions. In the decode2
stage (D2), it is determined if an instruction is a C28x instruction, a FPU instruction, or a VCU instruction.
The pipeline flow is shown in Figure 3-5.
Notice that stalls due to normal C28x pipeline stalls (D2) and memory waitstates (R2 and W) will also stall
any C28x VCU instruction. Most C28x VCU instructions are single cycle and will complete in the VCU E1
or W stage which aligns to the C28x pipeline. Some instructions will take an additional execute cycle (E2).
For these instructions you must wait a cycle for the result from the instruction to be available. The rest of
this section will describe when delay cycles are required. Keep in mind that the assembly tools for the
C28x+VCU will issue an error if a delay slot has not been handled correctly.
Figure 3-5. C28x + FCU + VCU Pipeline
Fetch Decode Read Exe Write
C28x pipeline| 1 F2 D1 D2 R1 R2 E W
FPU instruction D R E1 E2
W
VCU instruction D R E1 '\5/5
Load ¢ >
Store >
Complex ADD/SUB Viterbi ADDSUB/SUBADD >
FPU ADD/SUB/MPY, Complex MPY * >
3.5.2 General Guidelines for Floating-Point Pipeline Alignment
The majority of the VCU instructions do not require any special pipeline considerations. This section lists
the few operations that do require special consideration.
While the C28x+VCU assembler will issue errors for pipeline conflicts, you may still find it useful to
understand when software delays are required. This section describes three guidelines you can follow
when writing C28x+VCU assembly code.
VCU instructions that require delay slots have a 'p' after their cycle count. For example '2p' stands for 2
pipelined cycles. This means that an instruction can be started every cycle, but the result of the instruction
will only be valid one instruction later.
There are three general guidelines to determine if an instruction needs a delay slot:
1. Branch metric calculation for a code rate of 1/3 takes 2p cycles.
2. Complex multiply and MAC take 2p cycles.
3. Everything else does not require a delay slot.
SPRUHS1C-October 2014—-Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 351

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

Pipeline www.ti.com

An example of the complex multiply instruction is shown in Example 3-2. VCMPY is a 2p instruction and
therefore requires one delay slot. The destination registers for the operation, VR2 and VR3, will be
updated one cycle after the instruction for a total of 2 cycles. Therefore, a NOP or instruction that does not
use VR2 or VR3 must follow this instruction.

Any memory stall or pipeline stall will also stall the VCU. This keeps the VCU aligned with the C28x
pipeline and there is no need to change the code based on the waitstates of a memory block.

Example 3-2. 2p Instruction Pipeline Alignment

VCMPY VR3, VR2, VR1, VRO ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction
; <-- VCMPY completes, VR2 and VR3 updated
NOP ; Any instruction
3.5.3 Parallel Instructions

Parallel instructions are single opcodes that perform two operations in parallel. The guidelines provided in
Section 3.5.2 apply to parallel instructions as well. In this case the cycle count will be given for both
operations. For example, a branch metric calculation for code rate of 1/3 with a parallel load takes 2p/1
cycles. This means the branch metric portion of the operation takes 2 pipelined cycles while the move
portion of the operation is single cycle. NOPs or other non conflicting instructions must be inserted to align
the branch metric calculation portion of the operation as shown in Example 3-4 .

Example 3-3. Branch Metric CR 1/2 Calculation with Parallel Load

; VITBM2 || VMOV32 instruction: branch metrics calculation with parallel load
; VBITM2 is a 1 cycle operation (code rate = 1/2)
; VMOV32 is a 1 cycle operation

VITBM2 VRO ; Load VRO with the 2 branch metrics
|l vmMov32 VR2, @val ; VR2 gets the contents of Val

; <-- VMOV32 completes here (VR2 is valid)
; <-- VITBM2 completes here (VRO is valid)

<instruction 2> ; Any instruction, can use VR2 and/or VRO

Example 3-4. Branch Metric CR 1/3 Calculation with Parallel Load

; VITBM3 || VMOV32 instruction: branch metrics calculation with parallel load
; VBITM3 is a 2p cycle operation (code rate = 1/3)
; VMOV32 is a 1 cycle operation

VITBM3 VRO, VR1, VR2 ; Load VRO and VR1 with the 4 branch metrics
|l vMmov32 VR2, @val ; VR2 gets the contents of Val
; <-- VMOV32 completes here (VR2 is valid)
<instruciton 2> ; Must not use VRO or VR1. Can use VR2.
; <-- VITBM3 completes here (VRO, VR1l are valid)
<instruction 3> ; Any instruction, can use VR2 and/or VRO
3.5.4 Invalid Delay Instructions

All VCU, FPU and fixed-point instructions can be used in VCU instruction delay slots as long as source
and destination register conflicts are avoided. The C28x+VCU assembler will issue an error anytime you
use an conflicting instruction within a delay slot. The following guidelines can be used to avoid these
conflicts.

352

Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014 —-Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com Pipeline

NOTE: Destination register conflicts in delay slots:

Any operation used for pipeline alignment delay must not use the same destination register
as the instruction requiring the delay. See Example 3-5.

In Example 3-5 the VCMPY instruction uses VR2 and VR3 as its destination registers. The next instruction
should not use VR2 or VR3 as a destination. Since the VMOV32 instruction uses the VR3 register a
pipeline conflict will be issued by the assembler. This conflict can be resolved by using a register other

than VR2 for the VMOV32 instruction as shown in Example 3-6.

SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 353

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

Pipeline www.ti.com

Example 3-5. Destination Register Conflict

; Invalid delay instruction.
; Both instructions use the same destination register (VR3)
VCMPY VR3, VR2, VR1, VRO ; 2p instruction
VMOV32 VR3, mem32 ; Invalid delay instruction
; <-- VCMPY completes, VR3, VR2 are valid

Example 3-6. Destination Register Conflict Resolved

; Valid delay instruction

VCMPY VR3, VR2, VR1, VRO ; 2p instruction
VMOV32 VR7, mem32 ; Valid delay instruction

NOTE: Instructions in delay slots cannot use the instruction's destination register as a
source register.

Any operation used for pipeline alignment delay must not use the destination register of the
instruction requiring the delay as a source register as shown in Example 3-7. For parallel
instructions, the current value of a register can be used in the parallel operation before it is
overwritten as shown in Example 3-9.

In Example 3-7 the VCMPY instruction again uses VR3 and VR2 as its destination registers. The next
instruction should not use VR3 or VR2 as its source since the VCMPY will take an additional cycle to
complete. Since the VCADD instruction uses the VR2 as a source register a pipeline conflict will be issued
by the assembler. The use of VR3 will also cause a pipeline conflict. This conflict can be resolved by using
a register other than VR2 or VR3 or by inserting a non-conflicting instruction between the VCMPY and
VCADD instructions. Since the VNEG does not use VR2 or VR3 this instruction can be moved before the
VCADD as shown in Example 3-8.

Example 3-7. Destination/Source Register Conflict

; Invalid delay instruction.
; VCADD should not use VR2 or VR3 as a source operand

VCMPY VR3, VR2, VR1, VRO ; 2p instruction
VCADD VR5, VR4, VR3, VR2 ; Invalid delay instruction
VNEG VRO ; <- VCMPY completes, VR3, VR2 valid

Example 3-8. Destination/Source Register Conflict Resolved

; Valid delay instruction.

VCMPY VR3, VR2, VR1, VRO ; 2p instruction
VNEG VRO ; Non conflicting instruction or NOP
VCADD VR5, VR4, VR3, VR2 ; <- VCMPY completes, VR3, VR2 valid

It should be noted that a source register for the 2nd operation within a parallel instruction can be the same
as the destination register of the first operation. This is because the two operations are started at the
same time. The 2nd operation is not in the delay slot of the first operation. Consider Example 3-9 where
the VCMPY uses VR3 and VR2 as its destination registers. The VMOV32 is the 2nd operation in the
instruction and can freely use VR3 or VR2 as a source register. In the example, the contents of VR3
before the multiply will be used by MOV32.

354 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com Pipeline

Example 3-9. Parallel Instruction Destination/Source Exception

; Valid parallel operation.

VCMPY VR3, VR2, VR1, VRO ; 2p/1 instruction

|l VMOV32 mem32, VR3 ; <-- Uses VR3 before the VCMPY update
; <-- mem32 updated
NOP ; <-- Delay for VCMPY

; <-- VR2, VR3 updated

Likewise, the source register for the 2nd operation within a parallel instruction can be the same as one of
the source registers of the first operation. The VCMPY operation in Example 3-10 uses the VRO register
as one of its sources. This register is also updated by the VMOV32 instruction. The multiplication
operation will use the value in VRO before the VMOV32 updates it.

Example 3-10. Parallel Instruction Destination/Source Exception

; Valid parallel operation.
VCMPY VR3, VR2, VR1, VRO ; 2p/1 instruction

|l VMOV32 VRO, mem32 ; <-- Uses VR3 before the VCMPY update
; <-- mem32 updated
NOP ; <-- Delay for VCMPY

; <-- VR2, VR3 updated

NOTE: Operations within parallel instructions cannot use the same destination register.
When two parallel operations have the same destination register, the result is invalid.

For example, see Example 3-11.

If both operations within a parallel instruction try to update the same destination register as shown in
Example 3-11 the assembler will issue an error.

Example 3-11. Invalid Destination Within a Parallel Instruction

; Invalid parallel instruction. Both operations use VR3 as a destination register
VCMPY VR3, VR2, VR1, VRO ; 2p/1 instruction
|1 VMOV32 VR3, mem32 ; <-- Invalid

SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 355

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
Instruction Set www.ti.com
3.6 Instruction Set
This section describes the assembly language instructions of the VCU. Also described are parallel
operations, conditional operations, resource constraints, and addressing modes. The instructions listed
here are independant from C28x and C28x+FPU instruction sets.
3.6.1 Instruction Descriptions
This section gives detailed information on the instruction set. Each instruction may present the following
information:
* Operands
* Opcode
» Description
» Exceptions
* Pipeline
* Examples
* See also
The example INSTRUCTION is shown to familiarize you with the way each instruction is described. The
example describes the kind of information you will find in each part of the individual instruction description
and where to obtain more information. VCU instructions follow the same format as the C28x; the source
operand(s) are always on the right and the destination operand(s) are on the left.
The explanations for the syntax of the operands used in the instruction descriptions for the C28x VCU are
given in Table 3-8.
Table 3-8. Operand Nomenclature
Symbol Description
#16FHi 16-bit immediate (hex or float) value that represents the upper 16-bits of an IEEE 32-bit floating-point value.
Lower 16-bits of the mantissa are assumed to be zero.
#16FHiHex 16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit floating-point value.
Lower 16-bits of the mantissa are assumed to be zero.
#16FLoHex A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit floating-point value
#32Fhex 32-bit immediate value that represents an IEEE 32-bit floating-point value
#32F Immediate float value represented in floating-point representation
#0.0 Immediate zero
#5-bit 5-bit immediate unsigned value
addr Opcode field indicating the addressing mode
Im(X), Im(Y) Imaginary part of the input X or input Y
Im(Z) Imaginary part of the output Z
Re(X), Re(Y) Real part of the input X or input Y
Re(Z) Real part of the output Z
mem16 Pointer (using any of the direct or indirect addressing modes) to a 16-bit memory location
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
VRa VRO - VR8 registers. Some instructions exclude VR8. Refer to the instruction description for details.
VROH, VRO - VRY registers, high half.
VR1H...VR7H
VROL, VRI1L....VR7L | VRO - VR7 registers, low half.
VTO, VT1 Transition bit register VTO or VT1.
Each instruction has a table that gives a list of the operands and a short description. Instructions always
have their destination operand(s) first followed by the source operand(s).
356 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

Instruction Set

Table 3-9. INSTRUCTION dest, sourcel, source2 Short Description

Description
destl Description for the 1st operand for the instruction
sourcel Description for the 2nd operand for the instruction
source2 Description for the 3rd operand for the instruction
Opcode This section shows the opcode for the instruction
Description Detailed description of the instruction execution is described. Any constraints on the operands imposed by

the processor or the assembler are discussed.

Restrictions

Any constraints on the operands or use of the instruction imposed by the processor are discussed.

Pipeline This section describes the instruction in terms of pipeline cycles as described in Section 3.5
Example Examples of instruction execution. If applicable, register and memory values are given before and after
instruction execution. Some examples are code fragments while other examples are full tasks that assume
the VCU is correctly configured and the main CPU has passed it data.
Operands Each instruction has a table that gives a list of the operands and a short description. Instructions always
have their destination operand(s) first followed by the source operand(s).
SPRUHS1C-October 2014—-Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 357

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

I} TEXAS
INSTRUMENTS
Instruction Set www.ti.com
3.6.2 General Instructions
The instructions are listed alphabetically, preceded by a summary.
Table 3-10. General Instructions
Title Page
POP RB —Pop the RB Register from the StACKuueiriieiiiiiiiiiiii i i rrire s srar s ranr e sranns 359
PUSH RB —Push the RB Register onto the STaCKviiiiiiiiiiiii i s s s eraaes 361
RPTB label, 10c16 —Repeat A BIOCK Of COUE ...ttt e e e r e e e e e e e e aaann e e saannneeaanns 363
RPTB label, #RC —Repeat @ BIOCK Of COU . ..uuiiiiiteiiiiersseeesessneessaane e ssasnnessssnnessaannnessannnessaannnrrnnnnes 365
VCLEAR VRa —Clear General PUIrPOSE REQISTEI 1.uuuteiiiietesiiaeeessaannesssanneessaanressssnneessannnessasnnessssnnnessnnnns 367
VCLEARALL —Clear All General Purpose and Transition Bit REQISLEIS ...u.uuriiuiiiieriiririieiitiries i 368
VCLROVFI —Clear Imaginary OVerflow FIaguvuuuueiiiiiiiiiiiii i rr s r s s ss e s s annae s asannn e s raanes 369
VCLROVFR —Clear Real OVerfloW Flag .. c.ueeiiiiiiiii i i r e s s ar s s sr s s s s s e s sanna s ssnnn e s annnnns 370
VMOV16 mem16, VRaL —Store General Purpose Register, Low Half........ooiiiiiiiiii i 371
VMOV16 VRaL, mem16 —Load General Purpose Register, Low Halfcooriiiiiiiiiiiii i rnnne e n e 372
VMOV32 mem32, VRa —Store General PUIPOSE REGISIEr . .uuuiiiieeeiiiieeesianntessaansnessanressasnneesssannessssnneesnnns 373
VMOV32 mem32, VSTATUS —Store VCU StatuUS ReQISIEr ..viiiiiiiiiiiieiiiiessiiissessannsesssannsessaannesssanneesanns 374
VMOV32 mem32, VTa —Store Transition Bit REGISIEru.usiiiieteiiiitteisiessaits s ssaiessasisesssaissssiannes 375
VMOV32 VRa, mem32 —Load 32-bit General PUrPOSE REQISIEN .. .uuiiiiieiiiiiiiesiiiires i s rsaanresssanreaanas 376
VMOV32 VSTATUS, mem32 —Load VCU StatuUs ReQISTErt ie it e e e e e e rrnre e e anr e eannees 377
VMOV32 VTa, mem32 —Load 32-bit Transition Bit REQISIEruviiiiiiiiii i re i ra s eare e rsanne s raanreraannnes 378
VMOVD32 VRa, mem32 —Load Register With Data MOVEuviiieeiiiiiessiiesssaneessasnnessaannnessaannesssanneeranns 379
VMOVIX VRa, #16] —Load Upper Half of a General Purpose Register with 16-bit Immediatecoviiviiiiiiinnnnns 380
VMOVZI VRa, #161 —Load General Purpose Register with Immediate.........oovveiiiiiiiiiiiiiiii i riaee e 381
VMOVXI VRa, #16| —Load Low Half of a General Purpose Register with Immediate.........coveiviiiiiiiiiiiiiiiinenns 382
VRNDOFF —DiSable ROUNGING ..t uuteiseitinatissssas s et sss s s s s ssras s e s s n s sa s s aa s saan s ran e aannanans 383
VRNDON —ENabIe ROUNAING ..ttt s s s e e e s s s s s s s s s e s et s s s s a s s s e s s nsan s saneaaans 384
VSATOFF —DiSable SAtUratioN ...uuusivsssiseirteiseises st sses s sse st s sassaa s sa e s saa s asaassanrsansssannans 385
VSATON —EN@ADIE SAIUMALION 1. ueieiiiatsie ittt es et e s s s e e s e s sa e s s s s s e s e s s s s saa s sannssanssannsrannsns 386
VSETSHL #5-bit —Initialize the Left Shift Valueueiiiiii i s i aaas 387
VSETSHR #5-bit —Initialize the Left Shift Valuecviiii s e aaes 388
358 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

POP RB — Pop the RB Register from the Stack

POP RB

Operands

Pop the RB Register from the Stack

RB

repeat block register

Opcode

Description

Flags
Pipeline

Example

See also

LSW: 1111 1111 1111 0001

Restore the RB register from stack. If a high-priority interrupt contains a RPTB
instruction, then the RB register must be stored on the stack before the RPTB block and
restored after the RTPB block. In a low-priority interrupt RB must always be saved and
restored. This save and restore must occur when interrupts are disabled.

This instruction does not affect any flags in the VSTATUS register.
This is a single-cycle instruction.

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.

; Repeat Block within a High-Priority Interrupt (Non-Interruptible)

; Interrupt: ; RAS = RA, RA=0

PUSH RB ; Save RB register only if a RPTB block is used in the ISR

RPTB _BlockEnd, AL ; Execute the block AL+l times

_BlockEnd ; End of block to be repeated

POP RB ; Restore RB register ...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.

; Repeat Block within a Low-Priority Interrupt (Interruptible)
; Interrupt:
; RAS = RA, RA=0
PUSH RB ; Always save RB register

CLRC INTM ; Enable interrupts only after saving RB

; ISR may or may not include a RPTB block

SETC INTM ; Disable interrupts before restoring RB
POP RB ; Always restore RB register
IRET ; RA = RAS, RAS = 0

PUSH RB

SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 359
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

POP RB — Pop the RB Register from the Stack www.ti.com
RPTB label, loc16
RPTB label, #RC

360 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

PUSH RB — Push the RB Register onto the Stack

PUSH RB

Operands

Push the RB Register onto the Stack

RB

repeat block register

Opcode

Description

Flags
Pipeline

Example

See also

LSw: 1111 1111 1111 0000

Save the RB register on the stack. If a high-priority interrupt contains a RPTB instruction,
then the RB register must be stored on the stack before the RPTB block and restored
after the RTPB block. In a low-priority interrupt RB must always be saved and restored.
This save and restore must occur when interrupts are disabled.

This instruction does not affect any flags in the VSTATUS register.
This is a single-cycle instruction.

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.

; Repeat Block within a High-Priority Interrupt (Non-Interruptible)

; Interrupt: ; RAS = RA, RA=0

PUSH RB ; Save RB register only if a RPTB block is used in the ISR

RPTB _BlockEnd, AL ; Execute the block AL+l times

_BlockEnd ; End of block to be repeated

POP RB ; Restore RB register ...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.

; Repeat Block within a Low-Priority Interrupt (Interruptible)
; Interrupt:
; RAS = RA, RA=0
PUSH RB ; Always save RB register

CLRC INTM ; Enable interrupts only after saving RB

; ISR may or may not include a RPTB block

SETC INTM ; Disable interrupts before restoring RB
POP RB ; Always restore RB register
IRET ; RA = RAS, RAS = 0

POP RB

SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 361
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

PUSH RB — Push the RB Register onto the Stack www.ti.com
RPTB label, loc16
RPTB label, #RC

362 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

RPTB label, loc16 — Repeat A Block of Code

RPTB label, loc16

Repeat A Block of Code

Operands
label This label is used by the assembler to determine the end of the repeat block and to calculate RSIZE.
This label should be placed immediately after the last instruction included in the repeat block.
loc16 16-bit location for the repeat count value.
Opcode LSW: 1011 0101 Obbb bbbb
MSW: 0000 0000 locl16
Description Initialize repeat block loop, repeat count from [loc16]

Restrictions

Flags

Pipeline

Example

* The maximum block size is <127 16-bit words.

* An even aligned block must be = 9 16-bit words.

* An odd aligned block must be = 8 16-bit words.

» Interrupts must be disabled when saving or restoring the RB register.
* Repeat blocks cannot be nested.

» Any discontinuity type operation is not allowed inside a repeat block. This includes all
call, branch or TRAP instructions. Interrupts are allowed.

» Conditional execution operations are allowed.
This instruction does not affect any flags in the VSTATUS register.

This instruction takes four cycles on the first iteration and zero cycles thereafter. No
special pipeline alignment is required.

The minimum size for the repeat block is 8 words if the block is even aligned and 9
words if the block is odd aligned. If you have a block of 8 words, as in the following
example, you can make sure the block is odd aligned by proceeding it by a .align 2
directive and a NOP instruction. The .align 2 directive will make sure the NOP is even
aligned. Since a NOP is a 16-bit instruction the RPTB will be odd aligned. For blocks of
9 or more words, this is not required.

; Repeat Block of 8 Words (Interruptible)

; Note: This example makes use of floating-point (C28x+FPU) instructions

; find the largest element and put its address in XAR6
.align 2
NOP
RPTB _VECTOR_MAX_END, AR7

; Execute the block AR7+1 times
MOVL ACC,XARO MOV32 R1H,*XARO++ ;
MAXF32 ROH,R1H ;
MOVSTO NF,ZF
MOVL XAR6,ACC,LT

_VECTOR_MAX_END: ; label indicates the end

; RA is cleared

min size
max size

8, 9 words
127 words

When an interrupt is taken the repeat active (RA) bit in the RB register is automatically
copied to the repeat active shadow (RAS) bit. When the interrupt exits, the RAS bit is
automatically copied back to the RA bit. This allows the hardware to keep track if a
repeat loop was active whenever an interrupt is taken and restore that state
automatically.

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the

SPRUHS1C-October 2014 —Revised November 2019

Viterbi, Complex Math and CRC Unit (VCU) 363

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

RPTB label, loc16 — Repeat A Block of Code

www.ti.com

interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.

; Repeat Block within a High-Priority Interrupt (Non-Interruptible)

; Interrupt: ; RAS = RA, RA =0
PUSH RB ; Save RB register only if a RPTB block is used in the ISR

RPTB _BlockEnd, AL ; Execute the block AL+l times

_BlockEnd ; End of block to be repeated
POP RB ; Restore RB register ...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.

; Repeat Block within a Low-Priority Interrupt (Interruptible)
; Interrupt:

; RAS = RA, RA=0

EOéH RB ; Always save RB register

éLéC INTM ; Enable interrupts only after saving RB

; ISR may or may not include a RPTB block

SETC INTM

; Disable interrupts before restoring RB
ééé RB ; Always restore RB register
iééT ; RA = RAS, RAS = 0
See also POP RB
PUSH RB

RPTB label, #RC

364 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

RPTB label, #RC — Repeat a Block of Code

RPTB label, #RC

Repeat a Block of Code

Operands
label This label is used by the assembler to determine the end of the repeat block and to calculate RSIZE.
This label should be placed immediately after the last instruction included in the repeat block.
#RC 16-bit immediate value for the repeat count.
Opcode LSW: 1011 0101 1bbb bbbb
MSW: cccc cccc cccec ccce
Description Repeat a block of code. The repeat count is specified as a immediate value.

Restrictions

Flags

Pipeline

Example

* The maximum block size is <127 16-bit words.

* An even aligned block must be = 9 16-bit words.

* An odd aligned block must be = 8 16-bit words.

» Interrupts must be disabled when saving or restoring the RB register.
* Repeat blocks cannot be nested.

» Any discontinuity type operation is not allowed inside a repeat block. This includes all
call, branch or TRAP instructions. Interrupts are allowed.

» Conditional execution operations are allowed.
This instruction does not affect any flags in the VSTATUS register.

This instruction takes one cycle on the first iteration and zero cycles thereafter. No
special pipeline alignment is required.

The minimum size for the repeat block is 8 words if the block is even aligned and 9
words if the block is odd aligned. If you have a block of 8 words, as in the following
example, you can make sure the block is odd aligned by proceeding it by a .align 2
directive and a NOP instruction. The .align 2 directive will make sure the NOP is even
aligned. Since a NOP is a 16-bit instruction the RPTB will be odd aligned. For blocks of
9 or more words, this is not required.

; Repeat Block of 8 Words (Interruptible)

; Note: This example makes use of floating-point (C28x+FPU) instructions
; Find the largest element and put its address in XAR6

.align 2
NOP
RPTB _VECTOR_MAX_END, AR7
; Execute the block AR7+1 times
MOVL ACC,XARO MOV32 R1H,*XARO++ :
MAXF32 ROH,R1H ;
MOVSTO NF,ZF
MOVL XAR6,ACC,LT
_VECTOR_MAX_END: ; label indicates the end
; RA is cleared

min size
max size

8, 9 words
127 words

When an interrupt is taken the repeat active (RA) bit in the RB register is automatically
copied to the repeat active shadow (RAS) bit. When the interrupt exits, the RAS bit is
automatically copied back to the RA bit. This allows the hardware to keep track if a
repeat loop was active whenever an interrupt is taken and restore that state
automatically.

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the

SPRUHS1C-October 2014 —Revised November 2019

Viterbi, Complex Math and CRC Unit (VCU) 365

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

RPTB label, #RC — Repeat a Block of Code

13 TEXAS
INSTRUMENTS

www.ti.com

interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.

; Repeat Block within a High-Priority Interrupt (Non-Interruptible)

; Interrupt: ; RAS = RA, RA =0

PUSH RB ; Save RB register only if a RPTB block is used in the ISR

RPTB # BlockEnd, #5 ; Execute the block AL+l times

_BlockEnd ; End of block to be repeated

POP RB ; Restore RB register ...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.

; Repeat Block within a Low-Priority Interrupt (Interruptible)
; Interrupt:
; RAS = RA, RA=0
PUSH RB ; Always save RB register

CLRC INTM ; Enable interrupts only after saving RB

; ISR may or may not include a RPTB block

SETC INTM ; Disable interrupts before restoring RB
POP RB ; Always restore RB register
IRET ; RA = RAS, RAS = 0
See also POP RB
PUSH RB
RPTB label, loc16
366 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com VCLEAR VRa — Clear General Purpose Register
VCLEAR VRa Clear General Purpose Register
Operands
VRa General purpose register: VRO, VR1... VR8
Opcode LSW: 1110 0110 1111 1000
MSW: 0000 0000 0000 aaaa
Description Clear the specified general purpose register.
VRa = 0x00000000;
Flags This instruction does not modify any flags in the VSTATUS register.
Pipeline This is a single-cycle instruction.
Example ;
; Code fragment from a viterbi traceback
; For the first iteration the previous state metric must be
; initalized to zero (VRO).
VCLEAR VRO ; Clear the VRO register
MOVL XAR5,*+XAR4[0] ; Point XAR5 to an array
; For first stage
VMOV32 VTO, *--XAR3
VMOV32 VT1, *--XAR3
VTRACE *XAR5++,VRO,VTO,VT1 ; Uses VRO (which is zero)
; etc. ..
See also VCLEARALL
VTCLEAR
SPRUHS1C-October 2014—-Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 367

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

VCLEARALL — Clear All General Purpose and Transition Bit Registers

13 TEXAS
INSTRUMENTS

www.ti.com

VCLEARALL

Operands

Opcode

Description

Flags
Pipeline

Example

See also

Clear All General Purpose and Transition Bit Registers

none

LSW: 1110 0110 1111 1001
MSW: 0000 0000 0000 0000

Clear all of the general purpose registers (VRO, VR1... VR8) and the transition bit

registers (VTO and VT1).

VRO = 0x00000000;
VRO = 0x00000000;
VR2 = 0x00000000;
VR3 = 0x00000000;
VR4 = 0x00000000;
VR5 = 0x00000000;
VR6 = 0x00000000;
VR7 = 0x00000000;
VR8 = 0x00000000;
VTO = 0x00000000;
VT1 = 0x00000000;

This instruction does not modify any flags in the VSTATUS register.

This is a single-cycle instruction.

; Context save all VCU VRa and VTa registers

VMOV32 *SP++,
VMOV32 *SP++,
VMOV32 *SP++,
VMOV32 *SP++,
VMOV32 *SP++,
VMOV32 *SP++,
VMOV32 *SP++,
VMOV32 *SP++,
VMOV32 *SP++,
VMOV32 *SP++,
VMOV32 *SP++,

; Clear VRO - VR8, VTO and VT1

VCLEARALL

; etc...

VCLEAR VRa
VTCLEAR

VRO
VR1
VR2
VR3
VR4
VR5
VR6
VR7
VR8
VvTO
VTl

368 Viterbi, Complex Math and CRC Unit (VCU)

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com VCLROVFI — Clear Imaginary Overflow Flag
VCLROVFI Clear Imaginary Overflow Flag
Operands
none
Opcode LSW: 1110 0101 0000 1011
Description Clear the imaginary overflow flag in the VSTATUS register. To clear the real flag, use

the VCLROVEFR instruction. The imaginary flag bit can be set by instructions shown in
Table 3-6. Refer to invidual instruction descriptions for details.

VSTATUS[OVFI] = 0;

Flags This instruction clears the OVFI flag.
Pipeline This is a single-cycle instruction.
Example
See also VCLROVFR
VRNDON
VSATFOFF
VSATON
SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 369

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
VCLROVFR — Clear Real Overflow Flag www.ti.com
VCLROVFR Clear Real Overflow Flag
Operands
none
Opcode LSW: 1110 0101 0000 1010
Description Clear the real overflow flag in the VSTATUS register. To clear the imaginary flag, use
the VCLROVFI instruction. The imaginary flag bit can be set by instructions shown in
Table 3-6. Refer to invidual instruction descriptions for details.
VSTATUS[OVFR] = 0;
Flags This instruction clears the OVFR flag.
Pipeline This is a single-cycle instruction.
Example
See also VCLROVFI
VRNDON
VSATFOFF
VSATON
370 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com VMOV16 mem16, VRaL — Store General Purpose Register, Low Half

VMOV16 mem16, VRaL Store General Purpose Register, Low Half

Operands
mem16 Pointer to a 16-bit memory location. This will be the destination of the VMOV16.
VRaL Low word of a general purpose register: VROL, VR1L...VR8L.

Opcode LSW: 1110 0010 0001 1000
MSW: 0000 aaaa meml6

Description Store the low 16-bits of the specified general purpose register into the 16-bit memory
location.
[mem16] = VRa[15:0];

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOV16 VRaL, mem16

SPRUHS1C-October 2014—-Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 371

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

VMOV16 VRaL, mem16 — Load General Purpose Register, Low Half

13 TEXAS
INSTRUMENTS

www.ti.com

VMOV16 VRalL, mem16 Load General Purpose Register, Low Half

Operands

Opcode

Description

Flags
Pipeline

Example

See also

VRalL

mem16

Low word of a general purpose register: VROL, VR1L....VR8L
Pointer to a 16-bit memory location. This will be the source for the VMOV16.

LSW: 1110 0010 1100 1001
MSW: 0000 aaaa meml6

Load the lower 16 bhits of the specified general purpose register with the contents of
memory pointed to by mem16.

VRa[15:0] = [meml6];

This instruction does not modify any flags in the VSTATUS register.

This is a single-cycle instruction.

Loop will run 106 times for 212 inputs to decoder

_LOOP:

Calculate the branch metrics for code rate = 1/3

; Code fragment from viterbi decoder

Load VROL, VR1L and VR2L with inputs

to the decoder from the array pointed to by XAR5

VMOV16 VROL, *XAR5++
VMOV16 VR1L, *XAR5++
VMOV16 VR2L, *XAR5++

VROL =
VROH =
VRIL =
VR1H =
VR2L =
VR2H =

VITBM3
VMOV32

; etc...

BMO
BM1
BM2
BM3
pt_old[O]
pt_old[1]

VRO, VR1, VR2
VR2, *XAR1++

VMOV16 mem16, VRaL

372 Viterbi, Complex Math and CRC Unit (VCU)

Copyright © 2014-2019, Texas Instruments Incorporated

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com VMOV32 mem32, VRa — Store General Purpose Register

VMOV32 mem32, VRa Store General Purpose Register

Operands
mema32 Pointer to a 32-bit memory location. This will be the destination of the VMOV32.
VRa General purpose reigster VRO, VR1... VR8
Opcode LSW: 1110 0010 0000 0100
MSW: 0000 aaaa mem32
Description Store the 32-bit contents of the specified general purpose register into the memory
location pointed to by mem32.
[mem32] = VRa;
Flags This instruction does not modify any flags in the VSTATUS register.
Pipeline This is a single-cycle instruction.
Example
See also VMOV32 mem32, VSTATUS
VMOV32 mem32, VTa
VMOV32 VRa, mem32
VMOV32 VTa, mem32
SPRUHS1C-October 2014—-Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 373

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
VMOV32 mem32, VSTATUS — Store VCU Status Register www.ti.com
VMOV32 mem32, VSTATUS Store VCU Status Register
Operands
mema32 Pointer to a 32-bit memory location. This will be the destination of the VMOV32.
VSTATUS VVCU status register.
Opcode LSW: 1110 0010 0000 1101
MSW: 0000 0000 mem32
Description Store the VSTATUS register into the memory location pointed to by mem32.
[mem32] = VSTATUS;
Flags This instruction does not modify any flags in the VSTATUS register.
Pipeline This is a single-cycle instruction.
Example
See also VMOV32 mem32, VRa
VMOV32 mem32, VTa
VMOV32 VRa, mem32
VMOV32 VSTATUS, mem32
VMOV32 VTa, mem32
374 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com VMOV32 mem32, VTa — Store Transition Bit Register

VMOV32 mem32, VTa Store Transition Bit Register

Operands
mema32 pointer to a 32-bit memory location. This will be the destination of the VMOV32.
VTa Transition bits register VTO or VT1
Opcode LSW: 1110 0010 0000 0101
MSW: 0000 0OOtt mem32
Description Store the 32-bits of the specified transition bits register into the memory location pointed
to by mem32.
[mem32] = VTa;
Flags This instruction does not modify any flags in the VSTATUS register.
Pipeline This is a single-cycle instruction.
Example
See also VMOV32 mem32, VRa
VMOV32 mem32, VSTATUS
VMOV32 VRa, mem32
VMOV32 VSTATUS, mem32
VMOV32 VTa, mem32
SPRUHS1C-October 2014—-Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 375

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
VMOV32 VRa, mem32 — Load 32-bit General Purpose Register www.ti.com
VMOV32 VRa, mem32 Load 32-bit General Purpose Register
Operands
VRa General purpose register VRO, VR1....VR8
mema32 Pointer to a 32-bit memory location. This will be the source of the VMOV32.
Opcode LSW: 1110 0011 1111 0000
MSW: 0000 aaaa mem32
Description Load the specified general purpose register with the 32-bit value in memory pointed to
by mem32.
VRa = [mem32];
Flags This instruction does not modify any flags in the VSTATUS register.
Pipeline This is a single-cycle instruction.
Example
See also VMOV32 mem32, VRa
VMOV32 mem32, VSTATUS
VMOV32 mem32, VTa
VMOV32 VSTATUS, mem32
VMOV32 VTa, mem32
376 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com VMOV32 VSTATUS, mem32 — Load VCU Status Register

VMOV32 VSTATUS, mem32 Load VCU Status Register

Operands

VSTATUS VCU status register

mema32 Pointer to a 32-bit memory location. This will be the source of the VMOV32.
Opcode LSW: 1110 0010 1011 0000

MSW: 0000 0000 mem32
Description Load the VSTATUS register with the 32-bit value in memory pointed to by mem32.

VSTATUS = [mem32];
Flags This instruction modifies all bits within the VSTATUS register.
Pipeline This is a single-cycle instruction.
Example
See also VMOV32 mem32, VSTATUS

VMOV32 mem32, VTa

VMOV32 VRa, mem32

VMOV32 VTa, mem32
SPRUHS1C-October 2014—-Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 377

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
VMOV32 VTa, mem32 — Load 32-bit Transition Bit Register www.ti.com
VMOV32 VTa, mem32 Load 32-bit Transition Bit Register
Operands
VTa Transition bit register: VTO, VT1
mema32 Pointer to a 32-bit memory location. This will be the source of the VMOV32.
Opcode LSW: 1110 0011 1111 0001
MSW: 0000 0OOtt mem32
Description Load the specified transition bit register with the 32-bit value in memory pointed to by
mema32 .
VTa = [mem32];
Flags This instruction does not modify any flags in the VSTATUS register.
Pipeline This is a single-cycle instruction.
Example
See also VMOV32 mem32, VSTATUS
VMOV32 mem32, VTa
VMOV32 VRa, mem32
VMOV32 VSTATUS, mem32
378 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

VMOVD32 VRa, mem32 — Load Register with Data Move

VMOVD32 VRa, mem32 Load Register with Data Move

Operands
VRa General purpose registger, VRO, VR1.... VR8
mema32 Pointer to a 32-bit memory location. This will be the source of the VMOV32.
Opcode LSW: 1110 0010 0010 0100
MSW: 0000 aaaa mem32
Description Load the specified general purpose register with the 32-bit value in memory pointed to
by mem32. In addition, copy the next 32-bit value in memory to the location pointed to by
mem32.
VRa = [mem32];
[mem32 + 2] = [mem32];
Flags This instruction does not modify any flags in the VSTATUS register.
Pipeline This is a single-cycle instruction.
Example
See also
SPRUHS1C-October 2014—-Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 379

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

VMOVIX VRa, #161 — Load Upper Half of a General Purpose Register with 16-bit Inmediate www.ti.com

VMOVIX VRa, #16l

Load Upper Half of a General Purpose Register with 16-bit Immediate

Operands
VRa General purpose registger, VRO, VR1... VR8
#161 16-bit immediate value
Opcode LSW: 1110 0111 1110 1111
MSW: TIIT IIIT 1111 aaaa
Description Load the upper 16-bits of the specified general purpose register with an immediate
value. Leave the lower 16-bits of the register unchanged.
VRa[15:0] = unchanged;
VRa[31:16] = #161;
Flags This instruction does not modify any flags in the VSTATUS register.
Pipeline This is a single-cycle instruction.
Example
See also VMOVZI VRa, #16l
VMOVXI VRa, #16I
380 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

VMOVZI VRa, #161 — Load General Purpose Register with Immediate

VMOVZI VRa, #16l

Operands

Opcode

Description

Flags
Pipeline
Example

See also

Load General Purpose Register with Immediate

VRa
#16l

General purpose registger, VRO, VR1...VR8
16-bit immediate value

LSW: 1110 0111 1111 1111
MSWz 1111 1111 1111 aaaa

Load the lower 16-bits of the specified general purpose register with an immediate value.
Clear the upper 16-bits of the register.

VRa[15:0] = #161;
VRa[31:16] = 0x0000;
This instruction does not modify any flags in the VSTATUS register.

This is a single-cycle instruction.

VMOVIX VRa, #16l
VMOVXI VRa, #16l

SPRUHS1C-October 2014 —Revised November 2019

Viterbi, Complex Math and CRC Unit (VCU) 381

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

VMOVXI VRa, #161 — Load Low Half of a General Purpose Register with Immediate www.ti.com

VMOVXI VRa, #16|

Load Low Half of a General Purpose Register with Immediate

Operands
VRa General purpose registger, VRO - VR8
#161 16-bit immediate value
Opcode LSW: 1110 0111 0111 1111
MSW: 1LLL III1 1111 aaaa
Description Load the lower 16-bits of the specified general purpose register with an immediate value.
Leave the upper 16 bits unchanged.
VRa[15:0] = #161;
VRa[31:16] = unchanged;
Flags This instruction does not modify any flags in the VSTATUS register.
Pipeline This is a single-cycle instruction.
Example
See also VMOVIX VRa, #16l
VMOVZI VRa, #16l
382 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

VRNDOFF — Disable Rounding

VRNDOFF

Operands

Opcode

Description

Flags

Pipeline
Example

See also

Disable Rounding

none

LSW: 1110 0101 0000 1001

This instruction disables the rounding mode by clearning the RND bit in the VSTATUS
register. When rounding is disabled, the result of the shift right operation for addition and
subtraction operations will be truncated instead of rounded. The operations affected by
rounding are shown in Table 3-6. Refer to the individual instruction descriptions for
information on how rounding effects the operation. To enable rounding use the VRNDON
instruction.

For more information on rounding, refer to .
VSTATUS[RND] = 0;

This instruction clears the RND bit in the VSTATUS register. It does not change any
flags.

This is a single-cycle instruction.

VCLROVFI
VCLROVFR
VRNDON
VSATFOFF
VSATON

SPRUHS1C-October 2014 —Revised November 2019

Viterbi, Complex Math and CRC Unit (VCU) 383

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

VRNDON — Enable Rounding

13 TEXAS
INSTRUMENTS

www.ti.com

VRNDON

Operands

Opcode

Description

Flags
Pipeline
Example

See also

Enable Rounding

none

LSW: 1110 0101 0000 1000

This instruction enables the rounding mode by setting the RND bit in the VSTATUS
register. When rounding is enabled, the result of the shift right operation for addition and
subtraction operations will be rounded instead of being truncated. The operations
affected by rounding are shown in Table 3-6. Refer to the individual instruction
descriptions for information on how rounding effects the operation. To disable rounding
use the VRNDOFF instruction.

For more information on rounding, refer to .
VSTATUS[RND] = 1;

This instruction sets the RND bit in the VSTATUS register. It does not change any flags.

This is a single-cycle instruction.

VCLROVFI
VCLROVFR
VRNDOFF
VSATFOFF
VSATON

384 Viterbi, Complex Math and CRC Unit (VCU)

Copyright © 2014-2019, Texas Instruments Incorporated

SPRUHS1C-October 2014 —Revised November 2019

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

VSATOFF — Disable Saturation

VSATOFF Disable Saturation

Operands
none

Opcode LSW: 1110 0101 0000 0111

Description This instruction disables the satuartion mode by clearing the SAT bit in the VSTATUS
register. When saturation is disabled, results of addition and subtraction are allowed to
overflow or underflow. When saturation is enabled, results will instead be set to a
maximum or minimum value instead of being allowed to overflow or underflow. To
enable saturation use the VSATON instruction.
VSTATUS[SAT] = 0

Flags This instruction clears the the SAT bit in the VSTATUS register. It does not change any
flags.

Pipeline This is a single-cycle instruction.

Example

See also VCLROVFI
VCLROVFR
VRNDOFF
VRNDON
VSATON

SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 385

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
VSATON — Enable Saturation www.ti.com
VSATON Enable Saturation
Operands
none
Opcode LSW: 1110 0101 0000 0110
Description This instruction enables the satuartion mode by setting the SAT bit in the VSTATUS
register. When saturation is enables, results of addition and subtraction are not allowed
to overflow or underflow. Results will, instead, be set to a maximum or minimum value.
To disable saturation use the VSATOFF instruction..
VSTATUS[SAT] = 1
Flags This instruction sets the SAT bit in the VSTATUS register. It does not change any flags.
Pipeline This is a single-cycle instruction.
Example
See also VCLROVFI
VCLROVFR
VRNDOFF
VRNDON
VSATOFF
386 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

VSETSHL #5-bit — Initialize the Left Shift Value

VSETSHL #5-bit

Initialize the Left Shift Value

Operands
#5-bit 5-bit, unsigned, immediate value

Opcode LSW: 1110 0101 110s ssss

Description Load VSTATUS[SHIFTL] with an unsigned, 5-bit, immediate value. The left shift value
specifies the number of bits an operand is shifed by. A value of zero indicates no shift
will be performed. The left shift is used by the and VCDSUB16 and VCDADD16
operations. Refer to the description of these instructions for more information. To load
the right shift value use the VSETSHR #5-bit instruction.
VSTATUS[VSHIFTL] = #5-bit

Flags This instruction changes the VSHIFTL value in the VSTATUS register. It does not
change any flags.

Pipeline This is a single-cycle instruction.

Example

See also VSETSHR #5-bit

SPRUHS1C-October 2014—-Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 387

Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

VSETSHR #5-bit — Initialize the Left Shift Value www.ti.com

VSETSHR #5-bit Initialize the Left Shift Value

Operands
#5-bit 5-bit, unsigned, immediate value

Opcode LSW: 1110 0101 010s ssss

Description Load VSTATUS[SHIFTR] with an unsigned, 5-bit, immediate value. The right shift value
specifies the number of bits an operand is shifed by. A value of zero indicates no shift
will be performed. The right shift is used by the VCADD, VCSUB, VCDADD16 and
VCDSUBL16 operations. It is also used by the addition portion of the VCMAC. Refer to
the description of these instructions for more information.
VSTATUS[VSHIFTR] = #5-bit

Flags This instruction changes the VSHIFTR value in the VSTATUS register. It does not
change any flags.

Pipeline This is a single-cycle instruction.

Example

See also VSETSHL #5-bit

388 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com Instruction Set

3.6.3 Complex Math Instructions

The instructions are listed alphabetically, preceded by a summary.
Table 3-11. Complex Math Instructions

Title Page
VCADD VR5, VR4, VR3, VR2 —Complex 32 + 32 = 32 AddItION ..uoiiiiiiiiiiiiiieiiiniranssassssnssaasssnssnnsssnsssnnss 390
VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 —Complex 32+32 = 32 Add with Parallel Load................. 392
VCADD VR7, VR6, VR5, VR4 —Complex 32 + 32 = 32- AdditiON. ..ot r e e e rene e ennes 394
VCDADD16 VR5, VR4, VR3, VR2 —Complex 16 + 32 = 16 AdAIitiONvveriiiererriineerssanrersasnnesssanneessannnessnnnes 396
VCDADD16 VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 —Complex Double Add with Parallel Load 400
VCDSUB16 VR6, VR4, VR3, VR2 —Complex 16-32 = 16 SUDIraCT. . ..cviieiiiiiiiiiiiiiis i sane e naaes 402
VCDSUB16 VR6, VR4, VR3, VR2 || VMOV32 VRa, mem32 —Complex 16+32 = 16 Add with Parallel Load 406
VCMAC VR5, VR4, VR3, VR2, VR1, VRO —Complex Multiply and ACCUMUIALEoviiieiiiiiiiiiiiiiiniieeanniaeeas 408
VCMAC VR5, VR4, VR3, VR2, VR1, VRO || VMOV32 VRa, mem32 —Complex Multiply and Accumulate with Parallel

0= Lo 410
VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ —Complex Multiply and Accumulatec.ovviiiiiiiiiiiinninnnn. 412
VCMPY VR3, VR2, VR1, VRO — ComMPIeX MUIPIY +..ueeeeseeree et s seeesseeseeesnesanesnnesnnnssnnesannesnnesannens 416
VCMPY VR3, VR2, VR1, VRO || VMOV32 mem32, VRa —Complex Multiply with Parallel Store...........covvvuiiiininnns 418
VCMPY VR3, VR2, VR1, VRO || VMOV32 VRa, mem32 —Complex Multiply with Parallel Loadccevvievinnnnns 420
VNEG VRa —TWO'S COMPIEMENT NEGALE . .t uutitiratiiteitisiteraasssessaasssss s ssaessaasssasssansssanstansssnnssannss 422
VCSUB VR5, VR4, VR3, VR2 —Complex 32 - 32 = 32 SUDIIACONeiieirieniiierinriisssansiansssanssansssnnssannssnnss 423
VCSUB VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 —Complex Subtractionccvviiiiiiiiiiiiiiiinniaeess 425
SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 389

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

VCADD VR5, VR4, VR3, VR2 — Complex 32 + 32 = 32 Addition www.ti.com

VCADD VR5, VR4, VR3, VR2 Complex 32 + 32 = 32 Addition

Operands

Opcode

Description

Flags

Pipeline

Before the operation, the inputs should be loaded into registers as shown below. Each
operand for this instruction includes a 32-bit real and a 32-bit imaginary part.

Input Register Value

VR5 32-bit integer representing the real part of the first input: Re(X)
VR4 32-bit integer representing the imaginary part of the first input: Im(X)
VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)

The result is also a complex number with a 32-bit real and a 32-bit imaginary part. The
result is stored in VR5 and VR4 as shown below:

Output Register Value

VR5 32-bit integer representing the real part of the result:
Re(Z) = Re(X) + (Re(Y) >> SHIFTR)

VR4 32-bit integer representing the imaginary part of the result:
Im(Z) = Im(X) + (Im(Y) >> SHIFTR)

LSW: 1110 0101 0000 0010

Complex 32 + 32 = 32-bit addition operation.

The second input operand (stored in VR3 and VRZ2) is shifted right by VSTATUS[SHIFR]
bits before the addition. If VSTATUS[RND] is set, then bits shifted out to the right are
rounded, otherwise these bits are truncated. The rounding operation is described in . If
the VSTATUS[SAT] bit is set, then the result will be saturated in the event of an overflow
or underflow.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
//
// X: VR5
// Y: VR3
//
// Calculate Z = X + Y
//

if (RND == 1)

{

Re(X) VR4
Re(Y) VR2

Im(X)
Im(Y)

VR5
VR4

VR5 + round(VR3 >> SHIFTR); // Re(2)
VR4 + round(VR2 >> SHIFTR); // Im(2)

}

else

{
VR5
VR4

VRS + (VR3 >> SHIFTR); /7 Re(2)
VR4 + (VR2 >> SHIFTR); 77 ()

3
if (SAT == 1)

{
sat32(VR5);

sat32(VR4);
¥
This instruction modifies the following bits in the VSTATUS register:
 OVFR is set if the VR5 computation (real part) overflows or underflows.
* OVFlI is set if the VR4 computation (imaginary part) overflows or underflows.

This is a single-cycle instruction.

390 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

VCADD VR5, VR4, VR3, VR2 — Complex 32 + 32 = 32 Addition

Example

See also

VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4

VCLROVFI

VCLROVFR

VRNDOFF

VRNDON

VSATON

VSATOFF

VSETSHR #5-bit

SPRUHS1C-October 2014—-Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU)
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

391

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex 32+32 = 32 Add with Parallel Load www.ti.com

VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 Complex 32+32 = 32 Add with Parallel Load

Operands

Opcode

Description

Before the operation, the inputs should be loaded into registers as shown below. Each
complex number includes a 32-bit real and a 32-bit imaginary part.

Input Register Value

VR5 32-bit integer representing the real part of the first input: Re(X)

VR4 32-bit integer representing the imaginary part of the first input: Im(X)
VR3 32-bit integer representing the real part of the 2nd input: Re(Y)

VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)
mema32 pointer to a 32-bit memory location

The result is also a complex number with a 32-bit real and a 32-bit imaginary part. The
result is stored in VR5 and VR4 as shown below:

Output Register Value

VR5 32-bit integer representing the real part of the result:
Re(Z) = Re(X) + (Re(Y) >> SHIFTR)

VR4 32-bit integer representing the imaginary part of the result:
Im(Z) = Im(X) + (Im(Y) >> SHIFTR)

VRa contents of the memory pointed to by [mem32]. VRa can not be VR5, VR4 or VR8.

LSW: 1110 0011 1111 1000
MSW: 0000 aaaa mem32

Complex 32 + 32 = 32-bit addition operation with parallel register load.

The second input operand (stored in VR3 and VRZ2) is shifted right by VSTATUS[SHIFR]
bits before the addition. If VSTATUS[RND] is set, then bits shifted out to the right are
rounded, otherwise these bits are truncated. The rounding operation is described in . If
the VSTATUS[SAT] bit is set, then the result will be saturated in the event of an overflow
or underflow.

In parallel with the addition, VRa is loaded with the contents of memory pointed to by
mem32.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
//
// VR5
// VR3
//
// Z =X+Y
//
if (R\D == 1)
{

Re(X) VR4
Re(Y) VR2

Im(X)
Im(Y)

VR5
VR4

VR5 + round(VR3 >> SHIFTR); // Re(2)
VR4 + round(VR2 >> SHIFTR); // Im(2)

}

else

{
VR5
VR4

VR5 + (VR3 >> SHIFTR); // Re(2)
VR4 + (VR2 >> SHIFTR); 77 1n(2)

¥
if (SAT == 1)
{
sat32(VR5);
sat32(VR4);

}
VRa = [mem32];

392 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex 32+32 = 32 Add with Parallel Load
Flags This instruction modifies the following bits in the VSTATUS register:
* OVFRis set if the VR5 computation (real part) overflows.
* OVFl is set if the VR4 computation (imaginary part) overflows.
Pipeline Both operations complete in a single cycle (1/1 cycles).
Example
See also VCADD VR7, VR6, VR5, VR4
VCLROVFI
VCLROVFR
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHR #5-bit
SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 393

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

VCADD VR7, VR6, VR5, VR4 — Complex 32 + 32 = 32- Addition www.ti.com

VCADD VR7, VR6, VR5, VR4 Complex 32 + 32 = 32- Addition

Operands

Opcode

Description

Flags

Pipeline

Before the operation, the inputs should be loaded into registers as shown below. Each
complex number includes a 32-bit real and a 32-bit imaginary part.

Input Register Value

VR7 32-bit integer representing the real part of the first input: Re(X)
VR6 32-bit integer representing the imaginary part of the first input: Im(X)
VR5 32-bit integer representing the real part of the 2nd input: Re(Y)
VR4 32-bit integer representing the imaginary part of the 2nd input: Im(Y)

The result is also a complex number with a 32-bit real and a 32-bit imaginary part. The
result is stored in VR7 and VR6 as shown below:

Output Register Value

VR6 32-bit integer representing the real part of the result:
Re(Z) = Re(X) + (Re(Y) >> SHIFTR)

VR7 32-bit integer representing the imaginary part of the result:
Im(Z) = Im(X) + (Im(Y) >> SHIFTR)

LSW: 1110 0101 0010 1010

Complex 32 + 32 = 32-bit addition operation.

The second input operand (stored in VR5 and VR4) is shifted right by VSTATUS[SHIFR]
bits before the addition. If VSTATUS[RND] is set, then bits shifted out to the right are
rounded, otherwise these bits are truncated. The rounding operation is described in . If
the VSTATUS[SAT] bit is set, then the result will be saturated in the event of an overflow
or underflow.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
/7
// VR5
// VR3
/7
//Z=X+Y
//
if (R\D == 1)
{

Re(X) VR4
Re(Y) VR2

Im(X)
Im(Y)

VR7
VR6

VR7 + round(VR5 >> SHIFTR); // Re(2)
VR6 + round(VR4 >> SHIFTR); // Im(2)

}

else

{
VR7
VR6

VRS + (VR5 >> SHIFTR); /7 Re(2)
VR4 + (VR4 >> SHIFTR); 77 ()

3
if (SAT == 1)

{
sat32(VR7);

sat32(VR6);
¥
This instruction modifies the following bits in the VSTATUS register:
« OVFR is set if the VR7 computation (real part) overflows.
* OVFl is set if the VR6 computation (imaginary part) overflows.

This is a single-cycle instruction.

394 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com VCADD VR7, VR6, VR5, VR4 — Complex 32 + 32 = 32- Addition

See also VCADD VR5, VR4, VR3, VR2
VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCLROVFI
VCLROVFR
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHR #5-bit

SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 395

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

VCDADD16 VR5, VR4, VR3, VR2 — Complex 16 + 32 = 16 Addition www.ti.com

VCDADD16 VR5, VR4, VR3, VR2 Complex 16 + 32 = 16 Addition

Operands Before the operation, the inputs should be loaded into registers as shown below. The
first operand is a complex humber with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.

Input Register Value
VR4H 16-bit integer representing the real part of the first input: Re(X)
VRA4L 16-bit integer representing the imaginary part of the first input: Im(X)
VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)
The result is a complex number with a 16-bit real and a 16-bit imaginary part. The result
is stored in VR5 as shown below:
Output Register Value
VR5H 16-bit integer representing the real part of the result:
Re(2) = (Re(X) << SHIFTL) + (Re(Y)) >> SHIFTR
VR5L 16-bit integer representing the imaginary part of the result:
Im(Z) = (Im(X) << SHIFTL) + (Im(Y)) >> SHIFTR

Opcode LSW: 1110 0101 0000 0100

Description Complex 16 + 32 = 16-bit operation. This operation is useful for algorithms similar to a
complex FFT. The first operand is a complex number with a 16-bit real and 16-bit
imaginary part. The second operand has a 32-bit real and a 32-bit imaginary part.
Before the addition, the first input is sigh extended to 32-bits and shifted left by
VSTATUS|[VSHIFTL] bits. The result of the addition is left shifted by
VSTATUS|[VSHIFTR] before it is stored in VR5H and VR5L. If VSTATUS[RND] is set,
then bits shifted out to the right are rounded, otherwise these bits are truncated. The
rounding operation is described in . If the VSTATUS[SAT] bit is set, then the result will
be saturated in the event of a 16-bit overflow or underflow.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
// SHIFTL is VSTATUS[SHIFTL]
//
// VR4H = Re(X) 16-bit
// VR4L = Im(X) 16-bit
// VR3 = Re(Y) 32-bit
// VR2 = Im(Y) 32-bit
//
// Calculate Z = X + Y
//
templ = sign_extend(VR4H); // 32-bit extended Re(X)
temp2 = sign_extend(VR4L); // 32-bit extended Im(X)
templ = (templ << SHIFTL) + VR3; // Re(Z) intermediate
temp2 = (temp2 << SHIFTL) + VR2; // Im(Z) intermediate
if (R\D == 1)
{
templ = round(templ >> SHIFTR);
temp2 = round(temp2 >> SHIFTR);
T
else
{
templ = truncate(templ >> SHIFTR);
temp2 = truncate(temp2 >> SHIFTR);
3
396 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

VCDADD16 VR5, VR4, VR3, VR2 — Complex 16 + 32 = 16 Addition

Flags

Pipeline

Example

it (SAT == 1)

{
VR5H = satl6(templ);
VR5L = satl6(temp2);
3
else
{
VR5H = templ[15:0];
VR5L = temp2[15:0];
}

This instruction modifies the following bits in the VSTATUS register:
 OVFR is set if the real-part computation (VR5H) overflows or underflows.
» OVFl is set if the imaginary-part computation (VR5L) overflows or underflows.

This is a single-cycle instruction.

;Example: Z = X + Y

; X = 4+ 3j
;Y =13 + 12)
; Real:

The next example illustrates the operation with a right shift value defined.

(16-bit real + 16-bit imaginary)
(32-bit real + 32-bit imaginary)

templ = 0x00000004 + 0x0000000D = 0x00000011

VR5H = templ[15:0] = 0x0011
Imaginary:

17

temp2 = 0x00000003 + 0x0000000C = 0xO00000O0F
VR5L = temp2[15:0] = Ox000F = 15

VSATOFF

VRNDOFF

VSETSHR #0

VSETSHL #0

VCLEARALL

VMOVXI VR3, #13

VMOVXI VR2, #12

VMOVXI VR4, #3

VMOVIX VR4, #4

VCDADD16 VR5, VR4, VR3, VR2

X
Y

4 + 3j
13 + 12j

Real :
templ = (0x00000004

VSTATUS[SAT] = 0
VSTATUS[RND] = O
VSTATUS[SHIFTR] = 0
VSTATUS[SHIFTL] = 0
VRO, VR1...VR8 == 0
VR3 = Re(Y) = 13
VR2 = Im(Y) = 12

VR4 = X
VR5

0x00040003 = 4 + 3j
Z = 0x0011000F = 17 + 15j

; Example: Z = X + Y with Right Shift

(16-bit real + 16-bit imaginary)
(32-bit real + 32-bit imaginary)

+ 0x0000000D) >> 1

templ = (0x00000011) >> 1 = 0x0000008.8

VR5H = templ[15:0] = 0x0008
Imaginary:

temp2

temp2

VR5L

(0x00000003

temp2[15:0] = 0x0007

VSATOFF
VRNDOFF
VSETSHR #1
VSETSHL #0
VCLEARALL
VMOVXI

VMOVXI

VR3, #13
VR2, #12

: VSTATUS[SAT]

8

+ 0x0000000C) >> 1
(0x0000000F) >> 1 = 0x0000007.8

7

0
VSTATUS[RND] = O
VSTATUS[SHIFTR] = 1
VSTATUS[SHIFTL] = 0
VRO, VR1...VR8 == 0
VR3 = Re(Y) = 13

VR2 = Im(Y) = 12

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Viterbi, Complex Math and CRC Unit (VCU)

Copyright © 2014-2019, Texas Instruments Incorporated

397

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

VCDADD16 VR5, VR4, VR3, VR2 — Complex 16 + 32 = 16 Addition

13 TEXAS

INSTRUMENTS

www.ti.com

VMOVXI
VMOVIX

VR4, #3
VR4, #4 ; VR4 = X = 0x00040003 = 4 + 3j
VCDADD16 VR5, VR4, VR3, VR2 ; VR5 = Z = 0x00080007 = 8 + 7j

The next example illustrates the operation with a right shift value defined as well as

rounding.

; Example: Z = X + Y with Right Shift and Rounding

;X = 4+ 3j (16-bit real + 16-bit imaginary)

;Y =13 + 12) (32-bit real + 32-bit imaginary)

; Real:

; templ = round((0x00000004 + 0x0000000D) >> 1)

; templ = round(0x00000011 >> 1)

; templ = round(0x0000008.8) = 0x00000009

; VR5H = templ[15:0] = 0x0011 = 8

; Imaginary:

; temp2 = round(0x00000003 + 0x0000000C) >> 1)

; temp2 = round(0x0000000F >> 1)

; temp2 = round(0x0000007.8) = 0x00000008

; VR5L = temp2[15:0] = 0x0008 = 8
VSATOFF ; VSTATUS[SAT] = 0
VRNDON ; VSTATUS[RND] = 1
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #0 ; VSTATUS[SHIFTL] = O
VCLEARALL ; VRO, VR1...VR8 == 0
VMOVXI1 VR3, #13 ; VR3 = Re(Y) = 13
VMOVXI VR2, #12 ; VR2 = Im(Y) = 12
VMOVXI1 VR4, #3
VMOVIX VR4, #4 ; VR4 = X = 0x00040003 = 4 + 3j
VCDADD16 VR5, VR4, VR3, VR2 ; VR5 = Z = 0Ox00090008 = 9 + 8j

The next example illustrates the operation with both a right and left shift value defined
along with rounding.

; Example: Z = X + Y with Right Shift, Left Shift and Rounding

; X = -4 + 3j (16-bit real + 16-bit imaginary)

;Y =13 - 9j (32-bit real + 32-bit imaginary)

; Real:

; templ = OxFFFFFFFC << 2 + 0x0000000D

; templ = OxFFFFFFFO + 0x0000000D = OXFFFFFFFD
; templ = OXFFFFFFFD >> 1 = OXFFFFFFFE.8

; templ = round(OXFFFFFFFFE.8) = OxFFFFFFFF

; VR5H = templ[15:0] OxFFFF = -1;

; Imaginary:

; temp2 = 0x00000003 << 2 + OXFFFFFFF7
; temp2 = 0x0000000C + OXFFFFFFF7 = 0x00000003
; temp2 = 0x00000003 >> 1 = 0x00000001.8
; templ = round(0x000000001.8 = 0x000000002
; VR5L = temp2[15:0] 0x0002 = 2
VSATOFF ; VSTATUS[SAT] = 0
VRNDON ; VSTATUS[RND] = 1
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #2 ; VSTATUS[SHIFTL] = 2
VCLEARALL ; VRO, VR1...VR8 == 0
VMOVXI1 VR3, #13 ; VR3 = Re(Y) = 13 = 0x0000000D
VMOVXI VR2, #-9 ; VR2 = Im(Y) = -9
VMOVIX VR2, #OXFFFF ; sign extend VR2 = OXFFFFFFF7
VMOVXI1 VR4, #3
VMOVIX VR4, #-4 ; VR4 = X = OxFFFC0003 = -4 + 3j
VCDADD16 VR5, VR4, VR3, VR2 ; VR5 = Z = OxFFFF0002 = -1 + 2j

398 Viterbi, Complex Math and CRC Unit

(VCU) SPRUHS1C-October 2014 —-Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com VCDADD16 VR5, VR4, VR3, VR2 — Complex 16 + 32 = 16 Addition

See also VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4
VCDADD16 VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHL #5-bit
VSETSHR #5-bit

SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 399
Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

VCDADD16 VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex Double Add with Parallel Load www.ti.com

VCDADD16 VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 Complex Double Add with Parallel Load

Operands

Opcode

Description

Before the operation, the inputs should be loaded into registers as shown below. The
first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.

Input Register Value

VR4H 16-bit integer representing the real part of the first input: Re(X)
VRA4L 16-bit integer representing the imaginary part of the first input: Im(X)
VR3 32-bit integer representing the real part of the 2nd input: Re(Y)

VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)
mema32 pointer to a 32-bit memory location.

The result is a complex number with a 16-bit real and a 16-bit imaginary part. The result
is stored in VR5 as shown below:

Output Register Value

VR5H 16-bit integer representing the real part of the result:
Re(Z) = (Re(X) << SHIFTL) + (Re(Y)) >> SHIFTR

VR5L 16-bit integer representing the imaginary part of the result:
Im(Z) = (Im(X) << SHIFTL) + (Im(Y)) >> SHIFTR

VRa Contents of the memory pointed to by [mem32]. VRa can not be VR5 or VR8.

LSwW: 1110 0011 1111 1010
MSW: 0000 aaaa mem32

Complex 16 + 32 = 16-bit operation with parallel register load. This operation is useful
for algorithms similar to a complex FFT.

The first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.

Before the addition, the first input is sign extended to 32-bits and shifted left by
VSTATUS[VSHIFTL] bits. The result of the addition is left shifted by
VSTATUS[VSHIFTR] before it is stored in VR5H and VR5L. If VSTATUS[RND] is set,
then bits shifted out to the right are rounded, otherwise these bits are truncated. The
rounding operation is described in . If the VSTATUS[SAT] bit is set, then the result will
be saturated in the event of a 16-bit overflow or underflow.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
// SHIFTL is VSTATUS[SHIFTL]
//

// VR4H
// VRAL
// VR3
// VR2

Re(X) 16-bit
In(X) 16-bit
Re(Y) 32-bit
In(Y) 32-bit

templ
temp2

sign_extend(VR4H) ; // 32-bit extended Re(X)
sign_extend(VR4L); // 32-bit extended Im(X)

templ = (templ << SHIFTL) + VR3; // Re(Z) intermediate
temp2 = (temp2 << SHIFTL) + VR2; // Im(2) intermediate

if (RND == 1)
{
templ = round(templ >> SHIFTR);
temp2 = round(temp2 >> SHIFTR);
}

else

{
templ = truncate(templ >> SHIFTR);

400 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com

VCDADD16 VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex Double Add with Parallel Load

temp2 = truncate(temp2 >> SHIFTR);

b
if (SAT == 1)
VR5H = satl6(templ);
VR5L = satl6(temp2);
}
else
{
VR5H = templ[15:0];
VR5L = temp2[15:0];
3

VRa = [mem32];

This instruction modifies the following bits in the VSTATUS register:

 OVFR is set if the real-part (VR5H) computation overflows or underflows.
* OVFl is set if the imaginary-part (VR5L) computation overflows or underflows.

Both operations complete in a single cycle.

the VCDADD16 VR5, VR4, VR3, VR2 instruction.

;Example: Right Shift, Left Shift and Rounding

Flags
Pipeline
Example
; X = -4+ 3j
;Y =13 - 9j
; Real:
templ =
; templ =
; templ =
templ =
; VR5H =
; Imaginary:
; temp2 =
; temp2 =
; temp2 =
; templ =
; VR5L =
VSATOFF
VRNDON
VSETSHR #1
VSETSHL #2
VCLEARALL
VMOVXI VR3,
VMOVXI VR2,
VMOVIX VR2,
VMOVXI VR4,
VMOVIX VR4,
VCDADD16 VRS,
|l VvCMOV32 VR2,
See also
VCADD VR7, VR6, VR5, VR4
VRNDOFF
VRNDON
VSATON
VSATOFF

VSETSHL #5-bit
VSETSHR #5-bit

OXFFFFFFFC << 2
OXFFFFFFFO
OXFFFFFFFD >> 1

0x00000003 << 2
0x0000000C
0x00000003 >> 1
round(0x000000001.8 = 0x000000002
temp2[15:0] 0x0002 = 2

#13

#-9
HOXFFFF
#3

#-4

VR4, VR3, VR2

*XAR7

; VSTATUS[SAT]

(16-bit real + 16-bit imaginary)
(32-bit real + 32-bit imaginary)

0x0000000D

0x0000000D = OXFFFFFFFD
OXFFFFFFFE.8
round(OxFFFFFFFFE.8) = OxFFFFFFFF
templ[15:0] OxFFFF = -1;

OXFFFFFFF7
OXFFFFFFF7 = 0x00000003
0x00000001.8

0
VSTATUS[RND] = 1

VSTATUS[SHIFTR] = 1
VSTATUS[SHIFTL] = 2
VRO, VR1...VR8 == 0

VR3 = Re(Y) = 13 = 0x0000000D
VR2 = Im(Y) = -9
sign extend VR2 = OXFFFFFFF7

; VR4 = X = OXFFFCO003 = -4 + 3j
; VRS = Z = OXFFFFO002 = -1 + 2j
; VR2 = value pointed to by XAR7

VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32

For more information regarding the addition operation, please refer to the examples for

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Viterbi, Complex Math and CRC Unit (VCU)

Copyright © 2014-2019, Texas Instruments Incorporated

401

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

VCDSUB16 VR6, VR4, VR3, VR2 — Complex 16-32 = 16 Subtract www.ti.com

VCDSUB16 VR6, VR4, VR3, VR2 Complex 16-32 = 16 Subtract

Operands Before the operation, the inputs should be loaded into registers as shown below. The
first operand is a complex humber with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.

Input Register Value

VR4H 16-bit integer representing the real part of the first input: Re(X)

VRA4L 16-bit integer representing the imaginary part of the first input: Im(X)

VR3 32-bit integer representing the real part of the 2nd input: Re(Y)

VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)

The result is a complex number with a 16-bit real and a 16-bit imaginary part. The result

is stored in VR6 as shown below:

Output Register Value

VR6H 16-bit integer representing the real part of the result: Re(Z) = (Re(X) << SHIFTL) -
(Re(Y)) >> SHIFTR

VR6L 16-bit integer representing the imaginary part of the result: Im(Z) = (Im(X) << SHIFTL) -
(Im(Y)) >> SHIFTR

Opcode LSW: 1110 0101 0000 0101

Description Complex 16 - 32 = 16-bit operation. This operation is useful for algorithms similar to a
complex FFT.

The first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.
Before the addition, the first input is sign extended to 32-bits and shifted left by
VSTATUS|[VSHIFTL] bits. The result of the subtraction is left shifted by
VSTATUS[VSHIFTR] before it is stored in VR5H and VR5L. If VSTATUS[RND] is set,
then bits shifted out to the right are rounded, otherwise these bits are truncated. The
rounding operation is described in . If the VSTATUS[SAT] bit is set, then the result will
be saturated in the event of a 16-bit overflow or underflow.
// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
// SHIFTL is VSTATUS[SHIFTL]
//
// VR4H = Re(X) 16-bit
// VR4L = Im(X) 16-bit
// VR3 = Re(Y) 32-bit
// VR2 = Im(Y) 32-bit
templ = sign_extend(VR4H); // 32-bit extended Re(X)
temp2 = sign_extend(VR4L); // 32-bit extended Im(X)
templ = (templ << SHIFTL) - VR3; // Re(2) intermediate
temp2 = (temp2 << SHIFTL) - VR2; // Im(Z) intermediate
if (R\D == 1)
{
templ = round(templ >> SHIFTR);
temp2 = round(temp2 >> SHIFTR);
b
else
{
templ = truncate(templ >> SHIFTR);
temp2 = truncate(temp2 >> SHIFTR);
b
if (SAT == 1)
{
VR5H = satl6(templ);
402 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com VCDSUBL16 VR6, VR4, VR3, VR2 — Complex 16-32 = 16 Subtract
VR5L = satl6(temp2);
b
else
VR5H = templ[15:0];
VR5L = temp2[15:0];
b
Flags This instruction modifies the following bits in the VSTATUS register:
 OVFR is set if the real-part (VR6H) computation overflows or underflows.
» OVFl is set if the imaginary-part (VR6L) computation overflows or underflows.
Pipeline This is a single-cycle instruction.
Example ;
; Example: Z = X - Y
;X = 4+ 6) (16-bit real + 16-bit imaginary)
;Y =13 + 22j (32-bit real + 32-bit imaginary)
;Z2=(4-13) + (6 - 22)j = -9 - 16j
VSATOFF ; VSTATUS[SAT] = 0
VRNDOFF ; VSTATUS[RND] = 0O
VSETSHR #0 ; VSTATUS[SHIFTR] = 0
VSETSHL #0 ; VSTATUS[SHIFTL] = O
VCLEARALL ; VRO, VR1...VR8 = 0
VMOVXI VR3, #13 ; VR3 = Re(Y) = 13 = 0x0000000D
VMOVXI VR2, #22 ; VR2 = Im(Y) = 22j = 0x00000016
VMOVXI VR4, #6
VMOVIX VR4, #4 ; VR4 = X = 0x00040006 = 4 + 6j
VCDSUB16 VR6, VR4, VR3, VR2 ; VR5 = Z = OXFFF7FFFO = -9 + -16j
The next example illustrates the operation with a right shift value defined.
; Example: Z = X - Y with Right Shift
;Y= 4+ 6) (16-bit real + 16-bit imaginary)
; X =13 + 22j (32-bit real + 32-bit imaginary)
; Real:
; templ = (0x00000004 - 0x0000000D) >> 1
templ = (OXFFFFFFF7) >> 1
; templ = OXFFFFFFFFB
; VRSH = templ[15:0] = OXFFFB = -5
Imaginary:
; temp2 = (Ox00000006 - 0x00000016) >> 1
; temp2 = (OXFFFFFFFO) >> 1
; temp2 = OXFFFFFFF8
; VR5L = temp2[15:0] = OxFFF8 = -8
VSATOFF ; VSTATUS[SAT] = 0
VRNDOFF ; VSTATUS[RND] = O
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #0 ; VSTATUS[SHIFTL] = O
VCLEARALL ; VRO, VR1...VR8 == 0
VMOVXI VR3, #13 ; VR3 = Re(Y) = 13 = 0x0000000D
VMOVXI VR2, #22 ; VR2 = Im(Y) = 22j = 0x00000016
VMOVXI VR4, #6
VMOVIX VR4, #4 ; VR4 = X = 0x00040006 = 4 + 6]
VCDSUB16 VR6, VR4, VR3, VR2 ; VR5 = Z = OxFFFBFFF8 = -5 + -8j
The next example illustrates rounding with a right shift value defined.
SPRUHS1C-October 2014 —Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 403

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

VCDSUB16 VR6, VR4, VR3, VR2 — Complex 16-32 = 16 Subtract

13 TEXAS

INSTRUMENTS

www.ti.com

; Example:

X
Y

4 +
-13 +

Real :
templ
templ
templ
VR5H

Imaginary
temp2
temp2
temp2
VR5L

VSATOFF
VRNDON
VSETSHR
VSETSHL
VCLEARA
VMOVXI
VMOVIX
VMOVXI
VMOVXI
VMOVIX
VCDSUB1

Z = X-Y with Rounding and Right Shift

6]
22j

(16-bit real + 16-bit imaginary)
(32-bit real + 32-bit imaginary)

round((0x00000004 - OXFFFFFFF3) >> 1)
round(0x00000011) >> 1)
round(0x000000008.8) = 0x000000009
templ[15:0] = Ox0009 = 9

round((0x00000006 - 0x00000016) >> 1)
round(OxFFFFFFFO) >> 1)
round(OXFFFFFFF8.0) = OxFFFFFFF8
temp2[15:0] = OxFFF8 = -8

; VSTATUS[SAT] = 0
; VSTATUS[RND] = 1
#1 ; VSTATUS[SHIFTR] = 1
#0 ; VSTATUS[SHIFTL] = O
LL ; VRO, VR1...VR8 == 0
VR3, #-13 ; VR3 = Re(Y)
VR3, #OxFFFF ; sign extend VR3 = -13 = OxFFFFFFF3
VR2, #22 ; VR2 = Im(Y) = 22j = 0x00000016
VR4, #6
VR4, #4 ; VR4 = X = 0x00040006 = 4 + 6j
6 VR6, VR4, VR3, VR2 ; VR5 = Z = OxO009FFF8 = 9 + -8j

The next example illustrates rounding with both a left and a right shift value defined.

Example: Z = X-Y with Rounding and both Left and Right Shift

X
Y

4 +
-13 +

Real :
templ
templ
templ

templ =

VR5H
Imaginary
temp2
temp2
temp2
templ
VR5L

VSATOFF
VRNDON
VSETSHR
VSETSHL
VCLEARA
VMOVXI
VMOVIX
VMOVXI
VMOVXI
VMOVIX
VCDSUB1

6j (16-bit real + 16-bit imaginary)
22j (32-bit real + 32-bit imaginary)
= round((0x00000004 << 2 - OXFFFFFFF3) >> 1)
= round((0x00000010 - OXFFFFFFF3) >> 1)
= round(0x0000001D >> 1)
round(Ox0000000E.8) = 0x0000000F
= templ[15:0] = OxO000F = 15
= round((0x00000006 << 2 - 0x00000016) >> 1)
= round((0x00000018 - 0x00000016) >> 1)
= round(0x00000002 >> 1)
= round(0x00000001.0) = 0x00000001
= temp2[15:0] = 0x0001 = 1
; VSTATUS[SAT] = O
; VSTATUS[RND] = 1
#1 ; VSTATUS[SHIFTR] = 1
#2 ; VSTATUS[SHIFTL] = 2
LL ; VRO, VR1...VR8 == 0
VR3, #-13 ; VR3 = Re(Y)
VR3, #OxFFFF ; sign extend VR3 = -13 = OxFFFFFFF3
VR2, #22 ; VR2 = Im(Y) = 22j = 0x00000016
VR4, #6
VR4, #4 ; VR4 = X = 0x00040006 = 4 + 6]
6 VR6, VR4, VR3, VR2 ; VR5 = Z = OxO00F0001 = 15 + 1j

See also VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4
VRNDOFF
404 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Copyright © 2014-2019, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com VCDSUBL16 VR6, VR4, VR3, VR2 — Complex 16-32 = 16 Subtract
VRNDON
VSATON
VSATOFF
VSETSHL #5-bit
VSETSHR #5-bit

SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 405

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

VCDSUB16 VR6, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex 16+32 = 16 Add with Parallel Load www.ti.com

VCDSUB16 VR6, VR4, VR3, VR2 || VMOV32 VRa, mem32 Complex 16+32 = 16 Add with Parallel

Operands

Opcode

Description

Load

Before the operation, the inputs should be loaded into registers as shown below. The
first operand is a complex humber with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.

Input Register Value

VR4H 16-bit integer representing the real part of the first input: Re(X)
VRA4L 16-bit integer representing the imaginary part of the first input: Im(X)
VR3 32-bit integer representing the real part of the 2nd input: Re(Y)

VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)
mema32 pointer to a 32-bit memory location.

The result is a complex number with a 16-bit real and a 16-bit imaginary part. The result
is stored in VR6 as shown below:

Output Register Value

VR6H 16-bit integer representing the real part of the result:
Re(Z) = (Re(X) << SHIFTL) + (Re(Y)) >> SHIFTR

VR6L 16-bit integer representing the imaginary part of the result:
Im(Z) = (Im(X) << SHIFTL) + (Im(Y)) >> SHIFTR

VRa Contents of the memory pointed to by [mem32]. VRa can not be VR6 or VRS.

LSW: 1110 0010 1100 1010
MSW: 0000 0000 meml6

Complex 16 - 32 = 16-bit operation with parallel load. This operation is useful for
algorithms similar to a complex FFT.

The first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.

Before the addition, the first input is signh extended to 32-bits and shifted left by
VSTATUS[VSHIFTL] bits. The result of the subtraction is left shifted by
VSTATUS[VSHIFTR] before it is stored in VR5H and VR5L. If VSTATUS[RND] is set,
then bits shifted out to the right are rounded, otherwise these bits are truncated. The
rounding operation is described in . If the VSTATUS[SAT] bit is set, then the result will
be saturated in the event of a 16-bit overflow or underflow.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
// SHIFTL is VSTATUS[SHIFTL]
//

// VR4H
// VRAL
// VR3
// VR2

Re(X) 16-bit
In(X) 16-bit
Re(Y) 32-bit
Im(Y) 32-bit

templ
temp2

= sign_extend(VR4H); // 32-bit extended Re(X)
= sign_extend(VR4L); // 32-bit extended Im(X)
if (RND == 1)
{
templ = round(templ >> SHIFTR);
temp2 = round(temp2 >> SHIFTR);
}
else
{
templ = truncate(templ >> SHIFTR);
temp2 = truncate(temp2 >> SHIFTR);
}
if (SAT == 1)

406 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com VCDSUB16 VR6, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex 16+32

= 16 Add with Parallel Load

{
VR5H = satl6(templ);
VR5L = satl6(temp2);
}
else
{
VR5H = templ[15:0];
VR5L = temp2[15:0];
3

VRa = [mem32];

Flags This instruction modifies the following bits in the VSTATUS register:
 OVFR is set if the real-part (VR6H) computation overflows or underflows.
» OVFl is set if the imaginary-part (VR6I) computation overflows or underflows.

Pipeline Both operations complete in a single cycle.

Example For more information regarding the subtraction operation, please refer to VCDSUB16

VR6, VR4, VR3, VR2.

Example: Z = X-Y with Rounding and both Left and Right Shift

;X = 4 + 6 (16-bit real + 16-bit imaginary)
;Y = =13 + 22j (32-bit real + 32-bit imaginary)
; Real:
templ = round((0x00000004 << 2 - OXFFFFFFF3) >> 1)
; templ = round((0x00000010 - OXFFFFFFF3) >> 1)
; templ = round(0x0000001D >> 1)
templ = round(OxO0OOO00E.8) = 0x0000000F
; VR5H = templ[15:0] = Ox000F = 15
; Imaginary:
; temp2 = round((0x00000006 << 2 - 0x00000016) >> 1)
; temp2 = round((0x00000018 - 0x00000016) >> 1)
; temp2 = round(0x00000002 >> 1)
; templ = round(0x00000001.0) = 0x00000001
; VR5L = temp2[15:0] = 0x0001 =1
VSATOFF ; VSTATUS[SAT] = 0
VRNDON ; VSTATUS[RND] = 1
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #2 ; VSTATUS[SHIFTL] = 2
VCLEARALL ; VRO, VR1...VR8 == 0
VMOVXI VR3, #-13 ; VR3 = Re(Y)
VMOVIX VR3, #OXFFFF ; sign extend VR3 = -13 = OxFFFFFFF3
VMOVXI1 VR2, #22 ; VR2 = Im(Y) = 22j = 0x00000016
VMOVXI VR4, #6
VMOVIX VR4, #4 ; VR4 = X = 0x00040006 = 4 + 6j
VCDSUB16 VR6, VR4, VR3, VR2 ; VR5 = Z = Ox000F0001 = 15 + 1j
|| vCMOv32 VR2, *XAR7 ; VR2 = contents pointed to by XAR7
See also VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4
VRNDOFF
VRNDON
VSATON
VSATOFF

VSETSHL #5-bit
VSETSHR #5-bit

SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 407

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

VCMAC VR5, VR4, VR3, VR2, VR1, VRO — Complex Multiply and Accumulate www.ti.com

VCMAC VR5, VR4, VR3, VR2, VR1, VRO Complex Multiply and Accumulate

Operands

Opcode

Description

Flags

Pipeline

Before the operation, the inputs should be loaded into reqgisters as shown below.
Input Register Value

VR5 32-bit integer, previous real-part accumulation

VR4 32-bit integer, previous imaginary-part accumulation

VR3 32-bit integer, real result from the previous multiply

VR2 32-bit integer, imaginary result from the previous multiply

VROH 16-bit integer representing the real part of the first input: Re(X)
VROL 16-bit integer representing the imaginary part of the first input: Im(X)
VR1H 16-bit integer representing the real part of the second input: Re(Y)

VR1L 16-bit integer representing the imaginary part of the second input: Im(Y)

Note: The user will need to do one final addition to accumulate the final multiplications
(Real-VR3 and Imaginary-VR2) into the result registers.

The result is stored as shown below:

Output Register Value

VR5 32-bit real part of the total accumulation Re(sum) = Re(sum) + Re(mpy)
VR4 32-bit imaginary part of the total accumulation Im(sum) = Im(sum) + Im(mpy

LSW: 1110 0101 0011 0001

Complex multiply operation.

// VR5
// VR4
//
// VRO
// VR1
//
// Perform add
//
if (RND == 1)
{

Accumulation of the real part
Accumulation of the imaginary part

X + jX: VRO[31:16]
Y + jY: VR1[31:16]

X, VRO[15:0] = jX
Y, VR1[15:0]

VR5
VR4

VR5 + round(VR3 >> SHIFTR);
VR4 + round(VR2 >> SHIFTR);

}

else

VRS
VR4

VR5 + (VR3 >> SHIFTR);
VR4 + (VR2 >> SHIFTR);

}
/7

// Perform multiply (X + jX) * (Y * jY)
//
VR3 = VROH * VR1H - VROL * VRIL; Real result
VR2 = VROH * VR1L + VROL * VR1H; Imaginary result
if(SAT == 1)
{

sat32(VR3);
sat32(VR2);

}
VRa = [mem32];

This instruction modifies the following bits in the VSTATUS register:
 OVFR is set if the VR3 computation (real part) overflows or underflows.
e OVFl is set if the VR2 computation (imaginary part) overflows or underflows.

This is a 2p-cycle instruction.

408 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

www.ti.com VCMAC VR5, VR4, VR3, VR2, VR1, VRO — Complex Multiply and Accumulate

Example

See also VCLROVFI
VCLROVFR
VCMAC VR5, VR4, VR3, VR2, VR1, VRO || VMOV32 VRa, mem32
VSATON
VSATOFF

SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 409

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

VCMAC VR5, VR4, VR3, VR2, VR1, VRO || VMOV32 VRa, mem32 — Complex Multiply and Accumulate with Parallel Load

www.ti.com

VCMAC VR5, VR4, VR3, VR2, VR1, VRO || VMOV32 VRa, mem32 Complex Multiply and Accumulate
with Parallel Load

Operands Before the operation, the inputs should be loaded into registers as shown below.

Input Register

Value

VR5
VR4
VR3
VR2
VROH
VROL
VR1H
VR1L
mem32

Previous real-part accumulation

Previous imaginary-part accumulation

32-bit real result from the previous multiply

32-bit imaginary result from the previous multiply

16-bit integer representing the real part of the first input: Re(X)

16-bit integer representing the imaginary part of the first input: Im(X)
16-bit integer representing the real part of the second input: Re(Y)
16-bit integer representing the imaginary part of the second input: Im(Y)
Pointer to 32-bit memory location.

Note: The user will need to do one final addition to accumulate the final multiplications
(Real-VR3 and Imaginary-VR?2) into the result registers.

The result is stored as shown below:

Output Register

Value

VR5 32-bit real part of the total accumulation Re(sum) = Re(sum) + Re(mpy)
VR4 32-bit imaginary part of the total accumulation Im(sum) = Im(sum) + Im(mpy)
VRa Contents of the memory pointed to by [mem32]. VRa cannot be VR5, VR4 or VR8
Note:
Opcode LSW: 1110 0010 1100 1010
MSW: 0000 0000 mem32
Description Complex multiply operation.
// VR5 = Accumulation of the real part
// VR4 = Accumulation of the imaginary part
//
// VRO = X + Xj VRO[31:16] = Re(X), VRO[15:0] = Im(X)
// VR1L = Y + Yj VR1[31:16] = Re(Y), VR1[15:0] = Im(Y)
//
// Perform add
//
if (RND == 1)
{
VR5 = VR5 + round(VR3 >> SHIFTR);
VR4 = VR4 + round(VR2 >> SHIFTR);
}
else
{
VR5 = VR5 + (VR3 >> SHIFTR);
VR4 = VR4 + (VR2 >> SHIFTR);
3
//
// Perform multiply Z = (X + Xj) * (Y * Y]}))
//
VR3 = VROH * VR1H - VROL * VR1L; // Re(2)
VR2 = VROH * VR1IL + VROL * VR1H; /7 Im(2)
if(SAT == 1)
sat32(VR3);
sat32(VR2);
}

VRa = [mem32];

410 Viterbi, Complex Math and CRC Unit (VCU)

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ticom VCMAC VR5, VR4, VR3, VR2, VR1, VRO || VMOV32 VRa, mem32 — Complex Multiply and Accumulate with
Parallel Load

Flags This instruction modifies the following bits in the VSTATUS register:
 OVFR is set if the VR3 computation (real part) overflows or underflows.
* OVFlI is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p/1-cycle instruction. The multiply and accumulate is a 2p-cycle operation and
the VMOV32 is a single-cycle operation.
Example
See also VCLROVFI
VCLROVFR
VCMAC VR5, VR4, VR3, VR2, VR1, VRO
VSATON
VSATOFF
SPRUHS1C-October 2014—-Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 411

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ — Complex Multiply and Accumulate www.ti.com
VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ Complex Multiply and Accumulate
Operands The VMAC alternates which registers are used between each cycle. For odd cycles (1,

3, 5, etc) the following registers are used:

Odd Cycle Input

Value

VR5
VR4
VR1
VRO
[mem32]

XAR7

Previous real-part total accumulation: Re(odd_sum)
Previous imaginary-part total accumulation: Im(odd-sum)
Previous real result from the multiply: Re(odd-mpy)
Previous imaginary result from the multiply Im(odd-mpy)

Pointer to a 32-bit memory location representing the first input to the multiply
[mem32][31:16] = Re(X)

[mem32][15:0] = Im(X)

Pointer to a 32-bit memory location representing the second input to the multiply
*XAR7[31:16] = Re(Y)

*XAR7[15:0] = Im(Y)

The result from odd cycle is stored as shown below:

Odd Cycle Output

Value

VRS

VR4

VR1

VRO

32-bit real part of the total accumulation
Re(odd_sum) = Re(odd_sum) + Re(odd_mpy)

32-bit imaginary part of the total accumulation
Im(sum) = Im(odd_sum) + Im(odd_mpy)
32-bit real result from the multiplication:
Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)

32-bit imaginary result from the multiplication:
Im(Z) = Re(X)*Im(Y) + Re(Y)*Im(X)

For even cycles (2, 4, 6, etc) the following registers are used:

Even Cycle Input

Value

VR7
VR6
VR3
VR2
[mem32]

XAR7

Previous real-part total accumulation: Re(even_sum)
Previous imaginary-part total accumulation: Im(even-sum)
Previous real result from the multiply: Re(even-mpy)
Previous imaginary result from the multiply Im(even-mpy)

Pointer to a 32-bit memory location representing the first input to the multiply
[mem32][31:16] = Re(X); (a)

[mem32][15:0] = Im(X); (b)

Pointer to a 32-bit memory location representing the second input to the multiply:
*XAR7[31:16] = Re(Y); (c)

*XAR7[15:0] = Im(Y); (d)

The result from even cycles is stored as shown below:

Even Cycle Output Value

VR7 32-bit real part of the total accumulation
Re(even_sum) = Re(even_sum) + Re(even_mpy)

VR6 32-bit imaginary part of the total accumulation
Im(even_sum) = Im(even_sum) + Im(even_mpy)

VR3 32-bit real result from the multiplication:
Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)

VR2 32-bit imaginary result from the multiplication:
Im(Z) = Re(X)*Im(Y) + Re(Y)*Im(X)

Opcode LSW: 1110 0010 0101 0000

MSW: OObb baaa mem32

Description Perform a repeated multiply and accumulate operation. This instruction is the only VCU
instruction that can be repeated using the single repeat instruction (RPT ||). When
repeated, the destination of the accumulate will alternate between VR7/VR6 and
VR5/VR4 on each cycle.

412 Viterbi, Complex Math and CRC Unit (VCU)

SPRUHS1C-October 2014 —Revised November 2019
Submit Documentation Feedback

Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ — Complex Multiply and Accumulate
// Cycle 1:
//
// Perform accumulate
//
if(RND == 1)
{
VR5 = VR5 + round(VR1 >> SHIFTR)
VR4 = VR4 + round(VRO >> SHIFTR)
3
else
{
VR5 = VR5 + (VRL >> SHIFTR)
VR4 = VR4 + (VRO >> SHIFTR)
b
//
// X and Y array element O
//
VR1 = Re(X)*Re(Y) - ImQ)*Im(Y)
VRO = Re(X)*Im(Y) + Re(Y)*Im(X)
//
// Cycle 2:
//
// Perform accumulate
//
if(RND == 1)
{
VR7 = VR7 + round(VR3 >> SHIFTR)
VR6 = VR6 + round(VR2 >> SHIFTR)
3
else
VR7 = VR7 + (VR3 >> SHIFTR)
VR6 = VR6 + (VR2 >> SHIFTR)
}
//
// X and Y array element 1
//
VR3 = Re(X)*Re(Y) - ImCX)*Im(Y)
VR2 = Re(X)*Im(Y) + Re(Y)*Im(X)
//
// Cycle 3:
//
// Perform accumulate
//
if(RND == 1)
{
VR5 = VR5 + round(VR1 >> SHIFTR)
VR4 = VR4 + round(VRO >> SHIFTR)
}
else
{
VR5 = VR5 + (VR1 >> SHIFTR)
VR4 = VR4 + (VRO >> SHIFTR)
¥
//
// X and Y array element 2
//
VR1 = Re(X)*Re(Y) - ImQ)*Im(Y)
VRO = Re(X)*Im(Y) + Re(Y)*Im(X)
etc. ..
Restrictions VRO, VR1, VR2, and VR3 will be used as temporary storage by this instruction.
Flags The VSTATUS register flags are modified as follows:
+ OVFR s set in the case of an overflow or underflow of the addition or subtraction
SPRUHS1C-October 2014—-Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 413

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ — Complex Multiply and Accumulate www.ti.com

operations.

» OVFl is set in the case an overflow or underflow of the imaginary part of the addition
or subtraction operations.

Pipeline When repeated the VMAC takes 2p + N cycles where N is the number of times the
instruction is repeated. When repeated, this instruction has the following pipeline
restrictions:

<instructionl> ; No restriction

<instruction2> ; Cannot be a 2p instruction that writes
; to VRO, VR1...VR7 registers

RPT #(N-1) ; Execute N times, where N is even

|l VCMAC VR7, VR6, VR5, VR4, *XAR6++, *XAR7++

<instruction3> ; No restrictions.

; Can read VRO, VR1... VR8
414 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

www.ti.com VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ — Complex Multiply and Accumulate

MACF32 can also be used standalone. In this case, the insruction takes 2 cycles and the
following pipeline restrictions apply:

<instructionl> ; No restriction <instruction2> ; Cannot be a 2p instruction that
writes ; to R2H, R3H, R6H or R7H MACF32 R7H, R3H, *XAR6, *XAR7 ; R3H = R3H + R2H,
R2H = [mem32] * [XAR7++] ; <--

R2H and R3H are valid (note: no delay required) NOP

Example Cascading of RPT || VMAC is allowed as long as the first and subsequent counts are
even. Cascading is useful for creating interruptible windows so that interrupts are not
delayed too long by the RPT instruction. For example:

Example of cascaded VMAC instructions

VCLEARALL ; Zero the accumulation registers

Execute MACF32 N+1 (4) times

RPT #3
|l VCMAC VR7, VR6, VR5, VR4, *XAR6++, *XAR7++

Execute MACF32 N+1 (6) times

RPT #5
|l VCMAC VR7, VR6, VR5, VR4, *XAR6++, *XAR7++

Repeat MACF32 N+1 times where N+1 is even

RPT #N
|| MACF32 R7H, R3H, *XAR6++, *XAR7++
ADDF32 VR7, VR6, VR5, VR4

See also

SPRUHS1C-October 2014—Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 415

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS

VCMPY VR3, VR2, VR1, VRO — Complex Multiply www.ti.com
VCMPY VR3, VR2, VR1, VRO Complex Multiply
Operands Before the operation, the inputs should be loaded into registers as shown below. Both

inputs are complex numbers with a 16-bit real and 16-bit imaginary part.

Input Register Value

VROH 16-bit integer representing the real part of the first input: Re(X)

VROL 16-bit integer representing the imaginary part of the first input: Im(X)

VR1H 16-bit integer representing the real part of the 2nd input: Re(Y)

VRI1L 16-bit integer representing the imaginary part of the 2nd input: Im(Y)

The result is a complex number with a 32-bit real and a 32-bit imaginary part. The result
is stored in VR2 and VR3 as shown below:

Output Register Value

VR3 16-bit integer representing the real part of the result:
Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 16-bit integer representing the imaginary part of the result:

Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)

Opcode LSW: 1110 0101 0000 0000

Description Complex 16 x 16 = 32-bit multiply operation.

If the VSTATUS[SAT] bit is set, then the result will be saturated in the event of a 32-bit
overflow or underflow.

// VRO = X + Xj: VRO[31:16] = Re(X), VRO[15:0] = Im(X)
// VR1 = Y + Yj VR1[31:16] = Re(Y), VR1[15:0] = Im(Y)
//
// Calculate: Z = (X + jJX) * (Y + jY)
//
VR3 = VROH * VR1H - VROL * VRIL; /7 Re(2) = Re(X)*Re(Y) - ImQX)*Im(Y)
VR2 = VROH * VRIL + VROL * VR1H; /7 Im(2) = ReC)*IM(Y) + Im(X)*Re(Y)
iF(SAT == 1)
{
sat32(VR3);
sat32(VR2);
b
Flags This instruction modifies the following bits in the VSTATUS register:

* OVFRis set if the VR3 computation (real part) overflows or underflows.
* OVFl is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p-cycle instruction. The instruciton following this one should not use VR3 or
VR2.
Example ; Example 1
; X = 4+ 6)
;Y = 12 + 9j
;Z=X*Y
;: Re(Z) = 4*12 - 6*9 = -6
; Im(Z) = 4%9 + 6*12 = 108
VSATOFF ; VSTATUS[SAT] = O
VCLEARALL ; VRO, VR1...VR8 == 0
VMOVXI VRO, #6
VMOVIX VRO, #4 ; VRO = X = 0x00040006 = 4 + 6j
VMOVXI VR1, #9
VMOVIX VR1, #12 ; VR1 = Y = 0x000C0009 = 12 + 9j
VCMPY VR3, VR2, VR1, VRO ; VR3 = Re(Z) = OxFFFFFFFA = -6
; VR2 = Im(Z) = 0x0000006C = 108
416 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014—Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com VCMPY VR3, VR2, VR1, VRO — Complex Multiply
<instruction 1> ; <- Must not use VR2, VR3
; <- VCMPY completes, VR2, VR3 valid
<instruciton 2> ; Can use VR2, VR3
See also VCLROVFI
VCLROVFR
VCMAC VR5, VR4, VR3, VR2, VR1, VRO
VCMAC VR5, VR4, VR3, VR2, VR1, VRO || VMOV32 VRa, mem32
VSATON
VSATOFF
SPRUHS1C-October 2014—-Revised November 2019 Viterbi, Complex Math and CRC Unit (VCU) 417

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS
INSTRUMENTS

VCMPY VR3, VR2, VR1, VRO || VMOV32 mem32, VRa — Complex Multiply with Parallel Store www.ti.com

VCMPY VRS, VR2, VR1, VRO || VMOV32 mem32, VRa Complex Multiply with Parallel Store

Operands Before the operation, the inputs should be loaded into registers as shown below. Both
inputs are complex numbers with a 16-bit real and 16-bit imaginary part.
Input Register Value
VROH 16-bit integer representing the real part of the first input: Re(X)
VROL 16-bit integer representing the imaginary part of the first input: Im(X)
VR1H 16-bit integer representing the real part of the 2nd input: Re(Y)
VRI1L 16-bit integer representing the imaginary part of the 2nd input: Im(Y)
VRa Value to be stored.

The result is a complex number with a 32-bit real and a 32-bit imaginary part. The result
is stored in VR2 and VR3 as shown below:

Output Register Value

VR3 16-bit integer representing the real part of the result:
Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 16-bit integer representing the imaginary part of the result:
Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)
[mem32] Contents of VRa. VRa can be VR0-VR7. VRa can not be VR8.
Opcode LSW: 1110 0010 1100 1010

MSW: 0000 0000 meml6

Description Complex 16 x 16 = 32-bit multiply operation with parallel register load.

If the VSTATUS[SAT] bit is set, then the result will be saturated in the event of a 32-bit
overflow or underflow.

// VRO = X + jX: VRO[31:16] = Re(X), VRO[15:0] = Im(X)
// VRL = Y + jY: VR1[31:16] = Re(Y), VR1[15:0] = Im(Y)
//
// Calculate: Z = (X + jX) * (Y + jY)
//
VR3 = VROH * VRIH - VROL * VRIL; // Re(Z) = Re(X)*Re(Y) - ImC)*Im(Y)
VR2 = VROH * VRIL + VROL * VR1H; /7 Im(2) = Re(X)*Im(Y) + Im(X)*Re(Y)
if(SAT == 1)
{
sat32(VR3);
sat32(VR2);
3

VRa = [mem32];

Flags This instruction modifies the following bits in the VSTATUS register:
 OVFR is set if the VR3 computation (real part) overflows or underflows.
* OVFl is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p/1-cycle instruction. The multply operation takes 2p cycles and the VMOV
operation completes in a single cycle. The instruction following this one must not use
VR2 or VR3.
Example ; Example 1
; X = 4+ 6)
;Y =12 + 9
;Z=X*Y
; Re(2) = 4*12 - 6*9 = -6
; Im(2) = 4*9 + 6*12 = 108
VSATOFF ; VSTATUS[SAT] = 0
VCLEARALL ; VRO, VR1...VR8 ==
418 Viterbi, Complex Math and CRC Unit (VCU) SPRUHS1C-October 2014 —-Revised November 2019

Submit Documentation Feedback
Copyright © 2014-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C

13 TEXAS

INSTRUMENTS
www.ti.com VCMPY VRS, VR2, VR1, VRO || VMOV32 mem32, VRa — Complex Multiply with Parallel Store
VMOVXI VRO, #6
VMOV IX VRO, #4 ; VRO = X = 0x00040006 = 4 + 6j
VMOVXI VR1, #9
VMOVIX VR1, #12 ; VR1 = Y = 0x000C0009 = 12 + 9j
; VR3 = Re(Z2) = OXFFFFFFFA = -6
VCMPY VR3, VR2, VR1, VRO ; VR2 = Im(Z) = 0x0000006C = 108
Il VvMOV32 *XAR7, VR3 ; Location XAR7 points to = VR3 (before
multiply)
<instruction 1> ; <- Must not use VR2, VR3
; <- VCMPY completes, VR2, VR3 valid
<instruciton 2> ; Can use VR2, VR3
See also VCLROV