Technical Article Adjusting VOUT in USB Type-C[™] and Wireless Charging Applications, Part 2

TEXAS INSTRUMENTS

Youhao Xi

As I discussed in the first installment of this series, one option to control output voltage (V_{OUT}) for USB Type-C Power Delivery (PD) and wireless charging applications is to use switching resistors. This article will explain a different approach that requires fewer components and signal lines called modulated voltage programming.

Modulated voltage programming

You may recall from part 1 that switching resistors require three switched resistor branches and three control signals to produce the four voltages needed for USB Type-C PD applications. Each switched resistor branch also requires a resistor-capacitor (RC) delay to control the speed of switching, in order to prevent falsely triggering the overvoltage protection (OVP) function of the four-switch buck-boost controllers. The actual hardware requires many additional components, and the solution can appear cumbersome and may not easily fit into compact designs. In such cases, you may need a different approach to reduce the number of components.

Figure 1 shows an example in which a modulated voltage source (V_C) alters the feedback (FB) pin voltage. Therefore, Equation 1 determines the V_{OUT} :

$$V_{OUT} = \left(1 + \frac{R_2}{R_1} + \frac{R_2}{R_3}\right) \cdot V_{REF} - \frac{R_2}{R_3} \cdot V_C$$
(1) (1)

where V_{REF} is the controller error amplifier reference voltage. Decreasing or increasing V_C will adjust V_{OUT} up or down, respectively.

There are two ways to control the V_C level with a microprocessor. The first is to use an integrated digital-toanalog converter (DAC), and the second is to directly use the pulse-width modulation (PWM) signal produced by the microprocessor.

1

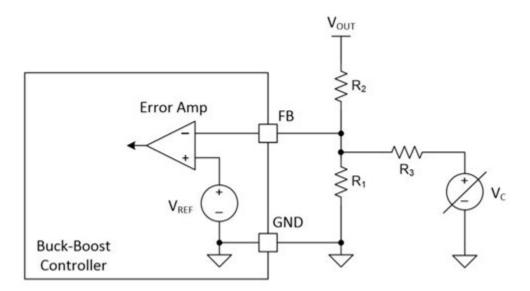


Figure 1. Adjusting V_{OUT} with a modulated voltage source

Controlling voltage through a DAC

USB Type-C PD and wireless charger systems usually have a microprocessor with an internal DAC. If it does not have an internal DAC, an external one like TI's DAC43401 or DAC53401 can be used. As shown in Figure 2, the DAC can produce the required V_C to adjust V_{OUT} by programming the microprocessor to follow Equation 1.

False V_{OUT} OVP can be a problem if the slew rate of V_C is too quick. Therefore, when using microprocessor to control V_C , make sure that the V_C transition time is longer than the buck-boost DC/DC stage loop response time but does not exceed the applicable USB Type-C specifications.

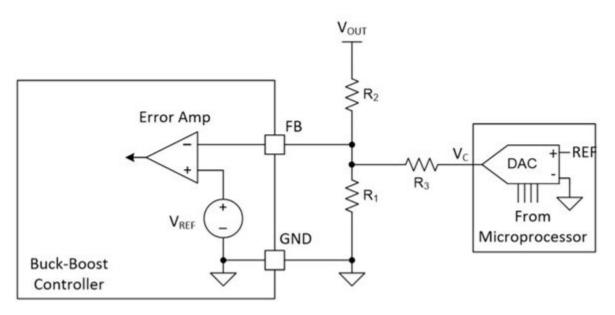
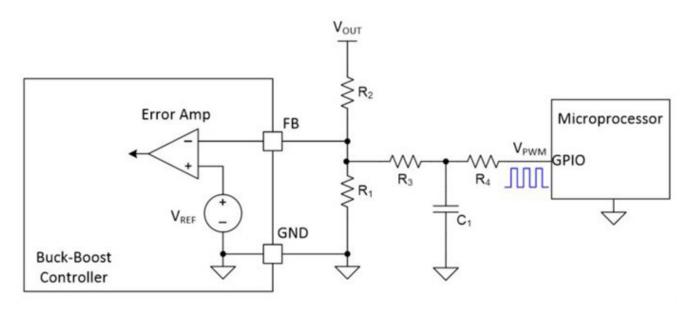



Figure 2. Using a DAC to control the V_C

Controlling voltage through a PWM signal

The second approach is to use a General-Purpose Inputs/Output port (GPIO) of the microprocessor to produce a PWM signal. This PWM signal can be filtered out by an RC filter to produce a DC voltage before being fed into the FB pin, as shown in Figure 3. Changing the PWM duty cycle can dynamically adjust V_{OUT}.

The PWM filter will, however, introduce ripple voltages. If the low-pass corner frequency of the RC filter is much lower than the frequency of the PWM signal, both R_3 and the FB pin will see an almost pure DC voltage. Therefore, the PWM will not cause significant ripples on the V_{OUT} rail. I recommend choosing R_4 and C_1 such that the RC filter's corner frequency is set to at least two decades below the frequency of the PWM signal, such that the ripple voltage at FB pin can be attenuated by at least 40 dB. Consequently, the selection of R_4 and C_1 should satisfy Equation 2:

$$R_4 \cdot C_1 = \frac{50}{\pi \cdot f_{PWM}} \tag{2}$$

where f_{PWM} is the frequency of the PWM signal.

Assuming that the PWM signal's duty cycle is D, the valley voltage is 0 V and the peak voltage is V_{PWM} , then V_{OUT} will satisfy Equation 3:

$$V_{OUT} = \left(1 + \frac{R_2}{R_1} + \frac{R_2}{R_3 + R_4}\right) \cdot V_{REF} - \frac{R_2}{R_3 + R_4} \cdot V_{PWM} \cdot D$$
(3)

Using two-stage RC filters to avoid excessive delays

As mentioned above, the RC filter needs to attenuate the PWM by at least 40 dB. If the PWM signal frequency is limited, say to 200 kHz, the RC filter's corner frequency will have to be set at 2 kHz, implying an RC filter time constant of about 80 ms. Since the settle time of an RC filter takes four times the time constant, the response to a step duty-cycle change will take more than 320 ms to settle, much longer than the USB Type-C PD specification of the voltage transition time. A solution is to use a two-stage RC filter, as shown in Figure 4.

(2)

3

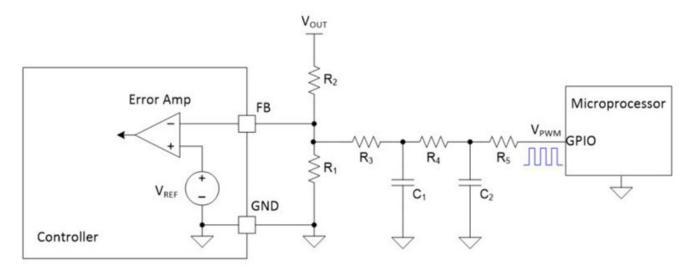


Figure 4. A two-stage RC filter to reduce the delay time

A two-stage RC filter provides 40 dB of attenuation per decade. In the same example, where the PWM signal is at 200 kHz, the filter's corner frequency can be raised to 20 kHz, reducing the filter's time constant to only 8 ms. The response to a step change of duty cycle will settle down within just 32 ms, which is fast enough to meet the USB PD applications. In general, choose the RC filter according to Equation 4:

$$R_4 \cdot C_1 = R_5 \cdot C_2 = \frac{5}{\pi \cdot f_{PWM}}$$
(4) (4)

Now, V_{OUT} and the PWM duty cycle (D) satisfy Equation 5:

$$V_{OUT} = \left(1 + \frac{R_2}{R_1} + \frac{R_2}{R_3 + R_4 + R_5}\right) \cdot V_{REF} - \frac{R_2}{R_3 + R_4 + R_5} \cdot V_{PWM} \cdot D$$
(5)

Note that V_{OUT} will increase when D decreases. Programming the microprocessor according to Equation 5 will produce a PWM signal with the correct duty cycle to regulate the four-switch buck-boost output to the desired voltage level appropriate for a USB Type-C PD application.

Conclusion

For every technique showcased in this series, it is important to remember that false OVP events are possible if the switching between voltage levels is too quick. So make sure that the transition time is sufficient enough to satisfy the application and not trigger a false OVP event.

Additional resources

- See TI's USB Type-C PD reference designs.
- Check out the LM34936 and LM5176 controller data sheets.
- Read Adjusting V_{OUT} in USB Type-C[™] and wireless charging applications, part 1.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated