Technical Article **Duty Cycle Calculation in WEBENCH® Power Designer**

TEXAS INSTRUMENTS

Pavani Jella

The duty cycle of a switching regulator is often thought of as being simply proportional to the input and output voltages. But when we look into the details of the calculations, we see that it also reflects circuit losses. Selecting components that give more losses, such as an inductor with a higher DCR, can cause the duty cycle to increase (for a buck converter), potentially resulting in additional efficiency loss from other components. When creating a power supply design with TI's WEBENCH® Power Designer, the model calculations do not rely on basic ideal equations, but instead use detailed calculations that show you the interaction between component losses via small changes in duty cycle. To explore this, let's look at an example of a buck converter as shown in Figure 1.

Figure 1. Asynchronous Buck Converter.

In a buck converter duty cycle D is defined as, D = Ton/Ts

Where Ts = 1/switching frequency

Ton = switch on-time

When the high-side power switch is turned on, current drawn from the input flows through the inductor. When the high-side switch is turned off, the diode (or low-side NMOS switch in this case of a synchronous converter) is turned on and current circulates through the diode (or low-side NMOS switch) since the inductor current cannot instantaneously stop. During the steady-state operation, the on and off times of the switch are balanced to maintain the desired output voltage. Figure 2 illustrates that during on-time of the switch, inductor current and the current through the high-side MOSFET ramps up, whereas, during the off-time of the switch, the diode and inductor currents ramp down.

1

Figure 2. Buck Converter Waveforms.

Through substitution, we can get an equation for duty cycle that appears dependent on input voltage, output voltage, and the FET and diode voltage drops. If the FET and diode voltage drops are small compared to the input and output voltage, the duty cycle equation further reduces to the ratio of Vout to Vin.

$$D = \frac{V_{OUT} + V_D}{V_{IN} - V_{Q1(ON)} + V_D}$$

$$\simeq \frac{V_{OUT}}{V_{IN}}$$

For an ideal synchronous buck converter, where there are no voltage drops across the switches or other losses, duty cycle is exactly the ratio of output voltage to input voltage.

$$D = \frac{V_{OUT}}{V_{IN}}$$

However, realistic calculation of duty cycle in a synchronous buck converter involves voltages across the high-side and low-side components. Thus, we have to return to the non-ideal case and include all the original terms:

$$D = \frac{V_{OUT} + V_{LS(ON)}}{V_{IN} - V_{HS(ON)} + V_{LS(ON)}}$$

The voltage terms in the above equation are proportional to the output load current, lout.

$$D = \frac{V_{out} + I_{out} \left(R_{DS}^{LS} + R_{DCR} \right)}{V_{in} - I_{out} \left(R_{DS}^{HS} - R_{DS}^{LS} \right)}$$

 R_{DS}^{L} = low-side FET Rdson R_{DS}^{H} = high-side FET Rdson R_{DCR} = Inductor DCR

From the above equation observe that:

WEBENCH Power Designer calculations are based on these realistic loss terms. To study the effect of Vin, lout and DCR on the inductor during duty cycle, a design using TI's TPS54325-Q1 4.5V to 18V input, 3A synchronous step-down converter was created with Vin=11.5-12.5 V and Vout=3.3 V Vout @ 3A output current (see Figure 3).

Figure 3. TPS54325-Q1 Synchronous Step-down Converter Vin=11.5-12.5V and Vout of 3.3V @ 3A lout Load

Figure 4. Notice That the Inductor Selected Is a TDK SPM6530T-2R2M with 2.2 uH Inductance and 19 mOhm DCR

			0	PERATING VALUES			
Optimizatio	on Tuning	Modify Operating Point					
Lowest BOM Cost	•	Vin: 12.5 Iout: 3.0 Recalculate Expo	rt to: 🔀 Excel Export				
Smallest	Highest	Name	Value	Category	Description		
	5 Enciency	VIN_OP	12.55V	Op_Point	Vin operating point		
		Vout OP	3.3V	Op_Point	Operational Output Voltage		
Footprint BOM Co	st Efficiency	IOUT_OP	3A	Op_Point	lout operating point		
196 \$2.81	8	Cin IRMS	1.363A	Current	Input capacitor RMS ripple current		
		Cin Pd	3.696mW	Power	Input capacitor power dissipation		
Change Dec	ian Innute	Cout IRM S	0.514A	Current	Output capacitor RMS ripple current		
change bes	igniniputa	Cout Pd	454uW	Power	Output capacitor power dissipation		
Advanced	Options	Duty Cycle	28.84%	Op_Point	Duty cycle		
Soft Start Time (ms):		Efficiency	86.37%	Op_Point	Steady state efficiency		
1ms< 1 ms	< 10ms	Frequency	676kHz	General	Switching frequency		
Mode of Operation:		IC Tj	105degC	Op_Point	IC junction temperature		
VSOURCE ENABL	E OFF	ICThetaJA	55.65degC/W	Op_Point	IC junction-to-ambient thermal resistance		
		L Ipp	1.786A	Current	Peak-to-peak inductor ripple current		
opu	are -	L Pd	0.220W	Power	Inductor power dissipation		
Current Des	ian: #6505	IC Pd	1.349W	Power	IC power dissipation		
Current Des	TDS64326-04	Pout	9.9W	General	Total output power		
VinMin	11 5 V	a lin Avg	0.917A	Current	Average input current		
VinMax	12.5 V	IC lpk	3.896A	Current	Peak switch current in IC		
ROUTCR	DC.	Mode	CCM	General	Conduction Mode		
Vout	33.1/	Vout p-p	8.771mV	Op_Point	Peak-to-peak output ripple voltage		
lout	3.6	IC lq Pd	0.013W	Power	IC lq Pd		
ta	30 deaC	FootPrint	196mm2	General	Total Foot Print Area of BOM components		
ta	oo acyc	Total BOM	2.815\$	General	Total BOM Cost		
		Total Pd	1.574W	Power	Total Power Dissipation		
		BOM Count	12	General	Total Design BOM count		

Figure 5. Calculated Operating Values of This Design, Including Duty Cycle of 28.8%, Efficiency of 86.3% and Inductor Power Dissipation L Pd of 0.22 W

Figure 6. WEBENCH® Power Designer Charts That Confirm That:

Vin \uparrow , D \downarrow and as lout \uparrow , D \uparrow

To study the impact of DCR on duty cycle and efficiency let's choose a Coilcraft inductor XAL4020-222MB with the same inductance of 2.2 uH and an increased DCR of 35 mOhm(Figure 7). View the design here.

5

My Designs	Projects		_	_	_	_	_	_	_	Englis	▲ 日本語 資休	▶文 繁體中文	: 한국이, Русский Язык Português Deuts	ch Welcome a013	1992@ti.com • 🕖
		Rack				ti 🍈	dV dt			Export	Print Share Des				
		Darch	11011 S01300113	41300m201	Church 1	venemuse opamie	Al Al	TERNATE PART	S	CAPUTE	Frint Share Dea	ign Provincian			8
_	Alternate Parts - Charts						Summary	information for sele	cted Component S	ummary informat	tion for selected C	mponent L1:			-
Filter by M	anufacturer: Select All	Manuf	Part Number	L	DCR	IDC	Pi	rice Qty Avail	Foot Print	Height	Power Diss		Top View		
Updat	te X Axis Update Y Axis			(H)	(Ohm)	(A)									
Power D	iss (₩) ▼ Footprint (mm2) ▼ [TDK	SPM6530T-2R2	1 2.2u	0.019	8.4	\$	0.56 > 10	77	3	0.220				
900 -	0	LIMITS											L (H) DCR (Ohm)	IDC (A)
	õ	Upperbound	Upperbound									3.3u	0.055	108.2	
		Lowerbound											2.2u	100u	5.412
800 -		Target											2.2u	5.5m	5.412
		_	Select an alternate part for Component L1: show More Columns												
		Edit	Manuf P	art Number	L (H)	DCR (Ohm)	IDC (A)	Price	Qty Avail	Foot Print	Height	Power Diss	Foot Prin	nt	
700 -			TDK S	PM6530T-2R21	2.2u	0.019	8.4	\$0.56	> 10	77	3	0.220			÷
		Select	Bourns	RN8040-3R3Y	3.3u	0.021	5.5	\$0.22	> 10	100	4	0.243	8		1
600 -		Select	Bourns S	RN8040-2R2Y	2.2u	0.013	6.3	\$0.22	> 10	100	4	0.151	8		
		Select	ток у	LP8040T-2R2N	2.2u	0.015	6.7	\$0.22	> 10	113	4	0.174			
		Select	Colleraft X	AL4020-222ME	2.2u	0.035	5.5	\$0.60	> 10	25	2.1	0.408			
F 600		Select	Bourns §	DR http://www	.coilcraft.com/p	dfs/xal4000.pdf	5.5	\$0.26	> 10	176	5	0.139	0	1	
(mm)	00	Select	Collcraft x	AL4030-332ME	3.3u	0.026	5.5	\$0.62	> 10	25	3.1	0.301			
400 -	0 0	Select	ток с	LF7045T-2R2N	2.2u	0.02	5.5	\$0.42	> 10	86	4.8	0.232	Ō		
	90. 88	Select	Bourns s	RU1048-3R0Y	3u	7.2m	6	\$0.33	> 10	144	4.8	0.083			

Figure 7. Selection of Coilcraft Inductor XAL4020-222MB with the Same Inductance of 2.2 uH and an Increased DCR of 35 mOhm

With increase in DCR the duty cycle is now 29.2% and efficiency dropped to 84.9% as seen in Figure 8.

My Designs/Projects			En	ginelt 日本語 資体中文 繁體中文 한국어		
	Back New Solutions Visualizer	BOM Charts Schematic Optimize	dV dt V Op Vals Sim Thermal Build-It Lite Edit Export	Print Share Design Assistant		
			OPERATING VALUES			
Optimization Tuning	Modify Operating Point					
Lowest BOM Cost	Vin: 12.5 lout: 3.0 Recalculate Export to					
Smallest Highest	Name	Value	Category	Description		
	VIN_OP	12.5V	Op_Point	Vin operating point		
	Vout OP	3.3V	Op_Point	Operational Output Voltage		
Footprint BOM Cost Efficiency	IOUT_OP	3A	Op_Point	lout operating point		
143 \$2.84 85	Cin IRMS	1.36A	Current	Input capacitor RMS ripple current		
	Cin Pd	3.72mW	Power	Input capacitor power dissipation		
Change Design Inputs	Cout IRMS	0.52A	Current	Output capacitor RMS ripple current		
	Cout Pd	474uW	Power	Output capacitor power dissipation		
Advanced Options	Duty Cycle	29.2%	Op_Point	Duty cycle		
Soft Start Time (ms):	Efficiency	84.9%	Op_Point	Steady state efficiency		
1ms < 1 ms < 10ms	Frequency	6/1KH2	General	Switching frequency		
Mode of Operation:	IC Tj	105degC	Op_Point	IC junction temperature		
VSOURCE ENABLE OFF	ICThetaJA	55.6degC/W	Op_Point	IC junction-to-ambient thermal resistance		
lindate	L lpp	1.82A	Current	Peak-to-peak inductor ripple current		
opdate	L Pd	0.40W	Power	Inductor power dissipation		
Current Design: #6582	IC Pd	1.34W	Power	IC power dissipation		
IC TP\$54325.01	Pout	9.9W	General	Total output power		
VinMin 11.5 V	lin Avg	0.93A	Current	Average input current		
VinMax 12.5 V	IC lpk	3.91A	Current	Peak switch current in IC		
source DC	Mode	CCM	General	Conduction Mode		
Vout 33V	Vout p-p	9.07mV	Op_Point	Peak-to-peak output ripple voltage		
lout 3 A	IC lq Pd	0.01W	Power	IC lq Pd		
ta 30 degC	Total Pd	1.76W	Power	Total Power Dissipation		
in oo dego	FootPrint	143mm2	General	Total Foot Print Area of BOM components		
	Total BOM	2.85\$		Total BOM Cost		
	BOM Count	12		Total Design BOM count		

Figure 8. OpVals with Inductor with 35mOhm DCR.

To see a more significant change, a CUSTOM inductor with higher DCR of 0.5 W and with same inductance is selected (Figure 9). See the design here.

weben	chatcolly webench3/power/weben	cris.cgi: viiliv	111-11.306011100	ax-12.30&01	10-3.508011-3	ocoase_pii=1P	554525°Q1&A	крртуре	- NOTIECO	5p_1A=50	stang_cri	osen-e	en_oscopu	actor=5			
ly Designs/	Projects												日本語 第月	・中文 繁麗中文	ζ : 한국이() Pyccami Rowa) Português Deu	tsch Welcome a0	132992@ti.com
		-	0			2 0	dV dt		1 7	1 1	EA	6)	0			
		Back	New Solutions	Visualizer B	DM Charts Sc	hematic Optimize	Op Vals Sir	im The	ermal Build	-It Lite Ed	it Expo	rt Pr	rint Share De	rsign Assistant			
							ALTE	ERNATE	PARTS								
	Alternate Parts - Charts						Summary info	ormation f	for selected	Component	Summary in	formatio	n for selected (Component L1:			
Filter by M	anufacturer: Select All 🛛 🗸 🗸	Manuf	Part Number	L	DCR	IDC	Price	Qty	Avail	Foot Print	Hei	ght	Power Diss		Top View		
Updat	le X Axis Update Y Axis			(H)	(Ohm)	(A)											
Power D	iss (W) 🛛 🔻 Footprint (mm2) 🖉	Coilcraft	XAL4020-2228	E 2.2u	0.035	5.5	\$0.60		10	25	2.	.1	0.405				
900 -		LIMTS									_				L	H) DCR (Ohm	IDC (A
	0 I	Upperbound	Boorhound												3.3u	0.055	108.2
		Lowerbound	1												2.20	100u	5.412
		Taroet				Enter Cust	Enter Custom Part Information X				×				2.20	5.5m	5.412
										lore Columns							
		Edit	Manuf P	art Number	L (H)	D	Part Number	imber				nt l	Height	Power Diss	rer Diss Foot Print		
700			Colleraft	(AL4020-22211)	2.2u	М	anufacturer		CUSTOM]			2.1	0.405			
		Select	Bourns	SRN8040-3R3Y	3.3u	Budget Price		0.10	s			4	0.243	<u></u>	8		
		Select	Bourns	SRN8040-2R2Y	2.2u	quanti	ty in parallel	arallel DCR 1.0E-4 <=	1	Ohm <= 0			4	0.151		·)	
600		_	Terr				DCR 1.		0.5		0.055			0.674			
		Select	100	/LP80401-2K2N	2.23	· ·	Default Disty		Coilcraft					9.174			
-		Select	Bourns	SDR1005-2R5M	2.5a		IDC 5	5.412 <-	5.5	A <	108.2		5	0.139	1	8	
1		Select	Coilcraft)	KAL4030-332ME	3.3u		IDC_Max	2F.6 <=	0.0	A H 4	136.6		3.1	0.301			
ĵ.	00	Select	TDK (CLF7045T-2R2N	2.2u		Material		Shielded				4.8	0.232	0		
400	0 0	Select	Bourns	SRU1048-3R0Y	3u		Tolerance		20.0	%			4.8	0.083			
	800 BB	Scient	Bourns	SRU1038.285Y	2.5a		Dimension X		4.0	mm			3.8	0.145			
300	0 00						Dimension Y		4.0	mm							
	000	Select	Bourns	SRP5030T-2R28	2.2u		Dimension Z		2.1	mm			3	0.405			
	and the second s	Select	Vishay-Dale J	HLP2020CZER2	2.2u		Save ch	hanges	Cancel	1			3	0.290			

Figure 9. Setting of CUSTOM Inductor with 0.50hm DCR and Same Inductance 22uH

Note that now there is a significant jump in duty cycle to 40.4% and efficiency has dropped drastically to 57%. The drop in efficiency is due to a significant rise in inductor loss to 6.08 W. Figure 10 shows the steep increase in duty cycle and sharp drop in efficiency reiterating the same.

Figure 10. Efficiency and Duty Cycle Charts Showing the Effect of CUSTOM Inductor with High DCR of 0.50hm

Figure 11 and Figure 12 summarize the three DCR cases of 19 mW, 35 mW and 0.5 W of a 2.2 uH inductor, and its impact on duty cycle, efficiency and inductor power dissipation.

7

My Designs/Projects					日本語 資体中文 繁體中文 한국OI Pycc					
	Back New Solutions Visualize	BOM Charts Sch	ematic Optimize Op Vals	Sim Thermal Build-It Lite Edit Export P	Frint Share Design Assistant					
			(OPERATING VALUES						
Optimization Tuning	Modify Operating Point									
Lowest BOM Cost	Vin: 12.5 lout 3.0 Recalculate Expor									
Smallest Highest	Name	Value Value	Value	Category	Description					
	VIN_OP	12.5V 12.5V	12.5V	Op_Point	Vin operating point					
	Vout OP	3.3V 3.3V	3.3V	Op_Point	Operational Output Voltage					
Footprint BOM Cost Efficience	IOUT_OP	3A 3A	3A	Op_Point	lout operating point					
196 \$2.81 86	Cin IRMS	1.36A 1.36A	1.47A	Current	Input capacitor RMS ripple current					
	Cin Pd	3.69mW 3.72m	W 4.34mW	Power	Input capacitor power dissipation					
Change Design Inputs	Cout IRMS	0.51A 0.52A	0.85A	Current	Output capacitor RMS ripple current					
onango ocorgii inputo	Cout Pd	454uW 474uW	1.25mW	Power	Output capacitor power dissipation					
Advanced Options	Duty Cycle	28.8% 29.2%	40.4%	Op_Point	Duty cycle					
Soft Start Time (ms):	Efficiency	86.3% 84.9%	57.0%	Op_Point	Steady state efficiency					
1ms< 1 ms<10ms	Frequency	676kHz 671kH	z 572kHz	General	Switching frequency					
Mode of Operation:	IC Tj	105degC 105de	gC 107degC	Op_Point	IC junction temperature					
VSOURCE ENABLE OFF	ICThetaJA	55.6degC/W 55.6de	gC/W 55.6degC/W	Op_Point	IC junction-to-ambient thermal resistance					
lindate	L Ipp	1.78A 1.82A	2.96A	Current	Peak-to-peak inductor ripple current					
opdate	L Pd	0.22W 0.40W	6.08W	Power	Inductor power dissipation					
Current Design: #6592	IC Pd	1.34W 1.34W	1.38W	Power	IC power dissipation					
Current Design. #0582	Pout	9.9W 9.9W	9.9W	General	Total output power					
IC 1P554325-Q1	lin Avg	0.91A 0.93A	1.39A	Current	Average input current					
Vinitin 11.5 V	IC lpk	3.89A 3.91A	4.48A	Current	Peak switch current in IC					
VIIIMAX 12.5 V	Mode	CCM CCM	CCM	General	Conduction Mode					
source DC	Vout p-p	8.77mV 9.07m	V 0.01V	Op_Point	Peak-to-peak output ripple voltage					
Vout 3.5 V	C lq Pd	0.01W 0.01W	0.01W	Power	IC lq Pd					
to 10 do	FootPrint	196mm2 1.76W	7.46W	General	Total Foot Print Area of BOM components					
ta 30 degc	U Total BOM	2.81\$ 143mr	m2 143mm2	General	Total BOM Cost					
	Total Pd	1.57W 2.85\$	2.35\$	Power	Total Power Dissipation					
	BOM Count	12 12	12	General	Total Design BOM count					

Figure 11. Comparison of OpVals for Three Cases of DCR

In conclusion, the switching regulator has to work extra hard to maintain the output voltage at the desired level with increase in DCR, which results in higher power dissipation losses. It's thus important to choose an appropriate inductor with minimal DCR to maximize the efficiency of a switching regulator with an optimal duty cycle.

Start a design in WEBENCH today or watch a video tutorial on this topic.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated