
 Design Note DN112

 SWRA222B Page 1 of 28

Using UART in CC111xFx, CC243xFx, CC251xFx and
CC253xFx

By Torgeir Sundet

Keywords

 UART
 CPU
 DMA
 Protocol
 Baud Rate
 Asynchronous
 CC1110Fx

 CC1111Fx
 CC2430Fx
 CC2431Fx
 CC2510Fx
 CC2511Fx
 CC2530Fx
 CC2531Fx

1 Introduction

This design note describes the key
elements and simple usage of the
CC111xFx/CC243xFx/CC251xFx/CC253x
Fx USART peripheral in UART mode. The
main objective is to explain the
CC111xFx/CC243xFx/CC251xFx/CC253x
Fx software required to operate the UART,
with and without DMA support.

The UART implements asynchronous
serial communication, and is typically used
as a diagnostic/command interface. In the
following sections an x represents USART
number 0 or 1 if nothing else is stated.

 Design Note DN112

 SWRA222B Page 2 of 28

Table of Contents

KEYWORDS.. 1
1 ... 1 INTRODUCTION
2 ... 2 ABBREVIATIONS
3 .. 3 SCOPE
4 ... 3 USING THE USART PERIPHERAL IN UART MODE

4.1 ... 4 MAPPING THE USART PERIPHERAL IN UART MODE

4.1.1 ...6 Mapping the UART to the SoC I/O
4.1.2 ..8 Interfacing the UART with the SmartRF 04EB

4.1.3 ..9 Setting up the UART Protocol
4.2 .. 16 USING THE UART WITHOUT DMA SUPPORT

4.2.1 ..16 Processing UART Communication using UART Polling
4.2.2 ..18 Processing UART Communication using UART ISR

4.3 .. 22 USING THE UART WITH DMA SUPPORT

4.3.1 ...22 Allocating DMA Descriptor for UART RX/TX
4.3.2 ..23 Processing UART Communication with DMA Support

5 .. 27 REFERENCES
6 .. 28 GENERAL INFORMATION

6.1 .. 28 DOCUMENT HISTORY

2 Abbreviations

EB Evaluation Board
CPU Central Processing Unit
CTS Clear To Send
DMA Direct Memory Access
DCE Data Circuit-terminating Equipment, according to [5].
DTE Data Terminal Equipment, according to [5].
GPIO General Purpose Input and Output
HS XOSC High Speed Xtal Oscillator, refer to relevant data sheets [1], [2], [3]

and [4] for actual frequency.
HW Hard Ware
ISR Interrupt Service Routine
NA Not Applicable
NOP No Operation
SmartRF® Registered Trademark, used in this document to reference the Low

Power RF product line from Texas Instruments.
SoC System on Chip. A collective term used to refer to Texas

Instruments ICs with on-chip MCU and RF transceiver. Used in this
document to reference the CC1110, CC1111, CC2430, CC2431,
CC2510, CC2511, CC2530 and CC2531.

RF Radio Frequency.
RTS Ready To Send (implies Ready to Receive for DTE to DTE

communication)
RX Receive. Used in this document to reference UART/Radio receive.
RS232 Recommended Standard 232, a standard defining the format and

signal levels of a specific asynchronous serial interface.
TTL Transistor-transistor Logic
TX Transmit. Used in this document to reference UART/Radio transmit.
UART Universal Asynchronous serial Receiver and Transmitter
UART protocol Used in this document to represent the UART signalling format;

start/stop bit, data bit, parity.
USART Universal Synchronous/Asynchronous serial Receiver and

Transmitter.

 Design Note DN112

 SWRA222B Page 3 of 28

3 Scope

In UART mode the SoC USART peripheral can be used to interface any external device
(assuming TTL voltage level) which supports the UART protocol, meaning half/full-duplex
asynchronous serial transfer of 8 bit data. A common application would use the UART to
support a wireless modem, as shown in Figure 1. However, this design note focuses on the
fundamental UART receive/transmit operation, and how to use the different protocol settings,
including start/stop bit and parity.

Two main UART transmit/receive methods are described; using the UART with DMA support,
and using it without DMA support. Furthermore, when using the UART without DMA support,
two separate implementations are covered; UART transmit/receive by polling the UART
Interrupt Request Flags, and transmit/receive using UART ISR.

SoC

UART

CPU
DMA
RAM

UARTRF

UART Signals:
RX, TX, RTS, CTS

Hyperterminal
(e.g. PC)

SoC

CPU
DMA
RAM

RFHyperterminal
(e.g. PC)

Key UART Features:
• Designated SoC peripheral
• Wired Asynchronous Serial Bi-directional Communication
• Frame Recognition via Start/Stop bit
• Data Level Recognition via Over-sampling => No Clock
• Optional Data Flow Control - Hardware handshaking
• Optional Data Integrity Control – Parity Check

UART Signals:
RX, TX, RTS, CTS

Figure 1: Typical Application with UART Support

4 Using the USART Peripheral in UART Mode

The UART peripheral uses UxCSR.MODE to determine the desired USART operation mode
(UART or SPI) and the UxUCR/UxGCR registers to configure the UART format/signaling;
start/stop bit, data bit and parity. For data transfer on the UART interface the UxDBUF
registers are used. Internal data transfer, between the SoC memory and UART can be done
by the CPU or the DMA controller.

Using the CPU for internal data transfer prevents the CPU from performing other tasks
(except from ISRs) during memory transfer. Using the DMA controller allows the CPU to
continue with other tasks, while the DMA controller transfers data between the UART and
SoC memory. In a UART application it is typically desired that the DMA controller handles
block transfers, not just transfers of a single byte. This means that the DMA controller must
be configured to interface allocated RX/TX buffers and either download data (transmit) from
the allocated TX buffer to the UxDBUF, or upload data (receive) from the UxDBUF to the
allocated RX buffer. A DMA ISR can typically be implemented to automatically start a new
UART transmit/receive session upon completing each block transfer. This would be relevant
when the application needs efficient streaming of data between e.g. RF and UART.

 Design Note DN112

 SWRA222B Page 4 of 28

4.1 Mapping the USART Peripheral in UART Mode

In order for the UART to be mapped to the desired pins and generate the associated interrupt
requests and DMA triggers, the following register/descriptor fields must be set according to
the desired configuration/functionality (for cross referencing, please see Figure 2):

 PxSEL.SELPx_y (see Figure 2 for correlation of x and y)
Selects whether Port x Pin y shall be GPIO or mapped to the UART.

 IEN2.UTXxIE

UART TX CPU interrupt enable/disable.

 IEN0.URXxIE

UART RX CPU interrupt enable/disable.

 IEN0.EA

Global/master interrupt enable/disable.

 IEN1.DMAIE

DMA CPU interrupt enable/disable.

 DMA Descriptor.IRQMASK

DMA Transfer Complete interrupt enable/disable.

The corresponding UART / DMA interrupt flags are located in the register fields listed below.
If the corresponding interrupt enable flags have been set, then an interrupt request causes
the CPU to vector its code execution to the associated UART / DMA ISR (for cross
referencing, please see Figure 2):

 UxCSR.TX_BYTE and IRCON2.UTXxIF
Indicates that the UART has transmitted a byte, and that it is ready to transmit
another byte.

 UxCSR.RX_BYTE and TCON.URXxIF

Indicates that the UART has received a byte, and that it is ready to receive another
byte.

 IRCON.DMAIF and DMAIRQ.DMAIFn

Indicates that the DMA controller has reached its transfer count; that is; it has
transferred a defined range of data between the UART and SoC memory. As
generally noted above, if the corresponding DMA interrupt enable flags have been
set, the CPU would automatically vector its code execution to a DMA ISR, and thus
allow the CPU to prepare another block transfer between the UART and SoC
memory.

If supported by the DMA controller in UART TX then DMA trigger #15/17 will initiate a single
byte DMA transfer from the allocated UART TX source buffer to the UxDBUF register. For
UART RX DMA trigger #14/16 will initiate a single byte DMA transfer from the UxDBUF
register to the allocated UART RX destination buffer.

 Design Note DN112

IEN0

P0SEL

SELP0 (a)

SELP0 (b)

P0.a (UARTx TX)

P0.b (UARTx RX)

USART
Peripheral

TX

RX

CT

RT

UTXx

x = 0 => V#7
x = 1 => V#14

IEN2

UTXxIE (y)

x = 0 => y = 2
x = 1 => y = 3

U
A

R
T

 I
n

te
rr

up
t

R
eq

u
es

t
G

en
er

a
tio

n

IRCON2

UTXxIF (y)

x = 0 => y = 1
x = 1 => y = 2

EA (7)

PERCFG

1

CPU
Interrupt

Monitoring/
Processing

DMA
Controller

D
M

A
 T

rig
ge

r

D
M

A
 I

n
te

rr
up

t
R

eq
ue

st
 G

en
e

ra
tio

n

IEN0

DMA

(V#8)

IEN1
DMAIE (0)

DMA
Descriptor

IRQMASK
(Byte#7, Bit #3) EA (7)

UARTx TX
x = 0 => #15
x = 1 => #17

UARTxRX
x = 0 => #14
x = 1 => #16

UxDBUF

IRCON

DMAIF (0)

DMAIRQ

DMAIFn (0-4)

SoC
Memory

CPU

RE (6)

UxCSR

UARTx Location Alternative 1:
x = 0 => a = 3, b = 2, c = 5, d = 4
x = 1 => a = 4, b = 5, c = 3, d = 2

SELP0 (c)

SELP0 (d)

P0.c (UARTx RT)

P0.d (UARTx CT)

IEN0
URXx

x = 0 => V#2
x = 1 => V#3

IEN0

URXxIE (y)

x = 0 => y = 2
x = 1 => y = 3

URXxIF (y)

x = 0 => y = 3
x = 1 => y = 7

EA (7)

UxCFG (x)
x = 0 or 1

0

P1SEL

SELP1 (a)

SELP1 (b)

P1.a (UARTx TX)

P1.b (UARTx RX)

SELP1 (c)

SELP1(d)

P1.c (UARTx RT)

P1.d (UARTx CT)

UARTx Location Alternative 2:
x = 0 => a = 5, b = 4, c = 3, d = 2
x = 1 => a = 6, b = 7, c = 5, d = 4

UxCSR

TX_BYTE (1)

TCON

UxCSR

RX_BYTE (2)

Figure 2: Mapping the USART Peripheral in UART Mode

 SWRA222B Page 5 of 28

 Design Note DN112

 SWRA222B Page 6 of 28

4.1.1 Mapping the UART to the SoC I/O

With reference to Figure 2, the SoC I/O map shown in Table 1 (extract from the “Peripheral
I/O” section in the SoC data sheets ([1], [2], and [3]) applies for mapping the UART peripheral
to the SoC I/O port:

Periphery /

Function

P0 P1 P2

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 4 3 2 1 0

Alt 1 RT CT TX RX
USART0

Alt 2 TX RX RT CT

Alt. 1 RX TX RT CT
UART1

Alt 2 RX TX RT CT

Table 1: SoC I/O Map for the UART

The required code is shown in Figure 3, and implements the following main steps:

1. Set PERCFG.UxCFG such that the UART connects to the relevant target SoC port
pins.

2. Set PxSEL.SELPx_y such that the allocated SoC port pins are configured for UART

functionality (see Figure 2 for correlation of x and y).

 Design Note DN112

 SWRA222B Page 7 of 28

Figure 3: Mapping the UART to the SoC I/O

// C language code:

// This function maps/connects the UART to the desired SoC I/O port.
// The application should call this function with "uartPortAlt" = 1 or 2,
// and "uartNum" = 0 or 1.

void uartMapPort(unsigned char uartPortAlt, unsigned char uartNum) {

 // If UART Port Alternative 1 desired
 if(uartPortAlt == 1) {
 // If UART0 desired
 if (uartNum == 0) {
 // Configure UART0 for Alternative 1 => Port P0 (PERCFG.U0CFG = 0)
 PERCFG &= ~0x01;
 // Configure relevant Port P0 pins for peripheral function:
 // P0SEL.SELP0_2/3/4/5 = 1 => RX = P0_2, TX = P0_3, CT = P0_4, RT = P0_5
 P0SEL |= 0x3C;
 // Configure relevant Port P1 pins back to GPIO function
 P1SEL &= ~0x3C;
 // Else (UART1 desired)
 } else {
 // Configure UART1 for Alternative 1 => Port P0 (PERCFG.U1CFG = 0)
 PERCFG &= ~0x02;
 // Configure relevant Port P0 pins for peripheral function:
 // P0SEL.SELP0_2/3/4/5 = 1 => CT = P0_2, RT = P0_3, TX = P0_4, RX = P0_5
 P0SEL |= 0x3C;
 // Configure relevant Port P1 pins back to GPIO function
 P1SEL &= ~0xF0;
 }
 // Else (UART Port Alternative 2 desired)
 } else {
 // If UART0 desired
 if (uartNum == 0) {
 // Configure UART0 for Alternative 2 => Port P1 (PERCFG.U0CFG = 1)
 PERCFG |= 0x01;
 // P1SEL.SELP1_2/3/4/5 = 1 => CT = P1_2, RT = P1_3, RX = P1_4, TX = P1_5
 P1SEL |= 0x3C;
 // Configure relevant Port P0 pins back to GPIO function
 P0SEL &= ~0x3C;
 // Else (UART1 desired)
 } else {
 // Configure UART1 for Alternative 2 => Port P1 (PERCFG.U1CFG = 1)
 PERCFG |= 0x02;
 // P1SEL.SELP1_4/5/6/7 = 1 => CT = P1_4, RT = P1_5, TX = P1_6, RX = P1_7
 P1SEL |= 0xF0;
 // Configure relevant Port P0 pins back to GPIO function
 P0SEL &= ~0x3C;
 }
 }

}

 Design Note DN112

 SWRA222B Page 8 of 28

4.1.2 Interfacing the UART with the SmartRF04EB

When interfacing the UART with the SmartRF04EB there are two possible configurations,
that is; SoC to SoC, or SoC to PC. Figure 4 and Figure 5 shows the implemented wiring for
these configurations, please refer Table 1 for the internal SoC pin mapping. Note that the SoC
is implemented as a so-called DTE device. This means that the SoC RT (Ready-To-Send or
Ready-To-Receive) is an output signal to control the data input flow, while the CT signal is a
SoC input, gating the SoC data output flow. Setting up a SoC to SoC connection consequently
requires a null-modem (cross over) connection (Figure 4). Interfacing a PC RS232 port
requires a straight connection (Figure 5). For more detailed explanation of the fundamental
UART/RS232 terminology, signaling/format and cable interface, please refer to [5], [6], and [7].

RX

TX

CT

RT

RXD

TXD

CTS

RTS

SoC

UARTx

(DTE device)

SmartRF04EB-1

RS232

RX

TX

CT

RT

SoC

UARTx

(DTE device)

SmartRF04EB-2

RXD

TXD

CTS

RTS

RS232

Null-modem Connection
UART signal levels:

Logical ’0’ = RS232 high-voltage
Logical ’1’ = RS232 low-voltage

Signals are
crossed and inverted

Signals are
crossed and inverted

Figure 4: Interfacing UART with SmartRF04EB - SoC to SoC

RX

TX

CT

RT

RXD

TXD

CTS

RTS

SoC

UARTx

(DTE device)

SmartRF04EB-1

RS232

PC / Hyperterminal

(DTE Device)

RXD

TXD

CTS

RTS

RS232

Signals are
crossed and inverted

Straight Connection
UART signal levels:

Logical ’0’ = RS232 high-voltage
Logical ’1’ = RS232 low-voltage

Figure 5: Interfacing UART with SmartRF04EB - SoC to PC

 Design Note DN112

 SWRA222B Page 9 of 28

4.1.3 Setting up the UART Protocol

4.1.3.1 UART Frame and Flow

The UART interface consists of 4 signals:

 Serial Data In (RX)

 Serial Data Out (TX)

 Ready To Send (RT/RTS)

 Clear To Send (CT/CTS)

The UART data is communicated on the RX/TX lines according to the format shown in Figure
6. Designated start and stop bits are used to identify/recognize each basic UART
packet/frame, which holds 8 data bit. In 9 bit mode (UxUCR.BIT9 = 1) a designated parity
bit is used for data integrity/error checking. Alternatively the parity bit can be replaced by a 9th
bit fixed-level according to the value of UxUCR.D9. Note that a UART protocol recovers the bit
clock based on the pre-programmed baudrate (UxBAUD.BAUD_M and UxGCR.BAUD_E) and
built-in over-sampling capability. Consequently, the UART does not use a designated clock
signal for this purpose.

S
ta

rt

D
a

ta
0

D
a

ta
1

D
a

ta
2

D
a

ta
3

D
a

ta
4

D
a

ta
5

D
a

ta
6

D
a

ta
7

O
p

tio
na

l:
P

a
rit

y
o

r
fix

ed
 le

ve
l (

D
9

)

S
to

p0

Id
le

 (
p

ro
gr

a
m

m
ab

le
 le

ve
l)

Id
le

 (
p

ro
gr

a
m

m
ab

le
 le

ve
l)

O
p

tio
na

l:
S

to
p1

Level decision at UART receiver:
• Over-samples RX line to determine level
• No separate clock line

Figure 6: UART Frame Format

In order to prevent data overflow the UART offers built-in HW flow control, using the RT/RTS
and CT/CTS signals. When an external UART device de-asserts (TTL high) the CT/CTS line
then the SoC UART halts its current TX operation until the external UART device asserts
(TTL low) CT/CTS again (ready to receive new data). In RX mode the SoC UART prevents
data overflow by automatically de-asserting (TTL high) the RT/RTS signal (provided that this
signal is connected to CT/CTS on the external UART device). This occurs if both UxDBUF and
the internal UART RX shift register are full. The UART SoC will assert (TTL low) the RT/RTS
signal again (allowing data input flow) once the internal UART RX shift register is emptied,
that is; latched over to UxDBUF as a result of application-read of UxDBUF.

Note: when the application has read UxDBUF it is very important that it does not clear
UxCSR.RX_BYTE. Clearing UxCSR.RX_BYTE implicitly makes the UART believe that the
UART RX shift register is empty, even though it might hold pending data (typically due to
back-to-back transmission). Consequently the UART asserts (TTL low) the RT/RTS line,
which allows flow into the UART, leading to potential overflow. Hence the
UxCSR.RX_BYTE flag integrates closely with the automatic RT/RTS function and must
therefore be controlled solely by the SoC UART it self. Otherwise the application could
typically experience that the RT/RTS line remains asserted (TTL low) even though a back-
to-back transmission clearly suggests it ought to intermittently pause the flow.

 Design Note DN112

 SWRA222B Page 10 of 28

A simplified view of the UART RX flow is shown in Figure 7 and Figure 8. In RX mode the
UART over-samples the RX line to determine the bit level. Each data bit is then shifted into
the internal shift register, which is latched to UxDBUF after the 8th data bit. Finally the received
data byte is read, typically into an allocated target buffer. In 9 bit mode (Figure 8) the UART
will monitor the 9th bit according to the selected Parity mode (Odd or Even). Note that, if HW
flow control is enabled, then the UART will automatically control the RT/RTS signal based on
the pending-status of the internal UART RX shift register.

1 (2 Stop bits)

SPB (2)

UxUCR

0 (1 Stop bit)

RX Line
RE (6)

UxCSR

UxDBUF

Allocated target buffer
(typically to be transmitted on RF)DMA/CPU

Start Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 Stop0 Stop1

Start Data0 Data1
Data2

Data3 Data4 Data5 Data6 Data7

Frame
Error

CheckFE (4)

UxCSR

UART RX Shift register

Stop0

Frame Control

1 (Enable)

FLOW (6)

UxUCR

0 (Disable)

HW Flow Control

UART Flow
Monitor

RTS Signal

8 bit

Figure 7: UART RX Flow in 8 bit mode, no Parity Control, optional HW Flow Control

1 (2 Stop bits)

SPB (2)

UxUCR

0 (1 Stop bit)

RX Line
RE (6)

UxCSR

UxDBUF

Allocated target buffer
(typically to be transmitted on RF)

DMA/CPU

UxUCR

1 (Odd)

0 (Even)

D9 (5)

Parity Control

ERR (3)

UxCSR

1 (Disable)

1 (Enable)

PARITY (3)

UxUCR

Parity
Error

Check

Odd

Even

Start Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 Stop0 Stop1

Start Data0 Data1
Data2

Data3 Data4 Data5 Data6 Data7 Data8
Parity

Frame
Error

CheckFE (4)

UxCSR

UART RX Shift register

Data8
Parity

Stop0

Frame Control

1 (Enable)

FLOW (6)

UxUCR

0 (Disable)

HW Flow Control

UART Flow
Monitor

RTS Signal

8 bit

Figure 8: UART RX Flow in 9 bit mode, optional Parity Control, optional HW Flow Control

 Design Note DN112

 SWRA222B Page 11 of 28

A simplified view of the UART TX flow is shown in Figure 9 and Figure 10. In TX mode the
data to be transmitted on UART is typically located in an allocated source buffer. Each data
byte is written to the UxDBUF, which then triggers the UART to load its internal shift register
and finally output the data byte serially on the TX line. In 9 bit mode (Figure 10) the UART will
automatically set the 9th bit to a fixed (programmable) level or according to the selected Parity
mode (Odd or Even). Note that, if HW flow control is enabled, then the UART will not load the
shift register as long as the associated CT/CTS pin (SoC input) is de-asserted (TTL high).

1 (2 Stop bits)

SPB (2)

UxUCR

0 (1 Stop bit)

UxUCR

STOP (1)

UxDBUF

1 (Enable)

FLOW (6)

UxUCR

0 (Disable)

DMA/CPU

Start Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 Stop0 Stop1

Start Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 Stop0

TX Line

CTS

UART Port

8 bit

Allocated source buffer
(typically received on RF)

UxUCR

START (0)

UART TX Shift register

HW Flow Control

Figure 9: UART TX Flow in 8 bit mode, no Parity, optional HW Flow Control

0 (Disable)

1 (Enable)

PARITY (3)

UxUCR Parity
Generator

Odd

Even

D9 (5)

UxUCR

UxUCR

1 (Odd)

0 (Even)

D9 (5)

UxUCR

START (0)

1 (2 Stop bits)

SPB (2)

UxUCR

0 (1 Stop bit)

UxUCR

STOP (1)

Start Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8
Parity

Stop0 Stop1

Start Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8
Parity

Stop0

TX Line

UxDBUF

1 (Enable)

FLOW (6)

UxUCR

0 (Disable)

CTS

UART Port

Allocated source buffer
(typically received on RF)

DMA/CPU

Parity Control

HW Flow Control

UART TX Shift register

8 bit

Figure 10: UART TX Flow in 9 bit mode, optional Parity Control, optional HW Flow Control

 Design Note DN112

 SWRA222B Page 12 of 28

4.1.3.2 UART Baud Rate Generation/Initialization

The SoC uses an internal baud rate generator to implement the desired data bit rate, and
initialization is done according to the formula shown in Equation 1:

F
MBAUD

Baudrate
EBAUD

28

_

2

2)_256(

Equation 1: UART Baud Rate Generation

The variables in Equation 1 represent the following parameters:

 F : The System Clock Frequency

 BAUD_M : The 8 bit Baud rate Mantissa located in UxBAUD.BAUD_M[7:0]

 BAUD_E : The 5 bit Baud rate Exponent located in UxGCR.BAUD_E[4:0]

Some typical UART Baud Rate settings are shown in Table 2, Table 3, and Table 4.

Baud Rate [bps] UxBAUD.BAUD_M UxGCR.BAUD_E Error (%)

2400 131 6 0.04

9600 131 8 0.04

57600 34 11 0.13

115200 34 12 0.13

230400 34 13 0.13

Table 2: Commonly used Baud Rate Settings for 26 MHz System Clock

Baud Rate [bps] UxBAUD.BAUD_M UxGCR.BAUD_E Error (%)

2400 163 6 0.08

9600 163 8 0.09

57600 59 11 0.14

115200 59 12 0.14

230400 59 13 0.14

Table 3: Commonly used Baud Rate Settings for 24 MHz System Clock

Baud rate (bps) UxBAUD.BAUD_M UxGCR.BAUD_E Error

(%)

2400 59 6 0.14

9600 59 8 0.14

57600 216 10 0.03

115200 216 11 0.03

230400 216 12 0.03

Table 4: Commonly used Baud Rate Settings for 32 MHz System Clock

 Design Note DN112

 SWRA222B Page 13 of 28

The required code for initializing the UART Baud Rate Generator is shown in Figure 11 and
implements the following main steps:

1. Switch the system clock to HS XOSC for consistent UART clock generation.

2. Set BAUD_M and BAUD_E according to the formula in Equation 1.

Figure 11: Initializing the UART Baud Rate Generator

// C language code:

// This function initializes the UART bit rate.

void uartInitBitrate(unsigned char uartBaudM, unsigned char uartBaudE) {

 ///
 // This initial code section ensures that the SoC system clock is driven
 // by the HS XOSC:

 // Clear CLKCON.OSC to make the SoC operate on the HS XOSC.
 // Set CLKCON.TICKSPD/CLKSPD = 000 => system clock speed = HS RCOSC speed.
 CLKCON &= 0x80;

 // Monitor CLKCON.OSC to ensure that the HS XOSC is stable and actually
 // applied as system clock source before continuing code execution
 while(CLKCON & 0x40);

 // Set SLEEP.OSC_PD to power down the HS RCOSC.
 SLEEP |= 0x04;
 ///

 // Initialize bitrate (U0BAUD.BAUD_M, U0GCR.BAUD_E)
 U0BAUD = uartBaudM;
 U0GCR = (U0GCR&~0x1F) | uartBaudE;
}

 Design Note DN112

 SWRA222B Page 14 of 28

4.1.3.3 Initialization of the UART protocol (Start/Stop bit, Data bits, Parity Control, Flow Control)

The required code for initializing the UART protocol is shown in Figure 12 and Figure 13, and
implements the following main steps:

1. Set UxCSR.MODE = 1 to configure the UART for UART function.
Note that UxCSR.MODE = 0 implies SPI mode.

2. Set UxUCR.START according to desired start bit level.

Typical: UxUCR.START = 0 => low level.

3. Set UxUCR.STOP according to desired stop bit level.

Typical: UxUCR.STOP = 1 => high level.

4. Set UxUCR.SPB according to desired number of stop bits.

Typical: UxUCR.SPB = 0 => 1 stop bit.

5. Set UxUCR.PARITY to disable/enable parity mode.

Note: if parity is enabled then remember to also set UxUCR.BIT9 = 1.

6. Set UxUCR.BIT9 according to desired number of data bits (8 or 9).

7. If parity disabled then set UxUCR.D9 according to the desired fixed level on 9th bit.

If parity enabled then set UxUCR.D9 according to the desired parity mode (even/odd).

8. Set UxGCR.ORDER according to desired bit order (LSB or MSB first).

Figure 12: Allocating UART Buffers and Protocol Setup Descriptor

// C language code:

// Define and allocate a setup structure for the UART protocol:

typedef struct {
 unsigned char uartNum : 1; // UART peripheral number (0 or 1)
 unsigned char START : 1; // Start bit level (low/high)
 unsigned char STOP : 1; // Stop bit level (low/high)
 unsigned char SPB : 1; // Stop bits (0 => 1, 1 => 2)
 unsigned char PARITY : 1; // Parity control (enable/disable)
 unsigned char BIT9 : 1; // 9 bit enable (8bit / 9bit)
 unsigned char D9 : 1; // 9th bit level or Parity type
 unsigned char FLOW : 1; // HW Flow Control (enable/disable)
 unsigned char ORDER : 1; // Data bit order(LSB/MSB first)
} UART_PROT_CONFIG;

UART_PROT_CONFIG __xdata uartProtConfig;

// Define size of allocated UART RX/TX buffer (just an example)
#define SIZE_OF_UART_RX_BUFFER 50
#define SIZE_OF_UART_TX_BUFFER SIZE_OF_UART_RX_BUFFER

// Allocate buffer+ind
unsigned short __xdata uartRxBuffer[SIZE_OF_UART_RX_BUFFER];

ex for UART RX/TX

unsigned short __xdata uartTxBuffer[SIZE_OF_UART_TX_BUFFER];
unsigned short __xdata uartRxIndex, uartTxIndex;

 Design Note DN112

 SWRA222B Page 15 of 28

Figure 13: Initializing the UART Protocol

// C language code:
// This function initializes the UART protocol (start/stop bit, data bits,
// parity, etc.). The application must call this function with an initialized
// data structure according to the code in Figure 12.

void uartInitProtocol(UART_PROT_CONFIG* uartProtConfig) {

 // Initialize UART protocol for desired UART (0 or 1)
 if (uartProtConfig->uartNum == 0) {
 // USART mode = UART (U0CSR.MODE = 1)
 U0CSR |= 0x80;
 // Start bit level = low => Idle level = high (U0UCR.START = 0)
 // Start bit level = high => Idle level = low (U0UCR.START = 1)
 U0UCR = (U0UCR&~0x01) | uartProtConfig->START;
 // Stop bit level = high (U0UCR.STOP = 1)
 // Stop bit level = low (U0UCR.STOP = 0)
 U0UCR = (U0UCR&~0x02) | (uartProtConfig->STOP << 1);
 // Number of stop bits = 1 (U0UCR.SPB = 0)
 // Number of stop bits = 2 (U0UCR.SPB = 1)
 U0UCR = (U0UCR&~0x04) | (uartProtConfig->SPB << 2);
 // Parity = disabled (U0UCR.PARITY = 0)
 // Parity = enabled (U0UCR.PARITY = 1)
 U0UCR = (U0UCR&~0x08) | (uartProtConfig->PARITY << 3);
 // 9-bit data disable = 8 bits transfer (U0UCR.BIT9 = 0)
 // 9-bit data enable = 9 bits transfer (U0UCR.BIT9 = 1)
 U0UCR = (U0UCR&~0x10) | (uartProtConfig->BIT9 << 4);
 // Level of bit 9 = 0 (U0UCR.D9 = 0), used when U0UCR.BIT9 = 1
 // Level of bit 9 = 1 (U0UCR.D9 = 1), used when U0UCR.BIT9 = 1
 // Parity = Even (U0UCR.D9 = 0), used when U0UCR.PARITY = 1
 // Parity = Odd (U0UCR.D9 = 1), used when U0UCR.PARITY = 1
 U0UCR = (U0UCR&~0x20) | (uartProtConfig->D9 << 5);
 // Flow control = disabled (U0UCR.FLOW = 0)
 // Flow control = enabled (U0UCR.FLOW = 1)
 U0UCR = (U0UCR&~0x40) | (uartProtConfig->FLOW << 6);
 // Bit order = MSB first (U0GCR.ORDER = 1)
 // Bit order = LSB first (U0GCR.ORDER = 0) => For PC/Hyperterminal
 U0GCR = (U0GCR&~0x20) | (uartProtConfig->ORDER << 5);
 } else {
 // USART mode = UART (U1CSR.MODE = 1)
 U1CSR |= 0x80;
 // Start bit level = low => Idle level = high (U1UCR.START = 0)
 // Start bit level = high => Idle level = low (U1UCR.START = 1)
 U1UCR = (U1UCR&~0x01) | uartProtConfig->START;
 // Stop bit level = high (U1UCR.STOP = 1)
 // Stop bit level = low (U1UCR.STOP = 0)
 U1UCR = (U1UCR&~0x02) | (uartProtConfig->STOP << 1);
 // Number of stop bits = 1 (U1UCR.SPB = 0)
 // Number of stop bits = 2 (U1UCR.SPB = 1)
 U1UCR = (U1UCR&~0x04) | (uartProtConfig->SPB << 2);
 // Parity = disabled (U1UCR.PARITY = 0)
 // Parity = enabled (U1UCR.PARITY = 1)
 U1UCR = (U1UCR&~0x08) | (uartProtConfig->PARITY << 3);
 // 9-bit data enable = 8 bits transfer (U1UCR.BIT9 = 0)
 // 9-bit data enable = 8 bits transfer (U1UCR.BIT9 = 1)
 U1UCR = (U1UCR&~0x10) | (uartProtConfig->BIT9 << 4);
 // Level of bit 9 = 0 (U1UCR.D9 = 0), used when U1UCR.BIT9 = 1
 // Level of bit 9 = 1 (U1UCR.D9 = 1), used when U1UCR.BIT9 = 1
 // Parity = Even (U1UCR.D9 = 0), used when U1UCR.PARITY = 1
 // Parity = Odd (U1UCR.D9 = 1), used when U1UCR.PARITY = 1
 U1UCR = (U1UCR&~0x20) | (uartProtConfig->D9 << 5);
 // Flow control = disabled (U1UCR.FLOW = 0)
 // Flow control = enabled (U1UCR.FLOW = 1)
 U1UCR = (U1UCR&~0x40) | (uartProtConfig->FLOW << 6);
 // Bit order = MSB first (U1GCR.ORDER = 1)
 // Bit order = LSB first (U1GCR.ORDER = 0) => For PC/Hyperterminal
 U1GCR = (U1GCR&~0x20) | (uartProtConfig->ORDER << 5);
 }
}

 Design Note DN112

 SWRA222B Page 16 of 28

4.2 Using the UART without DMA Support

Using the UART without support from the DMA controller means that the CPU must handle all
data transfers between the UART and SoC memory. During UART transfers the CPU will not
be able to perform other tasks, except from ISRs. In order to process the UART
communication without DMA support the application can either poll the UART Interrupt Flag,
or implement a designated UART ISR. Both methods imply that the application/CPU must
monitor the UART interrupt request flags; TCON.URXxIF and IRCON2.UTXxIF.

4.2.1 Processing UART Communication using UART Polling

The following section shows how to control the UART TX/RX communication, using polling of
the interrupt request flags. This method typically implies that the application rests all other
tasks (apart from ISRs) while processing the UART communication, that is; accessing the
UxDBUF, and TCON.URXxIF and IRCON2.UTXxIF.

4.2.1.1 UART TX Processing using UART Polling

The required code for UART TX, with polling, is shown in Figure 14 and implements the
following main steps:

1. Allocate UART TX buffer for the associated source data.

2. Disable the UART TX interrupt (this instruction will not mask the generation of the

interrupt request flags, used for polling UART TX complete; ref. Figure 2).

3. Read from the allocated TX source buffer and write to the appropriate UxDBUF

register.

4. After each write access to the UxDBUF register, poll IRCON2.UTXxIF to wait until the

UART has transmitted the last data.

Figure 14: UART TX Processing using UART Polling

// C language code:
// The two functions below send a range of bytes on the UARTx TX line. Note
// that, before the relevant function is called the application must execute
// the initialization code in Figure 3, Figure 11, Figure 12, and Figure 13.

// The code implements the following steps:
// 1. Clear TX interrupt request (UTXxIF = 0).
// 2. Loop: send each UARTx source byte on the UARTx TX line.
// 2a. Read byte from the allocated UART TX source buffer and write to UxDBUF.
// 2b. Wait until UART byte has been sent (UTXxIF = 1).
// 2c. Clear UTXxIF.

void uart0Send(unsigned short* uartTxBuf, unsigned short uartTxBufLength) {
 unsigned short uartTxIndex;
 UTX0IF = 0;
 for (uartTxIndex = 0; uartTxIndex < uartTxBufLength; uartTxIndex++) {
 U0DBUF = uartTxBuf[uartTxIndex];
 while(!UTX0IF);
 UTX0IF = 0;
 }
}

void uart1Send(unsigned short* uartTxBuf, unsigned short uartTxBufLength) {
 unsigned short uartTxIndex;
 UTX1IF = 0;
 for (uartTxIndex = 0; uartTxIndex < uartTxBufLength; uartTxIndex++) {
 U1DBUF = uartTxBuf[uartTxIndex];
 while(!UTX1IF);
 UTX1IF = 0;
 }
}

 Design Note DN112

 SWRA222B Page 17 of 28

4.2.1.2 UART RX processing using UART Polling

The required code for UART RX, with polling, is shown in Figure 15, and implements the
following main steps:

1. Allocate UART RX buffer for the associated target data.

2. Disable the UART RX interrupt (this instruction will not mask the generation of the

interrupt request flags, used for polling UART RX complete; ref. Figure 2).

3. Enable UART RX.

4. Poll URXxIF to wait until the UART has received the byte.

5. Read the appropriate UxDBUF register, and store the contents in the allocated UART

RX buffer.

Figure 15: UART RX Processing using UART Polling

// C language code:

// The two functions below receive a range of bytes on the UARTx RX line.
// Note that, before this function is called the application must execute
// the UART initialization code in Figure 3, Figure 11, Figure 12, and
// Figure 13.

// The code implements the following steps:
// 1. Enable UARTx RX (UxCSR.RE = 1)
// 2. Clear RX interrupt request (set URXxIF = 0)
// 3. Loop: receive each UARTx sample from the UARTx RX line.
// 3a. Wait until data received (URXxIF = 1).
// 3b. Read UxDBUF and store the value in the allocated UART RX target buffer.

void uart0Receive(unsigned short* uartRxBuf, unsigned short uartRxBufLength) {
 unsigned short uartRxIndex;

 U0CSR |= 0x40; URX0IF = 0;
 for rtRxIndex = 0; uartRxIndex < uartRxBufLength; uartRxIndex++) { (ua
 while(!URX0IF);
 uartRxBuf[uartRxIndex] = U0DBUF;
 URX0IF = 0;
 }

}

void e(unsigned short* uartRxBuf, unsigned short uartRxBufLength) { uart1Receiv
 unsigned short uartRxIndex;

 U1CSR |= 0x40; URX1IF = 0;
 for rtRxIndex = 0; uartRxIndex < uartRxBufLength; uartRxIndex++) { (ua
 while(!URX1IF);
 uartRxBuf[uartRxIndex] = U1DBUF;
 URX1IF = 0;
 }

}

 Design Note DN112

 SWRA222B Page 18 of 28

4.2.2 Processing UART Communication using UART ISR

The following section shows how to control the UART TX/RX communication, involving a
designated UART ISR. This method typically implies that the application just needs to
initiate/start the UART TX/RX session, and then the remaining transmission/reception is
processed automatically by the UART ISR. Consequently the application/CPU can continue
both polling tasks, as well as interrupt tasks while the UART communication runs.

4.2.2.1 UART TX Processing using UART ISR

The required code for UART TX, with ISR, is shown in Figure 16, and implements the
following main steps:

1. Allocate UART TX buffer + index for the associated source data.

2. Enable the UART TX interrupt. This instruction will allow the CPU to vector its

execution to the designated UART TX ISR shown in Figure 17 (refer to Figure 2 for
interrupt mapping).

3. Send the very first byte of the allocated UART TX buffer on UART.

4. Apply code in Figure 17 to send the remaining data using UART TX ISR.

Figure 16: Initializing UART TX Processing for UART ISR

// C language code:
// This function starts the UART TX session and leaves the transmission
// of the remaining bytes to the associated UART TX ISR in Figure 17.
// Before this function is called the application must initialize the
// UART peripheral according to the code shown in Figure 3, Figure 11,
// Figure 12, and Figure 13.

// The code implements the following steps:
// 1. Initialize the UART TX buffer index.
// 2. Clear UART TX Interrupt Flag (IRCON2.UTXxIF = 0.
// 3. Enable UART TX Interrupt (IEN2.UTXxIE = 1)
// 4. Send very first UART byte
// 5. Enable global interrupt (IEN0.EA = 1).

extern unsigned short __xdata uartTxBuffer[SIZE_OF_UART_TX_BUFFER];
extern unsigned short __xdata uartTxIndex;

void uartStartTxForIsr(unsigned char uartNum) {

 uartTxIndex = 0;

 if (uartNum == 0) {
 UTX0IF = 0;
 IEN2 |= 0x04;
 U0DBUF = uartTxBuffer[uartTxIndex++];
 } else {
 UTX1IF = 0;
 IEN2 |= 0x08;
 U1DBUF = uartTxBuffer[uartTxIndex++];
 }

 IEN0 |= 0x80;
}

 Design Note DN112

 SWRA222B Page 19 of 28

Figure 17: UART TX Processing in the UART ISR

// C language code:

// The UARTx TX ISR assumes that the code in Figure 16 has initialized the
// UART TX session, by sending the very first byte on the UARTx TX line.
// Then the UARTx TX ISR will send the remaining bytes based in interrupt
// request generation by the UART peripheral.

// The code implements the following steps:
// 1. Clear UARTx TX Interrupt Flag (IRCON2.UTXxIF = 0).
// 2. Read byte from the allocated UART TX source buffer and write to UxDBUF.
// 3. If no UART byte left to transmit, stop this UART TX session.
// Note that in order to start another UART TX session the application
// just needs to prepare the source buffer, and simply send the very first
// UARTx byte.

extern unsigned short __xdata uartTxBuffer[SIZE_OF_UART_TX_BUFFER];
extern unsigned short __xdata uartTxIndex;

_Pragma("vector=0x3B") __near_func __interrupt void UART0_TX_ISR(void);
_Pragma("vector=0x3B") __near_func __interrupt void UART0_TX_ISR(void){

 UTX0IF = 0;

 if (uartTxIndex >= SIZE_OF_UART_TX_BUFFER) {
 uartTxIndex = 0; IEN2 &= ~0x08; return;
 }

 U0DBUF = uartTxBuffer[uartTxIndex++];
}

_Pragma("vector=0x73") __near_func __interrupt void UART1_TX_ISR(void);
_Pragma("vector=0x73") __near_func __interrupt void UART1_TX_ISR(void){

 UTX1IF = 0;

 if (uartTxIndex >= SIZE_OF_UART_TX_BUFFER) {
 uartTxIndex = 0; IEN2 &= ~0x08; return;
 }

 U1DBUF = uartTxBuffer[uartTxIndex++];
}

 Design Note DN112

 SWRA222B Page 20 of 28

4.2.2.2 UART RX Processing using UART ISR

The required code for UART RX, with ISR, is shown in Figure 18 and implements the
following main steps:

1. Allocate UART RX buffer + index for the associated target data.

2. Enable UART RX.

3. Enable the UART RX interrupt to allow the CPU to automatically vector its execution

to the designated UART RX ISR, shown in Figure 19, once the UART has received a
byte (refer to Figure 2 for interrupt mapping).

4. Receive the bytes using UART RX ISR, as shown in Figure 19.

Figure 18: Initializing UART RX Processing for the UART ISR

// C language code:
// This function initializes the UART RX session, by simply enabling the
// corresponding UART interrupt, and leave the sample reception to the
// UART ISR shown in Figure 19. Before this function is called the
// application must initialize the UART peripheral according to the
// code shown in Figure 3, Figure 11, Figure 12, and Figure 13.

// The code implements the following steps:
// 1. Initialize the UART RX buffer index.
// 2. Clear UART RX Interrupt Flag (TCON.URXxIF = 0)
// 3. Enable UART RX and Interrupt (IEN0.URXxIE = 1, UxCSR.RE = 1)
// 4. Enable global interrupt (IEN0.EA = 1)

extern unsigned short __xdata uartRxBuffer[SIZE_OF_UART_RX_BUFFER];
extern unsigned short __xdata uartRxIndex;

void uartStartRxForIsr(unsigned char uartNum) {

 uartRxIndex = 0;

 if (uartNum == 0) {
 URX0IF = 0;
 U0CSR |= 0x40;
 IEN0 |= 0x04;
 } else {
 URX1IF = 0;
 U1CSR |= 0x40;
 IEN0 |= 0x08;
 }

 IEN0 |= 0x80;
}

 Design Note DN112

 SWRA222B Page 21 of 28

Figure 19: UART RX Processing in the UART ISR

// C language code:

// The UARTx RX ISR assumes that the code in Figure 18 has initialized the
// UART RX session, by enabling the UART RX interrupt. Then this UART RX ISR
// will receive the data based in interrupt request generation by the
// USART peripheral.

// The code implements the following steps:
// 1. Clear UARTx RX Interrupt Flag (TCON.URXxIF = 0)
// 2. Read UxDBUF and store the value in the allocated UART RX target buffer
// 3. If all UART data received, stop this UART RX session
// Note that in order to start another UART RX session the application
// just needs to re-enable the UART RX interrupt(IEN0.URXxIE = 1).

extern unsigned short __xdata uartRxBuffer[SIZE_OF_UART_RX_BUFFER];
extern unsigned short __xdata uartRxIndex;

_Pragma("vector=0x13") __near_func __interrupt void UART0_RX_ISR(void);
_Pragma("vector=0x13") __near_func __interrupt void UART0_RX_ISR(void){

 URX0IF = 0;

 uartRxBuffer[uartRxIndex++] = U0DBUF;

 if (uartRxIndex >= SIZE_OF_UART_RX_BUFFER) {
 uartRxIndex = 0; IEN0 &= ~0x04;
 }

}

_Pragma("vector=0x1B") __near_func __interrupt void UART1_RX_ISR(void);
_Pragma("vector=0x1B") __near_func __interrupt void UART1_RX_ISR(void){

 URX1IF = 0;

 uartRxBuffer[uartRxIndex++] = U1DBUF;

 if (uartRxIndex >= SIZE_OF_UART_RX_BUFFER) {
 uartRxIndex = 0; IEN0 &= ~0x08;
 }

}

 Design Note DN112

 SWRA222B Page 22 of 28

4.3 Using the UART with DMA Support

In order to use the DMA controller to support the UART, typically two DMA channels must be
allocated and configured; one for downloading data from SoC memory to the UART (TX), and
another for uploading data from the UART to SoC memory (RX). Please refer to the “DMA
Controller” section in the SoC Data Sheets ([1] and [2]) for more detailed information about
the DMA controller.

4.3.1 Allocating DMA Descriptor for UART RX/TX

Before the UART can transmit/receive with DMA support, the application must allocate
associated DMA descriptors, that is; one for RX, and one for TX. The required code is shown
in Figure 20:

Figure 20: Allocating Buffers and DMA Descriptors for UART RX/TX

// C language code:

// Define data
typedef struct {

 structure for DMA descriptor:

 unsigned char SRCADDRH; // High byte of the source address
 unsigned char SRCADDRL; // Low byte of the source address
 unsigned char DESTADDRH; // High byte of the destination address
 unsigned char DESTADDRL; // Low byte of the destination address
 unsigned char VLEN : 3; // Length configuration
 unsigned char LENH : 5; // High byte of fixed length
 unsigned char LENL : 8; // Low byte of fixed length
 unsigned char WORDSIZE : 1; // Number of bytes per transfer element
 unsigned char TMODE : 2; // DMA trigger mode (e.g. single or repeated)
 unsigned char TRIG : 5; // DMA trigger; UART RX/TX
 unsigned char SRCINC : 2; // Number of source address increments
 unsigned char DESTINC : 2; // Number of destination address increments
 unsigned char IRQMASK : 1; // DMA interrupt mask
 unsigned char M8 : 1; // Number of desired bit transfers in byte mode
 unsigned char PRIORITY : 2; // The DMA memory access priority
} DMA_DESC;

// Allocate DMA descriptor for UART RX/TX:
// Note that, since the DMA controller only offers one address/reference
// register for DMA channels 1 - 4, the DMA controller expects the
// allocated descriptors for DMA channels 2 – 4 to be located in direct
// address succession to the DMA channel 1 descriptor. This is typically
// relevant when the application has already allocated DMA channel 0, and 1,
// for other purposes than UART support.
DMA_DESC __xdata uartDmaRxTxCh[2];

 Design Note DN112

 SWRA222B Page 23 of 28

4.3.2 Processing UART Communication with DMA Support

The following section shows how to control the UART TX/RX communication using DMA
support. This method typically implies that the application just needs to initiate/start the UART
TX/RX session, and then the remaining byte transfers are handled automatically by the DMA
controller. The application/CPU can continue both polling tasks, as well as interrupt tasks
while the UART communication goes on.

The required code for UART TX/RX, using DMA support (shown in Figure 20, Figure 21,
Figure 22, and Figure 23) implements the following main steps:

1. Allocate UART TX/RX buffer + index for the associated source/target data.

2. Define and allocate data structures for DMA channel configuration (descriptors); used

to setup a DMA channel for transferring data between SoC memory and the UART.

3. Start the UART TX session by applying a manual DMA trigger to the associated DMA

channel. This triggers the DMA controller to download a byte from SoC memory to
the UxDBUF register. Once the UART has transmitted the byte it automatically
triggers another DMA byte transfer. This sequence continues until the DMA controller
has completed the programmed number of byte transfers. In order to start the UART
RX session the application only needs to arm the DMA channel associated with
UART RX. The byte transfers from the UART to SoC memory are triggered by the
UART; every time it has either received a UART byte.

4. Once the DMA controller has completed the defined range of byte transfers, the

application can start another UART RX session, by simply re-arming the associated
DMA channel. For UART TX the DMA controller needs a manual trigger
(alternatively, the application/CPU could write the very first UART TX data to the
UxDBUF register. For efficient data streaming (typically between RF and UART) the
application could implement the UART re-start mechanism in e.g. a designated DMA
ISR, as shown in Figure 23, thus isolating the UART TX/RX session as much as
possible from the main application code.

 Design Note DN112

 SWRA222B Page 24 of 28

Figure 21: UART TX Initialization using DMA Support

// C language code:
// This function sets up a designated DMA channel for UART TX and starts
// the UART TX session. Before this function is called the application must
// perform initialization by executing the code in Figure 3, Figure 11,
// Figure 12, and Figure 13.

void uartStartTxDmaChan(unsigned char uartNum,
 DMA_DESC *uartDmaTxDescr,
 unsigned char uartDmaTxChan,
 unsigned char* uartTxBuf,
 unsigned short uartTxBufSize) {

 // Source = allocated UART TX buffer, destination = UxDBUF
 // Number of DMA byte transfers = UART TX buffer size.
 uartDmaTxDescr->SRCADDRH = (unsigned short)(uartTxBuf+1)>>8;
 uartDmaTxDescr->SRCADDRL = (unsigned short)(uartTxBuf+1);
 uartDmaTxDescr->DESTADDRH = 0xDF;
 uartDmaTxDescr->DESTADDRL = (uartNum == 0) ? 0xC1:0xF9;
 uartDmaTxDescr->LENH = ((uartTxBufSize-1)>>8)&0xFF;
 uartDmaTxDescr->LENL = (uartTxBufSize-1)&0xFF;

 uartDmaTxDescr->VLEN = 0x00; // Use fixed length DMA transfer count
 uartDmaTxDescr->WORDSIZE = 0x00; // Perfrom 1-byte DMA transfers
 uartDmaTxDescr->TMODE = 0x00; // Single byte transfer per DMA trigger
 uartDmaTxDescr->TRIG = 15 + (2*uartNum); // DMA trigger = USARTx TX complete
 uartDmaTxDescr->SRCINC = 0x01; // Increment source pointer by 1 byte
 // address after each transfer.
 uartDmaTxDescr->DESTINC = 0x00; // Do not increment destination pointer:
 // points to USART UxDBUF register.
 uartDmaTxDescr->IRQMASK = 0x01; // Enable DMA interrupt to the CPU
 uartDmaTxDescr->M8 = 0x00; // Use all 8 bits for transfer count
 uartDmaTxDescr->PRIORITY = 0x00; // DMA memory access has low priority

 // Link DMA descriptor with its corresponding DMA configuration register.
 if (uartDmaTxChan < 1) {
 DMA0CFGH = (unsigned char)((unsigned short)uartDmaTxDescr>>8);
 DMA0CFGL = (unsigned char)((unsigned short)uartDmaTxDescr&0x00FF);
 } else {
 DMA1CFGH = (unsigned char)((unsigned short)uartDmaTxDescr>>8);
 DMA1CFGL = (unsigned char)((unsigned short)uartDmaTxDescr&0x00FF);
 }

 // Arm DMA channel and apply 45 NOP's for loading DMA configuration
 DMAARM = ((< uartDm Chan) & F); 1 < aTx 0x1
 asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
 asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
 asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
 asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
 asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
 asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
 asm("NOP");asm("NOP");asm("NOP");

 // Enable the DMA interrupt (IEN1.DMAIE = IEN0.EA = 1),
 // and clear potential pending DMA interrupt requests (IRCON.DMAIF = 0).
 IEN0 |= 0x80; IEN1 |= 0x01; IRCON &= ~0x01;

 // Send the very first UART byte to trigger a UART TX session:
 if (uartNum == 0) {
 U0DBUF = uartTxBuf[0];
 } else {
 U1DBUF = uartTxBuf[0];
 }

 // At this point the UART generates a DMA trigger each time it has
 // transmitted a byte, leading to a DMA transfer from the allocated
 // TX source buffer to UxDBUF. Once the DMA controller has completed
 // the defined range of transfers, the CPU vectors its execution to
 // the DMA ISR in Figure 23.
}

 Design Note DN112

 SWRA222B Page 25 of 28

Figure 22: UART RX Initialization using DMA Support

// C language code:
// This function a designated DMA channel for UART RX and then enables
// the UART RX session. Before this function is called the application must
// perform initialization by executing the code in Figure 3, Figure 11,
// Figure 12, and Figure 13.

void uartStartRxDmaChan(unsigned char uartNum,
 DMA_DESC *uartDmaRxDescr,
 unsigned char uartDmaRxChan,
 unsigned char* uartRxBuf,
 unsigned short uartRxBufSize) {

 // Source = UxDBUF, destination = allocated UART RX buffer
 // Number of DMA byte transfers = UART RX buffer size.
 uartDmaRxDescr->DESTADDRH = (unsigned short uartRxBuf>>8;)
 uartDmaRxDescr->DESTADDRL = (unsigned short)uartRxBuf;
 uartDmaRxDescr->SRCADDRH = 0xDF;
 uartDmaRxDescr->SRCADDRL = (uartNum == 0) ? 0xC1:0xF9;
 uartDmaRxDescr->LENH = (uartRxBufSize>>8)&0xFF;
 uartDmaRxDescr->LENL = uartRxBufSize&0xFF;

 uartDmaRxDescr->VLEN = 0x00; // Use fixed length DMA transfer count
 uartDmaRxDescr->WORDSIZE = 0x00; // Perform 1-byte transfers
 uartDmaRxDescr->TMODE = 0x00; // Single byte transfer per DMA trigger
 uartDmaRxDescr->TRIG = 14 + (2*uartNum); // DMA trigger = USARTx RX complete
 uartDmaRxDescr->SRCINC = 0x00; // Do not increment source pointer.
 // points to USART UxDBUF register.
 uartDmaRxDescr->DESTINC = 0x01; // Increment destination pointer by
 // 1 byte address after each transfer.
 uartDmaRxDescr->IRQMASK = 0x01; // Enable DMA interrupt to the CPU
 uartDmaRxDescr->M8 = 0x00; // Use all 8 bits for transfer count
 uartDmaRxDescr->PRIORITY = 0x00; // DMA memory access has low priority

 // Link DMA descriptor with its corresponding DMA configuration register.
 if (uartDmaRxChan < 1) {
 DMA0CFGH = (unsigned char)((unsigned short)uartDmaRxDescr>>8);
 DMA0CFGL = (unsigned char)((unsigned short)uartDmaRxDescr&0x00FF);
 } else {
 DMA1CFGH = (unsigned char)((unsigned short)uartDmaRxDescr>>8);
 DMA1CFGL = (unsigned char)((unsigned short)uartDmaRxDescr&0x00FF);
 }

 // Arm DMA channel and apply 45 NOP's for loading DMA configuration
 DMAARM = ((< uartDm Chan) & F); 1 < aRx 0x1
 asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
 asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
 asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
 asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
 asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
 asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
 asm("NOP");asm("NOP");asm("NOP");

 // Enable the DMA interrupt (IEN1.DMAIE = IEN0.EA = 1),
 // and clear potential pending DMA interrupt requests (IRCON.DMAIF = 0)
 IEN0 |= 0x80; IEN1 |= 0x01; IRCON &= ~0x01;

 // Enable UARTx RX
 if (uartNum == 0) {
 U0CSR |= 0x40;
 } else {
 U1CSR |= 0x40;
 }

 // At this point the UART generates a DMA trigger each time it has received
 // a byte, leading to a DMA transfer from UxDBUF to the allocated RX target
 // buffer. Once the DMA controller has completed the defined range of
 // transfers, the CPU vectors its execution to the DMA ISR in Figure 24.
}

 Design Note DN112

 SWRA222B Page 26 of 28

Figure 23: UART TX re-start using DMA ISR

Figure 24: UART RX re-start using DMA ISR

// C language code:
// This DMA ISR can be used to start a new UART RX session when the previous
// session (started by the code in Figure 21 or Figure 22) has completed.
// For simplicity the code assumes that DMA channel 0 is used, but the
// functionality is the same for other DMA channels.

// The code implements the following steps:
// 1. Clear the main DMA interrupt Request Flag (IRCON.DMAIF = 0).
// 2. Start a new UART RX session on the applied DMA channel.
// 2a. Clear applied DMA Channel Interrupt Request Flag (DMAIRQ.DMAIFx = 0).
// 2b. Re-arm applied DMA Channel (DMAARM.DMAARMx = 1).

external UART_PROT_CONFIG __xdata uartProtConfig;

_Pragma("vector=0x43") __near_func __interrupt void DMA_ISR(void);
_Pragma("vector=0x43") __near_func __interrupt void DMA_ISR(void) {
 IRCON &= ~0x01;

 if (DMAIRQ & 0x01) {

 // Here the application could typically perform a quick initial check
 // of the received data before re-starting another UART RX session.

 DMAIRQ &= ~0x01;
 DMAARM |= 0x01;

 }

}

// C language code:
// This DMA ISR can be used to start a new UART TX session when the previous
// session (started by the code in Figure 21 or Figure 22) has completed.
// For simplicity the code assumes that DMA channel 1 is used, but the
// functionality is the same for other DMA channels.

// The code implements the following steps:
// 1. Clear the main DMA interrupt Request Flag (IRCON.DMAIF = 0).
// 2. Start a new UART TX session on the applied DMA channel.
// 2a. Clear DMA Channel Interrupt Request Flag (DMAIRQ.DMAIFx = 0).
// 2b. Re-arm the applied DMA Channel (DMAARM.DMAARMx = 1).
// 2c. Send the very first UART TX byte to trigger a new UART TX session.

external UART_PROT_CONFIG __xdata uartProtConfig;

_Pragma("vector=0x43") __near_func __interrupt void DMA_ISR(void);
_Pragma("vector=0x43") __near_func __interrupt void DMA_ISR(void) {
 IRCON &= ~0x01;

 if (DMAIRQ & 0x02) {
 DMAIRQ &= ~0x02;

 // Here the application could typically perform a quick preparation of
 // the allocated UART TX source buffer before starting another UART TX
 // session.

 // Recommendation:
 // Introduce delay here to allow receiver processing between DMA packets.
 // The applied delay should then be tuned according to UART data rate.

 DMAARM |= 0x02;

 if (uartProtConfig.uartNum == 0) {
 U0DBUF = uartTxBuffer[0];
 } else {
 U1DBUF = uartTxBuffer[0];
 }
 }

}

 Design Note DN112

 SWRA222B Page 27 of 28

5 References

[1] CC1110Fx/CC1111Fx Data Sheet (SWRS033)

[2] CC2510Fx/CC2511Fx Data Sheet (SWRS055)

[3] CC2430 Data Sheet (SWRS036)

[4] CC2530 Data Sheet(SWRS081)

[5] UART Communication (Wikipedia - UART)

[6] RS232 Signaling (Wikipedia - RS232 Signaling)

[7] RS232 Serial Cables (Wikipedia - RS232 Serial Cables)

http://www.ti.com/lit/SWRS033
http://www.ti.com/lit/SWRS055
http://www.ti.com/lit/SWRS036
http://focus.ti.com/lit/ds/swrs081a/swrs081a.pdf
http://en.wikipedia.org/wiki/UART
http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/Serial_Cable

 Design Note DN112

 SWRA222B Page 28 of 28

6 General Information

6.1 Document History

Revision Date Description/Changes
SWRA222B 2009.06.30 Updated for CC2530 and CC2531.
SWRA222A 2008.09.26 Corrected name+contents of UART protocol initialization structure;

replaced UART_PROT_DESC with UART_PROT_CONFIG.
SWRA222 2008.08.13 Initial release.

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/broadband
http://dsp.ti.com
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/military
http://logic.ti.com
http://www.ti.com/opticalnetwork
http://power.ti.com
http://www.ti.com/security
http://microcontroller.ti.com
http://www.ti.com/telephony
http://www.ti-rfid.com
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

	1 Introduction
	2 Abbreviations
	3 Scope
	4 Using the USART Peripheral in UART Mode
	4.1 Mapping the USART Peripheral in UART Mode
	4.1.1 Mapping the UART to the SoC I/O
	4.1.2 Interfacing the UART with the SmartRF(04EB
	4.1.3 Setting up the UART Protocol
	4.1.3.1 UART Frame and Flow
	4.1.3.2 UART Baud Rate Generation/Initialization
	4.1.3.3 Initialization of the UART protocol (Start/Stop bit, Data bits, Parity Control, Flow Control)

	4.2 Using the UART without DMA Support
	4.2.1 Processing UART Communication using UART Polling
	4.2.1.1 UART TX Processing using UART Polling
	4.2.1.2 UART RX processing using UART Polling

	4.2.2 Processing UART Communication using UART ISR
	4.2.2.1 UART TX Processing using UART ISR
	4.2.2.2 UART RX Processing using UART ISR

	4.3 Using the UART with DMA Support
	4.3.1 Allocating DMA Descriptor for UART RX/TX
	4.3.2 Processing UART Communication with DMA Support

	5 References
	6 General Information
	6.1 Document History

