

Module 12
Lab 12: DC motors

 Lab: DC motors

 2 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP187

12.0 Objectives

The purpose of this lab is to build the electronics needed to spin the motors. The
hardware interface includes an H-bridge motor driver using the TI DRV8838
driver that allows the software to spin each motor forward or backward. The
software can vary the electrical power delivered to each motor using pulse
width modulation (PWM). In this module,

1. You will learn the electromagnetic aspects of the motor.
2. You will attach the motors and wheels to the robot.
3. You will use the driver board to interface the motors to the

microcontroller.
4. You will measure the voltage and current to the motors.
5. You will perform an analysis of the behavior of the motor, plotting motor

speed versus duty cycle.

Good to Know: Even though you will measure motor speed as a function of duty

cycle, this relationship depends on many factors that can change over time, such
as motor efficiency, battery voltage, voltage drop in the H-bridge, mechanical
forces, and friction. For all practical purposes, without sensors, the software
can only choose to go faster or to go slower, but it cannot set the motor speed.
On this robot, there are two motors in differential drive configuration. This means
even the simplest operation such as moving in a straight line will require sensor
feedback. There are three such sensors available in this course: the line
sensor (Module 6), the IR distance sensors (Module 15), and the tachometer
(Module 16).

12.1 Getting Started

12.1.1 Software Starter Projects

Look at these two projects:
Lab09_SysTick (your solution to Lab 9)
Lab12_Motors (starter project for this lab)

Note: Please do not use the voltmeter, oscilloscope or logic analyzer created by

TExaS for this lab. Voltages applied to inputs of the MSP432 must remain
between 0 and 3.3V. Voltages outside this range will damage the MSP432.

12.1.2 Student Resources (in datasheet directory)

 MotorDriverPowerDistribution.pdf Data sheet for power board
 Pololu Romi Chassis User’s Guide.pdf How to build the robot
 drv8838.pdf Data sheet for the H-bridge driver

12.1.3 Reading Materials

Volume 1 Sections 8.1, 8.6, and 8.7
Embedded Systems: Introduction to the MSP432 Microcontroller",
or
Volume 2 Sections 1.4 and 6.5
Embedded Systems: Real-Time Interfacing to the MSP432 Microcontroller"

Read the specifications on the Motor Driver and Power Distribution board
website https://www.pololu.com/product/3543
https://www.pololu.com/docs/0J68

12.1.4 Components needed for this lab

Quantity Description Manufacturer Mfg P/N

1
MSP-EXP432P401R
LaunchPad

TI MSP-EXP432P401R

1
Romi Chassis Kit -
Red

Pololu 3502

1

Motor Driver and
Power Distribution
Board for Romi

Pololu 3543

1

Romi Encoder Pair
Kit, 12 CPR*
(optional)

Pololu 3542

2

Rechargeable
Battery, Pack of 4,
Metal Hydride 1300
mAh, 1.2V, AA

Energizer 626831

4
1.375in 4-40 Nylon
standoff

Keystone 4809

2
0.187in 4-40 metal
nut

Keystone 4694

6
0.5in 4-40 Nylon
machine screw

Pololu 1962

12.1.5 Lab equipment needed

Oscilloscope (one or two channels at least 10 kHz sampling)

 Lab: DC motors

 3 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP187

Voltmeter, ohmmeter, and current meter

12.2 System Design Requirements

The goal of this lab is to place the motors and wheels on the robot and configure
the motor control board so the software can control the two motors. The Motor
Driver and Power Distribution Board (MDPDB) used in Module 5 lab also

includes two H-bridge drivers (TI DRV8838) that provide the voltage and current
needed to spin the motors.

First, you will mechanically build, and then electrically connect the two motors,
two wheels, the caster, and the MDPDB. Six control signals will be connected
from the microcontroller to the MDPDB so the software can control both motors

{forward, stop, reverse}. Furthermore, you will use the PWM software from Lab 9
to adjust the delivered power to the two wheels.

The second part of this lab is to study the behavior of the motor. You will
measure voltage (volts), current (amps), average power (watts), and rotational
speed (rpm) of the DC motor as a function of duty cycle.

The outcome of this lab is to build a system that drives in more or less a straight
line until one of the bump sensors detects a collision.

12.3 Experiment set-up

The first step is to read the data sheet for the Romi chassis, and follow the
directions on https://www.pololu.com/docs/0J68/all to connect the two wheels,

caster, two motors, and motor board per instructions to the Romi chassis. Figure
1 shows some of the parts needed for the robot.

Note A: If you do not intend to buy and build the tachometer, labeled as Encoder

in Figure 1 (used in Lab 16 with the Romi Encoder Pair Kit, 12 CPR

https://www.pololu.com/product/3542), then you will solder four wires from

the two motors to the motor board (MR+, MR-, ML+, ML-).

Figure 1. Parts needed to build the motor system.

Next, you will connect six wires from the MDPDB to the LaunchPad. Since these

signals are on the regular LaunchPad connectors, you can use either male or
female wires on the LaunchPad side (the robots in the figures use female
connectors). Figure 2 shows a possible interface circuit. On the MDPDB side you
can solder wires directly, or solder a male header into the MDPDB and use

female-female cables, see Figure 3. Refer to the data sheet of the DRV8838 to
see how the software output values to these six signals affect motor behavior.

Motor

Clip

Encoder (Note A)

https://www.pololu.com/product/3542

 Lab: DC motors

 4 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP187

Figure 2. Interface circuit.

LaunchPad MDPDB DRV8838 Description

P1.6 DIRR PH Right Motor Direction

P3.6 nSLPR nSLEEP Right Motor Sleep

P2.6 PWMR EN Right Motor PWM

P1.7 DIRL PH Left Motor Direction

P3.7 nSLPL nSLEEP Left Motor Sleep

P2.7 PWML EN Left Motor PWM

Figure 3. Motor Driver and Power Distribution Board for Romi Chassis. Refer
back to Module 5 for power and ground connections. See instructions for Romi
chassis for how to connect motors and encoders to the board.

Figure 4 shows a partially completed wheel assembly, and Figure 5 shows one
completed wheel assembly.

Warning: Disconnect the VREG↔+5V wire when the LaunchPad USB cable is

connected to the PC. Connect the VREG↔+5V wire when the robot is running on
battery power. This way the motors always get power from the batteries, and
never get power from the USB.

P1.6
P3.6

P2.6
P3.7

P1.7
P2.7

Note A
Note A

 Lab: DC motors

 5 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP187

Figure 4. Partially completed wheel assembly.

Figure 5. Completed wheel assembly.

12.4 System Development Plan
12.4.1 Low-level software driver

You will start with creating a suite of software functions that control the two
wheels on the robot. The frequency of the PWM signal sent to both motors
should be 100 Hz (10ms). In this lab, we will keep the duty cycle the same for
both motors as well. In the next module, we will use the hardware timer so each
motor will have its own duty cycle. To stop the motors you will stop the PWM and
set the nSleep signal to 0. Use the simple approach of Lab 9 to create the PWM
signals. The prototypes for the driver are:

void Motor_InitSimple(void);

 Initializes the 6 GPIO lines and puts driver to sleep
 Returns right away

void Motor_StopSimple(void);

 Stops both motors, puts driver to sleep
 Returns right away

void Motor_ForwardSimple(uint16_t duty, uint32_t time)
 Drives both motors forward at duty (100 to 9900)

Runs for time duration (units=10ms), and then stops

Stop the motors and return if any bumper switch is active
 Returns after time*10ms or if a bumper switch is hit

void Motor_BackwardSimple(uint16_t duty, uint32_t time)
 Drives both motors backward at duty (100 to 9900)

Runs for time duration (units=10ms), and then stops

Stop the motors and return if any bumper switch is active
 Returns after time*10ms or if a bumper switch is hit

void Motor_LeftSimple(uint16_t duty, uint32_t time)
 Drives just the left motor forward at duty (100 to 9900)

 Right motor is stopped (sleeping)
Runs for time duration (units=10ms), and then stops

Stop the motor and return if any bumper switch is active
 Returns after time*10ms or if a bumper switch is hit

void Motor_RightSimple(uint16_t duty, uint32_t time)
 Drives just the right motor forward at duty (100 to 9900)

 Left motor is stopped (sleeping)
Runs for time duration (units=10ms), and then stops

Stop the motor and return if any bumper switch is active
 Returns after time*10ms or if a bumper switch is hit

 Lab: DC motors

 6 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP187

12.4.2 Control of the motor

In this part of the lab you will implement the functions to test the motors. Place
voltmeters on the VM line (+7.2) and on VREG line (+5V) the first time you power
up the wheeled robot. Place the robot on blocks, so the wheels do not touch the
ground, and test the low-level motor functions, using a program like
Program12_1. This allows the motors to spin without the robot moving. With the

wheels off the ground, there will be minimal friction, the fastest rotation, and the
smallest current.

// Driver test

void Pause(void){

 while(LaunchPad_Input()==0); // wait for touch

 while(LaunchPad_Input()); // wait for release

}

int Program12_1(void){

 Clock_Init48MHz();

 LaunchPad_Init(); // built-in switches and LEDs

 Bump_Init(); // bump switches

 Motor_InitSimple(); // your function

 while(1){

 Pause();

 Motor_ForwardSimple(5000,2000); // your function

 Pause();

 Motor_BackwardSimple(5000,2000); // your function

 Pause();

 Motor_LeftSimple(5000,2000); // your function

 Pause();

 Motor_RightSimple(5000,2000); // your function

 }

}

Use an oscilloscope to observe the motor signals motor board (MR+, MR-, ML+,
ML-) during operation. You should see voltage versus time. The voltage
difference between MR+ and MR- is the applied voltage to the motor.

Note: As mentioned in Lab 9, using software delays to create PWM consumes all

of the processor time. In the next module, we will use the hardware timers on the
microcontroller to create the two PWM outputs. In this way, software needs to
execute only when it wishes to change the duty cycle or change direction.

12.4.3 Behavior

From an electrical standpoint the motor has three components, resistance
(caused by the long wires), inductance (caused by the coiled wires) and electro
motive force (emf -voltage caused by the coupling between mechanical and
electrical forces). Begin by measuring the resistance of the motor when all power
is turned off and the motor is not spinning. Let R be this static resistance.
Assuming a voltage of 7V, use Ohm’s Law to calculate the expected current.

In this section, you will measure actual voltage (V in volts), current (I in amps),
and speed (s in rpm) as a function of the duty parameter (2000 to 8000). If you

place the robot on blocks and attach string/yard/tape to a wheel you can both see
and hear the wheel turn. First you will use a stopwatch to count the number of
rotations in a fixed time (e.g., 60 seconds).

There are two approaches to measuring motor current (I). One approach is to

remove the batteries and connect a bench supply (which allows you to set the
voltage to 7.2V and measure the current) to power the robot. The second
approach is to place a current meter in the loop between the batteries and the
robot. For example, you can make a 3-layer stack of wire-insulator-wire, and
place this stack between the contacts in the battery compartment. You then can
place the current meter on the two wires. You can measure motor voltage (V)

with the oscilloscope and verify which duty cycle is active. You will first measure
current to the robot with the motors stopped, and then you will measure voltage,
current, speed required to spin one motor. The difference in these two current
measurements is the current to the motor. You can use a program like
Program12_2 to collect data.

// Voltage current and speed as a function of duty cycle

int Program12_2(void){ uint16_t duty;

 Clock_Init48MHz();

 LaunchPad_Init(); // built-in switches and LEDs

 Bump_Init(); // bump switches

 Motor_InitSimple(); // initialization

 while(1){

 for(duty=2000; duty<=8000; duty=duty+2000){

 Motor_StopSimple(); // measure current

 Pause();

 Motor_LeftSimple(duty,6000); // measure current

 }

 }

}

 Lab: DC motors

 7 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP187

Make a table and graphs of voltage, current, power, emf, and speed as a function
of duty cycle. Calculate emf as

 emf = V – I*R

where V is the measured motor voltage, I is the measured motor current, and R

is the static resistance of the motor. Under normal operating conditions, emf will
be negative, meaning it draws more current than predicted using the static
resistance. Calculate power as

 P = V * I * duty/10000

Describe the general behavior of the motor.

Perform a maximum speed test using Program12_3. First measure the rotational

speed of the motors when the robot is on blocks, and then repeat the
measurement when the robot is on the ground.

int Program12_3(void){

 Clock_Init48MHz();

 LaunchPad_Init(); // built-in switches and LEDs

 Bump_Init(); // bump switches

 Motor_InitSimple(); // initialization

 while(1){

 Pause();

 Motor_ForwardSimple (9900,1500); // max speed 15 s

 }

}

12.5 Troubleshooting

Motors not do spin or gets hot:

• Remove power and double check the connections.
• Review steps in Lab 5.
• Recharge the batteries.
• Verify the six signals from the LaunchPad to the motor board using a

voltmeter, an oscilloscope or a logic analyzer.

One motor spins faster than the other:

• It is normal for the motor speeds to be ±20% of each other
• Check for friction on the slower motor

12.6 Things to think about

In this section, we list thought questions to consider after completing this lab.
These questions are meant to test your understanding of the concepts in this lab.
The goal of this module is for you to experience voltage, current, and power as
they relate to DC motors.

• How does friction affect motor current?
• In this lab, we do not set the speed or the current. Rather, we set just

the voltage and duty cycle. Why is it difficult in this lab for the robot to go
straight?

• How does the two H-bridges allow the robot to turn, to back up?
• How does the software adjust power delivered to the motors?
• In what two ways could software cause the robot to turn?

12.7 Additional challenges

In this section, we list additional activities you could do to further explore the
concepts of this module. For example,

• If you do not have the Pololu motor board, you could build your own H-
bridge circuits to control the motors on the robot. In particular, you could
build two H-bridges described in lecture using the L293. If you build your
own H-bridge please test it before attaching the motors and before
attaching the microcontroller.

• An impossible challenge would be to try to write software that makes the
robot travel in a square pattern. Basically, repeat this two-step process:
1) go straight for a fixed amount of time; 2) turn left 90 degrees. It will
not be possible. However, it will be instructive to determine why the
effort fails.

 Lab: DC motors

 8 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP187

12.8 Which modules are next?

There are two major limitations to the robot conceived in this lab. 1) the software
consumes all the processor time, and 2) the speed of the motors depends on
many factors most of which cannot be predicted in advance. Over the remaining
labs we will solve these limitations.

Module 13) Use timers to create PWM signals, and use interrupts to

manage multiple software tasks
Module 15) Use the ADC to interface distance sensors. Two distance

sensors can be used to drive the robot at a fixed distance and fixed
angle to the wall.

Module 16) Interface tachometers (Romi Encoder Pair Kit) and use timer capture
to measure the speeds of each wheel directly.

Module 17) Combine modules 12, 13, and 16 to create a control system that
does spin the motors at a desired speed.

12.9 Things you should have learned

In this section, we review the important concepts you should have learned in
this module:

• Understand voltage, current, and power to a motor.
• Be able to use PWM output to adjust power to the motors.
• Understand basic operation and purpose of an H-bridge.
• Know how to write and test a low-level software driver.

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

