

Module 18
Lab: Serial Communication

Lab: Serial Communication

 2 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP217

18.0 Objectives

The purpose of this lab is to develop an interrupt-driven software driver for the
UART on the MSP432. In this module,

1. You will develop first in first out (FIFO) queues to stream data between
foreground and background.

2. You will evaluate the performance of an interrupting UART driver.
3. You will design, develop, and test a command interpreter that can be

used for the robot system.

Good to Know: Complex systems have a lot interweaved components.

Streaming data from one module to another requires synchronization. FIFO
queues are an effective mechanism to stream data without need to tightly couple
execution of the two modules.

18.1 Getting Started
18.1.1 Software Starter Projects

Look at these two projects:
UART (busy-wait solution of the UART interface)
Lab18_UART (starter project for this lab)

18.1.2 Student Resources (in datasheets directory-Links)

 MSP432P4xx Technical Reference Manual, Timer_A (SLAU356)
 MSP432P401R Datasheet, msp432p401m.pdf (SLAS826)

18.1.3 Reading Materials

Volume 1 Sections 4.5, 8.2, 11.3, and 11.4
“Embedded Systems: Introduction to the MSP432 Microcontroller",
or
Volume 2 Sections 3.4, 3.7, 4.9, and 5.6
“Embedded Systems: Real-Time Interfacing to the MSP432 Microcontroller"

18.1.4 Components needed for this lab

Quantity Description Manufacturer Mfg P/N

1
MSP-EXP432P401R
LaunchPad

TI MSP-EXP432P401R

In addition to the LaunchPad, you will use any of the robot features you have
available to design a command interpreter.

18.1.5 Lab equipment needed

None

18.2 System Design Requirements
The goal of this lab is develop an interrupt-driven UART driver and use it to
implement a command interpreter for the robot.

Note: When using the UART as a debugging mechanism, the time to execute
functions like EUSCIA0_OutUDec and EUSCIA0_OutString determine the

intrusiveness of the debugging output. With an interrupt-driven UART driver, if
the FIFO queue is large enough and if the output rate is low enough, the FIFO
never fills. If the FIFO never fills, no data is lost and the time to execute the
output functions will be very short.

More specifically, you will develop two FIFO queues needed for the UART serial
port driver. The TxFifo0 streams output data from the main program to the UART
ISR, and the RxFifo0 streams input data from the UART ISR to the main
program. You will find the prototypes in the header file FIFO0.h. Each FIFO has
a buffer in permanent memory. The Init function initializes the FIFO, making it
empty. The Put function stores data into the FIFO, and the Get function removes

data from the FIFO. The FIFO preserves order; in other words, the order of data
removed from the FIFO matches the order in which data is put. A buffer with 64
entries can contain 0 to 63 data items. Not allowing 64 items simplifies the
distinction between empty (no items) and full (63 items). If the FIFO is full at the
beginning of Put, the function returns with a full error. If the FIFO is empty at the
beginning of Get, the function returns with an empty error.

The second requirement is to write an interpreter. The input comes from the
keyboard, when running a terminal emulator like TExaSdisplay or PuTTy. Feel
free to create your own syntax and list of commands. For example

If you type then the robot does

Stop The robot stops

Go The robot goes straight

Back The robot backs up

Left The robot turns left

Right The robot turns right

Slow Set duty cycle to 2500

Fast Set duty cycle to 7500

Sensor Read and display sensor values

Lab: Serial Communication

 3 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP217

18.3 Experiment set-up
The UART data is streamed along the USB debugging cable. Therefore, the USB
cable must be connected from robot to PC during this lab.

18.4 System Development Plan
18.4.1 Develop and test the FIFO queue

Implement the four FIFO functions that will be used to stream transmit data from
the foreground to the UART ISR: TxFifo0_Init, TxFifo0_Put,
TxFifo0_Get, and TxFifo0_Size. These functions can be tested with Program
18_1. In this test, the main program calls Put and the ISR calls Get. The data

should be streamed in sequence and the FIFO never fills.

char WriteData,ReadData;

uint32_t NumSuccess,NumErrors;

void TestFifo(void){char data;

 while(TxFifo0_Get(&data)==FIFOSUCCESS){

 if(ReadData==data){

 ReadData = (ReadData+1)&0x7F; // in sequence

 NumSuccess++;

 }else{

 ReadData = data; // restart

 NumErrors++;

 }

 }

}

uint32_t Size;

int Program18_1(void){ // NumErrors should be zero

 uint32_t i;

 Clock_Init48MHz();

 WriteData = ReadData = 0;

 NumSuccess = NumErrors = 0;

 TxFifo0_Init();

 TimerA1_Init(&TestFifo,43); // 83us, = 12kHz

 EnableInterrupts();

 while(1){

 Size = Random(); // 0 to 31

 for(i=0;i<Size;i++){

 TxFifo0_Put(WriteData);

 WriteData = (WriteData+1)&0x7F; // in sequence

 }

 Clock_Delay1ms(10);

 }

}

Note: We recommend you do not maintain a counter containing the number of

items in the FIFO. Incrementing in counter during Put and decrementing the
counter during Get will create a critical section when the two functions are used
in a multithreaded system.

18.4.2 Performance measurements of OutString

The objective this section is to compare the busy-wait with interrupt driver. In
both systems, strings of random size will be transmitted. The time to execute
OutString is measured with SysTick. Since both versions have the same 115200
bits/sec baud rate, the actual time to perform the output will be identical.
However, you will see how much shorter the execution time for the interrupt-
driven version of OutString is as compared to the busy-wait version.

Compile and run Program18_2. Record the MaxTime, which is in usec.

char String[64];

uint32_t MaxTime,First,Elapsed;

int Program18_2(void){ // busy-wait OutString

 uint32_t i;

 DisableInterrupts();

 Clock_Init48MHz();

 UART0_Init();

 WriteData = 'a';

 SysTick_Init();

 MaxTime = 0;

 while(1){

 Size = Random(); // 0 to 31

 for(i=0;i<Size;i++){

 String[i] = WriteData;

 WriteData++;

 if(WriteData == 'z') WriteData = 'a';

 }

 String[i] = 0; // null termination

 First = SysTick->VAL;

 UART0_OutString(String);

 Elapsed = ((First - SysTick->VAL)&0xFFFFFF)/48;

 if(Elapsed > MaxTime){

 MaxTime = Elapsed;

 }

 UART0_OutChar(CR);UART0_OutChar(LF);

 Clock_Delay1ms(100);

 }

}

Lab: Serial Communication

 4 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP217

In a similar manner, compile and run Program18_3. This is essentially the same
system, except the interrupt-driven version of OutString is used. Again, record
the MaxTime. Because the FIFO never fills, the call to the OutString executes
very quickly. Notice in FIFO0.c, each call to TxFifo0_Put, will measure FIFO size

and implement a histogram. This histogram is a probability mass function (PMF),
which counts the number of times each FIFO size has occurred. In the debugger,
observe the contents of this histogram. You can use this measurement to predict
maximum number of elements in the FIFO.

 Note: There is an entire mathematical discipline called Queuing Theory.

Central to this theory is the collection and interpretation of FIFO queue size data.

18.4.3 Create the second FIFO

Once you have fully debugged your TxFifo0, copy/paste this code to implement
the RxFifo0. Program 18_4 can be used to test both serial input and output.

18.4.4 Develop and test the interpreter

Write the main program that implements the interpreter. Feel free to adjust
number of commands and the exact syntax of your interpreter. The purpose of
the interpreter is to assist in solving the robot challenge.

One way to implement a command interpreter is to create a table that maps
command name to the command function. For example this structure holds a
string and a function pointer.

typedef struct {

 char CmdName[8]; // name of command

 void (*fnctPt)(void); // to execute this command

}Cmd_t;

const Cmd_t Table[8]={

{ "Stop", &doStop},

{ "Go", &doGo},

{ "Back", &doBack},

{ "Left", &doLeft},

{ "Right", &doFast},

{ "Slow", &doSlow},

{ "Fast", &doFast},

{ "Sensor", &goSensor}};

where doStop, doGo, … etc are void-void functions that actually perform the

associated commands. The interpreter reads a string by calling

EUSCIA0_InString, and then searches the table for a match. If a match is found

it executes the corresponding function.

18.5 Troubleshooting
There is no serial output:

• Run the UART project. It outputs at 115200 bps.
• There are two COM ports associated with the MSP432, use the lower

number.

Can’t open a COM port to the MSP432:

• Check the device manager for the COM port number.
• Sometimes CCS opens the COM port, preventing TExaSdisplay or

PuTTy from access. Close CCS, unplug MSP432, plug in MSP432, start
TExaSdisplay or PuTTy, open the COM port, and then start CCS.

TxFifo or RxFifo occasionally lose data:

• Make sure the FIFO properly handles empty on Get and full on Put.
• Make sure Put and Get do not write to the same shared global. This will

cause a critical section. It is ok for Get to write to a global that Put
reads. It is ok for Put to write to a global that Get reads.

Program 18_4 does not work:

• Retest the FIFO queues.

Lab: Serial Communication

 5 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP217

18.6 Things to think about

In this section, we list thought questions to consider after completing this lab.
These questions are meant to test your understanding of the concepts in this lab.
The goal of this module is for you to understand FIFO queues and their use in
streaming data between threads.

• Consider an output channel that uses EUSCIA0_OutString. What does
it mean if the TxFifo0 is usually empty?

• Consider an output channel that uses EUSCIA0_OutString. What does
it mean if the TxFifo0 is usually full?

• Consider an input channel that uses EUSCIA0_InString. What does it
mean if the RxFifo0 is usually empty?

• Consider an input channel that uses EUSCIA0_InString. What does it
mean if the RxFifo0 is usually full?

• Assume you are streaming data between threads using a FIFO queue.
You measure FIFO size periodically and calculate average FIFO size.
Let N be the average number of elements in the FIFO (in characters).

Assume you knew , the average rate at which data are sent (in
characters/sec). Use Little’s Law to estimate the average response
time, which is how long data spends in the queue waiting to be sent.

18.7 Additional challenges

In this section, we list additional activities you could do to further explore the
concepts of this module. For example,

• Run Program 18_3 with and without the histogram in order to estimate
the overhead required to maintain the histogram.

• Implement the TxFifo0 in a second way (e.g., pointer and index). Use
Program 18_3 to estimate the relative speed of the two methods.

• Learn about Kahn Process Networks (KPN). These networks use
queues, and have a rich theory as long as none of the queues become
full.

18.8 Which modules are next?
After this module, you are ready to solve any of the robot design challenges. If
you wish to extend your robot to include wireless communication you have two
options:

Module 19) Add Bluetooth functionality.
Module 20) Add Wifi functionality.

18.9 Things you should have learned

In this section, we review the important concepts you should have learned in this
module:

• Understand how the FIFO queue allows you stream data between
threads on a complex system.

• Know how a PMF can be used to describe the behavior of a queue.
• Know how to use FIFO queues such that the queues never become full.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

