

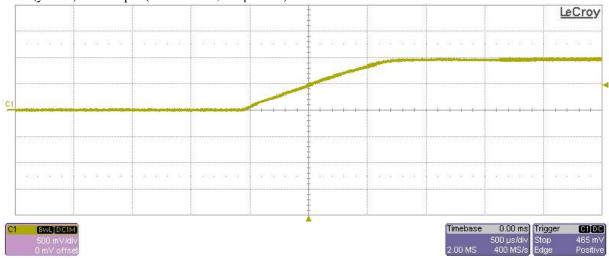
PMP10770 TPS53219 Test Report

11/4/2014

The following test report is for the PMP10770 TPS53219:

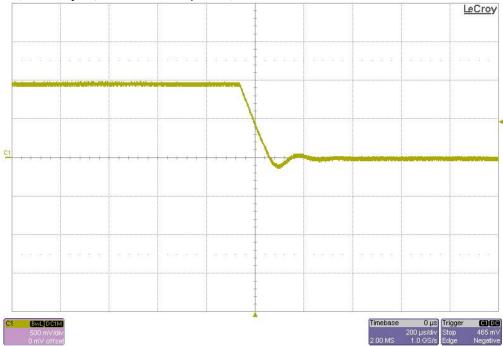
VIN = 12V (10-14V)VOUT = 1V @ 34A

The tests performed were as follows:


- 1. Startup (No load)
- 2. Shutdown ($100 \text{m}\Omega$ load)
- 3. Output Voltage Ripple
 - i. No load at VOUT
 - ii. Full (34A) load at VOUT
- 4. Load Transient
- 5. Switching Waveforms
- 6. Efficiency
- 7. Load Regulation
- 8. Thermal Profile
- 9. EVM Photo

1 Startup

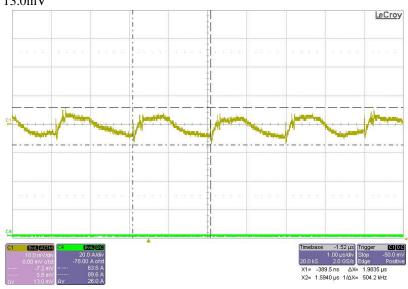
The picture below shows the startup waveform. The input voltage is 12V, the output is not loaded.


Channel 1 (yellow): 1V Output (500mV/DIV, 500µs/DIV)

2 Shutdown

The picture below shows the shutdown waveform. The input voltage is 12V, $100m\Omega$ load.

Channel 1 (yellow): 1V Output (500mV/DIV, 200µs/DIV)

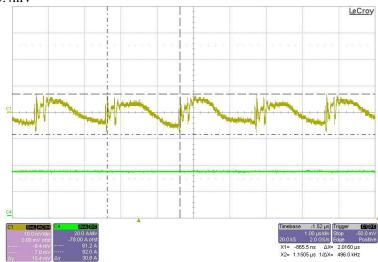

3 Output Voltage Ripple

No Load:

The output voltage ripple is shown in the figure below. The input is 12V. The output voltage is AC coupled.

Channel 1 (yellow): VOUT (10mV/div) Channel 2 (pink): IOUT (20A/div)

Output voltage ripple = 13.0mV

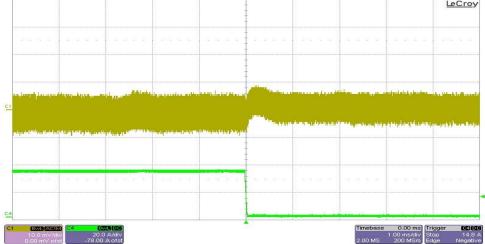


Full Load:

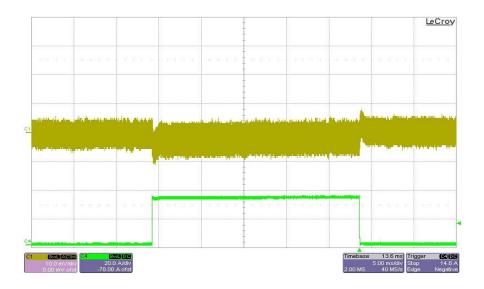
The output voltage ripple is shown in the figure below. The input is 12V. The output voltage is AC coupled.

Channel 1 (yellow): VOUT (10mV/div) Channel 2 (pink): IOUT (20A/div)

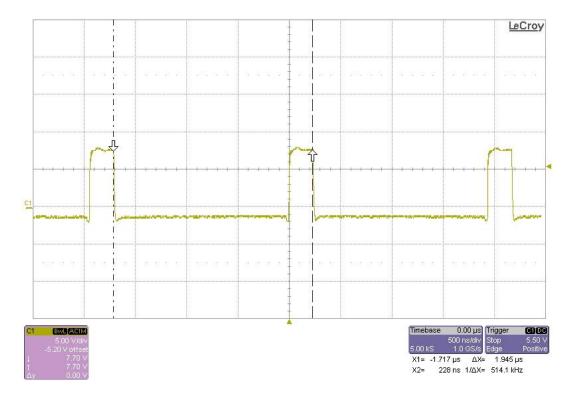
Output voltage ripple = 15.4mV

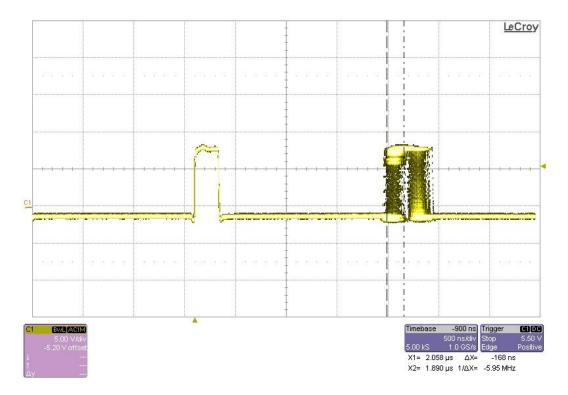


4 Load Transient - VOUT


The transient response is shown in the figure below. The input voltage is 12V. The current is pulsed from 17A to 34A.

Channel 1 (yellow): VOUT (10mV/div) Channel 2 (pink): IOUT (20A/div)




5 Switching Waveforms

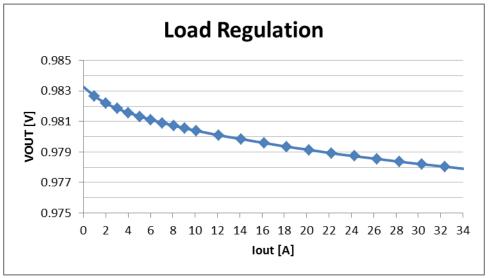
The waveforms below show the switch node, and the switch node jitter measured with analog persistence on the oscilloscope. The input is 10V. The output is fully loaded to 34A.

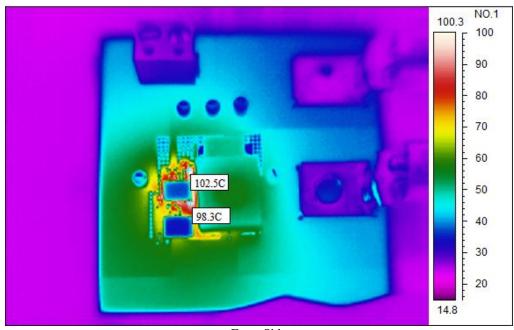
 $Fsw = \sim 514kHz$



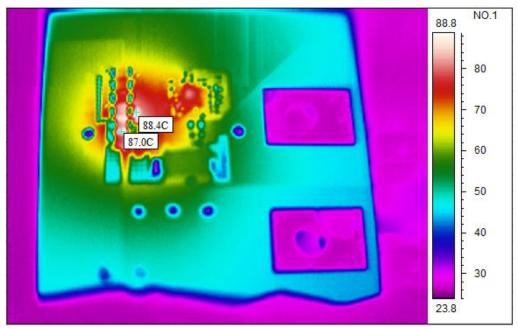
 $t_jitter = \sim 170ns$

6 Efficiency – VOUT


VIN	IVIN	ILOAD	VOUT	EFFI%
11.99936	0.07113	-0.00034	0.983267	0.039054
11.99936	0.164729	0.993558	0.98266	49.39319
11.99936	0.26538	2.009	0.982188	61.9653
11.99936	0.360297	3.020193	0.981843	68.58957
11.99935	0.452064	4.032751	0.981573	72.97366
11.99934	0.543347	5.04432	0.981327	75.92447
11.99933	0.634652	6.055287	0.981116	78.0122
11.99931	0.725842	7.066141	0.980903	79.58107
11.99929	0.817548	8.076868	0.980736	80.74698
11.99928	0.909691	9.091385	0.98055	81.66783
11.99924	1.001928	10.10141	0.980399	82.3748
11.9992	1.187833	12.12598	0.980096	83.38304
11.99918	1.375323	14.1491	0.979844	84.00977
11.99912	1.564794	16.17411	0.979592	84.3838
11.99905	1.756037	18.19786	0.979347	84.58171
11.999	1.949445	20.22179	0.97914	84.64638
11.99897	2.145246	22.24577	0.978916	84.60029
11.99889	2.343457	24.2704	0.978727	84.47739
11.99883	2.544085	26.29232	0.978548	84.2831
11.99876	2.74792	28.31807	0.978363	84.0278
11.9987	2.954574	30.34138	0.978194	83.72036
11.99863	3.164311	32.36531	0.978043	83.37325
11.99856	3.378316	34.39263	0.977873	82.9695

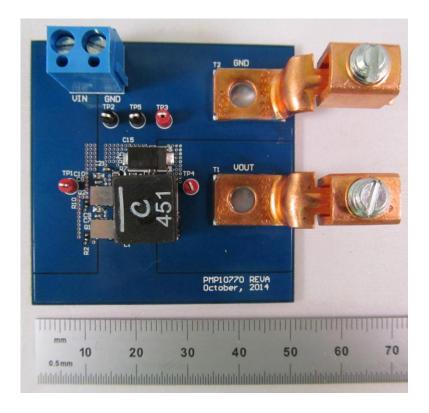

7 Load Regulation

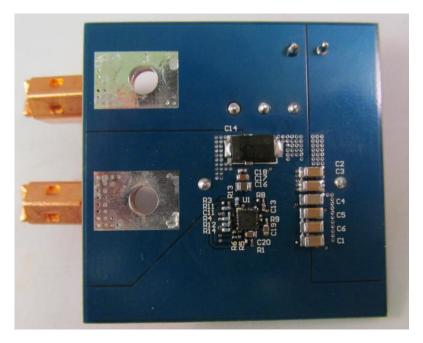
A plot of the load regulation at VOUT is shown in the figure below. The load regulation is plotted vs load current for VIN = 12V.


8 Thermal Profile

The figures below show the thermal profile of the board at max VOUT load (34A) with 400LFM of airflow.

Front Side Max Temp = 102.5C




Back Side of EVM Max Temp = 88.4C

9 EVM Photo

Front Side of EVM

Back Side of EVM

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated