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TI Designs
Fluxgate Magnetic Current Sensing With High Linearity for
Three-Phase Inverters Reference Design

Description
This TI Design provides a reference solution for
accuracy, high linearity, and the galvanic isolation
required for current measurement in three-phase
inverters using closed-loop fluxgate magnetic current
sensors. The sensor consists of a magnetic core with
compensation winding interfaced to driver IC with a
built-in fluxgate sensor. The design provides a pseudo-
differential output with an option to connect to 3.3-V or
5-V analog-to-digital converters (ADCs). A hardware
circuit for overcurrent and ground fault detection
enables overcurrent protection of power switches.

Resources

TIDA-00905 Design Folder
DRV421 Product Folder
TLV1117-33 Product Folder
TLC372 Product Folder

ASK Our E2E Experts

Features
• Accurately Measures Three-Phase Inverter

Currents Up to 50 ARMS (Nominal) and 150 A
(Maximum)

• 200-kHz Bandwidth, Closed-loop Current Sensing
Using Magnetic Module and Fluxgate Sensor
(DRV421) to Enable Low Propagation Delay in
Current Measurement

• Calibrated Current Measurement Accuracy of ±1%
(Typical) Across Temperature Ranges from –25°C
to +85°C

• Hardware Based Overload and Ground Fault
Detection Enables Fast Response for Protection of
Power Switches

Applications
• AC Inverter and VF Drives
• Three-Phase UPS
• Solar Inverters

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other
important disclaimers and information.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUC14A
http://www.ti.com/tool/TIDA-00905
http://www.ti.com/product/DRV421
http://www.ti.com/product/TLV1117-33
http://www.ti.com/product/TLC372
http://e2e.ti.com
http://e2e.ti.com/support/applications/ti_designs/
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1 System Overview

1.1 System Description
Current measurement is an inherent part of any inverter-driven application. An important reason for
measuring the motor current is to perform a control algorithm. Vector control and direct torque control
require current sensing for control purposes. Information of motor parameters is also important for several
control schemes. Stator current measurement is used to estimate motor parameters. Current
measurement is also used for hardware overload and earth fault protection.

The output rating of the inverter must be derated while operating at a higher temperature. The higher
temperature could be a result of increased ambient temperature, a faulty fan, or obstructions in the cooling
path. In those scenarios, current measurement helps in derating the inverter current to keep the power
devices within permissible operating temperatures.

The motor current can be measured at different locations in the inverter. Figure 1 shows the overview of
usual measurement locations, considering a three-phase inverter for a motor control application. In
Figure 1:
• A is the current measurement in the DC- and DC+ link.
• B is the current measurement in the bottom-side emitter path of each half bridge.
• C is the current measurement in the output phases.

Figure 1. Current Measuring Locations in Motor Drives

The cheapest variant of current measurement (A) is often used for applications in the lower power range.
Typically, the current measurement is done on the DC- bus; this may be the reference potential of the
microcontroller (MCU) and therefore is not necessary to isolate the signal. Another alternative location of
current measurement (found in the low to medium power range) is variant B. Using variant B, the current
is measured at the emitter of the bottom IGBT of each arm in a three-phase inverter.

It is possible to dispense with a third current measurement; this can be derived by calculation based on
the two measured current signals. The advantage of this measurement method is similar to variant A; the
negative section of the DC-bus can be taken as the common reference potential. However, the
disadvantage is the increased stray inductance. In high dynamic drives and high-power applications,
current is usually measured in the output phases of the inverter (variant C in Figure 1). The third current
sensor is not necessary in this case either.

The objective of the TIDA-00905 design is to provide a reference solution for accurate current
measurement (variant C) using closed-loop fluxgate magnetic current sensors. TIDA-00905 consists of a
magnetic core with compensation winding interfaced to a driver IC with a built-in fluxgate sensor. This TI
Design provides an analog output to interface with a 3.3-V or 5-V ADC and hardware circuit for fast
detection of overcurrent and ground fault events in a three-phase inverter.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUC14A
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1.2 Block Diagram
Figure 2 shows the TIDA-00905 block diagram. The design uses three devices from Texas Instruments.

Figure 2. TIDA-00905 Block Diagram

NOTE: Figure 2 shows only one of three channels.

At DC and in the low-frequency range, the DRV421 fluxgate senses the magnetic field induced by the
primary current. The DRV421 filters the sensed signal and the internal H-bridge driver generates a
proportional compensation current. The compensation current flows through the compensation coil and
generates a magnetic field. The magnetic field drives the original magnetic flux in the core back to zero.
The value of this magnetic field is increased by the number of compensation coil windings.

At higher frequencies, the magnetic field induced by the primary current directly couples into the
compensation coil and generates a current. The low impedance of the H-bridge driver does not influence
the value of this current. Also in this case, the value of the compensation current is the value of the
primary current divided by the number of compensation coil windings. In either case, the compensation
current passes through a shunt resistor (RSHUNT). The voltage across RSHUNT is tapped and given to the
differential amplifier integrated inside of the DRV421. The output of the DRV421 is a pseudo-differential
output where the current is proportional to the difference of VOUT and VREF.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUC14A
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A low-dropout (LDO) voltage regulator (TLV1117-33) at the input-to-board is provided to power DRV421
with 3.3 V when interfacing with a 3.3-V MCU. This LDO can be bypassed by using a jumper setting when
the LDO is not required.

The over current and ground fault protection feature is provide using window comparator using TLC372.
The overcurrent thresholds can be set by a potential divider. The ground fault detection circuit is based on
the principle that the sum of instantaneous three-phase currents should be zero in a balanced load or
motor. The ground fault detection circuit averages the VOUT for the three measuring channels. The
ground fault is signaled when the current becomes unbalanced beyond a certain threshold value.

1.3 Highlighted Products
This reference design features the following devices from Texas Instruments. For more information on
each of these devices, see their respective product folders at www.ti.com or click on the links for the
product folders on the first page of this reference design.

1.3.1 DRV421
The DRV421 is designed for magnetic closed-loop current sensing solutions, enabling isolated, precise
dc- and ac-current measurements. This device provides a proprietary integrated fluxgate sensor and the
required analog signal conditioning, minimizing the component count and cost. The low offset and drift of
the fluxgate sensor, along with an optimized front-end circuit results in unrivaled measurement precision.
The DRV421 provides all the necessary circuit blocks to drive the current-sensing feedback loop. The
sensor front-end circuit is followed by a filter that can be configured to work with a wide range of magnetic
cores. The integrated 250-mA H-Bridge drives the compensation coil and doubles the current
measurement range (compared to conventional single-ended drive methods). The device also provides a
precision voltage reference and shunt sense amplifier to generate and drive the analog output signal.

1.3.2 TLV1117-33
The TLV1117 device is a positive LDO voltage regulator designed to provide up to 800 mA of output
current. The device is available in 1.5-, 1.8-, 2.5-, 3.3-, and 5-V, and adjustable-output voltage options. All
internal circuitry is designed to operate down to 1-V input-to-output differential. Dropout voltage is
specified at a maximum of 1.3 V at 800 mA, decreasing at lower load currents.

1.3.3 TLC372
This device is fabricated using LinCMOS™ technology and consists of two independent voltage
comparators, each designed to operate from a single power supply. Operation from dual supplies is also
possible if the difference between the two supplies is 2 V to 18 V. Each device features high input
impedance (typically greater than 1012 Ω), allowing direct interfacing with high-impedance sources. The
outputs are N-channel, open-drain configurations and can be connected to achieve positive-logic, wired-
AND relationships.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUC14A
http://www.ti.com/
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2 System Design Theory

2.1 Closed-Loop Sensing

2.1.1 Basic Theory of Closed-Loop Sensing
Closed-loop current transducers use a ferromagnetic core with a magnetic sensor inserted into a gap in
the core. The core picks up the magnetic field created by the current that flows through the primary
winding (IPRIM). The magnetic field is measured by the magnetic sensor and passed on to a signal
conditioning stage for filtering and amplification. The coil driver stage provides current to the compensation
coil, ICOMP, which creates an opposing magnetic field that cancels the effect of the primary current. The
compensation current passes through a shunt resistor RSHUNT creating the differential voltage input for a
precision sense amplifier. The amplifier gains the shunt voltage and drives the output stage of the
transducer. The resulting voltage output, VOUT, is proportional to the current flowing through the primary
winding.

Figure 3. Closed-Loop Sensor Block Diagram

Although Figure 3 shows the primary current passing only once through the magnetic core, the most
general case is a core with a primary winding that consists of NP turns and a secondary winding that
consists of NS turns. The NP and NS turns affect the module output (see Equation 1).

(1)

where
• VOUT is the transducer output
• IPRIM is the primary current to be measured
• NP is the number of turns in the primary winding
• NS is the number of turns in the compensation-coil winding
• RSENSE is the shunt resistor
• GSA is the gain of the sense amplifier

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUC14A
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2.1.2 Integrated Fluxgate Sensor, Signal Conditioning, Coil Driver, and Sense Amplifier
The DRV421 was chosen to minimize the component count and error sources. This IC has an integrated
fluxgate sensor, a compensation coil driver, and a precision differential amplifier for the output stage.

The H-bridge driver stage can provide up to 250 mA to the compensation coil, and the differential amplifier
stage provides a gain of 4 V/V to the shunt resistor.

The fluxgate sensor offset voltage can be removed (along with the core magnetization) by using the
demagnetization feature of the DRV421 (pin DEMAG). The demagnetization feature can be used at
startup or during operation, but care must be taken to ensure the primary current is zero when the core is
demagnetized. Please consult the DRV421 datasheet for further details. Because the DRV421 contains
the fluxgate sensor, signal conditioning, coil driver, and the sense amplifier in a single package, the entire
system shown in Figure 3 is simplified to that shown in Figure 4.

Figure 4. Closed Loop System Using DRV421 With Integrated Fluxgate Sensor

2.1.3 Magnetic Core Selection
The sensor module has a compensation coil and a primary coil. For this TI Design, the SC3113 module
from Sumida was chosen. This module offers a magnetic core with magnetic gain of 500 μT/A, galvanic
isolation tested up to 4.3 kVRMS (50 Hz or 60 Hz for 1 minute), and consists of a 710-turn compensation
coil and a set of four primary conductors. In this design, all four primary conductors are connected in
parallel to yield a single turn for the primary winding (NP) that is capable of carrying the maximum current
from the design objectives.

The resulting secondary current (IS) is 211.3 mA as (see Equation 2) for a primary current of 150 A (IP).

(2)

2.1.4 Shunt Resistor Selection
A shunt resistor placed in series with the compensation winding current path is required to provide a
voltage to the output differential sense amplifier stage. Selecting an appropriate shunt resistor is
dependent on the amount of current that flows through the secondary coil and the gain of the difference
amplifier. The gain of the difference amplifier in the DRV421 is 4 V/V. The maximum voltage across the
shunt must be less than ±625 mV for ±150 A of primary current. The value of Rshunt(max) is calculated in
Equation 3.

(3)

To provide a margin, select a value of 2.2 Ω.

http://www.ti.com
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2.1.5 Sensing Current
Figure 5 shows the schematic of the sensing circuit.

Figure 5. DRV421 and Sumida Magnetic Module SC3113-50

The SC3113-50 is a magnetic module from Sumida that has a primary nominal current (RMS) range of
50 A and measuring (peak) range of ±150 A. With this input current range, the recommended value of the
sense resistor is 2.2 Ω. The primary windings are connected in parallel.

NOTE: The recommended value for the sense resistor (with the SC3113-50) is 2.2 Ω. With this
shunt resistor value and 211.3 mA of compensation current (see Equation 2) the voltage
developed across the shunt resistor is ±211.3 mA × 2.2 Ω = ±465 mV. The output must be
measured between VOUT and REFOUT.

For more details about the gain and reference settings for the DRV421, refer to the datasheet of DRV421.
In this TI Design, pins RSEL0 and RSEL1 are made high to make the REFOUT pin generate a reference
voltage of VDD/2. The high is selected for each of the three measurement channels. R55 and R37 are used
to pull up the RSEL pins. The GSEL0 and GSEL1 pins are made low and high (respectively) by R32 and
R7; this configures the internal AC open-loop gain of the internal integrator to 25.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUC14A
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The REFOUT pin from one measuring channel is used and the three REFIN pins are tied together to this
REFOUT pin. The pins are tied by populating resistors R87 and R86 (Figure 6). Tying the three REFIN
prevents each channel from having a different reference drift with respect to temperature.

Figure 6. Reference Configuration

2.1.6 Demagnetization Feature
An improper startup or a previous high-current situation could cause the magnetic core to become
magnetized, resulting in an offset in the output. The DRV421 provides a feature to demagnetize the core
by pulling up the DEMAG signal. In this TI Design, pulling up the DEMAG signal has be done by the push
button shown in Figure 7. The DEMAG signal must be pulled up for a minimum of 25 µs when there is no
current in the primary conductor. Alternatively, the signal may have been driven at startup by an MCU.

Figure 7. DEMAG Circuit

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUC14A
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2.2 Scale Factor
The scale factor is used to calculate the input current from the output of the DRV421. The calculation is
given below:

The full scale range of the magnetic module is 50 ARMS and the turn ratio is 1:710. That is, the current in
the secondary winding at full scale is 50 A / 710 = 0.0704 ARMS.

The gain of the magnetic module is 0.0704 A / 50 A = 0.0014084 A/A. The Shunt value is 2.2 Ω. That is,
the gain in terms of voltage per input current is 0.0014084 × 2.2 = 0.003098 V/A.

DRV421 shunt voltage scale factor: The scale factor to convert the measured voltage across the shunt to
current in primary is 1 / 0.003098 = 322.72 A/V or 0.3227 A/mV.

Scale factor for output of DRV421: Considering the differential amplifier gives a gain of 4 V/V and the gain
of input fluxgate stage is 0.003098 V/A; combining this, the overall gain is 4 × 0.003098 = 0.01239 V/A

Equation 4 shows the scale factor for the entire signal chain.

(4)

2.3 Overcurrent Detection
The overcurrent event is detected when the VOUT signal from DRV421 exceeds either the upper or lower
threshold. The overcurrent circuit is shown in Figure 8, it comprises of TLC372 in a window comparator
configuration. This circuit is present on all three phases.

Figure 8. Overcurrent Detection Circuit

The thresholds need to be set at ±150 A. In Figure 8, the threshold is set by the potential divider
consisting of resistor R59, R68, and R71. The resistor values were chosen using Equation 5 and
Equation 6.

(5)

(6)
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The difference of the threshold values is ΔVT = 4.3591 – 0.6408 = 3.7183 V. This voltage drop occurs
across resistor R68. ΔVT is given by Equation 7.

(7)

R59 is made equal to R71 to set the threshold equally from the value of VDD / 2.

(8)

VCC is 5 V, and if R68 is selected to be 6.98 KΩ, then R59 and R71 are approximately 1.2 KΩ.

2.4 Ground Fault Detection
In an inverter driving a motor load or a balanced three-phase load, the vector sum of the line currents
should be zero. Any non-zero value indicates an imbalance and presence of some leakage current though
the motor grounding. This fault condition is detected in hardware by averaging the VOUT signal from the
three measurement channels and detecting when it exceeds either a higher or lower threshold. Resistors
R81, R79, and R77 add the VO-U, VO-V, and VO-W signals at the input of the window comparator (these
signal are from the VOUT pin of each DRV421).

Consider the voltage across C31 to be VA, then VA = 1 / 3 × (VO-U + VO-V + VO-W). During normal
conditions, the value of VA would be near VDD / 2. The VDD is 5 V and VDD / 2 is 2.5 V. The imbalance must
be three times the threshold that is set by the potential divider. The desired current threshold is divided by
three to calculate the corresponding voltage threshold on signal VA; this is because the factor of 1 / 3
appears in the summing function of resistors R81, R79, and R77 (see Equation 9).

(9)

The upper threshold is set to 2.5 V + 0.0338 V = 2.5338 V. The lower threshold is set to:
2.5 V – 0.0338 V = 2.4661 V.

The upper threshold is set by resistors R73 and R74 (see Equation 10).

(10)

Selecting R74 = 11 kΩ gives R73 ≈ 10.7 kΩ.

The lower threshold is set by resistors R84 and R85 (see Equation 11).

(11)

Select R85 = 10.7 kΩ gives R84 ≈ 11 kΩ.

http://www.ti.com
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Figure 9 shows the ground fault detection circuit; it comprises of the TLC372 in a window comparator
configuration.

Figure 9. Ground Fault Detection Circuit

http://www.ti.com
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2.5 5-V Input to 3.3-V Rail
Considering the design requirement to connect to 3.3 V MCU, it is necessary to provide 3.3 V supply to
the DRV421. For converting 5 V to 3.3 V, an LDO is used. The TLV1117LV33 is selected for the following
reasons:
• Input voltage range: 2 V to 5.5 V (6-V absolute maximum)
• Output current: up to 1 A
• Temperature range: –40°C to +125°C

It is important to check the thermal stress on the LDO. The total power it has to dissipate is calculated in
Equation 12.

(12)

For package selection, θJA is calculated (see Equation 13).

(13)

The LDO should have a package where θJA is ≤ 78.43°C/W. Table 1 is from the TLV1117-33 data sheet,
and a DRJ (SON8) package is suitable.

Table 1. Thermal Information for TLV1117-33

THERMAL METRIC

TLV1117

UNITSPowerFlex
DRJ

(8 pins)
DCY

(4 pins)
KVU

(3 pins)
KCS, KCT

(3 pins)
KTT

(3 pins)KTE
(3 pins)

KTP
(3 pins)

RθJA
Junction-to-ambient thermal
resistance 38.6 49.2 35.3 104.3 50.9 30.1 27.5

°C/W

RθJC_top
Junction-to-case (top) thermal
resistance 34.7 60.6 36.5 53.7 57.9 44.6 43.2

RθJB
Junction-to-board thermal
resistance 3.2 3.1 60.5 5.7 34.8 1.2 17.3

ΨJT Junction-to-top
characterization parameter 5.9 8.7 0.2 3.1 6 5 2.8

ΨJB Junction-to-board
characterization parameter 3.1 3 12 5.5 23.7 1.2 9.3

RθJC_bottom
Junction-to-case (bottom)
thermal resistance 3 3 4.7 — 0.4 0.4 0.3

RθJP

Thermal resistance between
the die junction and the
bottom of the exposed pad

2.7 1.4 1.78 — — 3 1.94

http://www.ti.com
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The schematic of the 5-V to 3.3-V conversion using an LDO (TLV1117-33) is shown in Figure 10. Diode
D16 indicates the availability of the VDD rail. The board supply comes from an external source given at
the J14 or J11 connector. The device is internally compensated to be stable with 0-Ω equivalent series
resistance (ESR) capacitors. X5R and X7R type capacitors are best because they have minimal variation
in value and ESR over the temperature range. Capacitor C29 is an input capacitor, and capacitors C27,
C26, C25, and C28 are output capacitors.

Although an input capacitor is not required for the stability of the TLV1117LV33, C29 can impove the
source impedance, noise, or PSRR for the LDO. In most LDOs, the band gap is the dominant noise
source. Diode D18 is for reverse polarity protection. J12 is placed to bypass the LDO and give 5-V to the
VDD rail.

Figure 10. Schematic of 5-V to 3.3-V Converter Using TLC1117-33
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3 Getting Started Hardware
Figure 11 shows the TIDA-00905 board, with the power-supply input, jumper configuration and the signal
position used for testing. The output is measured between VOUT and REFOUT for each phase.

Figure 11. Getting Started With TIDA-00905 Board

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUC14A


Motor Current (A) (RMS)

R
el

at
iv

e 
E

rr
or

0 5 10 15 20 25 30 35 40 45 50
-2.0%

-1.5%

-1.0%

-0.5%

0.0

0.5%

1.0%

1.5%

2.0%

D001

25qC (Uncalibrated)
25qC (Calibrated)
-25qC (Calibrated)
-85qC (Calibrated)

Motor Current (A) (RMS)

F
ul

l S
ca

le
 E

rr
or

0 5 10 15 20 25 30 35 40 45 50
-2.0%

-1.5%

-1.0%

-0.5%

0.0

0.5%

1.0%

1.5%

2.0%

D002

25 qC (Un-Calibirated)
25 qC (Calibirated)
-25 qC (Calibirated)
-85 qC (Calibirated)

www.ti.com Testing and Results

15TIDUC14A–July 2016–Revised November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Fluxgate Magnetic Current Sensing With High Linearity for Three-Phase
Inverters Reference Design

4 Testing and Results
The measurement performance is validated by AC and DC accuracy tests, step response and signal-to-
noise ratio (SNR) measurements. A short-circuit test and ground fault is simulated to validate the
performance of the overload selection and ground fault detection feature.

4.1 AC Accuracy and Temperature Drift
The AC accuracy test is done for a single measurement channel. The output is measured in RMS Voltage
between the VOUT and REFOUT signals of the corresponding measurement channel using a 6½ digital
multimeter (DMM). The accuracy test is done to obtain the error in measuring the motor current. The test
uses a current standard to generate 0 A to 50 ARMS sine waveform with a frequency of 50 Hz. The error in
AC readings because of temperature drift is obtained by placing the TIDA-00905 board in a thermal
chamber at –25˚C, +25˚C, and +85˚C.

Figure 12 shows the relative error versus the input current of the motor current. The uncalibrated current
measurement at 25˚C is obtained by using the theoretical scale factor (refer to Section 2.2). The
uncalibrated accuracy is within the tolerance of ±1.5%. The uncalibrated current measurement readings
are calibrated with respect to input reference current by a best fit line; this gives the calibrated scale
factor. The scale factor is used for the calibrated readings at 25˚C, –25˚C and 85˚C.

Figure 13 shows the plot of full scale error versus the input motor current, the error varies by ±1% from
–25˚C to 85˚C.

Figure 12. Relative Error versus Motor Current Figure 13. Full Scale Error versus Motor Current
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Figure 14 shows the output versus input transfer graph after calibration (no gain or offset errors). The
errors remaining are only nonlinear errors. Figure 15 shows the nonlinear error in this transfer graph. The
measurement is highly linear as the non-linearity errors are with in ±0.05%.

Figure 14. Output versus Input Transfer Graph Figure 15. Relative Error versus Motor Current
Calibrated at 25°C

4.2 DC Accuracy
The DC accuracy test is done for a single measurement channel. The output is measured in Voltage
between VOUT and REFOUT signal of the corresponding measurement channel using a 6½ DMM.

Figure 16 shows the full scale error versus the input current of the motor current. The uncalibrated current
measurement at 25˚C is obtained by using the full scale error versus the motor current, (refer to
Section 2.2). The uncalibrated accuracy is within the tolerance of ±1.5% in the full scale measurement
range. The uncalibrated current measurement readings are calibrated with respect to input reference
current by a best fit line; this gives the calibrated scale factor. This scale factor is used for the calibrated
readings at 25˚C.

Figure 16. DC Accuracy
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4.3 Measuring the SNR
The SNR test is done by applying a 50 A, 50 Hz AC to a signal measurement channel. The board is
interfaced to the ADS7253 EVM, which is a 12-bit pseudo-differential ADC. At a sampling rate of 1 MSPS,
13,000 samples are captured. Figure 17 shows the captured waveform data, the y-axis is the input to the
ADC in volts. Figure 18 shows the frequency spectrum of the data. The amplitude has been normalized to
the FSR of the ADC, but the applied signal does not cover the full scale range. Hence the measured SNR
is adjusted by the amount the fundamental peak is below the 0 dB mark on the frequency spectrum. This
is done to compare with the SNR value in datasheet of ADS7253 which is given for FSR. The total SNR is
63 dB + 8.98 dB = 71.98 dB. This SNR is close to the SNR for the 12 bit-ADS7253 ADC.

Figure 17. Plot of Captured Data
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Figure 18. Spectrum of Captured Data Noise and Fundamental
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4.4 Step Response
The step response validates the propagation delay and the rise time of the current measurement circuit to
a step change in the motor current. Figure 19 and Figure 20 show the VOUT to REFOUT signal during a
step change in the primary conductor and measure the rise time and the propagation delay.

Figure 19. Step Response and Rise Time

Figure 20. Step Response and Propagation Delay Time
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4.5 Overcurrent Detection Test
The overcurrent circuit detection test validates the response time for the OC_FAULT signal to activate
when a high current occurs in the primary coil of the magnetic module. This test validates the time delay in
magnetic module (DRV421 fluxgate sensor). Section 2.3 describes the thresholds set in the window
comparator.

Figure 21 shows the test diagram; The MOSFET switch is turned on for duration of 12 µs to generate a
step primary current in the magnetic module.

Figure 21. Short-Circuit Test Diagram
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The waveform for over current detection for a positive current is shown is Figure 22 and Figure 23. The
time delay between the input current at the threshold of 150.1 A and OC_FAULT signal going low is
0.6 µs.

Figure 22. Overcurrent Detection for Positive Current Figure 23. Zoomed-in View of Figure 22

Similarly, Figure 24 and Figure 25 show overcurrent detection for a negative current. The detection time
for the negative current is 0.1 µs. The detection time delay is less than the 5 µs allowed for an IGBT
overcurrent event. Hence, there is enough time from the activation of OC_FAULT to turn off typical IGBT
modules before it becomes damaged.

Figure 24. Overcurrent Detection for Negative Current Figure 25. Zoomed-in View of Figure 24
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4.6 Ground Fault Detection
The ground fault circuit is tested by applying a step current to one measurement channel while the other
two channels have zero current. The test setup to generate the step current is same as Figure 21. The
circuit threshold setting is detailed in Section 2.4.

The ground fault detection waveform for a positive step current is shown in Figure 26 and Figure 27. The
ground fault threshold is 8.2 A, the GND_FAULT signal is activated in 1.43 µs. Similarly, Figure 28 and
Figure 29 show the ground fault detection to a negative step current. The response time to the threshold
of 8.2 A is 1.23 µs. This fast detection time delay should provide enough time to turn of the system before
a catastrophic failure in the system.

Figure 26. Ground Fault Detection for Positive Current Figure 27. Zoomed-in View of Figure 26

Figure 28. Ground Fault Detection for Negative Current Figure 29. Zoomed-in View of Figure 28
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5 Design Files

5.1 Schematics
To download the schematics, see the design files at TIDA-00905.

5.2 Bill of Materials
To download the bill of materials (BOM), see the design files at TIDA-00905.

5.3 PCB Layout Recommendations

5.3.1 Layout Considerations for DRV421
Figure 30 shows the layout section for the Sumida module and DRV421 on TIDA-00905 board. The
DRV421 has a high sensitivity to magnetic fields to enable design of a closed-loop current sensor with
best-in-class precision and linearity.

It is important to observe proper PCB layout techniques because any current-conducting wire in the direct
vicinity of the DRV421 generates a magnetic field that may distort measurements. As shown in Figure 30,
the current conducting wires should be routed in pairs; that is, route a wire with an incoming supply
current next to, or on top of the return current path. The opposite magnetic field polarity of these
connections cancel each other. To facilitate this layout approach, the DRV421 positive and negative
supply pins are located next to each other. The compensation coil connections are also placed close to
each other as a pair to reduce coupling effects. Vertical current flow (for example, through via) generates
a field in the fluxgate-sensitive direction; hence, is why the number of vias is minimized in the vicinity of
the DRV421.

Also, it is important to note that all passive components (for example, decoupling capacitors and the shunt
resistor) are placed outside of the portion of the PCB that is inserted into the magnetic core gap (common
passive components and some PCB plating materials contain ferromagnetic materials that are
magnetizable). Also, all GND pins are connected to a local ground plane.

Figure 30. Layout Selection for Sumida Module and DRV421
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Figure 31 and Figure 32 show the power and ground layers (respectively) for the TIDA-00905 board.

Figure 31. Power Layer for TIDA-00905

Figure 32. GND Layer for TIDA-00905
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5.3.2 Layout Prints
To download the layer plots, see the design files at TIDA-00905.

5.4 Altium Project
To download the Altium project files, see the design files at TIDA-00905.

5.5 Gerber Files
To download the Gerber files, see the design files at TIDA-00905.

5.6 Assembly Drawings
To download the assembly drawings, see the design files at TIDA-00905.

6 Software Files
To download the software files, see the design files at TIDA-00905.

7 Related Documentation

1. ±15A Current Sensor using Closed-Loop Compensated Fluxgate Sensor Reference Design
2. Designing with the DRV421: Closed Loop Current Sensor Specifications
3. Designing With the DRV421: Control Loop Stability
4. Designing with the DRV421: System Parameter Calculator
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