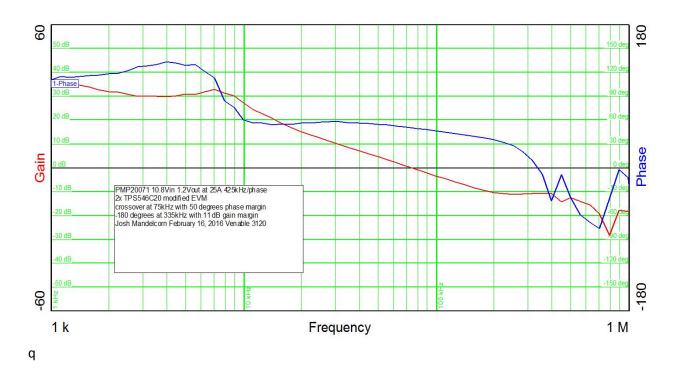


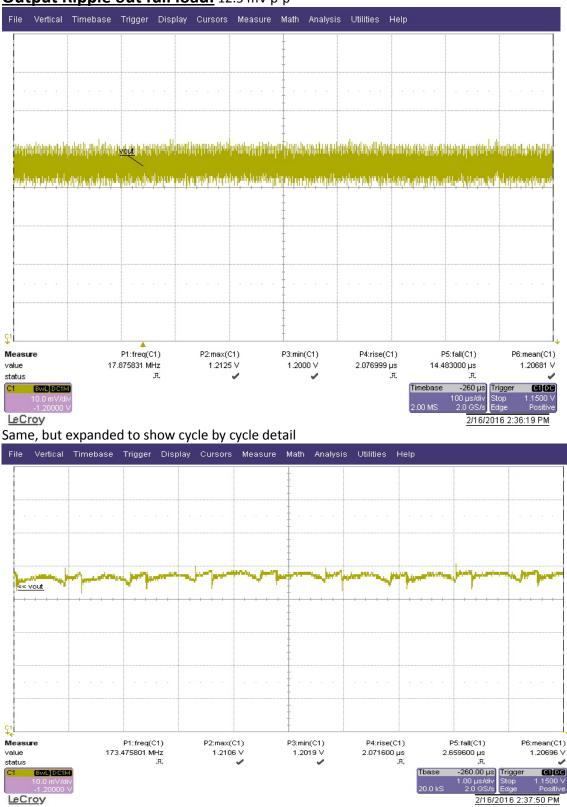
# Design PMP20071 Test Results

PMP20071 2xTPS546C20 1200mV 50A Test Report: TPS546C20 EVM modified for 1.2V 50A 425kHz per phase. Modified to match PMP20071 output Ls & Cs and loop compensation All testing at 10.8Vin unless otherwise mentioned


| Start up with Enable at no load & Bode plot run at 25A load | page 2     |
|-------------------------------------------------------------|------------|
| Output ripple at full load                                  | page 3     |
| Full load thermal images with and without fan               | page 4     |
| GUI images during full load no fan run                      | page 5     |
| Step load response                                          | page 6     |
| Load dump response                                          | page 7     |
| Efficiency data and summary graph                           | pages 8-12 |



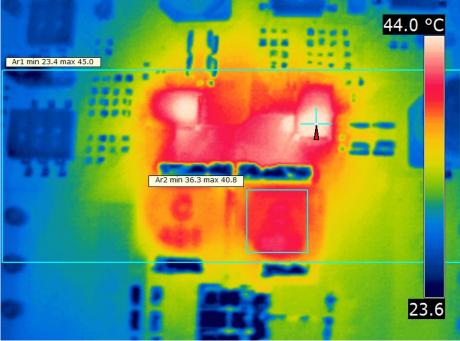



#### Start up no load: overshoot is less than the ripple: ~1.0 msec linear rise: target rise time 1 msec

## **Bode Plot**



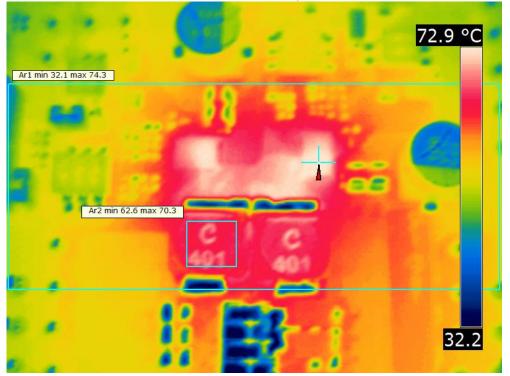



## Output Ripple out full load: 12.5 mV p-p



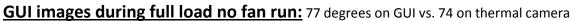


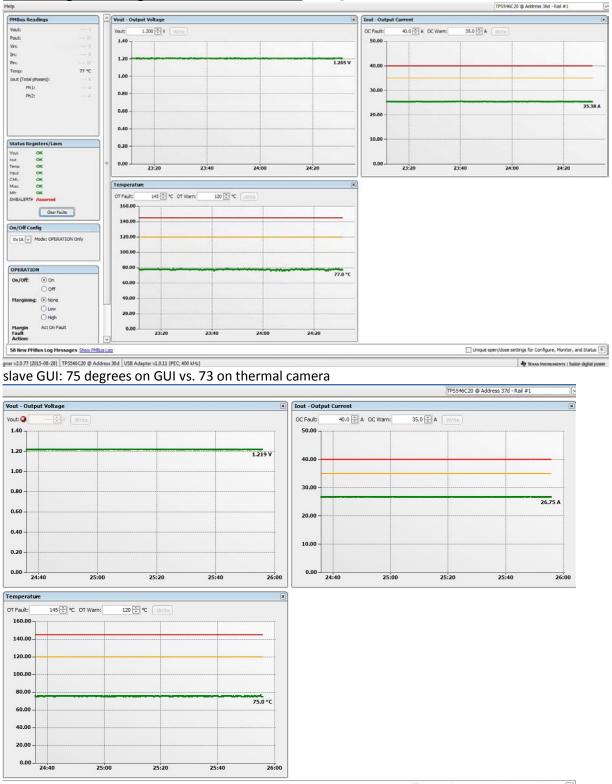
## Full Load Thermal images: with 1-2 M/sec fan


PMP20071 on mod EVM 10.8Vin 1.2V 50A 1-2 M/sec fan 10 minutes (emissivity set at 0.94) master TPS546C20 at 45 deg. C, slave at 44, inductor tops at 41 & 39



#### Q


## Full load with no fan:

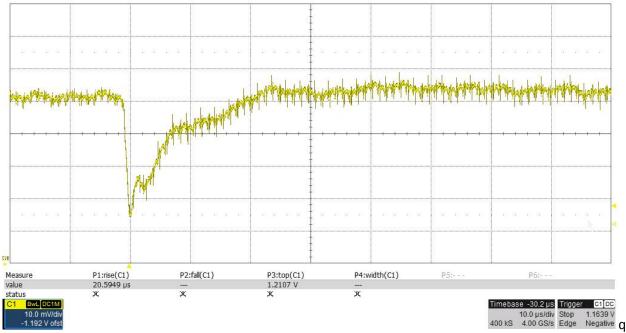

PMP20071 on mod EVM 10.8Vin 1.2V 50A no fan 20+ minutes master TPS546C20 at 74, slave at 73, inductor tops at 71 & 70



Josh Mandelcorn

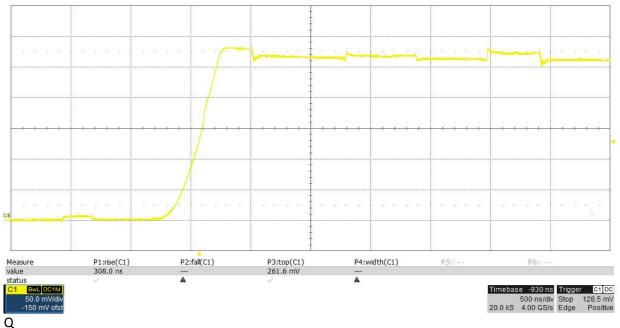







Q



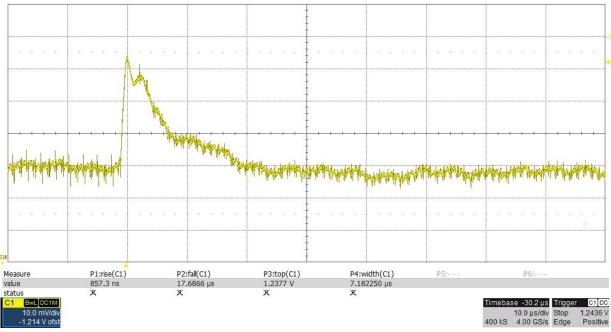

## Step load response:

12V 1.2Vout and 25A static load 25A additional load applied in less than 500 nsec Close in tip & barrel at C44 (ceramic output cap) 20 MHz BW Max 35mV Vout dip

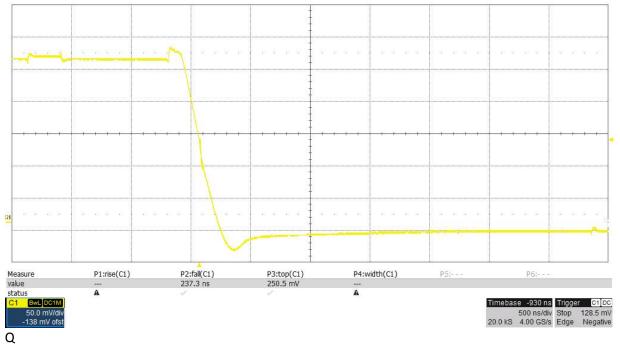


#### Q

Waveform across 10 mOhm dynamic load tied to ground: 260mV increase in less than 500nsec Close in tip & barrel at added 10mOhm tied to ground and source of CSD16322 (drain of CSD16322 to Vout, gate has 1k to ground and is driven by Tektronix AFG3102 generator, with pulse of 1 msec wide every 20 msec, pulse high 1.265V x2, pulse low 0V, "leading" and "trailing" each 1.00 usec) 20 MHz BW







## Load dump response: 12Vin 1.2V from 51A to 25A in less than 500 nsec

Close in tip & barrel at C44 (ceramic output cap) 20 MHz BW

34mV peak overshoot



Waveform across 10 mOhm dynamic load tied to ground: 260mV decrease in less than 500nsec Close in tip & barrel at added 10mOhm tied to ground and source of CSD16322 (drain of CSD16322 to Vout, gate has 1k to ground and is driven by Tektronix AFG3102 generator, with pulse of 1 msec wide every 20 msec, pulse high 1.265V x2, pulse low 0V, "leading" and "trailing" each 1.00 usec) 20 MHz BW





## Efficiency data: 10.8Vin

NI. C.

| No fan |       |       |        |        |        |
|--------|-------|-------|--------|--------|--------|
| Vin V  | lin A | Vout  | lout A | eff %  | loss W |
| 10.804 | 0.114 | 1.203 | 0.000  | N/A    | 1.229  |
| 10.803 | 0.339 | 1.203 | 1.966  | 64.525 | 1.300  |
| 10.803 | 0.571 | 1.203 | 3.967  | 77.356 | 1.396  |
| 10.803 | 0.806 | 1.203 | 5.965  | 82.428 | 1.529  |
| 10.803 | 1.042 | 1.203 | 7.965  | 85.116 | 1.675  |
| 10.803 | 1.277 | 1.203 | 9.964  | 86.857 | 1.813  |
| 10.803 | 1.513 | 1.203 | 11.965 | 88.076 | 1.948  |
| 10.802 | 1.749 | 1.203 | 13.964 | 88.896 | 2.098  |
| 10.802 | 1.987 | 1.203 | 15.965 | 89.464 | 2.261  |
| 10.802 | 2.226 | 1.203 | 17.966 | 89.851 | 2.441  |
| 10.802 | 2.467 | 1.203 | 19.964 | 90.100 | 2.639  |
| 10.802 | 2.710 | 1.203 | 21.965 | 90.248 | 2.855  |
| 10.801 | 2.955 | 1.203 | 23.966 | 90.321 | 3.089  |
| 10.801 | 3.201 | 1.203 | 25.964 | 90.326 | 3.345  |
| 10.801 | 3.450 | 1.203 | 27.965 | 90.286 | 3.620  |
| 10.801 | 3.700 | 1.203 | 29.964 | 90.203 | 3.915  |
| 10.801 | 3.952 | 1.203 | 31.962 | 90.083 | 4.233  |
| 10.800 | 4.207 | 1.203 | 33.965 | 89.934 | 4.574  |
| 10.800 | 4.464 | 1.203 | 35.964 | 89.755 | 4.939  |
| 10.800 | 4.723 | 1.203 | 37.965 | 89.561 | 5.324  |
| 10.800 | 4.984 | 1.203 | 39.966 | 89.344 | 5.736  |
| 10.799 | 5.248 | 1.203 | 41.967 | 89.108 | 6.173  |
| 10.799 | 5.514 | 1.203 | 43.967 | 88.856 | 6.636  |
| 10.799 | 5.783 | 1.203 | 45.969 | 88.588 | 7.127  |
| 10.799 | 6.054 | 1.204 | 47.969 | 88.305 | 7.646  |
| 10.798 | 6.328 | 1.204 | 49.973 | 88.015 | 8.190  |
| า      |       |       |        |        |        |

Q



## Efficiency data continued: 10.8Vin

| with ~1 Meter per second airflow |       |       |        |        |        |
|----------------------------------|-------|-------|--------|--------|--------|
| Vin V                            | lin A | Vout  | lout A | eff %  | loss W |
| 10.804                           | 0.114 | 1.203 | 0.000  | N/A    | 1.230  |
| 10.803                           | 0.339 | 1.202 | 1.955  | 64.188 | 1.312  |
| 10.803                           | 0.571 | 1.203 | 3.956  | 77.155 | 1.409  |
| 10.803                           | 0.805 | 1.202 | 5.956  | 82.315 | 1.539  |
| 10.803                           | 1.041 | 1.202 | 7.956  | 85.049 | 1.682  |
| 10.803                           | 1.277 | 1.203 | 9.957  | 86.801 | 1.821  |
| 10.803                           | 1.512 | 1.203 | 11.959 | 88.056 | 1.951  |
| 10.802                           | 1.749 | 1.203 | 13.959 | 88.887 | 2.099  |
| 10.802                           | 1.986 | 1.203 | 15.961 | 89.465 | 2.261  |
| 10.802                           | 2.226 | 1.203 | 17.963 | 89.862 | 2.437  |
| 10.802                           | 2.466 | 1.203 | 19.962 | 90.121 | 2.632  |
| 10.802                           | 2.709 | 1.203 | 21.962 | 90.282 | 2.843  |
| 10.801                           | 2.953 | 1.203 | 23.963 | 90.367 | 3.072  |
| 10.801                           | 3.199 | 1.203 | 25.962 | 90.388 | 3.321  |
| 10.801                           | 3.446 | 1.203 | 27.962 | 90.357 | 3.590  |
| 10.801                           | 3.696 | 1.203 | 29.961 | 90.280 | 3.880  |
| 10.801                           | 3.947 | 1.203 | 31.960 | 90.179 | 4.187  |
| 10.800                           | 4.201 | 1.203 | 33.966 | 90.046 | 4.517  |
| 10.800                           | 4.457 | 1.203 | 35.967 | 89.893 | 4.865  |
| 10.800                           | 4.714 | 1.203 | 37.968 | 89.715 | 5.236  |
| 10.800                           | 4.974 | 1.203 | 39.968 | 89.522 | 5.628  |
| 10.800                           | 5.235 | 1.203 | 41.970 | 89.314 | 6.041  |
| 10.799                           | 5.499 | 1.203 | 43.969 | 89.085 | 6.482  |
| 10.799                           | 5.765 | 1.203 | 45.971 | 88.848 | 6.942  |
| 10.799                           | 6.033 | 1.203 | 47.972 | 88.598 | 7.428  |
| 10.799                           | 6.303 | 1.203 | 49.977 | 88.342 | 7.935  |
| ר                                |       |       |        |        |        |

Q

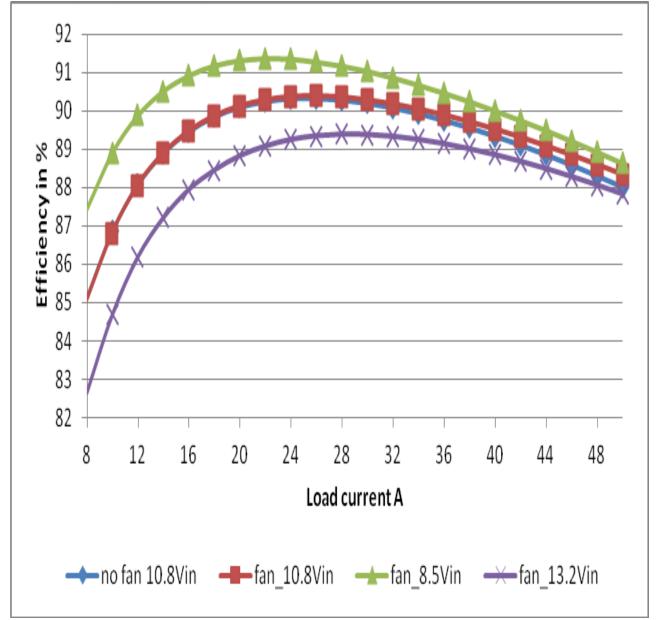


## Efficiency data continued: 13.2Vin

| with ~1 Meter per second airflow |       |       |        |        |        |
|----------------------------------|-------|-------|--------|--------|--------|
| Vin V                            | lin A | Vout  | lout A | eff %  | loss W |
| 13.202                           | 0.112 | 1.203 | 0.000  | N/A    | 1.481  |
| 13.202                           | 0.298 | 1.202 | 1.965  | 60.068 | 1.571  |
| 13.202                           | 0.489 | 1.202 | 3.965  | 73.810 | 1.692  |
| 13.202                           | 0.683 | 1.202 | 5.963  | 79.512 | 1.848  |
| 13.201                           | 0.877 | 1.202 | 7.962  | 82.664 | 2.008  |
| 13.201                           | 1.072 | 1.203 | 9.964  | 84.699 | 2.165  |
| 13.201                           | 1.265 | 1.203 | 11.964 | 86.194 | 2.305  |
| 13.201                           | 1.459 | 1.203 | 13.963 | 87.214 | 2.462  |
| 13.201                           | 1.654 | 1.203 | 15.965 | 87.949 | 2.631  |
| 13.201                           | 1.851 | 1.203 | 17.964 | 88.452 | 2.821  |
| 13.200                           | 2.048 | 1.203 | 19.965 | 88.825 | 3.021  |
| 13.200                           | 2.247 | 1.203 | 21.964 | 89.076 | 3.240  |
| 13.200                           | 2.447 | 1.203 | 23.964 | 89.248 | 3.473  |
| 13.200                           | 2.648 | 1.203 | 25.962 | 89.342 | 3.726  |
| 13.200                           | 2.851 | 1.203 | 27.963 | 89.383 | 3.996  |
| 13.200                           | 3.055 | 1.203 | 29.961 | 89.374 | 4.286  |
| 13.199                           | 3.261 | 1.203 | 31.961 | 89.327 | 4.594  |
| 13.199                           | 3.469 | 1.203 | 33.964 | 89.248 | 4.923  |
| 13.199                           | 3.678 | 1.203 | 35.964 | 89.137 | 5.273  |
| 13.199                           | 3.888 | 1.203 | 37.966 | 89.003 | 5.644  |
| 13.199                           | 4.101 | 1.203 | 39.967 | 88.851 | 6.034  |
| 13.198                           | 4.314 | 1.203 | 41.967 | 88.678 | 6.447  |
| 13.198                           | 4.530 | 1.203 | 43.967 | 88.489 | 6.881  |
| 13.198                           | 4.747 | 1.203 | 45.968 | 88.281 | 7.342  |
| 13.198                           | 4.966 | 1.203 | 47.969 | 88.061 | 7.825  |
| 13.198                           | 5.187 | 1.203 | 49.973 | 87.827 | 8.334  |
| <b>`</b>                         |       |       |        |        |        |

Q




## Efficiency data continued: 8.5Vin

| with ~1 Meter per second airflow |       |       |        |        |        |
|----------------------------------|-------|-------|--------|--------|--------|
| Vin V                            | lin A | Vout  | lout A | eff %  | loss W |
| 8.505                            | 0.117 | 1.203 | 0.000  | N/A    | 0.998  |
| 8.505                            | 0.402 | 1.203 | 1.965  | 69.153 | 1.054  |
| 8.504                            | 0.694 | 1.202 | 3.965  | 80.842 | 1.130  |
| 8.504                            | 0.989 | 1.203 | 5.963  | 85.245 | 1.241  |
| 8.504                            | 1.288 | 1.203 | 7.962  | 87.453 | 1.374  |
| 8.504                            | 1.585 | 1.203 | 9.964  | 88.916 | 1.494  |
| 8.503                            | 1.882 | 1.203 | 11.962 | 89.886 | 1.619  |
| 8.503                            | 2.182 | 1.203 | 13.963 | 90.520 | 1.759  |
| 8.503                            | 2.483 | 1.203 | 15.963 | 90.926 | 1.916  |
| 8.503                            | 2.787 | 1.203 | 17.965 | 91.181 | 2.090  |
| 8.503                            | 3.092 | 1.203 | 19.964 | 91.317 | 2.283  |
| 8.502                            | 3.401 | 1.203 | 21.965 | 91.367 | 2.496  |
| 8.502                            | 3.711 | 1.203 | 23.964 | 91.352 | 2.729  |
| 8.502                            | 4.024 | 1.203 | 25.962 | 91.277 | 2.984  |
| 8.502                            | 4.339 | 1.203 | 27.962 | 91.173 | 3.256  |
| 8.501                            | 4.656 | 1.203 | 29.961 | 91.037 | 3.548  |
| 8.501                            | 4.976 | 1.203 | 31.959 | 90.866 | 3.864  |
| 8.501                            | 5.300 | 1.203 | 33.964 | 90.677 | 4.200  |
| 8.501                            | 5.625 | 1.203 | 35.963 | 90.468 | 4.558  |
| 8.500                            | 5.953 | 1.203 | 37.964 | 90.246 | 4.936  |
| 8.500                            | 6.283 | 1.203 | 39.965 | 90.006 | 5.338  |
| 8.500                            | 6.617 | 1.203 | 41.966 | 89.755 | 5.762  |
| 8.499                            | 6.953 | 1.203 | 43.966 | 89.495 | 6.208  |
| 8.499                            | 7.292 | 1.203 | 45.967 | 89.218 | 6.683  |
| 8.499                            | 7.634 | 1.203 | 47.968 | 88.932 | 7.181  |
| 8.499                            | 7.980 | 1.203 | 49.972 | 88.638 | 7.706  |
| $\sim$                           |       |       |        |        |        |

Q



## Efficiency Graph summary of all 4 runs:



#### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated