
Network

PRU1-ICCSS1

MII_RT
Port1

PRU0-ICCSS1

MII_RT
Port0

ARM

PRU Shared 
Memory

L3 Memory

Gbit Uplink

PC

Wireshark

1TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

TI Designs
Real-Time Ethernet Tracer for PRU-ICSS Reference Design

All trademarks are the property of their respective owners.

Description
A real-time Ethernet and industrial Ethernet are used
in the factory automation floor to control automated
production. Monitoring the Ethernet traffic in such
areas is an essential maintenance and error analysis
tool.

This TI Design is a real-time Ethernet tracer created
for the programmable real-time unit and industrial
communication subsystem (PRU-ICSS) that is set
inside an industrial Ethernet network as a passive
tracer device, which enables to monitor and record all
Ethernet frames including frame time stamping without
modifying the Ethernet traffic.

This TI Design enables customers to build products for
network analysis in factory automation and industrial
communication

Resources

TIDEP0064 Design Folder
AM4379 Product Folder
DP83848 Product Folder
DP83822 Product Folder
TLK105L Product Folder

ASK Our E2E Experts

Features
• Monitors and Traces Functions of Industrial

Ethernet Frames
• Frame Timestamping in Nanosecond Resolution
• Supports 64-Bit Time Frame Stamping
• Gbit Ethernet PHY Uplink
• Wireshark™ Compatible Capture Format
• PRU Firmware and ARM® Driver in Source Code to

Enable Customer Differentiation

Applications
• Factory Automation and Control
• Industrial Communication

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4
http://www.ti.com/tool/TIDEP0064
http://www.ti.com/product/am4379
http://www.ti.com/product/dp83848
http://www.ti.com/product/dp83822
http://www.ti.com/product/tlk105l
http://e2e.ti.com
http://e2e.ti.com/support/applications/ti_designs/
http://www.ti.com/lsds/ti/applications/industrial/factory-automation/overview.page
http://www.ti.com/lsds/ti/applications/industrial/industrial-communications.page


Network

PRU1-ICCSS1

MII_RT
Port1

PRU0-ICCSS1

MII_RT
Port0

ARM

PRU Shared 
Memory

L3 Memory

Gbit Uplink

PC

Wireshark

System Overview www.ti.com

2 TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other
important disclaimers and information.

1 System Overview

1.1 What is Real-Time Ethernet?
Real-time Ethernet, which comprises of many systems like programmable logic controller (PLC), remote
input/output, actuators, sensors and motor drives, is very popular on the factory floor. Real-time does not
mean faster communication cycles but rather the communication cycle is very deterministic and has low
jitter. Real-time systems not only depend on the validity of process data but also on its timeliness. This
quality results in determinism which is an important factor when differentiating real-time Ethernet from
standard Ethernet. The packets of data in industrial settings are required to be sent and received at
specific times, and real-time Ethernet needs to be guaranteed that data will be delivered each and every
time because a loss of data or delay of data can result in an undesired malfunction of the machine in an
industrial environment. Industrial Ethernet protocols like PROFINET®, EtherCAT®, Sercos III,
EtherNet/IP™, and Ethernet POWERLINK are very popular in today’s real-time Ethernet networks
because these industrial Ethernet protocols provide the required functionality and determinism

1.2 What is a Tracer?
A tracer or sniffer is a device that monitors and captures the Ethernet data flowing through the Ethernet
network links in real-time. The captured information can be used for diagnostics and network
maintenance. The tracer does not modify the Ethernet frames but only captures the Ethernet traffic.

1.3 System Block Diagram
Figure 1 shows the block diagram of the system. The real-time Ethernet tracer can be connected to the
network using the two Ethernet ports (MII_RT0 and MII_RT1). The incoming packets are stored inside a
frame buffer for each port – the frame buffer is located in L3 memory. All the queue management data of
the frame buffer is stored in PRU shared memory. The ARM takes these frames out of the frame queue in
a chronological order based on the 64-bit frame timestamp. The timestamp is appended at the end of
Ethernet frame and acts as information for the ESL Wireshark frame format. The frames are transmitted
by the ARM over the gigabit Ethernet port to the PC where the frames can be captured with the
Wireshark.

Figure 1. Real-Time Ethernet Tracer Block Diagram

1.4 Key System Level Specifications
• 2-port real-time Ethernet tracer for 100-Mbps full-duplex
• Gbit port Uplink
• Cyclic redundancy check (CRC) error and error nibble detection
• ESL-compatible frame format generation for Wireshark

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


www.ti.com System Overview

3TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

1.5 Highlighted Products

1.5.1 AM4379 Processor
Up to 1-GHz Sitara™ ARM® Cortex®-A9 32‑Bit RISC Processor
• NEON™ single-instruction, multiple data (SIMD) coprocessor and vector floating point (VFPv3)

coprocessor
• 32 KB of L1 instruction and 32 KB of data cache
• 256 KB of L2 cache or L3 RAM
• 256 KB of on-chip boot ROM
• 64KB of dedicated RAM
• Emulation and debug - JTAG
• Interrupt controller
PRU-ICSS
• Supports protocols such as EtherCAT, PROFIBUS®, PROFINET, EtherNet/IP, EnDat 2.2, and more
• Two PRU subsystems with two PRU cores each
• 32-bit load and store RISC processor capable of running at 200 MHz
• 12 KB (PRU-ICSS1), 4 KB (PRU-ICSS0) of instruction RAM with single-error detection (parity)
• 8 KB (PRU-ICSS1), 4 KB (PRU-ICSS0) of data RAM with single-error detection (parity)
• Single-cycle 32-bit multiplier with 64-bit accumulator
• Enhanced GPIO module provides shift-in and -out support and parallel latch on external signal
• 12KB (PRU-ICSS1 only) of shared RAM with single-error detection (parity)
• Three 120-byte register banks accessible by each PRU
• Interrupt controller module (INTC) for handling system input events
• Local interconnect bus for connecting internal and external masters to the resources inside the PRU-

ICSS
• Peripherals inside the PRU-ICSS

– One UART port with flow control pins, supports up to 12 Mbps
– One enhanced capture (eCAP) module
– Two media independent interfaces (MII) ethernet ports that support industrial ethernet, such as

EtherCAT
– One management data input/ouput (MDIO) port

On-chip memory (shared L3 RAM)
• 256 KB of general-purpose on-chip memory controller (OCMC) RAM
• Accessible to all masters
External memory interfaces (EMIF)
• Double data rate memory (DDR) controllers:

– LPDDR2: 266-MHz clock (LPDDR2-533 data rate)
– DDR3 and DDR3L: 400-MHz clock (DDR-800 data rate)
– 32-bit data bus
– 2 GB of total addressable space
– Supports one x32, two x16, or four x8 memory device configurations

• General-purpose memory controller (GPMC)
– Flexible 8-bit and 16-bit asynchronous memory interface with up to seven chip selects [TM note:

NAND and NOR are flash memory types, they are not written out. It basically means not 'and']
(NAND, NOR, Muxed-NOR, SRAM)

– Uses Bose-Chaudhuri-Hocquenghem (BCH) code to support 4-, 8-, or 16-bit ECC
– Uses hamming code to support 1-bit error correction coding (ECC)

See the AM4379 data sheet for a complete list of features (SPRS851).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4
http://www.ti.com/lit/pdf/SPRS851


System Overview www.ti.com

4 TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

1.5.2 TLK105L Ethernet PHY
• Low power consumption:

– Single supply: <205 mW PHY, 275 mW with center tap (typical)
– Dual supplies: <126 mW PHY, 200 mW with center tap (typical)

• Programmable power back off to reduce PHY power up to 20% in systems with shorter cables
• IEEE 1588 start frame delimiter (SFD) indication enables time stamping by a controller or processor
• Low deterministic latency supports IEEE1588 implementation
• Cable diagnostics
• Programmable fast link down modes, <10 µs reaction time
• Variable I/O voltage range: 3.3 V, 2.5 V, 1.8 V
• MAC interface I/O voltage range:

– MII I/O voltage range: 3.3 V, 2.5 V, 1.8 V
– MII I/O voltage range: 3.3 V, 2.5 V

• R-fixed TX clock to XI with programmable phase shift
• Auto-MDIX for 10/100 Mbs
• Energy detection mode
• MII and RMII capabilities
• IEEE 802.3u MII
• Error-free 100Base-T operation up to 150 meters under typical conditions
• Error-free 10Base-T operation up to 300 meters under typical conditions
• Serial management interface
• IEEE 802.3u auto-negotiation and parallel detection
• IEEE 802.3u ENDEC, 10Base-T
• Transceivers and filters
• IEEE 802.3u PCS, 100Base-TX transceivers
• Integrated ANSI X3.263 compliant TP-PMD physical sublayer with adaptive equalization and baseline

wander compensation
• Programmable LED support link, activity
• 10/100 Mbs packet built in self test (BIST)
• Born–Mayer–Huggins (HBM) electro static discharge (ESD) protection on RD± and TD± of 16 kV
• 32-pin VQFN

– 5 mm × 5 mm

1.5.3 DP83822 Ethernet PHY
• IEEE 802.3u compliant: 100BASE-FX, 100BASETX and 10BASE-Te
• MII, RMII, and RGMII MAC Interfaces
• Low-power single supply options:

– 1.8-V average (AVD) < 120 mW
– 3.3-V AVD < 220 mW

• ±16-kV HBM ESD Protection
• ±8-kV IEC 61000-4-2 ESD Protection
• Start of frame detect for IEEE 1588 time stamp
• Fast link-down timing
• Auto-crossover in force modes
• Operating temperature: –40 to 125°C
• I/O voltages: 3.3 V, 2.5 V and 1.8 V

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


www.ti.com System Overview

5TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

• Power savings features
– Energy efficient Ethernet (EEE) IEEE 802.3az
– Wake-on-LAN (WoL) support with magic packet detection
– Programmable energy savings modes

• Cable diagnostics
• BIST
• Management data clock (MDC) and MDIO interface

1.5.4 AM437X IDK EVM Hardware Specification
• AM4379 ARM Cortex-A9
• 1-GB DDR3, QSPI-NOR Flash
• Discrete power solution
• EnDat connectivity for motor feedback control
• 24-V power supply
• USB cable for JTAG interface and serial console
Software and tools:
• SYS/BIOS real-time OS
• Starterware base port
• Code Composer Studio™ (CCS) integrated development environment (IDE)
• Application stack for industrial communication protocols
• Sample industrial applications
Connectivity:
• PROFIBUS interface
• CANOpen
• EtherCAT
• EtherNet/IP
• PROFINET
• Sercos III
• IEC61850
• PWM
• Motor axis position feedback
• Up to three-phase motor drive connector
• Sigma-delta decimation filter
• Digital inputs and outputs
• Serial port interface (SPI)
• UART
• JTAG
See the AM437X IDK website for a complete list of features and design resources
(http://www.ti.com/tool/TMDXIDK437X).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4
http://www.ti.com/tool/TMDXIDK437X


WR Ptr Rd Ptr

32 bits

Shared Memory

PRU 0

32 bits

Shared Memory

32 bytes

L3 OCMC

Queue_descriptor

Each Block is a
Buffer_descriptor

Each Block is a
Buffer

0

2

1

3

...

N

0

2

1

3

...

N

WR Ptr Rd Ptr

32 bits

Shared Memory

PRU 1

32 bits

Shared Memory

32 bytes

L3 OCMC

Queue_descriptor

Each Block is a
Buffer_descriptor

Each Block is a
Buffer

0

2

1

3

...

N

0

2

1

3

...

N

System Design Theory www.ti.com

6 TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

2 System Design Theory

2.1 MII_RT Configuration
• The configuration for both Ethernet ports and MII_RT ports is done in such a way that the incoming

packets are stored in the L2 buffer of MII_RT with auto-forwarding enabled.
• The packets stored in L2 buffer include the frame preamble, SFD, and CRC.

2.2 Ethernet Frame Queue Management
The packets arriving at port0 and port1 are stored in L2 buffer of MII_RT. The PRU copies the packets
into a queue for each port, which resides in L3 memory. The queue is a cyclic queue with a read and write
pointer for the management of packets inside the queue. Each entry of the queue is called a buffer and
each buffer consists of 32 bytes.

The total number of buffer entries can be N inside the queue, which can be configured by the
programmer. The packets stored inside the queue take integer number of buffers. If a buffer is not
completely occupied by the packet, that buffer is still completely dedicated to that packet, and the next
packet will still start to occupy the next buffer.

The management of the queue is done by a buffer descriptor and a queue descriptor. The queue
descriptors contain the values for read and write pointers where each pointer value consists of 16 bits.
Each buffer descriptor is 32 bits with the upper 16 bits dedicated to packet length storage and the lower
16 bits stores the information for alignment error (bit 3), CRC error (bit 4), and receive error (bit 5). This
queue management technique is described in Figure 2.

Figure 2. Queue Management for Each PRU

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


www.ti.com System Design Theory

7TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

The queue exists inside the L3 memory whereas the buffer descriptors and queue descriptors are stored
inside PRU shared memory.

Table 1. Memory Map for Queue Management

NAME MEMORY LOCATION IN SHARED
MEMORY

MEMORY
LOCATION IN L3

MEMORY
DESCRIPTION

PRU0 queue
descriptor 0x100 -

Contains the value of read and write
pointers of queue for port0 handled by

PRU0

PRU1 queue
descriptor 0x104 -

Contains the value of read and write
pointers of queue for port1 handled by

PRU1
PRU0 buffer

descriptor offset 0x120 - Buffer descriptor entries for PRU1 are
stored starting from this address

PRU1 buffer
descriptor offset 0x120 + (number of buffers × 4) - Buffer descriptor entries for PRU1 are

stored starting from this address
PRU0 queue offset - 0x00 Starting address for queue for port0

PRU1 queue offset - 0x00 + (number of
buffers × 32) Starting address for queue for port1

2.2.1 Custom Frame Header
Each packet stored inside the queue is stored with a custom defined header that consists of 32 bytes and
occupies one buffer entry. The upper most 4 bytes (bytes 31 to 28) in the queue contain the packet
specific information called packet descriptor shown in Table 2. After that the next 4 bytes (bytes 27 to 24)
contains the upper 32 bits of timestamp followed by the next 4 bytes (bytes 23 to 20) containing the lower
32 bits of timestamp

Table 2. Custom Header With Packet Descriptor and Timestamp Value

BYTES BITS NAME DESCRIPTION

31 to 28

0 to 14 Reserved Reserved for future use

15 Timestamp Receive packet has 64 bit time stamp
appended

16 to 26 Length

11 bit of total packet length which is put
into buffer descriptor as well. This is the

actual length of the packet received at the
port including preamble

27, 28 Port

Indicates which port the packet was
received on. Port=0 indicates Ethernet
PHY 0 and Port=1 indicates Ethernet

PHY 1
29 to 31 Reserved Reserved for future use

27 to 24 0 to 31 TS_high Contains the upper 32 bits of the
Timestamp value

23 to 20 0 to 31 TS_low Contains the lower 32 bits of the
Timestamp value

19 to 0 all Reserved Reserved for future use

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


System Design Theory www.ti.com

8 TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

2.2.2 ESL Information Format
Each packet stored inside the queue is stored with a custom defined header that consists of 32 bytes and
occupies 1 buffer entry. The upper most 4 bytes (bytes 31 to 28) in the queue contains the packet specific
information called packet descriptor shown in Table 3. After that the next four bytes (bytes 27 to 24)
contains the upper 32 bits of timestamp followed by the next four bytes (bytes 23 to 20) containing the
lower 32 bits of timestamp

Table 3. ESL Information

BYTES NAME DESCRIPTION

15 to 10 Symbolic MAC
Contains identifier 01 01 05 10
00 00 that is a symbolic MAC

address

9 Port designation Tells the port number on which
packet is received

8 Error information

This byte tells the error
information. Bits 0..2 are

reserved, bit 3 is for alignment
error and bit 4 is for CRC error

7 to 0 Timestamp These bytes represent the 64
bit timestamp in ns

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


Start

Initialize IEP
counters

Set and enable
CMP(0) event

Reset RX-FIFO

Generate MDIO
Event to update

Port status

Call a receive 
function

(FB, NB or LB)

Call a Event Handling
function

www.ti.com System Design Theory

9TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

2.3 PRU Firmware
The PRU firmware is designed so that it handles 32 bytes of data as a block. The firmware works in a loop
that, depending on the state of the communication, executes one of the receive functions: first block (FB),
next block (NB) or last block (LB). PRU firmware also serves pending interrupt controller (INTC) events.

2.3.1 PRU Firmware Main Control Loop
The functionality of the main control loop is described in the form of flowchart in Figure 3.

Figure 3. PRU Firmware Main Loop Functionality

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


Receive Task
Function

FB Logic

NB Logic

Is Start of Frame 
Received?

Yes

No

Return to
Control Loop

Is End of Frame 
Received?

Yes

No

Return to
Control Loop

LB Logic

System Design Theory www.ti.com

10 TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

2.3.2 Receive Functions (FB, NB, LB)
The receive functions are responsible for storing the incoming packet inside the PRU queues and
updating the queue descriptor and buffer descriptor fields. FB checks for start of new frame and initializes
the custom header space, NB is called every time there are 32 bytes or more in L2 buffer, and LB upon
end of frame event and updates statistics and queue descriptor and buffer descriptor fields. The
functionality of these receive functions is described in detail in the following subsections. The logical
functionality of how these functions are linked together is shown in Figure 4.

Figure 4. Logical Functionality of Receive Functions

2.3.2.1 First Block (FB)
FB executes in the following order:
• Check if there are required number of bytes in L2 after start of new frame.
• If the above is true, set RCV_ACTIVE_FLAG and RCV_HOST_PORT_FLAG.
• Set up the queue by loading the right write pointer value and buffer offset.
• Calculate free space and continue if space is available; otherwise, clear RCV_HOST_PORT_FLAG

and return to control loop.
• Initialize 32 bytes custom header space.
• Load and store the 64-bit timestamp.
• Increment buffer write pointer by 32 bytes and handle buffer wrap-around if there is one.
• Return to control loop

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


RCV_FB

Set RCV_ACTIVE_FLAG

Set
RCV_HOST PORT_FLAG

Are there
enough bytes in the L2 

buffer as required?

Yes

No

Return to
Control Loop

Yes

No

Return to
Control Loop

Load queue descriptor write 
pointer and buffer offset

Return to
Control Loop

Is
RCV_HOST_PORT_FLAG

Set?

Calculate queue
free space

Yes

No

Return to
Control Loop

Is space available
in the queue?

Initialize custom header 
space in queue

Load and store 64 bit 
timestamp value

Increment buffer write pointer 
and handle wrap-around

Clear
RCV_HOST_PORT_FLAG

www.ti.com System Design Theory

11TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

Figure 5 shows the functionality of the FB in the form of a flow chart.

Figure 5. Receive Function FB Functionality

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


RCV_NB

Received Packet
length += 32

Transfer 32 bytes from L2 
buffer to PRU registers

Is 
RCV_HOST_PORT_FLAG 

set and L2 has >= 32 
bytes?

Yes

No

Return to
Control Loop

Jump to LB

Is space available in the 
queue

Yes

No

Return to
Control Loop

Store 32 bytes of received 
frame inside queue

Increment buffer write pointer 
and handle wrap-around

Clear
RCV_HOST_PORT_FLAG

Calculate queue free space

Is there an EOF event?

Return to
Control Loop

Yes No

System Design Theory www.ti.com

12 TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

2.3.2.2 Next Block (NB)
NB executes in the following order:
• Check if RCV_HOST_PORT_FLAG is set and if there are 32 bytes or more in L2 buffer.
• Continue if the above is true; otherwise, return to the control loop.
• Transfer 32 bytes from L2 buffer to the PRU internal registers and increment the received packet

length by 32.
• Calculate free space and continue if space is available; otherwise, clear RCV_HOST_PORT_FLAG

and return to control loop.
• Store 32 bytes of the frame inside the queue according to buffer write pointer.
• Increment buffer write pointer by 32 bytes, and handle buffer wrap-around if there is one.
• Check if there is an end of frame (EOF) event.
• If there is an EOF event, jump to LB receive function; otherwise, return to control loop.

Figure 6 shows the functionality of the NB receive function in the form of a flow chart.

Figure 6. Receive Function NB Functionality

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


www.ti.com System Design Theory

13TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

2.3.2.3 Last Block (LB)
LB is called by the NB when an EOF event occurs executes in the following order:
• Check if RCV_HOST_PORT_FLAG is set and continue if it is; otherwise, return to control loop.
• Transfer remaining bytes of received packet frame from the L2 buffer to the PRU internal registers.
• Increment the received packet length by the remaining bytes.
• Calculate free space and continue if space is available; otherwise, clear RCV_HOST_PORT_FLAG

and return to control loop.
• Store the remaining bytes of the received packet frame inside the queue according to buffer write

pointer .
• Extract frame status information from the L2 buffer and check if there is CRC, alignment, or receive

error.
• Set the error bits in a PRU register according to ESL format if there are above mentioned errors and

update statistics about received errors per port in shared memory.
• Load the original queue descriptor write pointer and calculate packet descriptor offset inside custom

header in queue buffer.
• Update the packet descriptor field inside custom header with the received packet length and the port

number on which it was received.
• Append the received packet length with the error information from the PRU register for the received

packet and store it in the buffer descriptor.
• Calculate and update the new queue descriptor write pointer value in shared memory.
• Update statistics about received packets per port in shared memory.
• Reset the RX FIFO, and clear all flags in RCV_STATUS_REG.
• Return to control loop.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


RCV_NB

Transfer remaining bytes from L2 
buffer to PRU registers

Received Packet length += remaining 
bytes

Is RCV_HOST_PORT_FLAG set?

Yes

No

Return to
Control Loop

Is space available in the queue

Yes

No

Return to
Control Loop

Store remaining bytes of received 
frame inside queue

Extract Frame
Status information

Clear
RCV_HOST_PORT_FLAG

Calculate queue free space

Is there an EOF event?

Return to
Control Loop

Yes

No

Set the error bits in an internal register 
to ESL format

Update statistics about received errors 
in shared memory

Load the original queue descriptor 
write pointer

Calculate packet descriptor offset in 
queue buffer

Update the packet descriptor with 
received packet length and the 

respective port number

Append the packet length and error 
information from the PRU register and 

store it in the buffer descriptor

Calculate and update the new queue 
descriptor write pointer value in shared 

memory

Update statictics about correctly 
received packets in shared memory

Reset RX FIFO

Clear all flags in RCV_STATUS REG

System Design Theory www.ti.com

14 TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

Figure 7 shows the functionality of the LB Receive Function in the form of a flow chart.

Figure 7. Receive Function Last LB Functionality TM

NOTE: Figure 7 does not match the original picture.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


Case 1: 20 bytes FB ...

20 bytes FB ...

IEP Event

Case 2:

<= 1µs

Result:

IEP high count = IEP high count from IEP 
Event Handler ± 1;

IEP high count = IEP high count from 
IEP Event Handler

In both of the following cases RCV_TS_HIGH_UPDATE_FLAG is set

www.ti.com System Design Theory

15TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

2.3.3 IEP Timestamping With 64-Bit Support
The IEP timer peripheral of PRU-ICSS within the AM437x supports only a 32-bit timer. PRU firmware is
used to extend the timestamping to 64 bit. The 32-bit IEP timer wrap-around occurs every 4.29 seconds.
This wrap-around is used in providing 64-bit timestamping. The IEP event is generated when there is a
wrap-around by setting up the IEP_CMP [0] event. Each PRU updates their IEP high count value, which is
stored in shared memory.

The IEP_CMP[0] event is only handled by the PRU0. To update the PRU1 about the event so the PRU1
can update its IEP high count, a PRU2PRU event is defined, which is generated by PRU0 when it handles
the IEP_CMP[0] event.

The timestamp is stored in FB and cannot execute until there is a specified amount of bytes in the L2
buffer. The IEP event takes around 1 µs to take effect. If the IEP event arrives when the FB has already
been executed and RCV_ACTIVE_FLAG is set, the IEP high count of each PRU is incremented However,
if the packet has started arriving but the FB has not executed yet, there are two cases that need to be
handled, which are illustrated in Figure 8 .

Case 1: The frame starts arriving just before IEP wrap-around and IEP event occurs before FB.

Case 2: The frame starts arriving just after IEP wrap-around and IEP event occurs before FB.

To handle these cases each PRU firmware IEP event handler first checks if RCV_ACTIVE_FLAG is set. If
RCV_ACTIVE_FLAG is set, the IEP high count is incremented, and if RCV_ACTIVE_FLAG is not set, the
RCV_ACTIVE_FLAG is checked in case there is something in the L2 buffer, which indicates that new
packet has started to arrive though the FB is not yet executed so the RCV_TS_HIGH_UPDATE_FLAG is
then set. In FB while storing the timestamp value a decision is made that if
RCV_TS_HIGH_UPDATE_FLAG is set and the IEP timer value is less than 1 µs, the packet that arrived
before the IEP wrap-around and the IEP high count value is subtracted by one before storing the value.

Figure 8. 64-Bit IEP Timestamping Logic

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


System Design Theory www.ti.com

16 TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

2.3.4 Event Handler
The PRU firmware event handlers are part of the event handling function called from the main control loop
called after receive functions FB, NB, or LB. The following events are covered by event handlers.

2.3.4.1 Receive Function Events
The end of frame event is generated by the MII_RT port upon detection, which is handled by EOF event
handler. The EOF event handler sets the RCV_EOF_EVENT_FLAG for LB so that LB is called from NB
upon detection of this flag.

2.3.4.2 MDIO Events
MDIO events occur whenever there is a change of state for the link of the MII_RT ports. The event
handler for MDIO events check which ports are enabled. If both ports are enabled, auto-forwarding for the
MII_RT ports is enabled; otherwise, auto-forwarding is disabled

2.3.4.3 IEP Events
IEP events are enabled due to 64-bit timestamping logic. The IEP event is the IEP_CMP [0] event that is
set close to the wrap-around of the IEP timer value. The IEP event is handled only by the PRU0. When
the IEP event occurs, the PRU0 generates a PRU to the PRU event for the PRU1. After the PRU is
generated, the RCV_TS_HIGH_UPDATE_FLAG is set up if the packet is being received and the FB is not
executed yet. Finally, IEP high count value is incremented by the event handler.

The PRU1 event handler handles PRU to PRU event generated by the PRU0 due to the IEP timer event.
The event handler of PRU1 applies the same logic as PRU0 IEP event handler except for generating an
event.

2.4 ARM® Software Application
ARM software is responsible for:
• Initializing the board
• Interrupt mappings
• Board pin-multiplexing
• PRU-ICSS configuration
• MII_RT ports configuration (enabling L2 buffer and auto forwarding)
• Defining and creating tasks
• Initializing L3 memory and shared memory
• Loading queue parameters
• Loading and starting both PRU’s firmware
• Opening gigabit port socket interface
• Running the application loop

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


Receive Task
Function

Open gigabit port 
socket interface

Call 
RxPktTransfer_ESL()

Is packet length in 
ARM buffer >= 0?

Yes

No

Send the packet 
through SDK socket

Load PRU firmwares

Save packet length in 
ARM buffer = return 

value

Is packet sent?

Yes

Task_yield() if packet 
flow counter is 0

NDK buffer error 
count ++;

No

Task_sleep(1) if ARM 
buffer is empty

www.ti.com System Design Theory

17TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

2.4.1 Main Application Loop
The main loop in the application task is responsible for loading the PRU firmware and opening the gigabit
socket interface. The function RxPktTransfer_ESL returns the packet length of the packet in ARM buffer in
the beginning of every iteration of the loop. The length inside ARM buffer includes the length of the packet
received by the MII_RT port excluding the preamble and including 16 bytes of additional length because of
the ESL information. If there is a packet in the ARM buffer, the RxPktTransfer_ESL function has returned
a length greater than zero. This packet is then sent through the NDK socket over the gigabit port. After
that the task goes to sleep to allow other tasks to run.

Figure 9 shows the functionality of the application loop in the form of a flowchart.

Figure 9. ARM® Application Loop Functionality

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


RxPktTransfer_ESL()

Save packet 
availability code = 

return value

Switch: check packet 
availability code

Is code = 0?

Yes

No

Return with 
return_val

return_val = -1

Call RxPktinfo()

Is code = 1?

Is code = 2?

No

No

Yes

Yes
Port_number = 0

Port_number = 1

Is TS_high_port0 <
TS_high_port1?

Is TS_high_port0 =
TS_high_port1?

Is TS_high_port0 <=
TS_high_port1? Port_number = 0

No

No

Port_number = 1
Call

Copy_Packet_PRU2ARM_ESL(Port_number)

Save return_val = return value

System Design Theory www.ti.com

18 TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

2.4.2 RxPktTransfer_ESL Function
This function is called from the main application loop. When the function is called it first checks if there is a
packet in queue for both ports by calling the function RxPktInfo, which returns a code. The returned code
tells which queue has the packet. The function then checks if the code is 0, which means queue for port 0
has the packet. If the code is not 0, the function then checks if the code is 1, which means one queue for
port 1 has the packet. If the code is not 1, the function checks if the code is 2, which mean both queues
have packets. If both ports have packets, the function assigns the value of the port number based on the
least timestamp value of packet in each port. If both queues are empty, the function exits by returning the
value of -1; otherwise, the function Copy_Packet_PRU2ARM_ESL is called with port_number as input
parameter, which returns the length of the packet including ESL information, excluding preamble. This
length information is then also returned by this function.

Figure 10 shows the functionality of RxPktTransfer_ESL function in the form of a flowchart.

Figure 10. RxPktTransfer_ESL Function

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


RxPktInfo()

Load and save globally the read and 
write pointer values from queue 

descriptor for port1

NB Logic

Is write pointer = read
pointer for port0?

No

Yes

Return with return_val

Is write pointer = read
pointer for port1?

Yes

Return_val = -1

Load and save globally the read and 
write pointer values from queue 

descriptor for port0

Set port0_packet_found_flag

Set port1_packet_found_flagNo

Are the flags for both ports? Return_val = 2

Is there a flag for Port1? Return_val = 1

Return_val = 0Is there a flag for Port0?

www.ti.com System Design Theory

19TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

2.4.3 RxPktInfo Function
This function checks which queue for both ports has the packets. The function checks by first loading and
storing the read and write pointers of each queue from their queue descriptors and then compares the
pointers to see if they are equal, which means the queue is empty; otherwise, there is a packet in the
queue. If there is a packet, it sets a packet found flag for that port. Then based on this flag for each port
the function decides which value to return as a code that signifies which port has the packet. 0 means
port0, 1 means port1, 2 means both ports, and -1 means none of the ports have the packets.

Figure 11 shows the functionality of this function in the form of a flowchart.

Figure 11. RxPktInfo Function

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


Copy_Packet_PRU2ARM_ESL(port_number)

Load the packet length from 
buffer descriptor

Copy the packet from queue that 
is assigned for the port_number 
in L3 memory toe ARM buffer

Append upper 8 bytes of ESL 
information that include symbolic 

MAC, port number and error 
information in ARM buffer

Append lower 8 bytes of ESL 
information that include 64 bit 

timestamp value in ARM buffer

Update read pointer in queue 
descriptor for the respective port 
and handle wrap-around case if 

there is one

Save return_val with packet 
length in buffer descriptor minus 
8 bytes of preamble length and 

plus 16 bytes for ESL information

Return with Return_val

System Design Theory www.ti.com

20 TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

2.4.4 Copy_Packet_PRU2ARM_ESL Function
This function is actually responsible for copying the packet from queue to the ARM buffer for the port
number, which it gets as input parameter. The function first loads the packet length of the packet that was
received by the MII_RT port from the buffer descriptor. The function then copies the packet from the
queue in L3 memory to the ARM buffer excluding the preamble. Then the function appends the 16 bytes
of ESL information with the packet inside the ARM buffer. Lastly, it updates the read pointer in the queue
descriptor, handles wrap-around of the read pointer (if there is one), and returns the length of the packet
that was copied excluding the preamble and including ESL information.

Figure 12 shows the functionality of this function in the form of a flowchart.

Figure 12. Copy_Packet_PRU2ARM_ESL Function

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


www.ti.com Getting Started Hardware and Software

21TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

3 Getting Started Hardware and Software

3.1 Hardware
Figure 13 shows the TMDSIDK437X board.

Figure 13. TMDSIDK437X Board

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


Getting Started Hardware and Software www.ti.com

22 TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

3.2 Software
The following hardware and software are required:
• TMDSIDK437X board
• Code Composer Studio™ (CCS) v6 or higher
• PRU Compiler for CCSv6 (install through CCS add-on)
• RTOS Processor SDK 1.0.3 for AM437x IDK
• Industrial SDK 2.1.1.2

– SYS-BIOS (refer to Industrial SDK release notes)
– XDC-Tools (refer to Industrial SDK release notes)

• NDK 2.25.0.09 (refer to NDK release notes and NDK reference guide)
• TI Design TIDEP0064 software download files

After installing the development tools, extract the TIDEP0065 project in the C:/TI folder. Import the PRU
and ARM project into CCS from the downloaded source code file folder.

3.2.1 PRU Firmware
Once the project has been imported the PRU firmware can be compiled. The outcome of the PRU
Compiler is an .out file. The .out file must get converted into a C-Header file, which is then included by the
ARM application. The ARM application loads the PRU firmware header at run time into the PRU core.

Follow these steps to convert the PRU .out file into a C-Header file:
1. Go to the RTE_PRU-ICSS folder.
2. Read the readme.txt in header_gen folder.

• If required, adopt file names and paths in build_header_pru1.bat.
3. Copy the following files from header_gen to the debug folder under the respective PRU folder.

• build_header_pru0.bat
• pru_header.cmd
• build_header_pru1.bat

4. Open two CMD DOS box and navigate to the PRU0 folder under debug folder in one window and
navigate to the PRU1 folder under debug folder in other window.

5. Execute the build_header_pru0.bat for the PRU0 folder and build_header_pru1.bat file for PRU1 folder:
This generates the C-Header files and copies this into the ARM project include folder.

For development and testing purposes, download the .out file through JTAG to the PRU core. Note that if
the ARM application is reloaded and executed, it will rewrite the PRU firmware into the PRU code.

3.2.2 ARM® Application
The ARM application initializes the PRU-ICSS subsystem, sets the pinmux for the board, configures
MII_RT ports, and loads the PRU firmware. In addition, the example application transmits the packets
being received on the MII_RT ports through the gigabit port to the PC where they can be seen on the
Wireshark.

Compile the ARM project and load the .out file into the ARM code. Execute the application to start Rea-
Time Ethernet Tracer to trace the communication on the network. Use Wireshark to validate that the
packets are being captured through the gigabit port. Use breakpoints in the ARM software and read out
the return variables of RxPktTransfer_ESL Function and other functions that it calls to validate the
expected results.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


PLC as
Profinet 
Master

RTE_Tracer

Profinet 
Slave

Device1

Profinet 
Slave

Device2

Profinet 
Slave

Device3

PC

Wireshark

Gbit
Port

MII_RT
Port1

MII_RT
Port0

www.ti.com Testing and Results

23TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

4 Testing and Results

4.1 Test Setup
The test setup included a PROFINET network in which a PLC, acting as master, communicates with
multiple slaves. Our real-time Ethernet tracer is placed between the PLC and the first slave as shown in
Figure 14.

Figure 14. Test Setup Block Diagram

4.2 Wireshark™ Screenshots
Figure 15 shows a screenshot of a Wireshark capture from the test setup.

Figure 15. Screenshot of Wireshark™ Capture

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


Testing and Results www.ti.com

24 TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

Figure 16 shows the contents of the highlighted packet, which includes the ESL information with its
timestamp value and other fields.

Figure 16. Screenshot of Packet Content From Wireshark™ With ESL Information

4.3 Performance Testing and Limitations
Performance testing was done on the RTE tracer TI Design is to find how much time it takes to process a
64-byte packet by the RxPktTransfer_ESL function in which it copies the packet from queue in L3 memory
to the ARM buffer. Testing was also completed to determine the time it takes the NDK socket to transmit
the packet through the gigabit link using the send function. This testing was done using GPIO toggling
where the GPIO pin was enabled as output. The pin was set to 1 for the duration of the execution of each
function.

Figure 17 shows the time it takes to process a packet by RxPktTransder_ESL function, which comes out
to be 5 µs.

Figure 17. Time to Process a Packet by RxPktTransfer_ESL Function

Figure 18 shows the time it takes to transmit the packet through the NDK socket send function.

Figure 18. Time to Transmit a Packet Through NDK Socket Send Function

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


www.ti.com Testing and Results

25TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

On the cable between the multiple Ethernet packets, there is a 960-ns duration inter-frame gap (IFG). If
sent one after another, the shortest packets (64 bytes plus 8 bytes of preamble) can take only the time to
send a 72 bytes plus 960 ns for IFG, which comes out to be 6.72 µs. However, this TI design takes
roughly 37.4-µs total (5 µs to process and 33.2 µs to send the packet). If such situation arises that the
packets are sent one after another without a time difference between the two packets, being less than
37.4 µs, the tracer can drop the packets if many of those packets are received and if the overflow count
can be seen to increase.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4


Design Files www.ti.com

26 TIDUCD4–October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Real-Time Ethernet Tracer for PRU-ICSS Reference Design

5 Design Files

5.1 Schematics
To download the schematics, see the design files at TIDEP0064.

5.2 Bill of Materials
To download the bill of materials (BOM), see the design files at TIDEP0064.

5.3 PCB Layout Recommendations

5.3.1 Layout Prints
To download the layer plots, see the design files at TIDEP0064.

5.4 Altium Project
To download the Altium project files, see the design files at TIDEP0064.

5.5 Gerber Files
To download the Gerber files, see the design files at TIDEP0064

5.6 Assembly Drawings
To download the assembly drawings, see the design files at TIDEP0064.

6 Software Files
To download the software files, see the design files at TIDEP0064.

7 Terminology

CCS - Code Composer Studio

ICSS - Industrial Communication Subsystem

PLC - Programmable Logic Controller

PRU - Programmable Real-time Unit

8 About the Author
MUHAMMAD HAISEM KHAN is a master's student at the University of Stuttgart, Germany. He is
pursuing specialization in embedded systems under the INFOTECH program at his university. He has
significant knowledge in the fields of industrial automation, embedded systems, real-time systems, and
real-time programming. As per his curriculum and interests, he was a master's intern in the Factory
Automation and Control Team in Texas Instruments Freising, Germany. He was responsible for the
implementation of PRU firmware and ARM software in RTE_Tracer project under Thomas’ supervision.
Haisem acquired his Bachelor’s Degree in Electrical (Telecommunication) Engineering from the National
University of Sciences & Technology (NUST) in Islamabad, Pakistan.

THOMAS MAUER is a System Engineer in the Factory Automation and Control Team at Texas
Instruments Freising. He is responsible for developing reference design solutions for the industrial
segment. Thomas brings his extensive experience in industrial communications like Industrial Ethernet
and fieldbuses and industrial applications to this role. Thomas earned his degree in Electrical Engineering
(Dipl. Ing. (FH)) at the University of Applied Sciences in Wiesbaden, Germany.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCD4
http://www.ti.com/tool/TIDEP0064
http://www.ti.com/tool/TIDEP0064
http://www.ti.com/tool/TIDEP0064
http://www.ti.com/tool/TIDEP0064
http://www.ti.com/tool/TIDEP0064
http://www.ti.com/tool/TIDEP0064
http://www.ti.com/tool/TIDEP0064


IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (‘TI”) reference designs are solely intended to assist designers (“Designer(s)”) who are developing systems
that incorporate TI products. TI has not conducted any testing other than that specifically described in the published documentation for a
particular reference design.
TI’s provision of reference designs and any other technical, applications or design advice, quality characterization, reliability data or other
information or services does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and
no additional obligations or liabilities arise from TI providing such reference designs or other items.
TI reserves the right to make corrections, enhancements, improvements and other changes to its reference designs and other items.
Designer understands and agrees that Designer remains responsible for using its independent analysis, evaluation and judgment in
designing Designer’s systems and products, and has full and exclusive responsibility to assure the safety of its products and compliance of
its products (and of all TI products used in or for such Designer’s products) with all applicable regulations, laws and other applicable
requirements. Designer represents that, with respect to its applications, it has all the necessary expertise to create and implement
safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the
likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any systems
that include TI products, Designer will thoroughly test such systems and the functionality of such TI products as used in such systems.
Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special
contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause
serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such
equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and
equivalent classifications outside the U.S.
Designers are authorized to use, copy and modify any individual TI reference design only in connection with the development of end
products that include the TI product(s) identified in that reference design. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR
INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right,
copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or
services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products
or services, or a warranty or endorsement thereof. Use of the reference design or other items described above may require a license from a
third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.
TI REFERENCE DESIGNS AND OTHER ITEMS DESCRIBED ABOVE ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS
ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING THE REFERENCE DESIGNS OR USE OF
THE REFERENCE DESIGNS, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE
WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-
INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNERS AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS AS
DESCRIBED IN A TI REFERENCE DESIGN OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT,
SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH
OR ARISING OUT OF THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, AND REGARDLESS OF WHETHER TI
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
TI’s standard terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated
circuit products. Additional terms may apply to the use or sale of other types of TI products and services.
Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-
compliance with the terms and provisions of this Notice.IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm

	Real-Time Ethernet Tracer for PRU-ICSS Reference Design
	1 System Overview
	1.1 What is Real-Time Ethernet?
	1.2 What is a Tracer?
	1.3 System Block Diagram
	1.4 Key System Level Specifications
	1.5 Highlighted Products
	1.5.1 AM4379 Processor
	1.5.2 TLK105L Ethernet PHY
	1.5.3 DP83822 Ethernet PHY
	1.5.4 AM437X IDK EVM Hardware Specification


	2 System Design Theory
	2.1 MII_RT Configuration
	2.2 Ethernet Frame Queue Management
	2.2.1 Custom Frame Header
	2.2.2 ESL Information Format

	2.3 PRU Firmware
	2.3.1 PRU Firmware Main Control Loop
	2.3.2 Receive Functions (FB, NB, LB)
	2.3.2.1 First Block (FB)
	2.3.2.2 Next Block (NB)
	2.3.2.3 Last Block (LB)

	2.3.3 IEP Timestamping With 64-Bit Support
	2.3.4 Event Handler
	2.3.4.1 Receive Function Events
	2.3.4.2 MDIO Events
	2.3.4.3 IEP Events


	2.4 ARM® Software Application
	2.4.1 Main Application Loop
	2.4.2 RxPktTransfer_ESL Function
	2.4.3 RxPktInfo Function
	2.4.4 Copy_Packet_PRU2ARM_ESL Function


	3 Getting Started Hardware and Software
	3.1 Hardware
	3.2 Software
	3.2.1 PRU Firmware
	3.2.2 ARM® Application


	4 Testing and Results
	4.1 Test Setup
	4.2 Wireshark™ Screenshots
	4.3 Performance Testing and Limitations

	5 Design Files
	5.1 Schematics
	5.2 Bill of Materials
	5.3 PCB Layout Recommendations
	5.3.1 Layout Prints

	5.4 Altium Project
	5.5 Gerber Files
	5.6 Assembly Drawings

	6 Software Files
	7 Terminology
	8 About the Author

	Important Notice

