ABSTRACT
This report presents the reliability and qualification results for the LM239A-EP Quad Differential Comparator. The LM239A-EP is manufactured with a controlled baseline and has the following:

- An Extended Product Life Cycle
- One Assembly and Test Site
- Product Traceability
- Extended Product-Change Notification

Contents
1 Texas Instruments Enhanced Product Qualification and Reliability Report .. 2
2 Qualification by Similarity (Qualification Family) .. 2
3 Technology Family FIT/MTBF Data ... 4
4 Device Family Qualification Data .. 5
5 Ongoing Reliability Monitoring .. 5

Trademarks
All trademarks are the property of their respective owners.
1 Texas Instruments Enhanced Product Qualification and Reliability Report

TI qualification testing is a risk mitigation process that is engineered to assure device longevity in customer applications. Wafer fabrication process and package level reliability are evaluated in a variety of ways that may include accelerated environmental test conditions with subsequent derating to actual use conditions. Manufacturability of the device is evaluated to verify a robust assembly flow and assure continuity of supply to customers. TI Enhanced Products are qualified with industry standard test methodologies performed to the intent of Joint Electron Devices Engineering Council (JEDEC) standards and procedures. Texas Instruments Enhanced Products are certified to meet GEIA-STD-0002-1 Aerospace Qualified Electronic Components.

2 Qualification by Similarity (Qualification Family)

A new device can be qualified either by performing full scale quality and reliability test on the actual device or using previously qualified device(s) through "Qualification by Similarity" (QBS) rules. By establishing similarity between the new device and those qualified previously, repetitive test will be eliminated, allowing for timely production release. When adopting QBS methodology, the emphasis is on qualifying the differences between a previously qualified product and the new product under consideration. The QBS rules for a technology, product, test parameter or package shall define which attributes are required to remain fixed in order for the QBS rules to apply. The attributes which are expected and allowed to vary will be reviewed and a QBS plan shall be developed, based on the reliability impact assessment above, specifying what subset of the full complement of environmental stresses is required to evaluate the reliability impact of those variations. Each new device shall be reviewed for the conformance to the QBS rule sets applicable to the device. See JEDEC JESD47 for more information.
Device Baseline

<table>
<thead>
<tr>
<th>Device</th>
<th>LM239AMDREP</th>
<th>Pin/Package Type</th>
<th>TSSOP (PW)</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer Fab</td>
<td>SH-BIP-1</td>
<td>Moisture Sensitivity</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>Fab Technology</td>
<td>JI1</td>
<td>Die Revision:</td>
<td>(*) denotes initial release</td>
<td></td>
</tr>
<tr>
<td>Die Name</td>
<td>STLCM339PS</td>
<td>Baseline information in effect as of the date of this report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>LM239AMPWREP</th>
<th>Pin/Package Type</th>
<th>TSSOP (PW)</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer Fab</td>
<td>SH-BIP-1</td>
<td>Moisture Sensitivity</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>Fab Technology</td>
<td>JI1</td>
<td>Die Revision:</td>
<td>(*) denotes initial release</td>
<td></td>
</tr>
<tr>
<td>Die Name</td>
<td>STLCM339PS</td>
<td>Baseline information in effect as of the date of this report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>LM239AQDREP</th>
<th>Pin/Package Type</th>
<th>TSSOP (PW)</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer Fab</td>
<td>SH-BIP-1</td>
<td>Moisture Sensitivity</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>Fab Technology</td>
<td>JI1</td>
<td>Die Revision:</td>
<td>(*) denotes initial release</td>
<td></td>
</tr>
<tr>
<td>Die Name</td>
<td>STLCM339PS</td>
<td>Baseline information in effect as of the date of this report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mean Time Between Fails (MTBF) and Failures in Time (FIT) rates are device reliability statistics calculated based on data collected from TI's internal reliability testing (life test).

TI's DPPM/FIT/MTBF Estimator Search Tool reports the generic data based on technology groupings and shows conditions under which the rates were derived. All terms used in the tool and definitions can be found on the TI reliability terminology page. Failure rates are summarized by technology and mapped to the associated material part numbers. The failure rates are highly dependent on the number of units tested, therefore, it is not recommended to compare failure rates.

TI DPPM/FIT/MTBF Estimator Search Tool web page link: www.ti.com/quality/docs/estimator.tsp
4 Device Family Qualification Data

TI's Qualification Summary Search Tool reports generic data representative of the material sets, processes, and manufacturing sites used by the device family and may not include all of the testing performed for a specific for a specific EP device. Please see the Enhanced Products New Device Qualification Matrix above for the full suite of qualification testing performed to release Enhanced Product devices.

TI Qualification Summary Search web page link: www.ti.com/qualificationsummary/qualsumm/home

5 Ongoing Reliability Monitoring

TI periodically monitors the reliability of its products, wafer fab processes, and package technologies through its Ongoing Reliability Monitor (ORM) program. The ORM program involves collecting environment reliability stress data on representative sets of devices, processes and packages. The results from the ORM program are updated quarterly in this report.

TI Ongoing Reliability Monitoring Search web page link: www.ti.com/orm/home?actionId=2801.html

For additional information or technical support please contact the Texas Instruments Customer Support Center at www.ti.com/support or send an email to support@ti.com.

For more information on TI Enhanced Products please visit www.ti.com/ep.
Quality and Reliability Data Disclaimer

The attached quality and reliability information is specific to the TI Enhanced Plastic product family of plastic encapsulated commercial-off-the-shelf (COTS) semiconductor products and components. Due to possible differences in product assembly and test baselines, this information is NOT APPLICABLE to TI standard, industrial, or automotive catalog commercial products.

Plastic encapsulated TI semiconductor devices are not designed and are not warranted to be suitable for use in some military applications and/or military environments. Use of plastic encapsulated TI semiconductor devices in military applications and/or military environments, in lieu of hermetically sealed ceramic devices, is understood to be fully at the risk of Buyer.

Quality and reliability data provided by Texas Instruments is intended to be an estimate of product performance based upon history only. It does not imply that any performance levels reflected in such data can be met if the product is operated outside the conditions expressly stated in the latest published data sheet for a device.

Existing industry standards for plastic encapsulated microcircuit qualification and reliability monitors are based upon historical data, experiments, and field experience with the use of these devices in commercial and industrial applications. The applicability of these standards in determining the suitability for use and safety performance in military and aerospace applications has not been established. Due to the multiple variations in field operating conditions, a component manufacturer can only base estimates of product life on models and the results of package and die level qualification.

The buyer’s use of this data, and all consequences of such use, is solely the buyer’s responsibility. Buyer assumes full responsibility for performing sufficient engineering and additional qualification testing in order to properly evaluate the buyer’s application and determine whether a candidate device is suitable for use in that application. The information provided by TI shall not be considered sufficient grounds on which to base any such determination.

THIS INFORMATION IS PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT SHALL TI OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION, EVEN IF TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THIS INFORMATION SHOULD NOT BE USED TO ASSIST IN THE PRACTICE OF “UPRATING” OR “UPSCREENING” DEVICES FOR USE BEYOND THEIR RATED LIMITS.

TI may provide technical, applications or design advice, quality characterization, and reliability data or service providing these items shall not expand or otherwise affect TI’s warranties as set forth in the Texas Instruments Incorporated Standard Terms and Conditions of Sale for Semiconductor Products and no obligation or liability shall arise from TI’s provision of such items.

Quality and Reliability Data copyright © 2011, Texas Instruments Incorporated, all rights reserved.