Automotive Wide V_{IN} DC/DC
Power Solutions for Emerging Applications

Precision References
Wide V_{IN} Buck Controllers
Ultra Small Wide V_{IN} Buck Converter
Wide V_{IN} Boost and Buck-Boost Controllers
Wide V_{IN} LDOs

WIDEVERIN

>40V Peak
Nominal
Load Dump
Steady State
Jump Start
Min 3V Start Stop
Reverse Battery
Noise
Crank
Noise

ti.com/widevin

2014
Why Wide V_{IN} for Automotive?
Addressing Transient Ranges in Advanced Electronics

Texas Instruments Wide V_{IN} portfolio withstands the wide range of voltage transients providing highly reliable, affordable solutions. Automotive electronics operate from the car battery which experiences transient loads such as cold-cranks and load dumps which can range from 5V to >40V. In addition, technologies such as start-stop increase the transient range dropping down to 3V in certain cases. This requires off-battery power ICs to withstand the harsh operating conditions and reliably provide power to the whole vehicle.

Typical Automotive Power Tree

- **Infotainment**
 - Instrument Cluster and Displays
 - Telematics
 - USB Hub/Charger
 - Audio Amplifiers

- **ADAS**
 - Camera Modules
 - Radar Systems
 - Ultrasonic Park Assist
 - LIDAR

- **Powertrain**
 - Start-Stop Voltage Conditioning
 - Fuel Pump
 - Fuel injection
 - Emission control/sensors

- **Body Electronics**
 - LED headlamps/lighting
 - HVAC Controls
 - Door sensors/locking

Wide V_{IN} Power for Automotive
Powertrain
Start-Stop Voltage Conditioning System

Start-stop technology helps vehicles to improve fuel mileage and emissions, but also poses the challenge of harsher operating conditions for the electronics. Fluctuations from a worst case cold crank can reduce the off-battery voltage to as low as 3V requiring either a pre-boost or buck-boost converter that can handle the drop while still surviving 40V transients from load dumps. TI offers off-battery boost and buck-boost solutions that can handle the full input voltage range without the need to pre-condition the battery circuit which reduces BOM size and cost.

Start-Stop Requirements
Cold-crank and stat-stop conditions require the use of either pre-boost or buck-boost converter blocks to ensure continuous operation of the downstream electronics.

The LM3481 Boost Controller provides a Buck-Boost (SEPIC) converter for low power needs ≤50W

The LM5122 Pre-Boost can be scaled from 50W to >400W

Nominal Operating Voltage: ~12V
Regulated Voltage
Crank: ~6 to 8V
Worst Crank: ~3V
0
2
4
6
8
10
12
14
Voltage

Time (not to scale)
Infotainment applications require a wide range of power solutions from low power telematics to high power audio amplifier solutions. TI’s wide range of power portfolio include buck, boost, and buck-boost controllers with external FETs for high power needs which help dissipate heat, as well as converters for more integrated solutions for lower power applications.

Infotainment System Electronics

- **Power Supply for USB Port / Charging**
 - Buck Converter
 - or Controller
 - TPS54340-Q1
 - LM29117-Q1
 - 5V / 5A
 - **USB Charging Switch**
 - TPS2543-Q1

- **Boost Supply for High-Performance Audio Amplifier**
 - Stackable Boost Controller
 - LM5122-Q1 x 2-4
 - 24V to 30V / 20A
 - **100 to 600W Class D Audio Amplifier**

- **Dual-Channel Supply for Head Unit**
 - Dual Buck Controller
 - LM5119-Q1
 - TPS4350-Q1
 - 5V / 5A
 - 3.3V / 5A
 - **Infotainment Processor**

- **Quad-Channel for Display Lighting**
 - Boost Controller and LED Driver
 - LP8860-Q1
 - **Infotainment / Telematics Display**

- **Buck-Boost Supply for Telematics**
 - Buck-Boost Controller
 - or Converter
 - LM29118-Q1
 - TPS55905-Q1
 - 5V / 75V / 2A
 - **Telematics / eCall**

- **Backup Battery**

DC/DC Converters and the AM Bandwidth

The AM bandwidth spans from 500 to 1800 kHz which requires switching regulators to operate outside of this range to prevent interference.
Automotive camera modules are placed in constrained and concealed spaces. This necessitates designs that require small solution sizes and low power dissipation. Texas Instruments’ power portfolio provides ultra-small power solutions while maintaining high efficiency and low EMI.

Changes in the USA
The National Highway Traffic Safety Administration (NHTSA) will require all vehicles to have a rear-view visibility system starting in May, 2018.
Wide V_{IN} Part Selection Guide

Wide V_{IN} Step-Down Devices

<table>
<thead>
<tr>
<th>Part No</th>
<th>I_{OUT} (A)</th>
<th>V_{IN} (V)</th>
<th>V_{OUT} (V)</th>
<th>F_{SW}</th>
<th>Synchronous</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM34919C-Q1</td>
<td>0.6</td>
<td>4.5 to 50</td>
<td>3.5 to 45</td>
<td>2.6 MHz</td>
<td></td>
<td>Ultra-small footprint</td>
</tr>
<tr>
<td>LM5010-Q1/0Q0</td>
<td>1</td>
<td>6 to 75</td>
<td>1.5 to 70</td>
<td>1.0 MHz</td>
<td></td>
<td>Available in Q1 and Q0 grades</td>
</tr>
<tr>
<td>TPS65310A-Q1</td>
<td>1 / 2</td>
<td>4 to 40</td>
<td>0.8 to 5.5</td>
<td>0.98 MHz</td>
<td>✓</td>
<td>Supports up to 5 outputs</td>
</tr>
<tr>
<td>LM26001/Q3</td>
<td>1.5 / 3</td>
<td>3 to 38</td>
<td>1.25 to 35</td>
<td>500 kHz</td>
<td>✓</td>
<td>High-efficiency sleep mode</td>
</tr>
<tr>
<td>LM25011-Q1</td>
<td>2</td>
<td>6 to 42</td>
<td>2.5 to 40</td>
<td>2.0 MHz</td>
<td></td>
<td>Adjustable Current Limit</td>
</tr>
<tr>
<td>TPS65320-Q1</td>
<td>3.2</td>
<td>3.6 to 40</td>
<td>1.1 to 20</td>
<td>2.5 MHz</td>
<td></td>
<td>LDO input auto sourcing</td>
</tr>
<tr>
<td>TPS54340/540</td>
<td>3.5 / 5</td>
<td>4.5 to 60</td>
<td>0.8 to 58.8</td>
<td>2.5 MHz</td>
<td>✓</td>
<td>Eco-mode</td>
</tr>
<tr>
<td>LM(2)5119Q</td>
<td>N/A</td>
<td>5.5 to 65</td>
<td>0.8 to 64</td>
<td>750 kHz</td>
<td>✓</td>
<td>Dual-channel, dual-phase</td>
</tr>
<tr>
<td>LM(2)5117-Q1</td>
<td>N/A</td>
<td>4.5 to 65</td>
<td>0.8 to 62</td>
<td>750 kHz</td>
<td>✓</td>
<td>Analog Current Monitor</td>
</tr>
<tr>
<td>TPS40170-Q1</td>
<td>N/A</td>
<td>4.5 to 60</td>
<td>0.6 to 57</td>
<td>600 KHz</td>
<td>✓</td>
<td>Pre-biased output support</td>
</tr>
</tbody>
</table>

Wide V_{IN} Step-Up (Boost) Devices

<table>
<thead>
<tr>
<th>Part No</th>
<th>I_{OUT} (A)</th>
<th>V_{IN} (V)</th>
<th>V_{OUT} (V)</th>
<th>F_{SW}</th>
<th>Synchronous</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM3478/81-Q1</td>
<td>N/A</td>
<td>2.95 to 40</td>
<td>1.26 to 7.5</td>
<td>1.0 MHz</td>
<td>Sync</td>
<td>Versatile topologies</td>
</tr>
<tr>
<td>LM5001-Q1</td>
<td>1</td>
<td>3.1 to 75</td>
<td>1.26 to 75</td>
<td>1.5 MHz</td>
<td></td>
<td>Adjustable UVLO</td>
</tr>
<tr>
<td>TPS55332-Q1</td>
<td>3</td>
<td>3.6 to 60</td>
<td>2.5 to 50</td>
<td>2.2 MHz</td>
<td>Sync</td>
<td>Fast negative transient response</td>
</tr>
<tr>
<td>LM5122-Q1</td>
<td>N/A</td>
<td>3 to 65</td>
<td>3 to 100</td>
<td>1.0 MHz</td>
<td></td>
<td>Multi-phase capability</td>
</tr>
</tbody>
</table>

Wide V_{IN} Buck / Boost Devices

<table>
<thead>
<tr>
<th>Part No</th>
<th>I_{OUT} (A)</th>
<th>V_{IN} (V)</th>
<th>V_{OUT} (V)</th>
<th>F_{SW}</th>
<th>Synchronous</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS55065-Q1</td>
<td>0.5 / 1</td>
<td>1.5 to 40</td>
<td>5</td>
<td>440 kHz</td>
<td></td>
<td>Low-power operation mode</td>
</tr>
<tr>
<td>TPC74100-Q1</td>
<td>N/A</td>
<td>3 to 75</td>
<td>1.23 to 70</td>
<td>500 kHz</td>
<td></td>
<td>Emulated Current Mode control</td>
</tr>
</tbody>
</table>

LDOs

<table>
<thead>
<tr>
<th>Part No</th>
<th>I_{OUT} (A)</th>
<th>V_{IN} (V)</th>
<th>V_{OUT} (V)</th>
<th>I_q (µA)</th>
<th>Tolerance</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM2936Q-Q1</td>
<td>0.05</td>
<td>5.5 to 40</td>
<td>3, 3.3, 5</td>
<td>15</td>
<td>3%</td>
<td>Reverse transient protection</td>
</tr>
<tr>
<td>TPS7A66/69xx-Q1</td>
<td>0.15</td>
<td>5.5 to 40</td>
<td>1.5 to 5.0</td>
<td>12</td>
<td>2%</td>
<td>Power Good output</td>
</tr>
<tr>
<td>TPS709xx-Q1</td>
<td>0.2</td>
<td>2.7 to 30</td>
<td>1.2 to 6.5V</td>
<td>1</td>
<td>2%</td>
<td>Ultra-low Shutdown Current</td>
</tr>
</tbody>
</table>

Reference design library

PMP7919
Voltage Stabilizer
Dual phase synchronous boost converter for start-stop vehicle applications.

TIDA-00160
USB Battery Charging
Automotive USB battery charger optimized for size.

TIDA-00098
Camera Module
Complete automotive camera module using a single coaxial cable connection.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products
Audio
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
OMAP Applications Processors
Wireless Connectivity

Applications
Automotive and Transportation
Communications and Telecom
Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial
Medical
Security
Space, Avionics and Defense
Video and Imaging

www.ti.com/audio
www.amplifier.ti.com
www.dataconverter.ti.com
www.dlp.com
www.dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/omap
www.ti.com/wirelessconnectivity

www.ti.com/automotive
www.ti.com/communications
www.ti.com/computers
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
www.ti.com/space-avionics-defense
www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated