DLP® 0.45 WXGA NIR Chipset
DLP4500NIR & DLPC350

Introducing the first ever Texas Instruments (TI) DLP® chipset optimized for use with near infrared (NIR) light. This cost effective, programmable light steering solution is ideal for use in industrial sensing equipment for the field or production line and can enable new markets for spectrometers, single pixel cameras, laser marking equipment, NIR projection and more.

How the DLP 0.45 WXGA NIR Chipset Works

TI offers a dedicated DLP 0.45 WXGA NIR Chipset which consists of the DLP4500NIR digital micromirror device (DMD) and DLPC350 Digital Controller. The complete chipset is designed to give engineers fast, easy and reliable control of the DMD to speed product development. The DLP4500NIR is optimized for light steering solutions in the near infrared range including:

- Spectroscopy
- Single Pixel Cameras
- Laser Marking
- 3D Machine Vision
- Pattern Projection
- Optical Choppers
- Microscopes

The DMD is a programmable, high speed spatial light modulator. Each micromirror of the DMD can be individually deflected about a hinged axis. The deflection angle of each micromirror (±12°) is controlled by changing the binary state of the underlying CMOS memory cell followed by application of a mirror reset pulse. Convenient and reliable operation of the DMD is orchestrated by the DMD controller, with micromirror driver circuitry integrated into the DMD. In addition, TI offers firmware for the Digital Controller to enable advanced control of the DMD for pattern and high speed light steering applications.

DLP NIRscan™: Get Started Today

The DLP NIRscan evaluation module (EVM) featuring the 0.45 WXGA NIR Chipset contains everything a designer needs to start developing a DLP-based spectrometer right out of the box.

DLP-based spectrometer optical engine
- 1350 – 2450 nm wavelength range
- >30,000:1 signal to noise ratio for <1 second measurements
- Single-element Extended InGaAs Detector
- Dimensions: 7 ½” L x 4 ½” W x 3 ¾” H

Electronics
- AM3358 Sitara™ Cortex-A8 Microprocessor
- ADS1255 Very Low Noise Delta-Sigma ADC

Transmittance sampling module including halogen lamp
- Compatible with reflective or fiber-based sampling modules
- 3 disposable cuvettes to jump start development

Embedded Linux operating system based on BeagleBone Black architecture running web server
- Connect through USB or Ethernet—no download required!
- Open source code available

Available reference design from TI Designs

DLP 0.45 WXGA NIR Chipset

<table>
<thead>
<tr>
<th>DLP4500NIR Key Features</th>
<th>DLPC350 Key Features</th>
<th>www.ti.com/dlpnirsan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimized for 700-2500 nm light</td>
<td>Convenient, reliable DMD control</td>
<td></td>
</tr>
<tr>
<td>Over 1 million micromirrors (912 x 1140 array)</td>
<td>High speed pattern rates up to 4225 Hz</td>
<td></td>
</tr>
<tr>
<td>Side illuminated for simplified optics</td>
<td>Pixel accurate Pattern Sequence Mode</td>
<td></td>
</tr>
<tr>
<td>Polarization independent aluminum micromirrors</td>
<td>Two configurable I/O triggers</td>
<td></td>
</tr>
</tbody>
</table>
Spectroscopy Using DLP Technology

In a spectrometer, the DMD acts as a programmable wavelength filter. In a typical configuration, broadband light enters through a slit, and a grating is used to disperse the wavelengths of light across the micromirror array. Columns of micromirrors are then used to select which wavelengths are directed onto a single element detector, and micromirror rows apply an attenuation factor. The DMD facilitates a spectrometer architecture that uses a larger, single detector to displace an expensive array detector.

This powerful and programmable design architecture enables analysis of liquids and solids with higher performance at lower price points while using a smaller form factor suited for both field analysis and inline manufacturing processes.

Performance:
- Capture more light from a sample
- Better signal-to-noise ratio (SNR)
- Low power, more portable solutions

Programmability:
- More flexible, faster, accurate measurements
- “Optimize as you go” analysis
- Measure diverse substances with a single end equipment

Cost:
- Utilize lower cost single element detectors
- Consistent unit-to-unit performance in volume production

Portability:
- Robust architecture
- Temperature-independent switching characteristics

Block Diagram of Spectrometer using DLP Technology
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
<th>www.ti.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
<td>www.ti.com/automotive</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
<td>www.ti.com/computers</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
<td>www.ti.com/consumer-apps</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
<td>www.ti.com/energy</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
<td>www.ti.com/industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
<td>www.ti.com/space-avionics-defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
<td>www.ti.com/rfid.com</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>TI E2E Community</td>
<td>www.ti.com/omap e2e.ti.com</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated