TI Power Solutions
DC/DC Converters with DCS-Control™ Topology

TI’s DCS-Control™ topology (Direct Control with Seamless Transition into Power Save Mode) is an advanced architecture that combines the advantages of hysteretic and voltage mode control. The DCS-Control provides:

• High output-voltage accuracy throughout a seamless transition between PWM to Power Save Mode provided by a single building block
• Minimized interference with RF or other noise-sensitive circuits achieved by excellent DC-voltage and load-transient regulation, combined with low output voltage ripple
• Works with small (footprint and BOM count) and cost-competitive external components like low-ESR capacitors
• A robust design that tolerates large effective output capacitance
• Highest accuracy and smallest solution size combined with lowest quiescent current in versions with fixed output voltage

Other features supported on DCS-Control™ topology devices are:

• Adjustable soft start or tracking/sequencing
• Pin-selectable output voltage (margining)
• Pin-selectable switching frequency
• Power Good indicator
• Integrated bypass or load switch
• \(^{\text{i2C}}\) interface for dynamic voltage scaling
• Differential Remote Sense
• Extended UVLO hysteresis
• Adjustable ENABLE threshold and hysteresis
• Start-up into prebiased load
• HICUP overcurrent protection
• Output-capacitor discharge
• 100% duty cycle

www.ti.com/dcs-control
DC/DC Converters with DCS-Control™ Topology
Step-Down LED Driver with Dimming

17-V Input Step-Down Converters with Adjustable Soft Start
TPS62150

TPS62150 demonstrates a small, simple, and easy way to implement a high-brightness constant current LED driver. The desired current must be maintained with an output voltage that varies with changes in the LED forward voltage due to analog dimming or varying temperatures. To achieve current regulation, the voltage across a known resistance (RCS) is regulated. RCS is connected from the feedback pin (FB) to GND. Due to the relatively high FB voltage, the power dissipated by RCS can lower efficiency and reduce battery life. By putting a resistor from the SS/TR pin to GND, the FB voltage can be reduced. The LEDs are connected from the output of the inductor to the FB pin. Dimming can be realized in this application by either analog or PWM methods.

Get more information: www.ti.com/lit/SLVA451
www.ti.com/product/TPS62150

Sequencing and Tracking for Multiple Voltage Rails

Synchronous Step-Down (Buck) Converters
TPS62097

The TPS62097 synchronous buck DC/DC is ideal for use in systems that contain multiple output-voltage rails. The devices have:
• A built-in Power Good function to indicate the status of the device
• An adjustable soft-start circuit to control the output-voltage slope during start-up
• An Enable function for controlling the turn-on of the device

Each of these functions is useful for tracking and sequencing.

TI’s Application Report SLVA470 describes how to use the ENABLE, Power Good and Soft-Start/Tracking functions in systems with multiple voltage rails.

Get more information: www.ti.com/lit/SLVA470
www.ti.com/product/TPS62097

This topology can be applied to TPS62130, TPS62140 and TPS62150.
DC/DC Converters with DCS-Control™ Topology

Inverting Buck-Boost Topology

Step-Down Converter with Extended UVLO Hysteresis

TPS62120

The TPS62120 is a synchronous buck DC/DC converter designed for low-power applications such as ultra-low-power microprocessors, energy harvesting and low-power RF applications. The extended undervoltage lockout enables energy-harvesting applications to run longer from the supporting buffer capacitor. Moreover, the TPS62120 can be configured in an inverting buck-boost topology where the output voltage is inverted or negative with respect to ground. TI's Application Report SLVA478 describes the TPS62120 in an inverting buck-boost topology for use in low-current negative rails for operational-amplifier biasing and other low-power applications.

Get more information: www.ti.com/lit/SLVA478
www.ti.com/product/TPS62120

Harnessing Wasted Energy in 4- to 20-mA Current-Loop Systems

Step-Down Converter with Adjustable Enable Threshold and Hysteresis

TPS62125

A 4- to 20-mA current-loop signal is frequently used in industrial environments to transmit measurements across long distances, such as the temperature of a process or the pressure in a tank. This type of signaling is preferred because of its simplicity, noise immunity, safety and ability to traverse great lengths without data corruption. These current loops are also low-power systems, since relatively low currents transmit the data. Previously, whatever power was not used or lost in the signal transmission was merely dissipated in the transmitter; but now, with modern integrated circuits, even this small amount of power can be harnessed to support necessary functions in these systems.

Get more information: www.ti.com/lit/SLYT488
www.ti.com/product/TPS62125
DC/DC Converters with DCS-Control™ Topology

Powering Low-Power MCUs

28-V Input Step-Down Converter with Sleep Mode

TPS62177

To optimize the balance between power and performance, low-power microcontrollers can be configured to operate in different modes ranging from deep-sleep mode to run mode. The current consumed by microcontrollers in an embedded system can vary from a few microamperes (1.3 µA in hibernation mode) to tens of milliamperes (30 mA at 80 MHz), depending on several factors in the end application. These factors can include mode of operation, system clock frequency, number of peripherals being clocked at a given time, drive strength of GPIOs and number of GPIOs being used to drive loads. The TPS62177 interfaces perfectly with the MCU’s sleep modes, meeting the power requirements of embedded systems powered from two- to six-cell lithium batteries, USB ports or higher-voltage AC adapters.

Get more information: www.ti.com/lit/SPMA066

Saving Battery Energy, Extending Application Run Time

Step-Down Converter with 400-nA Quiescent Current

TPS62745

ADC input of MCUs require an external resistor divider to scale down battery voltage to match with ADC input range. The TPS62745 supports this functionality through the integrated V_{IN} switch and neglects the need for an extra load switch with integrated level shifter.

TPS62745 consumes only 400-nA quiescent current. The output voltage is set with four VSEL pins, supporting Dynamic Voltage Scaling (DVS). Once the battery voltage comes close to the output voltage the device enters a no ripple 100% mode to prevent RF interference.

See TPS62730 and TPS62740 for additional low-power RF solutions like BLE and ZigBee®.

Get more information: www.ti.com/lit/SLYT531
www.ti.com/product/TPS62745, TPS62740 and TPS62730
DC/DC Converters with DCS-Control™ Topology
High Design Flexibility on Smallest Solution Size

17-V Input 3-A Step-Down Converter Module with Integrated Inductor
TPS82130
The TPS82130 is a MicroSiP™ power module optimized for small solution size and high efficiency. The module integrates a synchronous step-down converter and an inductor to simplify design, reduce external components and save PCB area. The low profile and compact solution is suitable for automated assembly by standard surface mount equipment.

To maximize efficiency, the converter operates in PWM mode with a nominal switching frequency of 2.0 MHz and automatically enters Power Save Mode operation at light load currents. In Power Save Mode, the device operates with typically 20-µA quiescent current. Using the DCS-Control™ topology, the device achieves excellent load transient performance and accurate output voltage regulation.

HotRod™ Leadframe Allows <65-mm² Solution Size
3-A Step-Down Converter with Hiccup Short-Circuit Protection in 2 x 2 QFN
TPS62085
The TPS62085 is a high-frequency, synchronous step-down converter optimized for small solution size and high efficiency over a wide output-current range. The converter operates in PWM mode at medium to heavy loads and automatically enters power-save mode at light loads to maintain high efficiency. The swing current limit prevents the device from drawing high inductor current or excessive current from the battery or input-voltage rail. A demand for excessive current might occur with a shorted/saturated inductor, a heavy load or a shorted output circuit. Once the internal current limit is triggered 32 times, the device stops switching, resets the soft start, enables the output discharge and then automatically starts up again after a typical delay of 66 µs. This is called hiccup short-circuit protection. The device repeats this mode until the high current disappears.

16-Bit 1-GSPS Digitizer Reference Design with AC- and DC-Coupled Variable Gain Amplifier:
www.ti.com/tool/tida-00822

Get more information: www.ti.com/product/TPS82130

TI Designs
• Altera Arria V GX FPGA Power Solution:
 www.ti.com/tool/pmp9449
• SSD Power Delivery Reference Design:
 www.ti.com/tool/tida-00399

Get more information: www.ti.com/product/TPS62085 and TPS82085

Evaluation module layout.
PCB layout recommendation.
DC/DC Converters with DCS-Control™ Topology

General-Purpose, Small, Efficient

<table>
<thead>
<tr>
<th>Device</th>
<th>Input- Voltage Range (V)</th>
<th>Maximum Output Current</th>
<th>Output- Voltage Range (V)</th>
<th>Features</th>
<th>Consumer/ Wireless</th>
<th>Industrial/ Telecom</th>
<th>Q100 Available</th>
<th>Package</th>
<th>Price*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS62230</td>
<td>2.0 to 6.0</td>
<td>0.5 A</td>
<td>Fixed Option</td>
<td>12-mm² solution footprint, 0.6-mm height</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>1x1.5 SON</td>
<td>0.48</td>
</tr>
<tr>
<td>TPS62080</td>
<td>2.3 to 6.0</td>
<td>1.2 A</td>
<td>0.5 to 4.0</td>
<td>6.5-µA supply current (snooze mode), Power Good</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2x2 SON</td>
<td>0.69</td>
</tr>
<tr>
<td>TPS62087</td>
<td>2.5 to 6.0</td>
<td>2.0 A</td>
<td>0.8 to Vt</td>
<td>Power Good, adjustable soft start / tracking, frequency select</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2x2 QFN</td>
<td>0.81</td>
</tr>
<tr>
<td>TPS62085</td>
<td>2.5 to 6.0</td>
<td>3.0 A</td>
<td>0.8 to Vn</td>
<td>HoR Rod™ package; output discharge, Power Good</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2x2 QFN</td>
<td>0.87</td>
</tr>
<tr>
<td>TPS62090</td>
<td>2.5 to 6.0</td>
<td>3.0 A</td>
<td>0.8 to Vn</td>
<td>Soft start, tracking, pin-to-pin to TPS62095</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3x QFN</td>
<td>0.87</td>
</tr>
<tr>
<td>TPS62095</td>
<td>2.5 to 5.5</td>
<td>4.0 A</td>
<td>0.8 to Vn</td>
<td>Soft start, tracking, pin-to-pin to TPS62090</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3x QFN</td>
<td>1.05</td>
</tr>
</tbody>
</table>

Extended Input-Voltage Range

<table>
<thead>
<tr>
<th>Device</th>
<th>Input- Voltage Range (V)</th>
<th>Maximum Output Current</th>
<th>Output- Voltage Range (V)</th>
<th>Features</th>
<th>Consumer/ Wireless</th>
<th>Industrial/ Telecom</th>
<th>Q100 Available</th>
<th>Package</th>
<th>Price*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS62177</td>
<td>4.7 to 28</td>
<td>0.5 A</td>
<td>1.0 to 6.0</td>
<td>Sleep mode uses less than 5-µA supply current</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2x2 QFN</td>
<td>0.60</td>
</tr>
<tr>
<td>TPS62170</td>
<td>3.0 to 17</td>
<td>0.5 A</td>
<td>0.9 to 6.0</td>
<td>Power Good output</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2x2 QFN</td>
<td>0.53</td>
</tr>
<tr>
<td>TPS62160</td>
<td>3.0 to 17</td>
<td>1.0 A</td>
<td>0.9 to 6.0</td>
<td>Power Good output</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3x QFN</td>
<td>0.75</td>
</tr>
<tr>
<td>TPS62150</td>
<td>3.0 to 17</td>
<td>1.0 A</td>
<td>0.9 to 6.0</td>
<td>Frequency select, soft start/ tracking, Power Good</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3x QFN</td>
<td>0.79</td>
</tr>
<tr>
<td>TPS62140</td>
<td>3.0 to 17</td>
<td>2.0 A</td>
<td>0.9 to 6.0</td>
<td>Frequency select, soft start/ tracking, Power Good</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3x QFN</td>
<td>0.88</td>
</tr>
<tr>
<td>TPS62130</td>
<td>3.0 to 17</td>
<td>3.0 A</td>
<td>0.9 to 6.0</td>
<td>Frequency select, soft start/ tracking, Power Good</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3x QFN</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Long Battery Life, Lowest Power Consumption

<table>
<thead>
<tr>
<th>Device</th>
<th>Input- Voltage Range (V)</th>
<th>Maximum Output Current</th>
<th>Output- Voltage Range (V)</th>
<th>Features</th>
<th>Consumer/ Wireless</th>
<th>Industrial/ Telecom</th>
<th>Q100 Available</th>
<th>Package</th>
<th>Price*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS62120</td>
<td>2.0 to 15</td>
<td>75mA</td>
<td>1.2 to 5.5</td>
<td>96% efficiency; extended ULVO hysteresian</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>SOT, SON</td>
<td>0.50</td>
</tr>
<tr>
<td>TPS62125</td>
<td>3.0 to 17</td>
<td>0.3A</td>
<td>1.2 to 10</td>
<td>Adjustable EN threshold and hysteresian</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>SON</td>
<td>0.55</td>
</tr>
<tr>
<td>TPS62730</td>
<td>1.9 to 3.9</td>
<td>0.1A</td>
<td>Fixed Option</td>
<td>Bypass for ultra-low-power RF applications</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>QFN</td>
<td>0.52</td>
</tr>
<tr>
<td>TPS62740</td>
<td>2.2 to 5.5</td>
<td>0.3A</td>
<td>1.8 to 3.3</td>
<td>360-nA iLp, 4-pin voltage select, load switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>SON/WCSP</td>
<td>0.94</td>
</tr>
<tr>
<td>TPS62770</td>
<td>2.5 to 5.5</td>
<td>0.3A</td>
<td>1.0 to 3.0</td>
<td>Buck + Boost + load switch, 3-pin VSEL</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>WCSP</td>
<td>1.50</td>
</tr>
<tr>
<td>TPS62745</td>
<td>3.3 to 10</td>
<td>0.3A</td>
<td>1.3 to 3.3</td>
<td>400-nA iLp, 4-pin voltage select, input switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2x2 QFN</td>
<td>1.04</td>
</tr>
</tbody>
</table>

Modules, Integrated Inductor

<table>
<thead>
<tr>
<th>Device</th>
<th>Input- Voltage Range (V)</th>
<th>Maximum Output Current</th>
<th>Output- Voltage Range (V)</th>
<th>Features</th>
<th>Consumer/ Wireless</th>
<th>Industrial/ Telecom</th>
<th>Q100 Available</th>
<th>Package</th>
<th>Price*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS62740</td>
<td>2.2 to 5.5</td>
<td>0.2A</td>
<td>1.8 to 3.3</td>
<td>360-nA iLp, 3-pin voltage select, load switch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>MicroSiP™</td>
<td>1.36</td>
</tr>
<tr>
<td>TPS62084</td>
<td>2.5 to 6.0</td>
<td>0.2A</td>
<td>0.8 to Vn</td>
<td>HICCUP mode, Power Good, output discharge</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>MicroSiP</td>
<td>1.65</td>
</tr>
<tr>
<td>TPS62085</td>
<td>2.5 to 6.0</td>
<td>3.0A</td>
<td>0.8 to Vn</td>
<td>HICCUP mode, Power Good, output discharge</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>MicroSiP</td>
<td>2.15</td>
</tr>
<tr>
<td>TPS62130</td>
<td>3.0 to 17</td>
<td>3.0A</td>
<td>0.9 to 5.0</td>
<td>Power Good, extended soft start with Tracking</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>MicroSiP</td>
<td>2.35</td>
</tr>
</tbody>
</table>

*Suggested resale price in U.S. dollars in quantities of 1,000. Preview devices are listed in bold teal. New devices are listed in bold red.

Additional Resources

Application Notes
- ±5% Voltage Margining (www.ti.com/lit/SLVA489)
- Using the Wireless SimpleLink™ CC26xx in External Regulator Mode with the TPS62740 (www.ti.com/lit/SLVA498)
- How to Measure the Control Loop of DCS-Control™ Devices (www.ti.com/lit/SLVA485)
- Choosing an Appropriate Pull-Up/Pull-Down Resistor for Open Drain Outputs (www.ti.com/lit/SLVA485)
- Current Savings in CC254x Applications Using the TPS62730 (www.ti.com/lit/SWRA365)
- Using a DC/DC Converter to Reduce Power (Current) Consumption in CC430 Systems (www.ti.com/lit/SLAA500)
- Powering a Low-Power MCU from a High-Voltage Input (www.ti.com/lit/SLVA485)
- Using the TPS6215x in an Inverting Buck-Boost Topology (www.ti.com/lit/SLVA489)

Important Notice:
The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI’s products and services before placing orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Get more information: www.ti.com/dcs-control

© 2016 Texas Instruments Incorporated

Printed in U.S.A. by (printer name, city, state)
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
<th>e2e.ti.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
<td>www.ti.com</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
<td>www.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
<td>www.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
<td>www.ti.com</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
<td>www.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
<td>www.ti.com</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
<td>www.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
<td>www.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
<td>www.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
<td>www.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>TI E2E Community</td>
<td>e2e.ti.com</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>