Overview

Texas Instruments provides the world’s most reliable and robust 10/100/1000 Ethernet PHY transceivers. From the industry’s first 10/100 PHY and now the first Gigabit Ethernet PHY tailored for the industrial market, TI has targeted the industry’s highest precision standards with the lowest deterministic latency while giving off less noise emission/interference with other components on the board.

The Ethernet PHY is a transceiver that bridges the digital world – including processors, field-programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) – to the analog world. An Ethernet PHY is designed to provide error-free transmission over a variety of media access controllers (MACs). The MAC is usually integrated into a processor, FPGA or ASIC and controls the data-link-layer portion of the OSI model. There are a number of interfaces between the MAC and the PHY that are available which provide minimal pin count and varied data rates depending on system requirements.

![Diagram of Ethernet PHY components]

For more information, please visit www.ti.com/ethernet

Key Characteristics

EMI mitigation
Less noise emission means less interference, which allows for more margin in the system design

Robust ESD performance
Built-in ESD protection allows for fewer components and lowers costs for more robust and reliable systems

Designed for low latency
Faster response time, greater predictability, and more nodes can be daisy-chained for more accurate and efficient systems
Featured Products

DP83822
Industry’s lowest-power 10/100 Mbps Ethernet PHY for industrial applications

- Offers the highest operating temperature of any Ethernet PHY
- Lowest power consumption of any 10/100 Mbps Ethernet PHY on the market (<120 mW)
- Only 10/100 Mbps Ethernet PHY to support RGMII MAC interface
- Flexible options with both copper and fiber support
- Time saving low loop latency by minimizing delay between events
- IEEE 1588 SFD, WoL and EEE power saving feature
- 8 kV IEC 61000-4-2 ESD protection

Key Portfolio Products

<table>
<thead>
<tr>
<th>Package</th>
<th>Fiber</th>
<th>QFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP83822HF – MII, RMII, RGMII</td>
<td></td>
<td>(NEW)</td>
</tr>
<tr>
<td>DP83848Q – MII, RMII, SNI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83620 – MII, RMII</td>
<td>Fiber</td>
<td></td>
</tr>
<tr>
<td>DP83630 – MII, RMII</td>
<td></td>
<td>IEEE1588</td>
</tr>
<tr>
<td>DP83640 – MII, RMII</td>
<td>IEEE1588</td>
<td></td>
</tr>
<tr>
<td>DP83848YB – MII, RMII, SNI</td>
<td>IEEE1588</td>
<td></td>
</tr>
<tr>
<td>DP83848 - EP – MII, RMII, SNI</td>
<td>IEEE1588</td>
<td></td>
</tr>
<tr>
<td>DP83867RPAP – MII, RGMII, GMII</td>
<td>IEEE1588</td>
<td>(NEW)</td>
</tr>
<tr>
<td>DP83867IS – SGMII, RGMII</td>
<td>IEEE1588</td>
<td>(NEW)</td>
</tr>
<tr>
<td>DP83867E – SGMII, RGMII</td>
<td>IEEE1588</td>
<td>(NEW)</td>
</tr>
<tr>
<td>DP83849C – MII, RMII, SNI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83849IF – MII, RMII, SNI</td>
<td>Media Converter</td>
<td></td>
</tr>
</tbody>
</table>

Temperature Range (°C):
-55 to 125

- **IEEE1588** Fiber
- **QFP** = QFP
Featured Products

DP83848Q-Q1
10/100 PHY customized for automotive applications

- Automotive AEC-Q100 grade 2
- Deterministic, low transmit and receive latency
- Excellent jitter tolerance
- Auto-MDI for 10/100 Mbps
- MII/RMII/SNI MAC interfaces
- Industrial temperature range (-40°C to 105°C)
- Low power consumption at 264 mW
- 4 kV (AEC Q100-002) ESD protection

TI Reference Design

- Low power consumption (264 mW)
- Meets EN55011 Class A radiated emission requirements

The main benefit of using Ethernet within an OBD-II system is that Ethernet operates at 100 times the speed of a CAN bus and 20 times faster than CAN with flexible data rate (CAN-FD). This increased bandwidth enables software and firmware upgrades in minutes, rather than hours. The longer cable reach also allows for more flexibility in end-of-the-line testing.

Single-Port 10/100 Ethernet PHY

<table>
<thead>
<tr>
<th>Device</th>
<th>Interface</th>
<th>Package</th>
<th>Temp Range (°C)</th>
<th>Cable Length (m)</th>
<th>No. LEDs</th>
<th>JTAG</th>
<th>WoL</th>
<th>Fiber Support</th>
<th>IEEE1588 Support</th>
<th>50 MHz Clock Out</th>
<th>Cable Diagnostics</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP83822H*</td>
<td>MII, RMII, RGMI</td>
<td>QFN-32</td>
<td>–40 to 125</td>
<td>150</td>
<td>3</td>
<td>•</td>
<td></td>
<td>SFD**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83822HF*</td>
<td>MII, RMII, RGMI</td>
<td>QFN-32</td>
<td>–40 to 125</td>
<td>150</td>
<td>3</td>
<td>•</td>
<td>•</td>
<td>SFD**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83822I*</td>
<td>MII, RMII, RGMI</td>
<td>QFN-32</td>
<td>–40 to 85</td>
<td>150</td>
<td>3</td>
<td>•</td>
<td></td>
<td>SFD**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83822IF*</td>
<td>MII, RMII, RGMI</td>
<td>QFN-32</td>
<td>–40 to 85</td>
<td>150</td>
<td>3</td>
<td>•</td>
<td>•</td>
<td>SFD**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83620</td>
<td>MII, RMII</td>
<td>QFN-48</td>
<td>–40 to 85</td>
<td>150</td>
<td>3</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83630</td>
<td>MII, RMII</td>
<td>QFN-48</td>
<td>–40 to 85</td>
<td>150</td>
<td>3</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83640</td>
<td>MII, RMII</td>
<td>QFP-48</td>
<td>–40 to 85</td>
<td>150</td>
<td>3</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83848C</td>
<td>MII, RMII, SNI</td>
<td>QFP-48</td>
<td>0 to 70</td>
<td>137</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83848-EP</td>
<td>MII, RMII, SNI</td>
<td>QFP-48</td>
<td>–55 to 125</td>
<td>150</td>
<td>3</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83848H</td>
<td>MII, RMII</td>
<td>QFN-40</td>
<td>–40 to 125</td>
<td>137</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83848I</td>
<td>MII, RMII, SNI</td>
<td>QFP-48</td>
<td>–40 to 85</td>
<td>150</td>
<td>3</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83848J</td>
<td>MII, RMII</td>
<td>QFN-40</td>
<td>0 to 70</td>
<td>137</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83848K</td>
<td>MII, RMII</td>
<td>QFN-40</td>
<td>–40 to 85</td>
<td>137</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83848Q</td>
<td>MII, RMII, SNI</td>
<td>QFN-40</td>
<td>–40 to 105</td>
<td>150</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83848VYB</td>
<td>MII, RMII, SNI</td>
<td>QFP-48</td>
<td>–40 to 105</td>
<td>150</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83848VB</td>
<td>MII, RMII, SNI</td>
<td>QFP-48</td>
<td>–40 to 125</td>
<td>150</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*New product** **Start of frame detect**
Featured Products

DP83867

Industry’s first gigabit PHY customized for harsh industrial environments

- Exceeds industry’s performance at ISO/IEC 8 kV
- Lowest latency for both 100 Mbps and 1 Gbps modes, <90 ns TX & <290 ns RX
- Multiple MAC interfaces: S/R/GMII and MII
- Industrial temperature range (−40°C to 105°C)
- Low power consumption <460 mW
- Small QFP and QFN package options available
- Output clock: 25 MHz or 125 MHz for daisy chaining or supporting system clock
- JTAG (IEEE 1149.1) for easy design-in and debug
- Start of frame detect for IEEE 1588 time stamp

TI Reference Design

- Dual-port Gigabit PHY evaluation kit with wide input voltage range: 18-60 V
- Exceeds immunity requirements as per IEC61000-4-2, IEC61000-4-3, IEC61000-4-4, and IEC61000-4-6
- Full reference schematics available for easy design-in

Single-Port 10/100/1000 Gigabit Ethernet PHY

<table>
<thead>
<tr>
<th>Device</th>
<th>Interface</th>
<th>Package</th>
<th>Temp Range (°C)</th>
<th>ESD (kV)</th>
<th>Cable Length (m)</th>
<th>No. LEDs</th>
<th>JTAG</th>
<th>WoL</th>
<th>IEEE1588 Support</th>
<th>25/125 MHz Clock Out</th>
<th>Cable Diagnostics</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP83867CS*</td>
<td>SGMII, RGMII</td>
<td>QFN-48</td>
<td>0 to 70</td>
<td>8</td>
<td>130</td>
<td>4</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>DP83867CR*</td>
<td>RGMII</td>
<td>QFN-48</td>
<td>0 to 70</td>
<td>8</td>
<td>130</td>
<td>4</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>DP83867IRPAP*</td>
<td>GMII, RGMII, MII</td>
<td>QFP-64</td>
<td>-40 to 85</td>
<td>8</td>
<td>130</td>
<td>4</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>DP83867IRRGZ*</td>
<td>RGMII</td>
<td>QFN-48</td>
<td>-40 to 85</td>
<td>8</td>
<td>130</td>
<td>4</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>DP83867IS*</td>
<td>SGMII, RGMII</td>
<td>QFN-48</td>
<td>-40 to 85</td>
<td>8</td>
<td>130</td>
<td>4</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>DP83867E*</td>
<td>SGMII, RGMII</td>
<td>QFN-48</td>
<td>-40 to 105</td>
<td>8</td>
<td>130</td>
<td>4</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

New product
Featured Products

DP83849IF
Dual-port 10/100 Ethernet PHY

- Copper-to-fiber media converter
- Flexible port management
- JTAG (IEEE 1149.1) for easy design-in and debug
- Fiber support

Flexible-port block diagram

Flexible port switching allows the data path between the cable side ports and the MAC interfaces to be modified either at system development or dynamically via the controlling software.

Multiple uses include the following:

- Extender
- Software-assisted failover
- Dedicated copper/fiber ports
- Ring network

Media conversion block diagram

The DP83849IF features a media converter mode as depicted in the figure to the left, allowing conversion of copper to fiber and vice-versa at 100 Mbps. This configuration allows longer run fiber to be used in situations where fiber support is not built into the end device. This can also be combined with power over Ethernet on the copper side.

Dual-Port 10/100 Ethernet PHY

<table>
<thead>
<tr>
<th>Device</th>
<th>Interface</th>
<th>Package</th>
<th>Temp Range (°C)</th>
<th>ESD (kV)</th>
<th>Cable Length (m)</th>
<th>No. LEDs</th>
<th>JTAG</th>
<th>Fiber Support</th>
<th>Cable Diagnostics</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP83849C</td>
<td>MII, RMII, SNI</td>
<td>QFP-80</td>
<td>0 to 70</td>
<td>4</td>
<td>137</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83849I</td>
<td>MII, RMII, SNI</td>
<td>QFP-80</td>
<td>-40 to 85</td>
<td>4</td>
<td>137</td>
<td>3</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83849ID</td>
<td>MII, SMII, SNI</td>
<td>QFP-80</td>
<td>-40 to 85</td>
<td>4</td>
<td>137</td>
<td>3</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83849IF*</td>
<td>MII, SMII, SNI</td>
<td>QFP-80</td>
<td>-40 to 85</td>
<td>4</td>
<td>137</td>
<td>3</td>
<td>•</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Flexible port
End Applications

Commercial

Everyday consumer products
- Network printers
- Broadband gateways
- Set-top boxes
- Point of sale (POS)
- Smart TVs
- IP Phones

Industrial

Robust and reliable
- Factory automation (motor drives)
- Smart grid (e-meters)
- Building automation (robots)
- Single-board computers (SBC)
- Motor control (stepper motors)
- Power systems (relays)
- Human machine interface (HMI)
- Programmable logic controller (PLC)
- Control panels

Automotive

External gateway connections
- On-board diagnostics (OBD)
- Firmware upgrades
- Navigation updates
Ethernet blogs
Latest Ethernet PHY blog posts
- Fiber in industrial applications
- Top three considerations for harsh industrial Ethernet
- How Ethernet technology is shifting modern markets
- Three things you should know about Ethernet PHY

See more

Ethernet instructional videos
Hands-on instructional content
- Reduce design time with easy IEEE 802.3 compliance
- EMI/EMC compliant industrial temp dual port gigabit Ethernet reference design

See more

Ethernet app notes
Advanced user guides
- RGMII interface timing budgets
- Ethernet PHY design and layout guidelines

See more

TI Worldwide Technical Support

Internet
TI Semiconductor Product Information Center Home Page
support.ti.com
TI E2E™ Community Home Page
e2e.ti.com

Product Information Centers
Americas
Phone +1(512) 434-1560
Brazil
Phone 0800-891-2616
Mexico
Phone 0800-670-7544
Fax +1(972) 927-6377
Internet/Email support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa
Phone European Free Call 00800-ASK-Texas
(00800 275 83927)
International +49 (0) 8161 80 2121
Russian Support +7 (495) 98 10 701
Fax +49 (0) 8161 80 2045
Internet www.ti.com/asktexas
Direct Email asktexas@ti.com

Japan
Fax International +81-3-3344-5317
Domestic 0120-81-0036
Internet/Email International support.ti.com/sc/pic/japan.htm
Domestic www.tij.co.jp/pic

Asia
Phone Toll-Free Number
Note: Toll-free numbers may not support mobile and IP phones.
Australia 1-800-999-084
China 800-820-8682
Hong Kong 800-96-0941
India 000-800-100-8888
Indonesia 001-803-8861-1006
Korea 080-551-2804
Malaysia 1-800-80-3973
New Zealand 0800-446-934
Philippines 1-800-765-7404
Singapore 800-886-1028
Taiwan 0800-006800
Thailand 011-800-886-0010
International +86-21-23073444
Fax +86-21-23073686
Email tiasia@ti.com or ti-china@ti.com
Internet support.ti.com/sc/pic/asia.htm

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

© 2016 Texas Instruments Incorporated
Printed in the U.S.A.
Press, City, State

SNLB002A
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products
Audio - www.ti.com/audio
Amplifiers - amplifier.ti.com
Data Converters - dataconverter.ti.com
DLP® Products - www.dlp.com
DSP - dsp.ti.com
Clocks and Timers - www.ti.com/clocks
Interface - interface.ti.com
Logic - logic.ti.com
Power Mgmt - power.ti.com
Microcontrollers - microcontroller.ti.com
RFID - www.ti-rfid.com
OMAP Applications Processors - www.ti.com/omap
Wireless Connectivity - www.ti.com/wirelessconnectivity

Applications
Automotive and Transportation - www.ti.com/automotive
Communications and Telecom - www.ti.com/communications
Computers and Peripherals - www.ti.com/computers
Consumer Electronics - www.ti.com/consumer-apps
Energy and Lighting - www.ti.com/energy
Industrial - www.ti.com/industrial
Medical - www.ti.com/medical
Security - www.ti.com/security
Space, Avionics and Defense - www.ti.com/space-avionics-defense
Video and Imaging - www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated