I²C Guide

Expanders, Multiplexers and Switches
Hubs, Translators, Buffers and Repeaters
Texas Instruments (TI) has supported the highly efficient I²C bus interface for many years. This overview provides an updated look at I²C applications and how TI's I/O expanders, multiplexers, buffers and repeaters can help system designers achieve effective subsystem communications using proven I²C devices.

History
During the 1980s, Philips (Koninklijke Philips Electronics N.V.) developed the two-wire inter-integrated circuit (I²C) bus to provide an easy way to connect multiple peripheral circuits to a central processing unit (CPU/MCU) in TV applications.

As circuits became more complex with many peripheral connections, a method was needed to simplify designs and reduce costs. By limiting the number of printed circuit board (PCB) traces and lowering general-purpose input and output (GPIO) usage on the microprocessor, the I²C bus met this requirement.

Operation
The I²C bus is used in a wide range of applications because it is simple and quick to use. It consists of a two-wire communication bus that supports bidirectional data transfer between a master and several slaves. The master or processor controls the bus – in particular, the serial clock (SCL) line. Data is transferred between the master and slave through a serial data (SDA) line. This data can be transferred in four speeds: standard mode (0 to 100 Kbps), fast mode (0 to 400 Kbps), fast-mode plus (0 to 1 Mbps) and high-speed mode (0 to 3.4 Mbps). The most common speeds are the standard and fast modes. See block diagram below for a generic system.

There can be more than one master on a system; the software protocol uses arbitration and synchronization to manage data collisions and loss.

Since successive specification enhancements are backward-compatible, mixed-speed communication is possible with the bus speed controlled by the processor or I²C master.

Typical I²C Features
• Requires one master (processor) and one or more slave devices
• Each device on the bus has a unique address
• Bus capacitive load: 550 pF max
• Rise time 1000 ns (standard mode), 300 ns (fast mode) and 120 ns (fast mode plus)

I²C Applications
The I²C bus is useful for many of today’s microcontroller- and microprocessor-based systems or other systems linking many I/O devices. These systems may include applications in the following fields:
• Automotive
• Consumer
• Industrial
• Mobile
• Battery-powered portable applications
• Telecom/networking

Many of the I²C bus products are designed to operate in the SMBus environment.

Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Overview</td>
</tr>
<tr>
<td>3</td>
<td>I/O Expanders</td>
</tr>
<tr>
<td>4</td>
<td>Multiplexers and Switches</td>
</tr>
<tr>
<td>4</td>
<td>Hubs, Translator Buffers and Repeaters</td>
</tr>
<tr>
<td>5</td>
<td>Special Functions</td>
</tr>
<tr>
<td>5</td>
<td>LED Driver</td>
</tr>
<tr>
<td>6</td>
<td>LCD Bias</td>
</tr>
<tr>
<td>7</td>
<td>One-Wire Interface</td>
</tr>
<tr>
<td>8</td>
<td>I²C Translators</td>
</tr>
<tr>
<td>8</td>
<td>Keypad Controller</td>
</tr>
</tbody>
</table>

Resources

- Frequently Asked Questions
- Packages
- Product Casts
- Technical Support
I²C Guide

I/O Expanders

The I²C I/O expanders (as shown in the block diagram) allow system layout to be greatly simplified. The two-wire bus reduces PCB complexity through trace reduction and routing simplification.

Key Features
- Easy board routing
- Board-space savings
- Processor-pin savings
- Low cost
- Industry standard

Applications
- Complements processors with limited I/Os
- Feature enhancements
- Keypad control

I/O expanders can simplify board layout

Low-Voltage I/O Expanders Selection Guide

<table>
<thead>
<tr>
<th>Device</th>
<th>Max Frequency (kHz)</th>
<th>I²C Address</th>
<th>Vcc Range (V)</th>
<th>No. of I/Os</th>
<th>Additional Features</th>
<th>I/O Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low Power</td>
<td>Interrupt</td>
</tr>
<tr>
<td>PCA9538A</td>
<td>26 MHz</td>
<td>0100 001</td>
<td>2.3 to 5.5</td>
<td>4-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PCA9539A</td>
<td>400</td>
<td>0100 001</td>
<td>2.3 to 5.5</td>
<td>8-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PCA9534A</td>
<td>400</td>
<td>0100 001</td>
<td>2.3 to 5.5</td>
<td>8-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PCA9534B</td>
<td>400</td>
<td>0111 0xx</td>
<td>2.3 to 5.5</td>
<td>8-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PCA9535A</td>
<td>400</td>
<td>0111 0xx</td>
<td>2.3 to 5.5</td>
<td>16-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PCA9536A</td>
<td>400</td>
<td>0100 0xx</td>
<td>2.3 to 5.5</td>
<td>8-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PCA9536B</td>
<td>400</td>
<td>0100 0xx</td>
<td>2.3 to 5.5</td>
<td>8-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PCA9537A</td>
<td>400</td>
<td>0111 0xx</td>
<td>2.3 to 5.5</td>
<td>8-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PCA9538A</td>
<td>400</td>
<td>0111 0xx</td>
<td>2.3 to 5.5</td>
<td>16-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

I/O Expanders Selection Guide

<table>
<thead>
<tr>
<th>Device</th>
<th>Max I²C Frequency (kHz)</th>
<th>I²C Address</th>
<th>Vcc Range (V)</th>
<th>No. of I/Os</th>
<th>Low Power</th>
<th>Interrupt</th>
<th>Reset</th>
<th>Configuration Registers</th>
<th>5-V Tolerant I/O</th>
<th>Push-Pull</th>
<th>Open-Drain</th>
<th>Pull-Up Integrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA9536A</td>
<td>400</td>
<td>0100 001</td>
<td>2.3 to 5.5</td>
<td>4-bit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PCA9537A</td>
<td>400</td>
<td>0011 0xx</td>
<td>2.3 to 5.5</td>
<td>8-bit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PCA9538A</td>
<td>400</td>
<td>0100 0xx</td>
<td>2.3 to 5.5</td>
<td>8-bit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PCA9539A</td>
<td>400</td>
<td>0111 0xx</td>
<td>2.3 to 5.5</td>
<td>8-bit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PCA9536B</td>
<td>400</td>
<td>0111 0xx</td>
<td>2.3 to 5.5</td>
<td>8-bit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PCA9537A</td>
<td>400</td>
<td>0111 0xx</td>
<td>2.3 to 5.5</td>
<td>8-bit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PCA9538A</td>
<td>400</td>
<td>0100 0xx</td>
<td>2.3 to 5.5</td>
<td>16-bit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Low-Voltage I/O Expanders Selection Guide

<table>
<thead>
<tr>
<th>Device</th>
<th>Max Frequency (kHz)</th>
<th>I²C Address</th>
<th>Vcc Range (V)</th>
<th>No. of I/Os</th>
<th>Additional Features</th>
<th>I/O Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low Power</td>
<td>Interrupt</td>
</tr>
<tr>
<td>LM8335</td>
<td>26 MHz</td>
<td>MIPI RFFE</td>
<td>1.8 to 3.3</td>
<td>8-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TCA6408A</td>
<td>400</td>
<td>0100 00x</td>
<td>1.65 to 5.5</td>
<td>8-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TCA6416A</td>
<td>400</td>
<td>0100 00x</td>
<td>1.65 to 5.5</td>
<td>16-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TCA6418E</td>
<td>1000</td>
<td>0110 100</td>
<td>1.65 to 3.6</td>
<td>16-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TCA6424A</td>
<td>400</td>
<td>0100 01x</td>
<td>1.65 to 5.5</td>
<td>24-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TCA7408</td>
<td>1000</td>
<td>0100 00x</td>
<td>1.65 to 5.5</td>
<td>8-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TCA9539</td>
<td>400</td>
<td>0100 xxx</td>
<td>1.65 to 5.5</td>
<td>16-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TCA9538</td>
<td>400</td>
<td>1110 0xx</td>
<td>1.65 to 5.5</td>
<td>8-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TCA9539</td>
<td>400</td>
<td>1110 1xx</td>
<td>1.65 to 5.5</td>
<td>16-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TCA9554A</td>
<td>400</td>
<td>0100 xxx/0111 xxx</td>
<td>1.65 to 5.5</td>
<td>8-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TCA9555</td>
<td>400</td>
<td>0100 xxx</td>
<td>1.65 to 5.5</td>
<td>16-bit</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

5-V tolerant on the GPIO sides.

Preview products are listed in bold teal.
I²C Guide

Multiplexers and Switches

Low Voltage 8-Channel I²C Switch with Reset

TCA9548A

The I²C multiplexer/switch shown in this diagram allows further expansion of I²C systems while maintaining the simple two-wire bus. It can also perform voltage translation and segment isolation.

![Diagram of TCA9548A](image)

Key Features
- Pin savings on the I²C master, as each switch is activated or isolated through the I²C software
- Supports voltage-level translation for any bus voltages in the range of 1.65 V-5.5 V which is essential in mixed voltage I²C systems

Applications
- Resolves I²C address conflicts
- I²C bus isolation
- I²C bus expansion

Multiplexers and Switches Selection Guide

<table>
<thead>
<tr>
<th>Device</th>
<th>Max I²C Frequency (kHz)</th>
<th>I²C Address</th>
<th>V_CC Range (V)</th>
<th>Channel Width</th>
<th>Interrupt</th>
<th>Reset</th>
<th>Simultaneously Active Channel</th>
<th>5-V-Tolerant I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA9543A</td>
<td>400</td>
<td>1110 0xx</td>
<td>2.3 to 5.5</td>
<td>2-Channel</td>
<td>✔</td>
<td>✔</td>
<td>1 to 2</td>
<td>✔</td>
</tr>
<tr>
<td>PCA9544A</td>
<td>400</td>
<td>1110 xxx</td>
<td>2.3 to 5.5</td>
<td>4-Channel</td>
<td>✔</td>
<td>✔</td>
<td>1</td>
<td>✔</td>
</tr>
<tr>
<td>PCA9545A</td>
<td>400</td>
<td>1110 0xx</td>
<td>2.3 to 5.5</td>
<td>4-Channel</td>
<td>✔</td>
<td>✔</td>
<td>1 to 4</td>
<td>✔</td>
</tr>
<tr>
<td>PCA9546A</td>
<td>400</td>
<td>1110 xxx</td>
<td>2.3 to 5.5</td>
<td>4-Channel</td>
<td>✔</td>
<td>✔</td>
<td>1 to 4</td>
<td>✔</td>
</tr>
<tr>
<td>PCA9548A</td>
<td>400</td>
<td>1110 xxx</td>
<td>1.65 to 5.5</td>
<td>4-Channel</td>
<td>✔</td>
<td>✔</td>
<td>1 to 4</td>
<td>✔</td>
</tr>
<tr>
<td>TCA9548A</td>
<td>400</td>
<td>1110 xxx</td>
<td>1.65 to 5.5</td>
<td>8-Channel</td>
<td>✔</td>
<td>✔</td>
<td>1 to 8</td>
<td>✔</td>
</tr>
</tbody>
</table>

Preview products are listed in bold teal.

Hubs, Translators, Buffers and Repeaters

Level-Translating FM+ I²C Bus Repeater

TCA9617A

I²C hubs, buffers and repeaters permit bus expansion, sectional bus isolation, address conflict resolution and voltage-level translation, as shown in this diagram.

![Diagram of TCA9617A](image)

Key Features
- Can isolate a section on the I²C bus through enable (EN) pin
- Supports voltage-level translation from 0.8-V_CC to 2.2 V-5.5 V buses, which is essential in mixed-voltage I²C systems
- Supports fast-mode plus (1 MHz)

Applications
- I²C-bus expansion through buffering of I²C signals
- Resolving address conflicts

Two-channel bidirectional repeater
Hubs, Translators, Buffers and Repeaters Selection Guide

<table>
<thead>
<tr>
<th>Device</th>
<th>Max I²C Frequency (kHz)</th>
<th>I²C Address</th>
<th>V_CC Range (V)</th>
<th>Channel Width</th>
<th>Enable Pin</th>
<th>I²C Bus Capacitance Supported</th>
<th>5-V-Tolerant I/O</th>
<th>Push-Pull</th>
<th>Open-Drain</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA9306</td>
<td>400</td>
<td>None</td>
<td>0 to 5.5</td>
<td></td>
<td>✓</td>
<td>Bypass</td>
<td>Bypass</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PCA9515A/B</td>
<td>400</td>
<td>None</td>
<td>2.3 to 5.5</td>
<td>2-Channel</td>
<td>✓</td>
<td>400</td>
<td>400</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>P82B715</td>
<td>1,000</td>
<td>None</td>
<td>3.0 to 12.0</td>
<td>2-Channel</td>
<td>✓</td>
<td>400</td>
<td>3000</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PCA9506</td>
<td>400</td>
<td>None</td>
<td>2.0 to 15.0</td>
<td>2-Channel</td>
<td>✓</td>
<td>400</td>
<td>4000</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TCA4311A</td>
<td>1 MHz</td>
<td>None</td>
<td>1.65 to 5.5</td>
<td></td>
<td>✓</td>
<td>Bypass</td>
<td>Bypass</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TCA9517</td>
<td>400</td>
<td>None</td>
<td>0.9 to 5.5</td>
<td>2-Channel</td>
<td>✓</td>
<td>50</td>
<td>400</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TCA9509</td>
<td>400</td>
<td>None</td>
<td>0.9 to 5.5</td>
<td>2-Channel</td>
<td>✓</td>
<td>400</td>
<td>400</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TCA9617A</td>
<td>1,000</td>
<td>None</td>
<td>0.9 to 5.5</td>
<td>2-Channel</td>
<td>✓</td>
<td>550</td>
<td>550</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Note: PCA9306 does not include integrated pull up resistors and one shot circuitry

Types of I²C translators

<table>
<thead>
<tr>
<th>No Offset</th>
<th>Static Offset</th>
<th>Incremental Offset</th>
<th>Amplifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>TI Products</td>
<td>TCA9517A, TCA9509, PCA9515A/B,</td>
<td>TCA4311A</td>
<td>P82B715</td>
</tr>
</tbody>
</table>

V_LOW2 = V_LOW1 + 75 mV + (V_CC/R) × 100

Preview products are listed in bold teal.
The LED driver frees the processor from having to manage the LEDs. It will manage turning the LEDs on and off (per the required dimming rate). This will free up valuable processor time, thus creating a more efficient system.

Key Features
- Supports brightness control and blink modes at the same time
- 1.8-V compatible for use with next-generation processors
- Multiple PWMs for multiple blink modes

Applications
- Fun light (decoration)
- Enhanced feature set
- Driving RGB LEDs
- Control function (indicator lights)

LED Drivers Selection Guide

<table>
<thead>
<tr>
<th>Device</th>
<th>Max I²C Frequency (kHz)</th>
<th>I²C Address</th>
<th>Max Unique Addresses</th>
<th>LED Output Channels</th>
<th>VCC Range (V)</th>
<th>LED Voltage (Max) (V)</th>
<th>LED Output Current (mA)</th>
<th>Brightness Control (Bits)</th>
<th>Ch-Ch Accuracy (Max) (%)</th>
<th>Constant-Current LED Output</th>
<th>Open-drain LED Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC59108</td>
<td>1000</td>
<td>100x xxx</td>
<td>14</td>
<td>8</td>
<td>3 - 5.5</td>
<td>17</td>
<td>120</td>
<td>8</td>
<td>±3</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>TLC59108F</td>
<td>1000</td>
<td>100x xxx</td>
<td>14</td>
<td>8</td>
<td>3 - 5.5</td>
<td>17</td>
<td>120</td>
<td>8</td>
<td>N/A</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>TCS9208F</td>
<td>1000</td>
<td>Various</td>
<td>64</td>
<td>8</td>
<td>3 - 5.5</td>
<td>17</td>
<td>50</td>
<td>8</td>
<td>N/A</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>TLC9116</td>
<td>1000</td>
<td>110x xxx</td>
<td>14</td>
<td>16</td>
<td>3 - 5.5</td>
<td>17</td>
<td>120</td>
<td>8</td>
<td>±6</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>TLC9116F</td>
<td>1000</td>
<td>110x xxx</td>
<td>14</td>
<td>16</td>
<td>3 - 5.5</td>
<td>17</td>
<td>120</td>
<td>8</td>
<td>N/A</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>TLC5907</td>
<td>1000</td>
<td>100 101</td>
<td>1</td>
<td>7</td>
<td>1.65 - 3.6</td>
<td>5.5</td>
<td>40</td>
<td>4</td>
<td>N/A</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>LM3435</td>
<td>1000</td>
<td>0101 000</td>
<td>1</td>
<td>3</td>
<td>2.7 - 5.5</td>
<td>5.5</td>
<td>2000</td>
<td>10</td>
<td>±3</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>LP592F</td>
<td>400</td>
<td>0110 xxx</td>
<td>4</td>
<td>3</td>
<td>2.7 - 5.5</td>
<td>6</td>
<td>25.5</td>
<td>8</td>
<td>±2</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>LP592</td>
<td>400</td>
<td>0110 xxx</td>
<td>4</td>
<td>9</td>
<td>2.7 - 5.5</td>
<td>6</td>
<td>25.5</td>
<td>8</td>
<td>±2.5</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>LP8504</td>
<td>400</td>
<td>0110 010</td>
<td>1</td>
<td>9</td>
<td>2.7 - 5.5</td>
<td>6</td>
<td>25.5</td>
<td>8</td>
<td>±2.5</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>LP3943</td>
<td>400</td>
<td>0110 xxx</td>
<td>8</td>
<td>16</td>
<td>2.3 - 5.5</td>
<td>6</td>
<td>25</td>
<td>8</td>
<td>—</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

5-V tolerant on the GPIO sides.
Fully I²C programmable 6 Channel LCD Bias IC

TPS65177

The TPS65177 is a fully I²C programmable six-channel LCD Bias IC for all television sizes and includes Gate Pulse Modulation. The device provides all supply rails needed by a GIP (Gate-in-Panel) or non-GIP TFT-LCD panel.

Big Features
- Temperature compensation for \(V_{GH}\)
- 40-pin 6x6 mm QFN package
- Input voltage: 8.6 V to 14.7 V
- Integrated \(V_{AVDD}\) isolation switch
- Three-bit programmable switch current limit up to 4.25 A
- Four-bit programmable high voltage stress mode
- One-bit programmable soft-start
- 1.7 A switch current limit
- Four-bit programmable high voltage stress mode

Applications
- GIP (Gate-in-Panel) LCD TVs
- Non-GIP LCD TVs

Single-Wire Interface

Low Voltage 5-Bit Self-Timed, Single-Wire Output Expander

TCA5405

The TCA5405 is a 5-bit output expander controlled using a single wire input. This device is ideal for portable applications as it has a wide \(V_{CC}\) range of 1.65 V to 3.6 V. The TCA5405 uses a self-timed serial data protocol with a single data input driven by a master device synchronized to an internal clock of that device. During a Setup phase, the bit period is sampled, then the TCA5405 generates its own internal clock synchronized to that of the Master device to sample the input over a five-bit-period Data Transfer phase and writes the bit states on the parallel outputs after the last bit is sampled. The TCA5405 is available in an 8-pin 1.5mm x 1.5mm RUG µQFN package.

Key Features
- Operating power-supply voltage range of 1.65 V to 3.6 V
- Five independent push-pull outputs
- Single input (DIN) controls state of all outputs
- High-current drive outputs maximum capability for directly driving LEDs
- Latch-up performance exceeds 100 mA per JESD 78, class II
- ESD protection exceeds JESD 22
 - 2000-V human-body model
 - 1000-V charged-device model

Applications
- Cell phones
- PDAs
- Portable media players
- MP3 players
- Portable instrumentation
I²C Guide
Keypad Controller

Low-Voltage 8x16 Keyboard Scanner with HID over I²C Compliant Interface

TCA8424

The TCA8424 keypad controller frees the processor from having to scan the keypad for presses and releases. It is a keypad scan device with 18 GPIOs that can be configured into 8 inputs and 16 outputs to support up to an 8 x 16 keypad array (128 buttons).

Key Features
• Smaller package options
• Lower power consumption
• No firmware development
• Support of 128 keys

Applications
• Smart phones
• Notebooks
• GPSs
• MP3 players
• Tablets

I²C-Compatible Keypad Controller with GPIO, PWM, and IEC61000 ESD Protection

LM8330

The LM8330 I/O Expander and Keypad Controller is a dedicated device designed to unburden a host processor from scanning a matrix-addressed keypad and to provide flexible and general purpose, host programmable input/output functions. Three independent Pulse Width Modulation (PWM) timer outputs are provided for dynamic LED brightness modulation.

Key Features
• Unburden a host processor from scanning a matrix-addressed keypad
• Ultra-low-power operation
• No need for external RC passives for ESD

Applications
• Mobile phones
• Qwerty keyboard
• Universal remote

I/O Expander and Keypad Controller Selection Guide

<table>
<thead>
<tr>
<th>Device</th>
<th>No. of I/O’s</th>
<th>Max I²C Frequency (kHz)</th>
<th>VCC (Min) (V)</th>
<th>VCC (Max) (V)</th>
<th>I²C Address</th>
<th>Pin/Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM8330</td>
<td>20</td>
<td>400</td>
<td>1.65</td>
<td>3.6</td>
<td>Yes; ACCESS.bus</td>
<td>DSBG-25</td>
</tr>
<tr>
<td>TCA8418B</td>
<td>18</td>
<td>1000</td>
<td>1.65</td>
<td>3.6</td>
<td>0110 100</td>
<td>WQFN-24</td>
</tr>
<tr>
<td>TCA8418E</td>
<td>18</td>
<td>1000</td>
<td>1.65</td>
<td>3.6</td>
<td>0110 100</td>
<td>DSBG-25</td>
</tr>
<tr>
<td>TCA8424</td>
<td>24</td>
<td>1000</td>
<td>1.65</td>
<td>3.6</td>
<td>0111 011</td>
<td>WQFN-40</td>
</tr>
</tbody>
</table>

New products are listed in bold red.
Q. Why doesn’t the slave device respond to the master after an I²C call is made from the master?

A. • If the device is not responding properly, there may be an I²C protocol violation.
 ◦ To begin, a proper I²C start condition must be issued.
 ◦ After stop condition, the master must reissue the start condition.
 ◦ After every start condition, the master must send the full slave address.
 ◦ During communication, if the master issues a restart condition, the full slave address must be sent.
 ◦ If the device does not respond with an ACK, it did not recognize the address.

• Partial data cannot be written to the I/O.
 ◦ To write to the I/O, complete 8-bit data must be sent to the slave.
 ◦ If fewer than 8 bits are sent, the slave will not respond with an ACK and will not update the I/O port.

Q. What is the power-on default for the interrupt (/INT) pin?

A. High.

Q. How should an unused /INT pin be terminated?

A. /INT is an open-drain output that requires a pull-up resistor for proper operation. If /INT is not used, it can be left open or connected directly to GND.

Q. How can an /INT be cleared (returned back to high state)?

A. • Read (clock) the data on the I/O port that generated the /INT.
 • Change the data on the I/O to the original setting.
 • A stop event will clear the /INT.

Q. How can a low /INT be avoided at power up in I²C I/O expanders?

A. • At power up, the P ports are configured as inputs by default.
 • When power up ends and the device has a valid VCC value, the input port (P port) is compared to the internal input register (no clock needed), and /INT goes active (low) unless there is a match.
 • The internal input registers are designed to power up with all ones or high.
 • The /INT should start high at power up if the P port is initially high (all ones) to match the internal input register.

Q. How should an unused /RESET pin be terminated?

A. /RESET is an input to the master. It requires a pull-up resistor to VCC if no active connection is used.

Q. What is the functionality difference between power-on reset and /RESET? (See figure on this page.)

A. Power-on reset:
 • When power (from 0 V) is applied to the VCC, the internal power-on reset holds the device in a reset condition until VCC reaches Vpor (~1.4 V).
 • Once VCC reaches Vpor, the internal registers and I²C/SMBus state machine are initialized to their default states.
 • After this, the device can be returned to its default reset state if VCC is lowered to 0 V.

/RESET:
• Simply asserting a low on the /RESET input returns the device to its default state.

• Creates the same effect as a power-on reset without power cycling the device.
• The /RESET input is 5.5-V tolerant (regardless of voltage level on VCC).
• Partial data cannot be written to the I/O.
 ◦ To write to the I/O, complete 8-bit data must be sent to the slave.
 ◦ If fewer than 8 bits are sent, the slave will not respond with an ACK and will not update the I/O port.

Q. How should an unused /RESET pin be terminated?

A. /RESET is an input to the master. It requires a pull-up resistor to VCC if no active connection is used.

Q. How should an unused /RESET pin be terminated?

A. /RESET is an input to the master. It requires a pull-up resistor to VCC if no active connection is used.

Q. How should an unused /RESET pin be terminated?

A. /RESET is an input to the master. It requires a pull-up resistor to VCC if no active connection is used.

Q. What is the functionality difference between power-on reset and /RESET? (See figure on this page.)

A. Power-on reset:
 • When power (from 0 V) is applied to the VCC, the internal power-on reset holds the device in a reset condition until VCC reaches Vpor (~1.4 V).
 • Once VCC reaches Vpor, the internal registers and I²C/SMBus state machine are initialized to their default states.
 • After this, the device can be returned to its default reset state if VCC is lowered to 0 V.

/RESET:
• Simply asserting a low on the /RESET input returns the device to its default state.

• Creates the same effect as a power-on reset without power cycling the device.
• The /RESET input is 5.5-V tolerant (regardless of voltage level on VCC).
• Partial data cannot be written to the I/O.
 ◦ To write to the I/O, complete 8-bit data must be sent to the slave.
 ◦ If fewer than 8 bits are sent, the slave will not respond with an ACK and will not update the I/O port.

Q. How should an unused /RESET pin be terminated?

A. /RESET is an input to the master. It requires a pull-up resistor to VCC if no active connection is used.

Q. What is the power-on default for the interrupt (/INT) pin?

A. High.

Q. How can an /INT be cleared (returned back to high state)?

A. • Read (clock) the data on the I/O port that generated the /INT.
 • Change the data on the I/O to the original setting.
 • A stop event will clear the /INT.

Q. How can a low /INT be avoided at power up in I²C I/O expanders?

A. • At power up, the P ports are configured as inputs by default.
 • When power up ends and the device has a valid VCC value, the input port (P port) is compared to the internal input register (no clock needed), and /INT goes active (low) unless there is a match.
 • The internal input registers are designed to power up with all ones or high.
 • The /INT should start high at power up if the P port is initially high (all ones) to match the internal input register.

Q. How should an unused /RESET pin be terminated?

A. /RESET is an input to the master. It requires a pull-up resistor to VCC if no active connection is used.

Q. What is the power-on default for the interrupt (/INT) pin?

A. High.

Q. How can an /INT be cleared (returned back to high state)?

A. • Read (clock) the data on the I/O port that generated the /INT.
 • Change the data on the I/O to the original setting.
 • A stop event will clear the /INT.

Q. How can a low /INT be avoided at power up in I²C I/O expanders?

A. • At power up, the P ports are configured as inputs by default.
 • When power up ends and the device has a valid VCC value, the input port (P port) is compared to the internal input register (no clock needed), and /INT goes active (low) unless there is a match.
 • The internal input registers are designed to power up with all ones or high.
 • The /INT should start high at power up if the P port is initially high (all ones) to match the internal input register.

Q. How should an unused /RESET pin be terminated?

A. /RESET is an input to the master. It requires a pull-up resistor to VCC if no active connection is used.

Q. What is the power-on default for the interrupt (/INT) pin?

A. High.

Q. How can an /INT be cleared (returned back to high state)?

A. • Read (clock) the data on the I/O port that generated the /INT.
 • Change the data on the I/O to the original setting.
 • A stop event will clear the /INT.

Q. How can a low /INT be avoided at power up in I²C I/O expanders?

A. • At power up, the P ports are configured as inputs by default.
 • When power up ends and the device has a valid VCC value, the input port (P port) is compared to the internal input register (no clock needed), and /INT goes active (low) unless there is a match.
 • The internal input registers are designed to power up with all ones or high.
 • The /INT should start high at power up if the P port is initially high (all ones) to match the internal input register.

Q. How should an unused /RESET pin be terminated?

A. /RESET is an input to the master. It requires a pull-up resistor to VCC if no active connection is used.

Q. What is the power-on default for the interrupt (/INT) pin?

A. High.

Q. How can an /INT be cleared (returned back to high state)?

A. • Read (clock) the data on the I/O port that generated the /INT.
 • Change the data on the I/O to the original setting.
 • A stop event will clear the /INT.

Q. How can a low /INT be avoided at power up in I²C I/O expanders?

A. • At power up, the P ports are configured as inputs by default.
 • When power up ends and the device has a valid VCC value, the input port (P port) is compared to the internal input register (no clock needed), and /INT goes active (low) unless there is a match.
 • The internal input registers are designed to power up with all ones or high.
 • The /INT should start high at power up if the P port is initially high (all ones) to match the internal input register.
Resources
Frequently Asked Questions

Q. What is the power-on default for the P port (I/O port) in an I²C I/O expander?

A. For the PCF8574/A, PCF8575 and devices with internal pull-up resistors like the PCA9536, PCA9554, PCA9554A and PCA9555, the input default is high.

For the PCF8575C and devices without internal pull-up resistors, the input is 3-state.

Q. What is a fun light and what is its purpose?

A. Fun lights are any set of lights used for less critical tasks such as:
- Decoration.
- Enhancing the feature set of an application.
- Control functions (such as indicator lights).

Fun lights are mostly found on battery-powered portable applications:
- Notebooks
- Handsets
- Consumer portables
- Portable media players

Some example fun-light applications are:
- Predictive key entry for text messages.
- Making a smartphone flash to remind the user of an appointment.
- Providing battery-charging status.
- Enhancing audio experience through supporting a “base.”

Q. How should an unused I/O pin in an I²C I/O expander be terminated?

A. For devices with internal resistors between VCC and the I/O, such as PCA9555, PCA9536 and PCA9554/A, the I/O can be connected directly to VCC or GND.

For devices without internal resistors, a resistor can be used to terminate unused I/Os to VCC or GND.

Q. What are the benefits of using TCA-series devices? (See figure above.)

A. Low-voltage operation. TCA-series devices provide a one-chip interface with processors operating at 1.8 V to:
- Save board costs.
- Save board space.
- Provide better inventory management.

Wide-voltage operation:
- Can interface with legacy and next-generation processors.
- Low power consumption.
Easy-to-Use Design Tools. Custom Results.

WEBENCH® Design Center

Use the popular WEBENCH® designer tools to simultaneously compare performance across multiple parameters for complete systems – including efficiency, size, and cost – in seconds. Get instant access to the latest simulation models, parametric data, and package information for power, lighting, and sensing applications.

> Optimize your design in seconds
> Simulate your results
> Order a prototype

ti.com/webench

Single-Circuit Design Tools
Use these support tools to create specific, single-circuit designs:
• WEBENCH Sensor AFE Designer
• WEBENCH LED Designer
• WEBENCH Power Designer
• WEBENCH Sensor Designer

Advanced Hierarchical Design Tools
Use these high-level, expert support tools for creating complex designs:
• WEBENCH LED Architect
• WEBENCH Power Architect
• WEBENCH FPGA Power Architect
• WEBENCH Processor Power Architect

Model Simulation
• TINA-TI™ SPICE Simulation Software

WEBENCH Design Center Features
BOM components from more than 115 manufacturers; complete schematic of your designs; simulate the dynamic behavior and thermal performance of your design today; build it with a custom prototype kit tomorrow!
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>TI E2E Community</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>e2e.ti.com</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated