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1 INTRODUCTION

Thisapplicationreport discussestheway the specificationsfor adataconverter aredefined on amanufacturersdatasheet
and considers some of the aspects of designing with data conversion products. It coversthe sources of error that change
the characteristics of the device from an ideal function to reality.

2 THE IDEAL TRANSFER FUNCTION

The theoretical ideal transfer function for an ADC is a straight line, however, the practical ideal transfer functionisa
uniform staircase characteristic shownin Figure 1. The DA C theoretical ideal transfer function would also be astraight
linewith an infinite number of stepsbut practicaly it isaseries of pointsthat fall ontheideal straight lineasshownin
Figure 2.

2.1 Analog-to-Digital Converter (ADC)

Anidea ADC uniquely represents all analog inputs within a certain range by alimited number of digital output codes.
ThediagraminFigure 1 showsthat each digital coderepresentsafraction of thetotal anal oginput range. Sincetheanalog
scaleis continuous, while the digital codes are discrete, thereis a quantization process that introduces an error. Asthe
number of discrete codes increases, the corresponding step width gets smaller and the transfer function approaches an
ideal straight line. The stepsare designed to have transitions such that the midpoint of each step correspondsto the point
onthisideal line.

Thewidth of one stepisdefined as 1 L SB (oneleast significant bit) and thisis often used asthe reference unit for other
quantities in the specification. It is also a measure of the resolution of the converter since it defines the number of
divisionsor units of the full analog range. Hence, 1/2 L SB represents an anal og quantity equal to one half of the analog
resolution.

The resolution of an ADC isusually expressed as the number of bitsin its digital output code. For example, an ADC
with an n-bit resolution has 2N possible digital codes which define 2N step levels. However, since the first (zero) step
and the last step are only one half of afull width, the full-scale range (FSR) is divided into 2N — 1 step widths.

Hence
1LSB = FSR/(2" - 1) for an n-bit converter
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Figure 1. The Ideal Transfer Function (ADC)



2.2 Digital-to-Analog Converter (DAC)

A DAC representsalimited number of discretedigital input codes by acorresponding number of discrete anal og output
values. Therefore, the transfer function of aDAC isaseries of discrete pointsasshownin Figure 2. ForaDAC, 1LSB
corresponds to the height of a step between successive analog outputs, with the value defined in the same way as for
the ADC. A DAC can be thought of asadigitally controlled potentiometer whose output is afraction of the full scale
anal og voltage determined by the digital input code.
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3 SOURCES OF STATIC ERROR

Static errors, that is those errors that affect the accuracy of the converter when it is converting static (dc) signals, can
be completely described by just four terms. These are offset error, gain error, integral nonlinearity and differentia
nonlinearity. Each can be expressed in L SB units or sometimes as a percentage of the FSR. For example, an error of 1/2
L SB for an 8-hit converter corresponds to 0.2% FSR.

3.1 Offset Error

The offset error as shown in Figure 3 is defined as the difference between the nominal and actual offset points. For an
ADC, the offset point is the midstep value when the digital output is zero, and for aDAC it isthe step value when the
digital input iszero. Thiserror affectsall codes by the same amount and can usually be compensated for by atrimming
process. If trimming is not possible, this error is referred to as the zero-scale error.
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3.2 Gain Error

Thegain error shown in Figure 4 is defined as the difference between the nominal and actual gain points on thetransfer
function after the offset error hasbeen corrected to zero. For an ADC, thegain point isthe midstep valuewhen thedigital
outputisfull scale, andfor aDAC itisthestep valuewhenthedigital inputisfull scale. Thiserror representsadifference
inthe slope of the actual and ideal transfer functions and as such correspondsto the same percentage error in each step.
This error can aso usually be adjusted to zero by trimming.
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3.3 Differential Nonlinearity (DNL) Error

The differential nonlinearity error shown in Figure 5 (sometimes seen as simply differential linearity) isthe difference
between an actual step width (for an ADC) or step height (for a DAC) and theideal value of 1 LSB. Thereforeif the
step width or height is exactly 1 LSB, then the differential nonlinearity error is zero. If the DNL exceeds 1 LSB, there
isapossihility that the converter can become nonmonotonic. This means that the magnitude of the output gets smaller
for an increase in the magnitude of the input. In an ADC thereisalso apossihility that there can be missing codesi.e.,
one or more of the possible 2N binary codes are never output.
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3.4 Integral Nonlinearity (INL) Error

Theintegral nonlinearity error shownin Figure 6 (sometimesseen assimply linearity error) isthedeviation of thevalues
on the actual transfer function from astraight line. Thisstraight line can be either abest straight linewhich isdrawn so
asto minimize these deviations or it can be aline drawn between the end points of the transfer function once the gain
and offset errorshave been nullified. The second method iscalled end-point linearity and isthe usual definition adopted
sinceit can be verified more directly.

For an ADC thedeviations are measured at the transitions from one step to the next, and for the DA C they are measured
at each step. The name integral nonlinearity derives from the fact that the summeation of the differential nonlinearities
from the bottom up to a particular step, determines the value of the integral nonlinearity at that step.
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3.5 Absolute Accuracy (Total) Error

The absolute accuracy or total error of an ADC as shown in Figure 7 is the maximum value of the difference between
ananalog valueandtheideal midstep value. It includesoffset, gain, and integral linearity errorsand al so the quantization
error in the case of an ADC.
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4 APERTURE ERROR
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Figure 8. Aperture Error

Aperture error is caused by the uncertainty in the time at which the sample/hold goes from sample mode to hold mode
asshownin Figure 8. Thisvariation is caused by noise on the clock or theinput signal. The effect of the aperture error
isto set another limitation on the maximum frequency of the input sine wave because it definesthe maximum slew rate
of that signal. For a sine wave input as shown, the value of the input V is defined as:

V = VO sin2snft

The maximum slew rate occurs at the zero crossing point and is given by:

av

If the aperture error is not to affect the accuracy of the converter, it must belessthan 1/2 L SB at the point of maximum
slew rate. For an n bit converter therefore:
d—V =

Ep =Ta Gt = 1/2 LSB = 557

Substituting into this gives
on+1

So that the maximum frequency is given by

faay = —=——r
MAX TAnzn +1



5 QUANTIZATION EFFECTS

The real world analog input to an ADC is a continuous signal with an infinite number of possible states, whereas the
digital output is by its nature a discrete function with a number of different states determined by the resolution of the
device. It follows from this therefore, that in converting from one form to the other, certain parts of the analog signal
that were represented by a different voltage on the input are represented by the same digital code at the output. Some
information has been lost and distortion has been introduced into the signal. Thisis quantization noise.

For theideal staircasetransfer function of an ADC, the error between the actual input and itsdigital form hasauniform
probability density functionif theinput signal isassumed to berandom. It can vary intherange+1/2 L SB or +g/2 where
g isthe width of one step as shown in Figure 9.
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The total mean square error, N2, over the whole conversion area is the sum of each quantization levels mean square
multiplied by its associated probability. Assuming the converter isideal, the width of each code step is identical and
therefore has an equal probability. Hence for the ideal case

2
2_9
N"=12

Considering a sine wave input F(t) of amplitude A so that
F(t) = Asinot
which has a mean square value of F2(t), where
2n
F2(t) = % I AZ5nZ(wt)dt
0

which isthe signal power. Therefore the signal to noiseratio SNR is given by

2
SNR(dB) = 10Log (A?Z) / (%)

But
q=1LSB=%=—

Substituting for g gives

SNR(dB) = 10Log [(%2)/(3 fizn)] — 10 Log (3 ><222n)

= 6.02n + 1.76dB

This gives the ideal value for an n bit converter and shows that each extra 1 bit of resolution provides approximately
6 dB improvement in the SNR.

In practice, the errors mentioned in section 3 introduce nonlinearities that lead to areduction of thisvalue. Thelimit of
al/2 LSB differential linearity error isamissing code condition which isequivalent to areduction of 1 bit of resolution
and henceareduction of 6 dB inthe SNR. Thisthen givesaworst casevalue of SNR for an n-bit converter with /2 LSB
linearity error.

SNR (worst case) = 6.02n + 1.76 — 6 = 6.02n — 4.24 dB

Hencewe have established the boundary conditionsfor the choice of theresolution of the converter based upon adesired
level of SNR.
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6 IDEAL SAMPLING

In converting a continuous time signal into a discrete digital representation, the process of sampling is afundamental
requirement. In anideal case, sampling takestheform of apulsetrain of impulseswhich areinfinitesimally narrow yet
have unit area. The reciprocal of the time between each impulse is called the sampling rate. The input signal is also
idealized by being truly bandlimited, containing no components in its spectrum above a certain value (see Figure 10).
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Figure 10. Ideal Sampling

Theideal sampling condition shown is represented in both the frequency and time domains. The effect of sampling in
thetime domain isto produce an amplitude modul ated train of impulses representing the value of theinput signal at the
instant of sampling. In the frequency domain, the spectrum of the pulse train is a series of discrete frequencies at
multiplesof the sampling rate. Sampling convolvesthe spectraof theinput signal with that of the pulsetrain to produce
the combined spectrum shown, with double sidebands around each discrete frequency which are produced by the
amplitudemodulation. In effect some of the higher frequenciesarefolded back sothat they produceinterferenceat |ower
frequencies. Thisinterference causes distortion which is called aliasing.

If theinput signal isbandlimited to afrequency f1 and is sampled at frequency fg, as shown in the figure, overlap (and
hence aiasing) does not occur if

fl <fg—fl e, 21 < fg

Thereforeif sampling is performed at afrequency at least twice as great as the maximum frequency of theinput signal,
noaliasing occursand all of thesignal information can beextracted. ThisisNyquist’s Sampling Theorem, andit provides
the basic criteria for the selection of the sampling rate required by the converter to process an input signal of agiven
bandwidth.
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7 REAL SAMPLING

The concept of animpulseisauseful oneto simplify the analysis of sampling. However, it isatheoretical ideal which
can be approached but never reached in practice. Instead the real signal is a series of pulses with the period equalling
thereciprocal of the sampling frequency. Theresult of sampling with this pulsetrain isaseries of amplitude modul ated
pulses (see Figure 11).
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Figure 11. Real Sampling

Examining the spectrum of the square wave pulsetrain showsaseriesof discrete frequencies, aswith theimpulsetrain,
but the amplitude of these frequencies is modified by an envelope which is defined by (sin X)/x [sometimes written
sinc(x)] where x in this case is ifg. For a square wave of amplitude A, the envelope of the spectrum is defined as

Envelope = A(%)[sin(:rcfsr)] / g

The error resulting from this can be controlled with a filter which compensates for the sinc envelope. This can be
implemented as a digital filter, in aDSP, or using conventional analog techniques.
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8 ALIASING EFFECTS AND CONSIDERATIONS

Nosignal istruly deterministic and thereforein practice hasinfinite bandwidth. However, theenergy of higher frequency
components becomes increasingly smaller so that at a certain value it can be considered to be irrelevant. Thisvalueis
a choice that must be made by the system designer.

Asshown, theamount of aliasing isaffected by the sampling frequency and by therel evant bandwidth of theinput signal,
filtered as required. The factor that determines how much aliasing can be tolerated is ultimately the resolution of the
system. If the system has low resolution, then the noise floor is already relatively high and aliasing does not have a
significant effect. However, with a high resolution system, aliasing can increase the noise floor considerably and
therefore needs to be controlled more compl etely.

Oneway to prevent aliasing isto increase the sampling rate, as shown. However, the frequency islimited by the type
of converter used and also by the maximum clock rate of the digital processor receiving and transmitting the data.
Therefore, to reducethe effectsof aliasingtowithin acceptablelevels, analog filtersmust beused to alter theinput signal
spectrum (see Figure 12).
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Figure 12. Aliasing Effects and Considerations

8.1 Choice of Filter

Asshown with sampling, thereisan ideal solution to the choice of afilter and apractical realization that compromises
must be made. Theideal filter isaso-called brickwall filter which introduces no attenuation in the passband, and then
cuts down instantly to infinite attenuation in the stopband. In practice, thisis approximated by afilter that introduces
some attenuation in the passband, has afiniterolloff, and passes some frequenciesin the stopband. It can also introduce
phase distortion as well as amplitude distortion. The choice of the filter order and type must be decided upon so asto
best meet the requirements of the system.

8.2 Types of Filter

The basic types of filters available to the designer are briefly presented for comparison purposes. Thisis not intended
to be afull analysis of the subject; therefore, other texts should be referenced for more details.
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8.2.1 Butterworth Filter

A Butterworth (maximally flat) filter isthe most commonly used general purposefilter. It has a monotonic passband
with the attenuation increasing up to its 3-dB point which isknown asthe natural frequency. Thisfrequency isthe same
regardlessof theorder of thefilter. However, by increasing theorder of thefilter, theroll-off inthe passband movescloser
toitsnatural frequency and theroll-off in thetransition region between the natural frequency and the stopband becomes
sharper.

8.2.2 Chebyshev Filter

The Chebyshev equal ripple filter distributes the roll-off across the whole passband. It introduces more ripple in the
passband but providesasharper roll-off inthetransition region. Thistypeof filter haspoorer transient and step responses
duetoits higher Q valuesin the stages of the filter.

8.2.3 Inverse Chebyshev Filter

Both the Butterworth and Chebyshev filtersare monotonic in the transition region and stopband. Sincerippleisallowed
in the stopband, it is possible to make the roll-off sharper. Thisisthe principle of the Inverse Chebyshev, based on the
reciprocal of the angular frequency in the Chebyshev filter response. Thisfilter is monotonic in the passband and can
be flatter than the Butterworth filter while providing a greater initial roll-off than the Chebyshev filter.

8.2.4 Cauer Filter

The Cauer or (Elliptic) filter is nonmonatonic in both the pass and stop bands, but provides the greatest roll-off in any
of the standard filter configurations.

8.2.5 Bessel-Thomson Filter

All of the types mentioned above introduce nonlinearities into the phase relationship of the component frequencies of
theinput spectrum. This can be a problem in some applications when the signal is reconstructed. The Bessel-Thomson
or linear delay filter isdesigned to introduce no phase distortion but thisis achieved at the expense of apoorer amplitude
response.

In general, the performance of all of these types can beimproved by increasing the number of stages, i.e., the order of
the filter. The penalty for this of courseisthe increased cost of components and board space required. For this reason,
an integrated solution using switched capacitor filter building blocks which provide comparable performance with a
discrete solution over arange of frequenciesfrom about 1 kHz to 100 kHz might be appropriate. They also providethe
designer with a compact and cost effective solution.
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8.3 TLCO04 Anti-Aliasing Butterworth Filter

The TLCO04 fourth order Butterworth filter features include the following:
* Low clock to cutoff frequency error . . . 0.8%

Cutoff depends only on stability of external clock

Cutoff range of 0.1 Hz to 30 kHz

5-V to 12-V operation

Self clocking or both TTL and COS compatible

Asdetailed previously the Butterworth filter generally provides the best compromisein filter configurationsand is by
far the easiest to design. The Butterworth filter’'s characteristic is based on a circle which means that when designing
filters, al stagesto thefilter havethe same natural frequency enabling simpler filter design. Most modern designswhich
use operational amplifiers are based on building the whole transfer function by a series of second order numerator and
denominator stages (aBiquad stage). The Butterworth designissimplified, when using these stages, because each stage
has the same natural frequency. This can easily be converted to a switched capacitor filter (SCF) which has very good
capacitor matching and accurately synthesized RC time constants.

The switched capacitor technique is demonstrated in Figure 13. Two clocks operating at the same frequency but in
compl ete antiphase, alternately connect the capacitor C» to theinput and theinverting input of an operational amplifier.
During @1, charge Q flowsonto the capacitor equal to V| C». Theswitchisconsidered to beideal sothat thereisno series
resistance and the capacitor chargesinstantaneously. During ®», the switches change so that C, isnow connected to the
virtual earth at the operational amplifier input. It discharges instantaneously delivering the stored charge Q.
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Figure 13. TLCO4 Anti-aliasing Butterworth Filter
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The average current that flows | 5\, depends on the frequency of the clocks T so that

C2
lav =7 = Vi7 = ViCFek
Therefore, the switched capacitor looks like aresistor of value
Vi 1

lav  CoFcLk

Ra:]z

The advantage of thetechniqueisthat thetime constant of theintegrator can be programmed by altering this equivalent
resistance, and thisis done by simply altering the clock frequency. This provides precision in thefilter design, because
the time constant then depends on the ratio of two capacitorswhich can be fabricated in silicon to track each other very
closely with voltage and temperature. Note that the analysisassumes V| to be constant so that for an ac signal, the clock
frequency must be much higher than the frequency of the input.

TheTLCO4 isonesuchfilter whichisinternally configured to provide the Butterworth low-passfilter response, and the
cut-off frequency for the device is controlled by adigital clock. For this device, the cut-off frequency is set smply by
the clock frequency so that the clock to cut-off frequency ratiois50:1 with an accuracy of 0.8%. Thisenablesthe cut-off
frequency of thefilter to betied to the sampling rate, so that only onefundamental clock signal isrequired for the system
asawhole. Another advantage of SCF techniquesmeansthat fourth order filterscan beattained using only oneintegrated
circuit and they are much more easily controlled.

The response of an nth order Butterworth filter is described by the following equation.

. f 1/2
Attenuation = [1 + (—)2”]
fc
Thetable below lists the fourth order realization in the TLCOA4.
FREQUENCY | ATTENUATION ATTENUATION PHASE
(FACTOR) (dB) (DEGREE)

Fol2 0.998 0.02 26.6
Fe 0.707 3 45
2F¢ 0.0624 24 63.4
4F 0.00391 48 76
8F¢ 0.000244 72 82.9

12F 0.000048 86 85.2

16F¢ 0.000015 96 86.4

This meansthat sampling at 8 timesthe cut off frequency gives an input-to-aliased signal ratio of 72 dB, whichisless
than ten bit quantization noise distortion.
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