

User's Guide SLAU554A–March 2014–Revised July 2014

AFE5401-Q1, 4-Channel, Integrated Analog Front-end Evaluation Module

This user's guide gives a general overview of the AFE5401-Q1 evaluation module (EVM) and provides a general description of the features and functions to be considered while using this module. This manual is applicable to the AFE5401-Q1 integrated analog front-end. The AFE5401-Q1 EVM provides a platform for evaluating the integrated signal chain under various signal, clock, reference, and ADC output formats.

Contents

1	AFE54	101-Q1 EVM Kit Contents	4
2	GUI S	oftware Installation	5
	2.1	High Speed Data Converter Pro (HSDCpro) GUI Installation (TSW1400 GUI)	5
	2.2	AFE5401-Q1 EVM GUI Installation	10
3	AFE54	101-Q1 EVM Header and Test Points	17
	3.1	AFE5401-Q1 EVM Header Configuration	17
	3.2	AFE5401-Q1 EVM Test Points	19
4	Setup	for Testing AFE5401-Q1 EVM	20
	4.1	External Connections	20
	4.2	TSW1400 and AFE5401-Q1 GUI Software Setups	22
5	Captu	ring a RAMP Test Pattern	27
6	Captu	ring a Sinusoidal Input	33
7		101-Q1 GUI Software in Detail	
	7.1	Read Me First Tab	38
	7.2	TOP LEVEL SETTINGS Tab	40
	7.3	DIAGNOSTICS & TEST MODES Tab	48
	7.4	Low Level View Tab	49
8	AFE54	401-Q1 EVM Schematic	50
9	AFE54	401-Q1 EVM Bill of Materials (BOM)	59
10	AFE54	101-Q1 EVM Layout	62
Appen		Blind Capture of RAMP Test Pattern	
Appen	dix B	FPGA Triggered Capture of a RAMP Test Pattern	

List of Figures

1	AFE5401-Q1 EVM (Green) with TSW1400 Capture Card (Red)	4
2	HSDCpro Install (a)	
3	HSDCpro Install (b)	6
4	HSDCpro Install (c)	7
5	HSDCpro Install (d)	7
6	HSDCpro Install (e)	8
7	HSDCpro Install (f)	8
8	HSDCpro Install (g)	9
9	HSDCpro Install (h)	9
10	HSDCpro Install (i)	10
11	AFE5401-Q1 GUI Install (a)	10
12	AFE5401-Q1 GUI Install (b)	11

www.	ti.com
------	--------

13	AFE5401-Q1 GUI Install (c)	12
14	AFE5401-Q1 GUI Install (c)	
15	AFE5401-Q1 GUI Install (d)	
16	AFE5401-Q1 GUI Install (e)	15
17	AFE5401-Q1 GUI Install (f)	
18	AFE5401-Q1 EVM Default Header Configuration	
19	TSW1400 and AFE5401-Q1 Setup	
20	TSW1400 Mated to AFE5401-Q1	
21	TSW1400 GUI Setup (a)	
22	TSW1400 GUI Setup (b)	
23	TSW1400 GUI Setup (c)	23
24	TSW1400 GUI Setup (d)	24
25	TSW1400 GUI Setup (e)	24
26	TSW1400 GUI Setup (f)	
27	AFE5401-Q1 Plug-in GUI Setup (g)	
28	AFE5401-Q1 Plug-in GUI Setup (h)	
29	AFE5401-Q1 Ramp Capture (a)	27
30	AFE5401-Q1 Ramp Capture (b)	
31	AFE5401-Q1 Ramp Capture (c)	
32	AFE5401-Q1 Ramp Capture (d)	
33	AFE5401-Q1 Ramp Capture (e)	
34	AFE5401-Q1 Ramp Capture (f)	
35	AFE5401-Q1 Ramp Capture (g)	
36	AFE5401-Q1 Ramp Capture (h)	
37	AFE5401-Q1 Sine Capture (a)	33
38	AFE5401-Q1 Sine Capture (b)	33
39	AFE5401-Q1 Sine Capture (c)	34
40	AFE5401-Q1 Sine Capture (d)	35
41	AFE5401-Q1 Sine Capture (e)	36
42	AFE5401-Q1 Sine Capture (f)	37
43	AFE5401-Q1 Sine Capture (g)	38
44	AFE5401-Q1 Read Me First GUI Tab (a)	39
45	AFE5401-Q1 Read Me First GUI Tab (b)	39
46	AFE5401-Q1 TOP LEVEL SETTINGS Tab	40
47	AFE5401-Q1 TRIGGER & CAPTURE CONFIGURATION Section (a)	41
48	AFE5401-Q1 TRIGGER & CAPTURE CONFIGURATION Section (b)	41
49	AFE5401-Q1 TOP LEVEL SETTINGS Tab (c)	42
50	AFE5401-Q1 TRIGGER & CAPTURE CONFIGURATION Section (e)	42
51	AFE5401-Q1 TRIGGER & CAPTURE CONFIGURATION Section (f)	43
52	AFE5401-Q1 CLOCK CONFIGURATION & PDN Section (a)	43
53	AFE5401-Q1 CLOCK CONFIGURATION & PDN Section (b)	44
54	AFE5401-Q1 CLOCK CONFIGURATION & PDN Section (c)	44
55	AFE5401-Q1 ANALOG CONFIG Section	45
56	AFE5401-Q1 DIGITAL CONFIGURATION Section (a)	46
57	AFE5401-Q1 DIGITAL CONFIGURATION Section (b)	47
58	AFE5401-Q1 PIN CTRL Section	47
59	AFE5401-Q1 LAST WRITE Section	48
60	AFE5401-Q1 DIAGNOSTICS & TEST MODES Tab (a)	48
61	AFE5401-Q1 DIAGNOSTICS & TEST MODES Tab (b)	49

62	AFE5401-Q1 EVM Schematic Sheet 1	50
63	AFE5401-Q1 EVM Schematic Sheet 2	51
64	AFE5401-Q1 EVM Schematic Sheet 3	52
65	AFE5401-Q1 EVM Schematic Sheet 4	53
66	AFE5401-Q1 EVM Schematic Sheet 5	54
67	AFE5401-Q1 EVM Schematic Sheet 6	55
68	AFE5401-Q1 EVM Schematic Sheet 7	56
69	AFE5401-Q1 EVM Schematic Sheet 8	57
70	AFE5401-Q1 EVM Schematic Sheet 9	58
71	AFE5401-Q1 EVM Layout	
72	GUI Setup for Blind RAMP Test (a)	63
73	GUI Setup for Blind RAMP Test (b)	64
74	GUI Setup For Blind RAMP Test (c)	65
75	FPGA DSYNC2 Rising Edge Triggered RAMP Capture (a)	66
76	FPGA DSYNC2 Rising Edge Triggered RAMP Capture (b)	67
77	FPGA DSYNC2 Rising Edge Triggered RAMP Capture (c)	68
78	FPGA DSYNC2 Rising Edge Triggered RAMP Capture (d)	69
79	FPGA DSYNC2 Rising Edge Triggered RAMP Capture (e)	70
80	FPGA DSYNC2 Rising Edge Triggered RAMP Capture (f)	71
81	FPGA DSYNC2 Active High Triggered RAMP Capture (g)	72

List of Tables

1	AFE5401-Q1 Header Configuration	17
2	AFE5401-Q1 Header Configuration	19
3	AFE5401-Q1 EVM Bill of Materials	59

AFE5401-Q1 EVM Kit Contents

1 AFE5401-Q1 EVM Kit Contents

The AFE5401-Q1 EVM is a compact, USB-based evaluation kit for evaluating the AFE5401-Q1, a 4channel analog front-end. The kit consists of (1) AFE5401-Q1EVM, (2) a USB cable for SPI communication to the software GUI, and (3) a +5-V AC/DC adaptor with plug adaptors for powering the EVM. Figure 1 shows an overview of the evaluation setup which includes the TSW1400 Data Capture Card (not included with this kit).

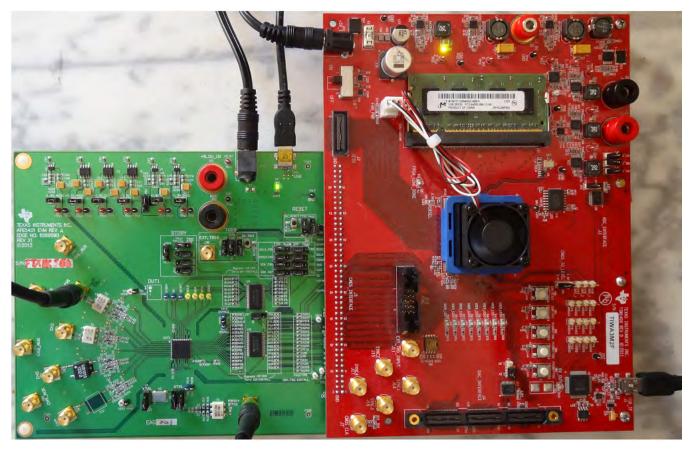


Figure 1. AFE5401-Q1 EVM (Green) with TSW1400 Capture Card (Red)

TSW1400 EVM: The high-speed LVDS de-serializer board is required for capturing data from the AFE5401-Q1EVM. The graphical user interface (GUI) software that is available with the EVM, called *High Speed Data Converter Pro*, includes many data analysis features for processing and plotting captured data. The TSW1400 EVM and software can be used to test many of TI's ADCs, DACs, and AFEs. (*NOTE: the TSW1400 capture card is not included with the AFE5401-Q1 EVM Kit and must be ordered separately*). For more information pertaining to be TSW1400EVM, see: http://focus.ti.com/docs/toolsw/folders/print/tsw1400evm.html.

Equipment: No external equipment is required to test functionality of the setup. Using the on-EVM crystal oscillator for the input clock and an internally generated RAMP test mode, the CMOS interface can be verified. When signal capture is desired, signal generators, preferably with low-phase noise and harmonic distortion, must be used as source of input signal and input clock in order to get the desired performance. Additionally, band-pass filters (BPF) are required in signal and clock paths to attenuate the harmonics and noise from the generators.

AFE5401-Q1 EVM: The AFE5401-Q1 EVM is a compact USB 2.0 based evaluation kit for the AFE5401-Q1, Quad Channel Analog Front-End. This EVM provides versatility to begin evaluation quickly and with no external equipment required as a +5-V AC/DC power supply and an on-board crystal oscillator eliminate the need for these instruments. The EVM supplies a provision for interfacing I/Os via additional external buffering or a secondary Flexible Flat Cable (FFC) connector allowing users to evaluate with their

own DSP platform (in lieu of the TSW1400 capture card). In addition, monitoring the power consumption the individual power supply pins of the AFE5401-Q1 is possible via headers. Finally, the EVM allows for three unique AFE analog input configurations including (1) a transformer with input bandwidth from 1 MHz to 400 MHz, (2) a transformer with input bandwidth from 5 kHz to 100 MHz for low frequency applications and (3) a single-ended AC coupled input drive.

USB Interface to PC: USB connections from the AFE5401-Q1EVM and TSW1400EVM to the personal computer (PC) are used for communication from the GUIs to the boards. Section 2 explains the TSW1400 and AFE5401-Q1 GUI installation procedures.

2 GUI Software Installation

The AFE5401-Q1 GUI Software provides an easy interface in which to evaluate the AFE5401-Q1. As a plug-in to the *High Speed Data Convertor Pro GUI (HSDCpro)*, control of the AFE5401-Q1 EVM and the TSW1400 Capture Card (available in separate kit from the TI estore) is done with one GUI. The GUI allows for one-click auto configuration of the AFE5401-Q1 using one of several configuration files provided with the installer. Data capture and analysis are performed by *HSDCpro* including fast-Fourier transform (FFT) analysis providing SNR, SFDR, and Harmonic Distortion.

The AFE5401-Q1 EVM and the TSW1400 EVM both require software installations. The following two sections explain where to find and how to install the software properly. Ensure that no USB connections are made to the EVMs until after the installations are complete.

2.1 High Speed Data Converter Pro (HSDCpro) GUI Installation (TSW1400 GUI)

From the Texas Instruments website, <u>www.ti.com</u>, search for TSW1400. Under **Technical Documents**, find the **Software** section from which **High Speed Data Converter Pro GUI Installer** can be downloaded and saved (<u>SLWC107</u>). Revision J (Rev J) or higher of HSDCpro is required as earlier versions are not compatible with the AFE5401-Q1 GUI.

Instructions for installing HSDCpro follow:

- Unzip the saved folder and run the installer executable to obtain the menu shown in Figure 2.
- Click the *Install* button.

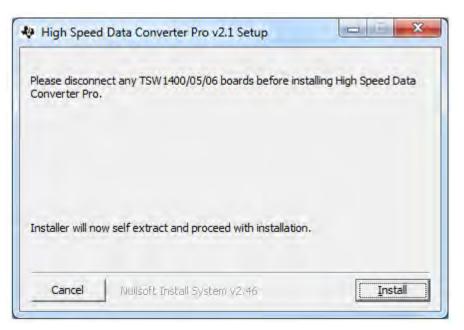


Figure 2. HSDCpro Install (a)

GUI Software Installation

- Leave the destination directories as the default and press the Next button as shown in Figure 3. ٠
 - NOTE: If a destination directory other than the default directory is used, the AFE5401-Q1 GUI is not found, therefore, it is not invoked as a plug-in tab to HSDCpro.

Destination Directory Select the primary installation directory.
All software will be installed in the following locations. To install software into a different locations, click the Browse button and select another directory.
Directory for Uick Council Data Converter Box
Directory for High Speed Data Converter Pro
C:\Program Files (x86)\Texas Instruments\High Speed Data Converter Pro\ Browse

Figure 3. HSDCpro Install (b)

1. Read the License Agreement from Texas Instruments and select *I accept the License Agreement* and press the *Next* button as shown in Figure 4.

License Agreement You must accept the licenses disp	played below to proceed.	
GUI Software Evaluatio	on and Internal Use License Agreement	
	ving license agreement carefully. This is a le read this license agreement, you will be a the terms of the license agreement. Do not	sked
"I have read and agree" unless: (terms of this license agreement of	(1) you are authorized to accept and agree to on behalf of yourself and your company; are be bound by the terms of this legally bir nd your company.	o the nd (2)
"I have read and agree" unless: (terms of this license agreement of you intend to enter into and to	(1) you are authorized to accept and agree t on behalf of yourself and your company; ar be bound by the terms of this legally bin	o the nd (2)

Figure 4. HSDCpro Install (c)

(b) Read the License Agreement from National Instruments and *I accept the License Agreement* and press the *Next* button as in Figure 5.

License Agreement You must accept the licenses displayer	d below to proceed.
NATIONAL INSTRUMENTS	SOFTWARE LICENSE AGREEMENT
AND/OR COMPLETE THE INSTALLATION P DOWNLOADING THE SOFTWARE AND/OR COMPLETE THE INSTALLATION PROCESS AGREEMENT AND YOU AGREE TO BE BOU BECOME A PARTY TO THIS AGREEMENT A CONDITIONS, CLICK THE APPROPRIATE E DO NOT INSTALL OR USE THE SOFTWARE (30) DAYS OF RECEIPT OF THE SOFTWARE	3. YOU CONSENT TO THE TERMS OF THIS IND BY THIS AGREEMENT. IF YOU DO NOT WISH TO ND BE BOUND BY ALL OF ITS TERMS AND BUTTON TO CANCEL THE INSTALLATION PROCESS, E, AND RETURN THE SOFTWARE WITHIN THIRTY E (WITH ALL ACCOMPANYING WRITTEN MATERIALS, E PLACE YOU OBTAINED THEM. ALL RETURNS
The software to which this National Instruments lice	ense applies is High Speed Data Converter Pro.
	 Eaccept the License Agreement. I do not accept the License Agreement.

Figure 5. HSDCpro Install (d)

GUI Software Installation

www.ti.com

3. Press the *Next* button as in Figure 6.

Start Installation		
Review the follow	ing summary before continuing	
Upgrading • National Instruments syste	en companyels	
Adding or Changing	ner sområsen näl fild	
High Speed Data Convert	er Pro Files	
sk lihe Next button to begin i	installation. Click the Back button to change th	ne installation settings.
ck. The Next button to begin i	installation. Click the Back button to change If	ne installation settings.

Figure 6. HSDCpro Install (e)

(d) The window in Figure 7 should appear, indicating that the installation is in progress.

High Speed Data Converter Pro	
	[
Overall Progress: 5% Complete	
	S Back Mexils Cancel

Figure 7. HSDCpro Install (f)

5. The window shown in Figure 8 appears, indicating Installation Complete. Press the Next button.

High	Speed Data Converter Pro		×
	Installation Complete		
	The installer has finished updating your system		
		Ki Back	Next>> Emith

Figure 8. HSDCpro Install (g)

(f) The window in Figure 9 appears briefly to complete the process.

Execut	e: C:\Users\a0193755\AppData\Loca	al\Temp\HSDCPro\Install\EVM G
Show detail	s	

Figure 9. HSDCpro Install (h)

GUI Software Installation

www.ti.com

7. As shown in Figure 10, a computer restart might be requested depending on whether or not the PC already has the National Instruments' MCR installer. If requested, hit the *Restart* button to complete the installation.

Figure 10. HSDCpro Install (i)

2.2 AFE5401-Q1 EVM GUI Installation

The AFE5401-Q1 GUI software can be obtained from TI's local supporting FAE. A zipped file containing the installer shall be provided.

(a) Unzip the folder and run the setup.exe file as administrator by right clicking on it and selecting *Run as administrator* as shown in Figure 11.

setup.ini	3/6/2014 7:5 Or	en In as administrator	
setup.exe	5/14/2013 10-10-014	A 12 12	4 202 14
nidist.id	3/6/2014 7:44 AM	ID File	1 KI
🌡 supportfiles	3/10/2014 12:18 PM	File folder	
📕 license	3/10/2014 12:18 PM	File folder	
🍶 bin	3/10/2014 12:17 PM	File folder	
Name	Date modified	Туре	Size

Figure 11. AFE5401-Q1 GUI Install (a)

- 2. Leave the destination directory as the default and press the *Next* button as shown in Figure 12.
 - **NOTE:** If a destination directory other than the default directory is used, the AFE5401-Q1 GUI is not found, therefore, it is not invoked as a plug-in tab to HSDCpro.

FE5401-Q1 EVM GUI		
Destination Directory Select the primary installation directory.	TEXAS INSTRUMEN	
All software will be installed in the following locations. To install software into different location, click the Browse button and select another directory.	a	
Directory for AFE5401-Q1 EVM GUI		
C:\Program Files (x86)\Texas Instruments\AFE5401-Q1 EVM GUI\	Browse	

Figure 12. AFE5401-Q1 GUI Install (b)

GUI Software Installation

www.ti.com

3. Read the License Agreement from Texas Instruments, select the I accept the License Agreement button, and then press the Next button, as shown in Figure 13.

AFE5401-Q1 EVM GUI	
License Agreement You must accept the licenses displayed below to proceed.	TEXAS INSTRUMENTS
Source and Binary Code Internal Use License Age	reement
Important - Please carefully read the following license agreen binding. After you read it, you will be asked whether you ac terms. Do not click "I have read and agree" unless: (1) you Materials for your own benefit and personally accept, agree bound by these terms; or (2) you are authorized to, and int these terms on behalf of your company.	ccept and agree to its will use the Licensed to and intend to be
Important - Read carefully: In this Agreement "you" means you exercise the rights granted for your own benefit, but it means you	
 I accept the Licent I do not accept the 	se Agreement. e License Agreement.
< Back	Next >> Cancel

Figure 13. AFE5401-Q1 GUI Install (c)

4. Read the Texas Instruments Software Manifest, select the *I accept the License Agreement* check box, and then press the *Next* button, as shown in Figure 14.

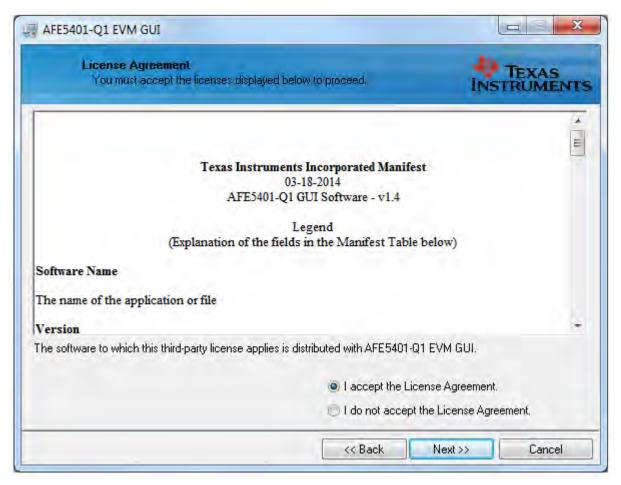


Figure 14. AFE5401-Q1 GUI Install (c)

GUI Software Installation

www.ti.com

5. Begin the installation by pressing the *Next* button, as illustrated in Figure 15.

INSTRUMENTS

Figure 15. AFE5401-Q1 GUI Install (d)

6. The window shown in Figure 16 should appear showing that installation is in progress.

TEXAS INSTRUMENTS
lext>> Cancel

Figure 16. AFE5401-Q1 GUI Install (e)

GUI Software Installation

www.ti.com

7. Upon complete of installation, the window in Figure 17 appears. Press the *Finish* button to continue.

AFE5401-Q1 EVM GUI	
Installation Complete	TEXAS INSTRUMENTS
The installer has finished updating your system.	
<< Ba	ck Next>> Einish

Figure 17. AFE5401-Q1 GUI Install (f)

3 AFE5401-Q1 EVM Header and Test Points

This section describes the functions of the headers on the EVM. It also provides a list of test points on the EVM that are useful for debug and general-use purposes.

3.1 AFE5401-Q1 EVM Header Configuration

The AFE5401-Q1 EVM is flexible in its configurability through the use of 2- and 3-pin headers. The default configuration of the EVM is set to facilitate initial testing by requiring no changes. Table 1 describes the purpose of all headers with the default position highlighted in red or yellow, while Figure 18 shows the default positions on the EVM.

Jumpe #	Default Config	Pin 1 Silkscreen	Pin 3 Silkscreen	Circuit	Description
JP22	Short pins 1-2	+1.8V_AVDD		Power Supply	Power Supply to DUT pins 19, 24, 62 (AVDD18)
JP28	Short pins 1-2	+3.3V_AVDD		Power Supply	Power Supply to DUT pin 18 (AVDD3)
JP20	Short pins 1-2	+1.8V_DVDD		Power Supply	Power Supply to DUT pins 28, 30, 51 (DVDD18)
JP26	Short pins 1-2	+3.3V		Power Supply	+3.3V Supply to J56
JP24	Short pins 1-2	+1.8V		Power Supply	+1.8V Supply to J56
J56	Short pins 1-2	+3.3V	+1.8V	Power Supply	Power supply to DUT pins 32, 33, 50 (DRVDD); selects output of (1) JP26, +3.3V or (2) output of JP24, +1.8V
JP30	Short pins 1-2	+3.3V_CLK		Power Supply	Power Supply to XTAL at U2
J33	Short pins 1-2	GND	+1.8V	Standby Circuit	Selects Voltage level of STDBY signal (1) GND or (3) +3.3V
J27	short pins 2-3	AUX	FTDI	Standby Circuit	Selects STDBY control source: (1) AUX determined by J29 or (3) Device GUI thru FTDI
J29	Short pins 1-2	AUX	DSP	Standby Circuit	Selects STDBY control source: (1) AUX determined by J32 or (3) CMOS connector P1
J32	Short pins 1-2	EVM	Vayu	Standby Circuit	Selects STDBY control source: (1) EVM determined by J33 or (3) Vayu connector J47
J34	Short pins 1-2	Vayu_Parity	Vayu_STDBY	Standby Circuit	For Vayu control only, selects (1) outputs parity from AFE5401-Q1 or (3) inputs STDBY from Vayu connector J47
J26	Short pins 1-2	Aux	FTDI	Trigger	Selects DUT Trigger signal source: (1) AUX determined by J28 or (3) Device GUI thru FTDI
J28	short pins 2-3	Aux	DSP	Trigger	Selects DUT Trigger signal source: (1) AUX determined by J31 or (3) CMOS connector P1
J31	Short pins 1-2	SMA	Vayu	Trigger	Selects DUT Trigger signal source: (1) SMA J30, EXT. TRIG or (3) Vayu connector J47
J41	Short pins 1-2	DSP	Vayu	Reset	Selects RESET control source when sma J36 is set to Aux (1) from DSP or (3) from Vayu
J36	short pins 2-3	Aux	FTDI	Reset	Selects DUT RESET signal source: (1) Aux determined by J41 or (3) Device GUI thru FTDI
J35	short pins 2-3	Aux	FTDI	Reset	Selects DUT SCLK signal source: (1) Aux determined by J40 (3) Device GUI thru FTDI
J40	short pins 1-2	DSP	Vayu	SPI	Selects SCLK signal source: (1) CMOS connector P1 (3) Vayu connector J47
J39	short pins 2-3	Aux	FTDI	SPI	Selects DUT SDOUT signal path: (1) Aux determined by J44 (3) Device GUI thru FTDI
J44	short pins 1-2	DSP	Vayu	SPI	Selects SDOUT signal path: (1) CMOS connector P1 (3) Vayu connector J47

Table 1. AFE5401-Q1 Header Configuration

Jumpe #	Default Config	Pin 1 Silkscreen	Pin 3 Silkscreen	Circuit	Description
J38	short pins 2-3	Aux	FTDI	SPI	Selects DUT SEN signal source: (1) Aux determined by J43 (3) Device GUI thru FTDI
J43	short pins 1-2	DSP	Vayu	SPI	Selects SEN signal source: (1) CMOS connector P1 (3) Vayu connector J47
J37	short pins 2-3	Aux	FTDI	SPI	Selects DUT SDA signal source: (1) Aux determined by J42 (3) Device GUI thru FTDI
J42	short pins 1-2	DSP	Vayu	SPI	Selects SDA signal source: (1) CMOS connector P1 (3) Vayu connector J47
J57	short pins 2-3	DSP_OE	GND	SPI	Selects enablebar source for flip flop at U4 between (1)FPGA via P1 or (2) GND
J4	short pins 2-3	XFMR	XTAL	CLOCK	Power Supply for on-board 25MHz XTAL oscillator
J5	short pins 2-3	XFMR	XTAL	CLOCK	Selects clock input configuration to (1) differential signal input to SMA J3, CLK_IN, thru transformer or (3) single-ended on-board XTAL oscillator
8L	short pins 2-3	XFMR	XTAL	CLOCK	Selects clock input configuration to (1) differential signal input to SMA J3, CLK_IN, thru transformer or (3) single-ended on-board XTAL oscillator

Table 1. AFE5401-Q1 Header Configuration (continued)

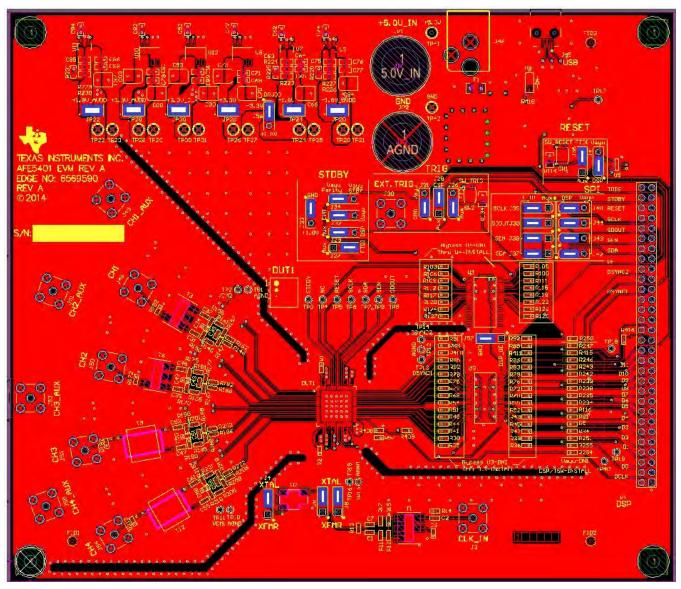


Figure 18. AFE5401-Q1 EVM Default Header Configuration

3.2 AFE5401-Q1 EVM Test Points

Table 2 lists all the test points on the AFE5401-Q1-Q1 EVM and the purpose of each test point.

Testpoint	Silkscreen	Circuit	Description
TP2	VCM2	Analog Inputs VCM	Common Mode Voltage Node for Analog Inputs 1-2
TP1	AGND	Analog Inputs VCM	Analog Ground
TP11	VCM1	Analog Inputs VCM	Common Mode Voltage Node for Analog Inputs 3-4
TP10	AGND	Analog Inputs VCM	Analog Ground
TP3	STDBY	Digital Input	Input to STBY pin 59
TP4	NC	n/a	
TP5	RESET	Digital Input	Input to RESET pin 57

Table 2. AFE5401-Q1 Header Configuration

AFE5401-Q1, 4-Channel, Integrated Analog Front-end Evaluation Module

Testpoint	Silkscreen	Circuit	Description		
TP6	SCLK	Digital Input	Input to SCLK pin 56		
TP7	SDA	Digital Input	Input to SDATA pin 55		
TP8	SEN	Digital Input	Input to SEN pin 55		
TP9	SDOUT	Digital Output	Input to SDOUT pin 53		
TP14	DSYNC2	Frame Clock	Output from DSYCN2 pin 27		
TP12	AGND	Frame Clock	Analog Ground		
TP13	DSYNC1	Frame Clock	Output from DSYCN2 pin 26		
TP16	TRIG	Frame Clock	Input to TRIG pin 25		
TP15	AGND	Frame Clock	Analog Ground		
TP21	REFOUT	CDC Cock Device	Output from REFOUT pin 29 of CDC device		
TP17	n/a	not used			
TP18	n/a	not used			
TP19	n/a	not used			
TP20	n/a	not used			

Table 2. AFE5401-Q1 Header Configuration (continued)

4 Setup for Testing AFE5401-Q1 EVM

This section outlines (1) the external connections required to test the AFE5401-Q1 EVM using the CMOS interface and (2) how to set up the GUIs for testing.

Only the minimal GUI software settings required to achieve the previously mentioned tests are described. For a detailed explanation of the AFE5401-Q1 GUI software and all its features, please see Section 6. For a detailed explanation of the *High Speed Data Converter Pro* GUI software, please consult the GUI User's Guide, (SLWU087). The TSW140x EVM User's Guide (SLWU079C) is available on www.ti.com.

4.1 External Connections

Figure 19 shows the connections for proper hardware setup (Note: Testing the parallel CMOS interface between the AFE5401-Q1 EVM and the TSW1400 EVM can be performed using a RAMP function generated within the AFE5401-Q1 device in lieu of the signal source listed in item 7. Also, an on-board 25-MHz crystal oscillator (XTAL) can provide the ADC sampling clock in lieu of the signal source listed in item 6. This configuration is only recommended for testing the RAMP function as low phase noise filtered signal sources must be provided to both the ADC clock input and the ADC analog inputs for measuring device performance).

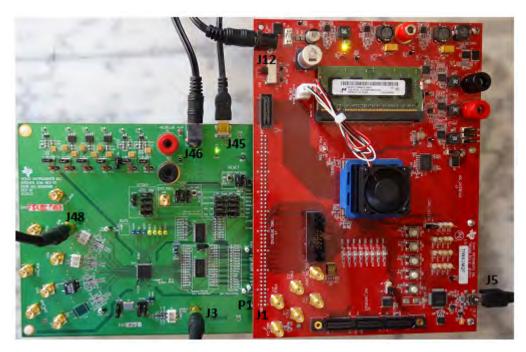


Figure 19. TSW1400 and AFE5401-Q1 Setup

 Mate the TSW1400 EVM at connector J1 (CMOS_INTERFACE) to the AFE5401-Q1 EVM at connector P1 (DSP) through the CMOS header connector. The connection should be right justified looking from the CMOS outputs of the AFE5401-Q1 to the TSW1400 EVM as shown in Figure 20.

Figure 20. TSW1400 Mated to AFE5401-Q1

- 2. Connect the DC +5-V output of the provided AC-to-DC power supply to **J12 (+5V_IN)** of the TSW1400 EVM and the input of the power supply cable to a 110-230 VAC source.
- 3. Connect the DC +5 V output of the provided AC-to-DC power supply to connector **JP46** of the

Setup for Testing AFE5401-Q1 EVM

AFE5401-Q1 EVM.

- 4. Connect the USB cable from the PC to **J45** (**USB**) of AFE5401-Q1 EVM.
- 5. Connect the USB cable from the PC to **J5** (**USB_IF**) of the TSW1400 EVM. [NOTE: it is recommended that the PC USB port be able to support USB2.0. If unsure, always chose the USB ports at the back of the PC chassis over ones located on the front or sides.]
- Supply an ADC clock signal through a bandpass filter to sma J3 (CLK_IN) of the AFE5401-Q1 EVM (that is, +5 dBm, 25 MHz).
 [NOTE: Not required if only testing the CMOS interface with a RAMP test pattern or for non-coherent sampling as 25MHz XTAL clock provided on the EVM.]
- Supply an analog input signal through a bandpass filter to sma J48 (CH1) of the AFE5401-Q1 EVM (that is, +4 dBm, 3.5 MHz).
 [NOTE: Not required if only testing the CMOS interface with a test pattern.]

4.2 TSW1400 and AFE5401-Q1 GUI Software Setups

With the setup outlined in Figure 19 established, launch the *High Speed Data Converter Pro* GUI. The GUI should automatically detect the serial number of the TSW1400 EVM connected as shown in Figure 21. Click on *OK*.

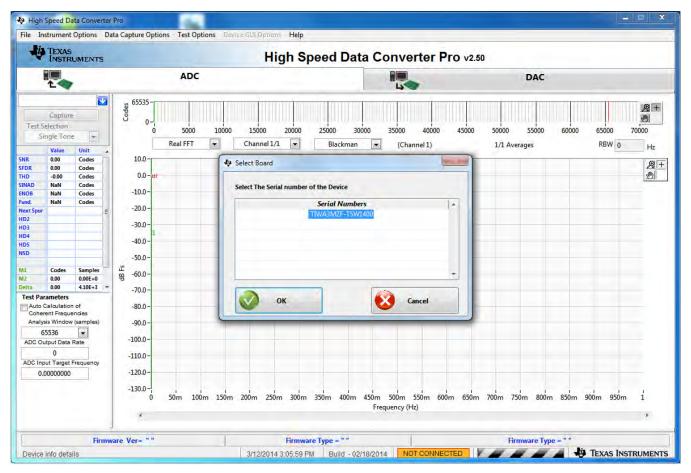


Figure 21. TSW1400 GUI Setup (a)

Figure 22 shows the message that appears. Click OK.

Figure 22. TSW1400 GUI Setup (b)

If instead, the message in Figure 23 appears, it indicates that the USB connection to the TSW1400 EVM is not present. Click *OK*, then establish a USB connection and repeat step 1.

	_
No Board	
Connected!	
OK	
	No Board Connected!

Figure 23. TSW1400 GUI Setup (c)

Select a device by clicking on the blue arrow in the upper left corner of the *HSDCpro* GUI. Scroll down and select *AFE5401-Q1* as shown in Figure 24.

Setup for Testing AFE5401-Q1 EVM

www.ti.com

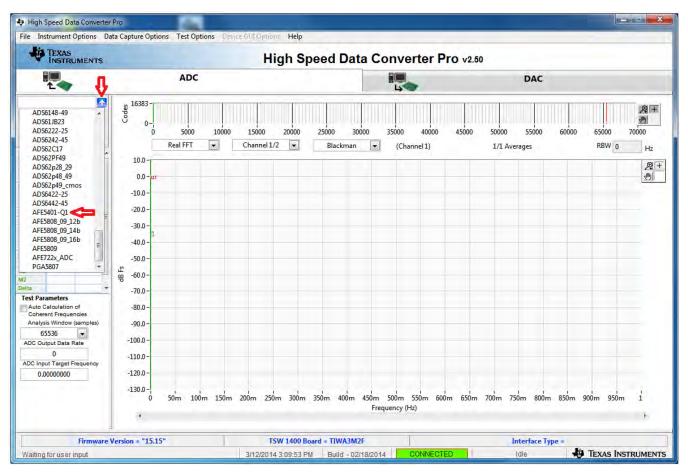


Figure 24. TSW1400 GUI Setup (d)

Click the Yes button to update the ADC firmware on the TSW1400 FPGA as depicted in Figure 25.

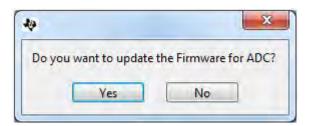


Figure 25. TSW1400 GUI Setup (e)

While the firmware is being loaded into the TSW1400 FPGA, the menu shown in Figure 26 appears.

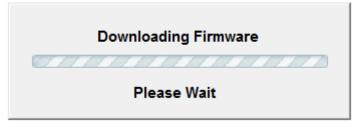


Figure 26. TSW1400 GUI Setup (f)

Once loaded, the plug-in AFE5401-Q1 GUI appears as a new tab within the *HSDCpro* GUI, as shown in Figure 27.

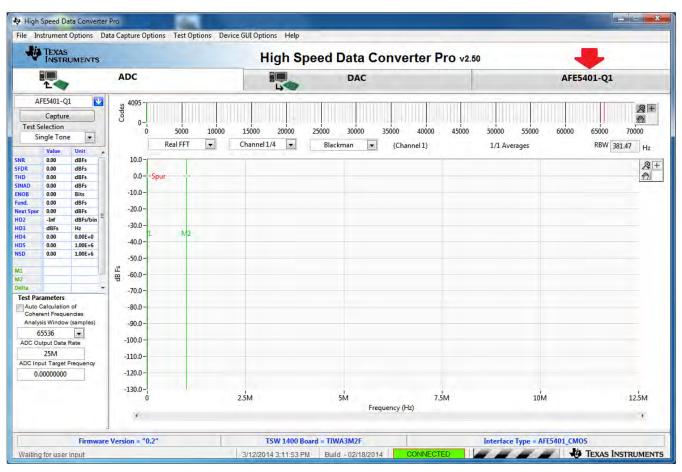


Figure 27. AFE5401-Q1 Plug-in GUI Setup (g)

Setup for Testing AFE5401-Q1 EVM

www.ti.com

Click on the tab *AFE5401-Q1 GUII* to view the GUI software for the AFE5401-Q1. The GUI consists of four tabs: *Read Me First, TOP LEVEL SETTINGS, DIAGNOSTICS & TEST MODES,* and *Low Level View.* The *Read Me First* tab is presented initially as shown in Figure 28.

The easiest way to configure the AFE5401-Q1 EVM for testing is by using the pre-loaded configurations provided with the AFE5401-Q1 GUI software installation. The bottom of the *Read Me First* tab provides a way to load these configurations. Figure 28 shows there are 12 configurations, each with the possibility to capture *Normal ADC Data* (sampling signal at the analog inputs) or a *Full Scale Ramp* test pattern generated internal to the AFE5401-Q1.

🖗 High	Speed Da	ata Converte	r Pro		6							_ = ×
File Ins	strument	Options D	ata Captur	e Options Te	st Options D	evice GUI Options Help		_				
-	TEXAS	UMENTS				High Sp	eed Data (Conver	ter Pro v2.	50		
			ADC			100 LOO	DAC				AFE5401-Q	1
AF	E5401-Q			EXAS RUMENTS			AFE540	1-Q1 E	VM GUI v1	3.3	USB STAT	Reconnect FTDI.?
	election ngle Ton	•	() R	ead Me First	-	TOP LEVEL SETT	INGS	12 DIAG	NOSTICS & TEST	MODES	Low Level	View
SNR	Value 0.00	Unit A				_	AFE5401-0	1 EVM GUI In	structions	-		
SFDR	0.00	dBFs		A) Input (lock (CLKINE	P/M) EVM options:		C) DU	T TRIGGER SOUR	CE EVM configurati	ons:	
THD	0.00	dBFs dBFs				d 25MHz XTAL (default)			(1) None			
NOB	0.00	Bits			(2) External	clock provided to sma J3	CLK IN.	11		TSW1400 EVM		
fund.	0.00	dBFs					-			GUI, Switch, or SM	A)	
lext Spur ID2	0.00 -Inf	dBFs dBFs/bin		B) Analog	Input EVM o	onfigurations:		D) D4	TA CAPTURE OPT			
102	dBFs	Hz		of Analog		s 1,2: Transformer (0.40	0.900MHz)	Ujur		ture using HSDCpr	Canture button	
HD4	0.00	0.00E+0		-	(2) Channel			1-1		0 1	to TSW1400 sma J11	
HD5	0.00	1.00E+6		-								
NSD	0.00	1.00E+6		-	(3) Channel	4: Single-ended Driv	ve, AC-coupled 0.1	ur-			Edge of DSYNC2 ou	
11									(4) Framed C	apture using Activ	e High of DSYNC2 ou	tput
W2							1000	0.000				
)elta		1		Normal ADC L	Data 🔘 Full Sc	ale Ramp	AFE5401-	Q1 OPERATI	IG MODES			
Test Par				Config #	FCLKIN (MHz)	Clock Divider (DIV_REG)			Decimation Ou	tput Data Rate/CH (MSPS) Serialization	F_DCLK (MHz)
	Calculation ent Freque			1	25	1	25	25	1	25	4	100
Analys	is Window	(samples)	E	2	50	2	25	25	1	25	4	100
6	5536	-		3	75	3	25	25	1	25	4	100
ADC Ou	tput Data	Rate] 4	100	4	25	25	1	25	4	100
	25M			5	50	1	50	50	2	25	4	100
ADC Inp	ut Target	Frequency		6	100	2	50	50	2	25	4	100
0.0	00000000			7	150	3	50	50	2	25	4	100
				8	200	4	50	50	2	25	4	100
				9	50	1	50	50	4	12.5	4	50
				10	100	2	50	50 50	4	12.5	4	50
				11	444	3	50		4		4	50
				12	200	4	50	50	4	12.5	4	50
		Firmwar	e Version	= "0.2"	T	TSW 1400 Bo	ard = TIWA3M2F	T		Interface Type =	AFE5401_CMOS	
Maitica	for user	innut				3/12/2014 3:17:39 PM	Build Doldard		ONNECTED		🖌 🖌 Texas	INSTRUMENTS
statui lu	not user	mput		_		J12/2014 3.17.39 FW	Dullu - 02/16/2				TEAA.	- noncoments

Figure 28. AFE5401-Q1 Plug-in GUI Setup (h)

5 Capturing a RAMP Test Pattern

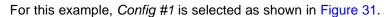
Program the AFE5401-Q1 device for a *Full Scale Ramp* test pattern by selecting the *Full Scale Ramp* radio button on the *Read Me First* tab as shown in Figure 29.

File Ins	strument	Options D	ata Ca	pture O	ptions Te	st Options Devi	ce GUI Options Help						
ų	TEXAS	UMENTS					High S	peed Data	Conv	erter Pro v2	.50		
			A	DC			-	DAG	c			AFE5401-Q	1
AF	E5401-Q		IN	TE	XAS	6		AFE54	01-Q1		.3.3		US Reconn FTDI
-	election ngle Ton	e 💌	C) Rea	d Me First		TOP LEVEL SET	TINGS	T2 D	IAGNOSTICS & TES	MODES	Low Level	View
NR	Value 0.00	Unit dBFs						AFE540	1-Q1 EVM GU	JI Instructions			
FDR	0.00	dBFs			A) Input (lock (CLKINP/N	A) EVM options:		C)	DUT TRIGGER SOUL	CE EVM configurat	ions:	
'HD INAD	0.00	dBFs dBFs					5MHz XTAL (default)	1		(1) None	0		
NOB	0.00	Bits					ock provided to sma				TSW1400 EVM		
und.	0.00	dBFs				(-)			YY	×1.	(GUI, Switch, or SN	(4)	
ext Spur D2	0.00 -Inf	dBFs dBFs/bin			R) Analog	Input EVM con	figurations:		D	DATA CAPTURE OP		,	
02 03	-Inf dBFs	dBFs/bin Hz			b] Analog		.2: Transformer (0.4	100 2001411-1	U		pture using HSDCp	ra Cantura huttan	
ID4	0.00	0.00E+0							06.411=1			a the state of the second	
ID5	0.00	1.00E+6				(2) Channel 3:		former (0.005-100			0 00	to TSW1400 sma J11	
VSD	0.00	1.00E+6				(3) Channel 4:	Single-ended Di	rive, AC-coupled	0.10F			ig Edge of DSYNC2 ou	
11									11	(4) Framed	Capture using Activ	ve High of DSYNC2 ou	tput
VI2		1		Const			-			Charles and an			
Delta		17		© No	ormal ADC [Data <a> Full Scale	Ramp	AFE54	01-Q1 OPERA	ATING MODES			
Test Par					Config #		Clock Divider (DIV_REC			IHz) Decimation O		(MSPS) Serialization	F_DCLK (MHz)
	alculation ent Freque				1	25	1	25	25	1	25	4	100
Analys	is Window	(samples)			2	50	2	25	25	1	25	4	100
6	5536	-			3	75	3	25	25	1	25	4	100
ADC Ou	tput Data	Rate			4	100	4	25	25	1	25	4	100
	25M				5	50	1	50	50	2	25	4	100
ADC Inp	ut Target	Frequency			6	100	2	50	50	2	25	4	100
0.0	0000000				7	150	3	50	50	2	25	4	100
					8	200	4	50	50	2	25	4	100
					9	50	1	50	50	4	12.5	4	50
				-	10	100	2	50	50	4	12.5	4	50 50
					11 12	200	3 4	50	50	4	12.5	4	50
1			1					1, 27	1	1 3 1		1	
		Firmwar	o More	1	0.2"		TCM/ 1400 E	Board = TIWA3M2F			Interface Tune	AFE5401_CMOS	

Figure 29. AFE5401-Q1 Ramp Capture (a)

The message in Figure 30 indicates one of the twelve pre-defined configurations described in the table must be selected. Click *OK* and select the desired configuration.

able to Load


Figure 30. AFE5401-Q1 Ramp Capture (b)

Capturing a RAMP Test Pattern

www.ti.com

If the on-board 25-MHz crystal oscillator is being utilized (default jumper configuration), the config # 1 is the only viable option as the required FCLKIN is 25 MHz as described in the table. [NOTE: To use configs 2-12, move jumpers J4, J5, and J8 from the XTAL position to the XFMR position and provide the appropriate clock frequency to sma J3, CLK_IN.]

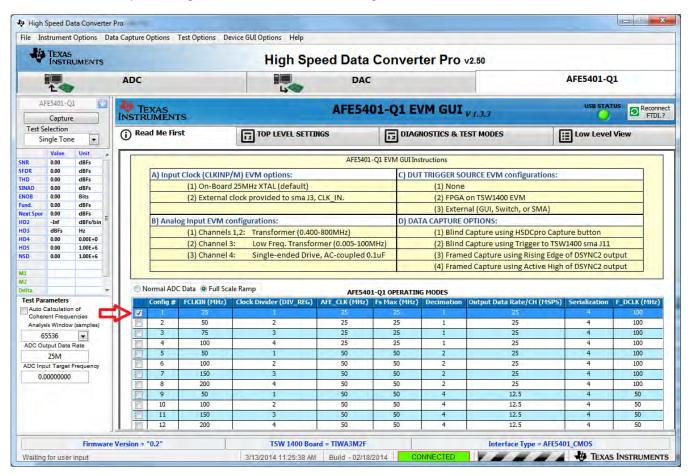


Figure 31. AFE5401-Q1 Ramp Capture (c)

Upon selecting a configuration, the message in Figure 32 appears while the EVM is being configured.

Figure 32. AFE5401-Q1 Ramp Capture (d)

Perform the following steps shown in Figure 33 to capture a Full Scale RAMP test pattern:

- (a) Press the $\ensuremath{\textbf{ADC}}$ tab of the GUI
- (b) Select Codes
- (c) Press the *Capture* button

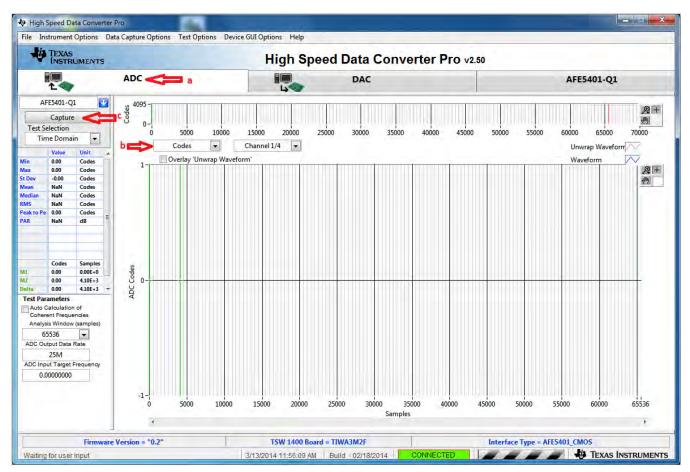
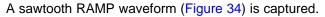



Figure 33. AFE5401-Q1 Ramp Capture (e)

Capturing a RAMP Test Pattern

www.ti.com

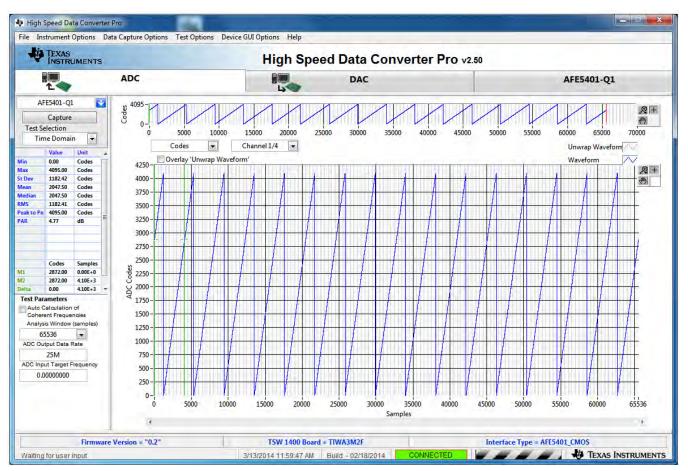


Figure 34. AFE5401-Q1 Ramp Capture (f)

By default, *Channel 1/4* is the first channel displayed in *HSDCpro*. Use the drop-down menu shown in Figure 35 to view any one of four channels and confirm that a sawtooth waveform has been captured. Also confirm, in the menu to the left side, that the Min code is 0 and the Max code is 4095, corresponding to a 12-bit ADC.

File Ins	trument	Options	Dat	ta Capture Option	is Test Opt	tions Devi	ce GUI Option	is Help
-	TEXAS	UMENT	s				Hi	gh S
1				ADC				
A	FE5401-0	21		v 4095-m	ап		1 1 1	и
	Capture	(-	sy 4095-				
Tert Se	election			0 0-1	1 March			
	ne Domai	-		0	5000	10000	15000	20000
110	ie Domai	n Y			Codes	-	Channel 1/	4 💌
	Value	Unit					✓ Channel 1/	
Min	0.00	Codes		4250-	Overlay 'Un	wrap Wave		
Max	4095.00	Codes		42.50			Channel 2/	2 I I I
St Dev	1182.42	Codes		4000 -			Channel 3/	4
Mean	2047.50	Codes		2750	-1		Channel 4/	4
Median	2047.50	Codes		3750 -			11	
RM5	1182.41	Codes		3500-				
Peak to Pe	4095.00	Codes	E	3250	1	1	1 1	
		dB					the second se	

Figure 35. AFE5401-Q1 Ramp Capture (g)

Capturing a RAMP Test Pattern

www.ti.com

Zooming into the waveform, as shown in Figure 36, is recommended to ensure that the RAMP waveform increments one ADC code for each subsequent sample (when decimation by 1 is selected).

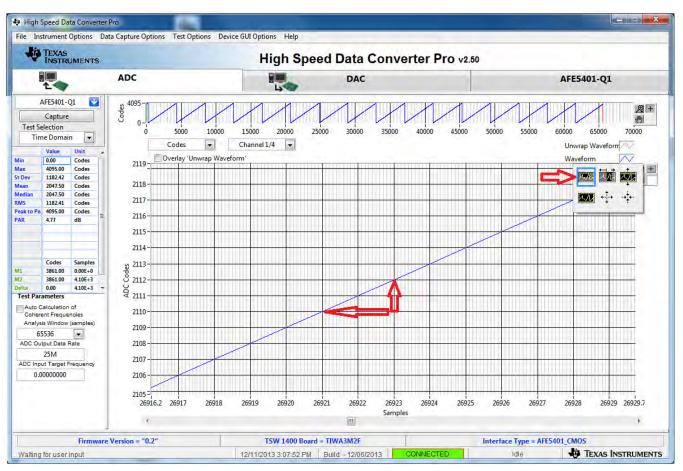


Figure 36. AFE5401-Q1 Ramp Capture (h)

6 Capturing a Sinusoidal Input

Program the AFE5401-Q1 device to sample a sinusoidal input by selecting the *Normal ADC Data* radio button on the *Read Me First* tab as shown in Figure 37.

Capturing a Sinusoidal Input

			_	a Captu	re Options	Test Options D	evice GUI Options Help		C				
	INSTR	JMENTS	ì	_		_	High S	peed Data	Conv	erter Pro v2.	50		
	1			ADO			50	DAG	5			AFE5401-Q	Į 1
AF	E5401-Q1			-10-	TEXAS	-		AFE54	01-Q1	EVM GUI	3.7	USB STAT	TUS Reconnect
Test Se	Capture					2007 C			1-		202		
	e Domai	n 💌		(j) R	lead Me F	irst	TOP LEVEL SET	TINGS	12 D	IAGNOSTICS & TEST	MODES	Low Level	View
in	Value 0.00	Unit Codes	*					AFE540	1-Q1 EVM GL	JI Instructions			
ax Dev	4095.00	Codes Codes			A) Inp	ut Clock (CLKINP	/M) EVM options:		C)	DUT TRIGGER SOUR	E EVM configuration	ons:	
ean	2047.50	Codes				(1) On-Board	d 25MHz XTAL (default)			(1) None			
edian	2047.50	Codes				(2) External	clock provided to sma J	3, CLK IN.		(2) FPGA on	rsw1400 EVM		
AS .	1182.41	Codes							- 1		GUI, Switch, or SM	A)	
ak to Pe	4095.00	Codes	Ξ		B) Ana	log Input EVM c	onfigurations:		D)	DATA CAPTURE OPT	IONS:		
		ub			-		1,2: Transformer (0.4	00-800MHz)	-/		ture using HSDCpr	o Capture button	
		-			-	(2) Channel		ormer (0.005-100	MHz)		0	to TSW1400 sma J11	
	-	-			-	(3) Channel						g Edge of DSYNC2 ou	itout
	Codes	Samples			-	(b) channel	- ongie ended of	ive, ne coupieu.	0.101			e High of DSYNC2 ou	
1	2872.00	0.00E+0								(+) riuncu e	upture using Activ	e might of Dorivez of	iput
2 elta	2872.00	4.10E+3 4.10E+3		0	Normal Al	DC Data 💿 Full Sc	ale Ramn		estes tente	A COLUMN AND A COLUMN			
est Para	- 194 A. M.	4.100+3	-							ATING MODES		menes le stat	E DELK(ML)
	alculation	of			Config :	25	Clock Divider (DIV_REG	25	25	Hz) Decimation Ou	tput Data Rate/CH (25	MSPS) Senalization	F_DCLK (MHz) 100
	nt Freque				2	50	2	25	25	1	25	4	100
	s Window				3	75	3	25	25	1	25	4	100
	536 out Data F	-		10	4	100	4	25	25	1	25	4	100
1000	25M	tate		In	5	50	1	50	50	2	25	4	100
	25M It Target F	requency			6	100	2	50	50	2	25	4	100
	0000000	requerity			7	150	3	50	50	2	25	4	100
0.0	0000000			0	8	200	4	50	50	2	25	4	100
				0	9	50	1	50	50	4	12.5	4	50
				E	10	100	2	50	50	4	12.5	4	50
					11	150	3	50	50	4	12.5	4	50
			1		12	200	4	50	50	4	12.5	4	50
-		-	-	Version		T		oard = TIWA3M2F	_	T	Interface Type =		

Figure 37. AFE5401-Q1 Sine Capture (a)

Upon selecting a new configuration, the message in Figure 38 appears while the EVM is being configured.

Figure 38. AFE5401-Q1 Sine Capture (b)

To measure device performance using a continuous sinusoidal input, it is necessary to use signal sources that have excellent phase noise for the sampling clock and the analog input. Further, the two supplies should be bandpass filtered and phase locked to one another for coherent sampling. Recall, for the RAMP capture in Section 5, the on-board crystal oscillator was used for the input clock. This cannot be used for coherent sampling. Move jumpers J4, J5, and J8 from the XTAL position to the XFMR position and provide the appropriate clock frequency, 25 MHz in this example, to sma J3, CLK_IN.

- (a) Press the ADC tab of the GUI
- (b) Select *Real FFT*

Capturing a Sinusoidal Input

- (c) Select *Rectangular* windowing
- (d) Input the ADC Input Target Frequency (4MHz in this example)
- (e) Click the box Auto Calculation of Coherent Frequencies
- (f) Reset the signal generator providing analog input signal to sma **J48**, **CH1**, to the newly calculated coherent frequency (*4.00047302MHz* in this example)
- (g) Press the Capture button

A capture similar to that shown in Figure 39 should appear. The SNR value of 67.55 dBFS is reported on the left panel which is very close to the datasheet typical of 67.7 dBFS.

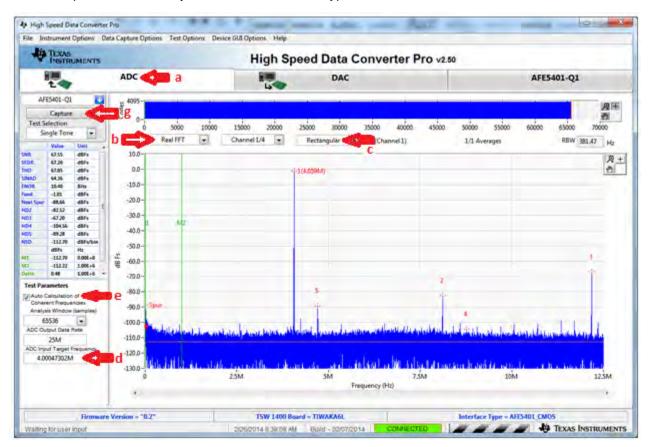


Figure 39. AFE5401-Q1 Sine Capture (c)

High pass filtering in post processing can be invoked to remove the DC contribution. This can be achieved in the *HSDCpro* GUI by using the *Notch frequency bins* option as shown in Figure 40.

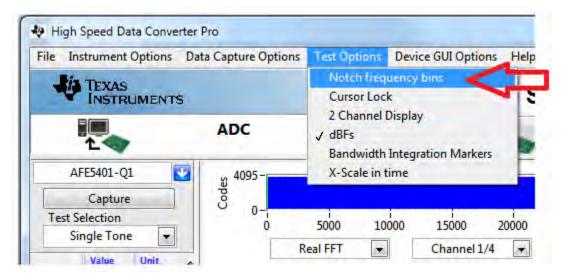


Figure 40. AFE5401-Q1 Sine Capture (d)

Capturing a Sinusoidal Input

www.ti.com

Change the Number of bins to remove after DC from 0 to 250 and press OK as shown in Figure 41.

Filter Pa	rameters		
	of bins to remove on eithe	r side of fundamental	
	0		
Number	of bins to remove on eithe	r side of harmonics	
	0		
Number	of bins to remove after DC		
2	250		
Number	of Harmonics		
4	5		
larmoni	c/Spur Power Calculation	Method(Windowed)	
Integrate	e Bins 👻		
requenc	y notch parameters		
	dillancy.	Number of bins to rer	nove
	dillancy.	Number of bins to rer on either side	nove
	dillancy.		nove
	quency	on either side	nove
	quency	on either side	nove
	quency	on either side 0	nove
	quency	on either side 0	nove
	quency	on either side 0	nove
Fre	equency 8.49953M	on either side 0 0 0	nove
Fre	quency	on either side 0 0 0 ase right click on the	nove
Fre	equency 8.49953M 0 0 a particular frequency, plea	on either side 0 0 0 ase right click on the	nove
Fre D () D () D () D () D () D () D () D ()	equency 8.49953M 0 a particular frequency, plea a nd choose "Delete Eleme y Notching Example:	on either side 0 0 0 ase right click on the	nove
Fre D () D () D () D () D () D () D () D ()	equency 8.49953M 0 0 a particular frequency, plea and choose "Delete Eleme	on either side 0 0 0 ase right click on the	nove

Figure 41. AFE5401-Q1 Sine Capture (e)

The FFT plot and the calculated parameters will update appropriately as shown in Figure 42. The SNR reported is now 68.13 dBFS.

Figure 42. AFE5401-Q1 Sine Capture (f)

AFE5401-Q1 GUI Software in Detail

www.ti.com

As mentioned throughout this user's guide, in order to achieve the SNR performance previously shown, signal sources with very good phase noise must be used. The above FFT was achieved using a Rhode & Schwarz SMA 100A signal generator for both the clock and analog input signals. By comparison, using an Agilent E4438C signal generator for the analog input signal with the rest of the setup remaining unchanged, including the input filter, the SNR degrades 3.7 dB to 64.44 dBFS as shown in Figure 43. From the spectrum, it is apparent that the phase noise and the harmonic distortion is inferior for this instrument. If high quality signal generators are not available, using windowing functions is necessary to get good results. Simply change the drop-down menu in *HSDCpro* from *Rectangular to Hamming*, *Hanning*, or *Blackman* to see the effect of windowing.

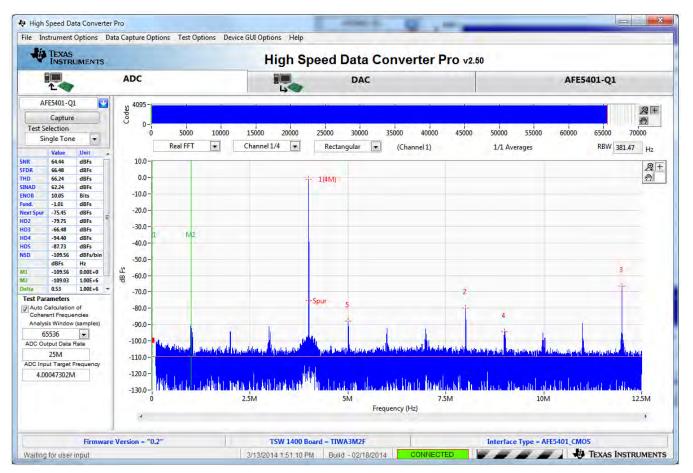


Figure 43. AFE5401-Q1 Sine Capture (g)

7 AFE5401-Q1 GUI Software in Detail

The AFE5401-Q1 GUI software comprises four tabs: (1) *Read Me First*, (2) *TOP LEVEL SETTINGS*, (3) *DIAGNOSTICS & TEST MODES*, and (4) *Low Level View*. A section is dedicated to describing each tab in detail.

7.1 Read Me First Tab

The *Read Me First* tab is the starting point for the GUI when launched and appears as shown in Figure 44. If an AFE5401-Q1 EVM is connected and detected, the USB STATUS indicator located in the upper right hand corner will be green.

File Ins	strument	Options Da	ata Capture	Options T	est Options De	vice GUI Options Help						
÷	TEXAS	UMENTS				High Sp	peed Data (Conver	ter Pro v2.5	0		
			ADC			1	DAC				AFE5401-Q	1
AF	E5401-Q			EXAS	s		AFE540	1-Q1 E	VM GUI v1.	1.3	USB STAT	Reconr FTDI
-	election ngle Ton	•	(i) Re	ad Me Firs	t	TOP LEVEL SET	TINGS	12 DIAG	NOSTICS & TEST	MODES	Low Level	View
NR	Value 0.00	Unit *					AFE5401-0	Q1 EVM GUI In:	structions			
FDR	0.00	dBFs		A) Input	Clock (CLKINP)	M) EVM options:		C) DU	T TRIGGER SOURC	F FVM configurat	ions:	
HD NAD	0.00	dBFs dBFs		in the second		25MHz XTAL (default)		0,00	(1) None	Burut		1
IOB	0.00	Bits				lock provided to sma J	3 CIK IN	11	(2) FPGA on T	SW1400 EVM		
ind.	0.00	dBFs			(2) Externare	ioux provided to sinds				GUI, Switch, or SN		
ext Spur	0.00	dBFs		P) Analo	g Input EVM co	ofigurations		D) DA	TA CAPTURE OPTI			
D2 D3	-Inf dBFs	dBFs/bin Hz		b) Allalo	.		00.0000411-1	UJUA			a Castura button	
D4	0.00	0.00E+0		-		1,2: Transformer (0.4				0 1	ro Capture button	
ID5	0.00	1.00E+6			(2) Channel 3		ormer (0.005-100M				to TSW1400 sma J11	
ISD	0.00	1.00E+6			(3) Channel 4	: Single-ended Dr	ive, AC-coupled 0.1	uF			g Edge of DSYNC2 ou	
AL									(4) Framed Ca	pture using Activ	ve High of DSYNC2 ou	tput
W2								(T				
)elta		1	0	Normal ADC	Data Full Sca	le Ramp	AFE5401-	Q1 OPERATIN	G MODES			
Test Par				Config #	FCLKIN (MHz)	Clock Divider (DIV_REG	6) AFE_CLK (MHz)		Decimation Out	put Data Rate/CH	(MSPS) Serialization	F_DCLK (MHz)
	alculation ent Freque			1	25	1	25	25	1	25	4	100
Analys	is Window	(samples)		2	50	2	25	25	1	25	4	100
6	5536	-		3	75	3	25	25	1	25	4	100
ADC Ou	tput Data	Rate		4	100	4	25	25	1	25	4	100
	25M			5	50	1	50	50	2	25	4	100
		Frequency		6	100	2	50	50 50	2	25 25	4	100
0.0	0000000			8	200	4	50	50	2	25	4	100
				9	50	4	50	50	4	12.5	4	50
				10	100	2	50	50	4	12.5	4	50
				11	150	3	50	50	4	12.5	4	50
				12	200	4	50	50	4	12.5	4	50
			Version =	-		TSW 1400 B		7				

Figure 44. AFE5401-Q1 Read Me First GUI Tab (a)

If at any time the USB connection is disrupted and an action is attempted, the USB STATUS indicator turns dark and the error message shown in Figure 45 appears. *Continue in Simulation* mode by pressing the appropriate button. In this mode, all GUI controls appear to be working normally without actually writing to the device.

Figure 45. AFE5401-Q1 Read Me First GUI Tab (b)

To exit simulation mode and reestablish connection with the EVM, ensure the USB connection is made and press the *Reconnect FTDI.*? button in top right corner of the GUI. Upon reconnecting, the indicator should return to the green color.

AFE5401-Q1 GUI Software in Detail

The upper half of the *Read Me First* tab provides descriptions of the various EVM configurations available for clock and analog inputs, the various DUT trigger configurations available, and the different data capture options available.

The lower half of the page provides a table describing the various operating modes supported by the device as they relate to input clock, AFE_CLK, and decimation factor. These modes describe the upper specification for clock speeds. Of course, the device can support slower speeds so long at the minimum specifications in the datasheet are respected. By clicking the appropriate checkbox to the left side of each config#, the device can be automatically configured. Further, for each configuration, either *Normal ADC Data*, (sampling the analog input), or a *Full Scale Ramp* (generated within the device at the CMOS output) can be selected.

7.2 TOP LEVEL SETTINGS Tab

The TOP LEVEL SETTINGS tab contains all the controls for configuring the device for normal operation. As shown in Figure 46, the tab is divided into six sub-sections with each titled in blue: TRIGGER & CAPTURE CONFIGURATION, CLOCK CONFIGURATION & PDN, ANALOG CONFIG, DIGITAL CONFIGURATION, PIN CTRL, and LAST WRITE.

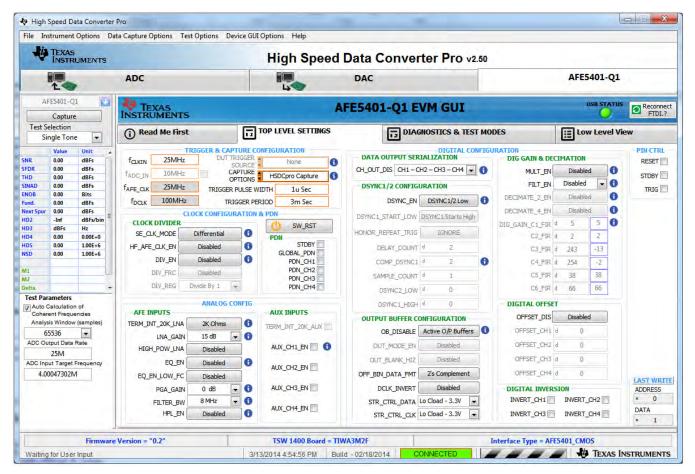


Figure 46. AFE5401-Q1 TOP LEVEL SETTINGS Tab

7.2.1 TRIGGER & CAPTURE CONFIGURATION

The *TRIGGER* & *CAPTURE CONFIGURATION* sub-section is the only section that does not write directly to the AFE5401-Q1. This sub-section is used to display and control the EVM setup including the input clock frequency, data capture method, and device trigger method. As shown in Figure 47, the input clock to the AFE5401-Q1 should be entered in the f_{CLKIN} box. With this input, the GUI calculates what the **ADC Output Data Rate** will be for the current device configuration and updates this parameter in fixed left

panel of the GUI. This value is a function of the decimation factor set. Also calculated are the frequencies of the AFE_CLK, $f_{AFE_{CLK}}$, and of the DCLK, f_{DCLK} . As shown in the functional block diagram in the datasheet, the AFE_CLK is the rate at which the ADCs are sampling and is a function of the input clock divider. DCLK is the CMOS output clock and is a function of the AFE_CLK as well as the serialization factor.

NOTE: ADC input signal frequency, $f_{ADC_{IN}}$, is another control shown. However, this control is greyed and disabled as this feature will be provided in a future release of the software. Once enabled, providing a value here will automatically update the same control in HSDCpro.

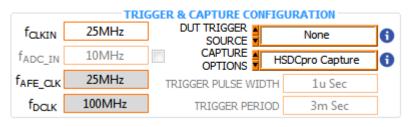


Figure 47. AFE5401-Q1 TRIGGER & CAPTURE CONFIGURATION Section (a)

The AFE5401-Q1 EVM allows for several options for providing a trigger to the **TRIG** pin of the device. These options are listed in the control called **DUT TRIGGER SOURCE** as shown in Figure 48. When the **DSYNC_EN** control is disabled (*DSYNC1/2 Low*), DSYNC1 and DSYNC2 output signals are disabled regardless of whether or not a trigger is provided to the device. Therefore, in this case, the **DUT TRIGGER SOURCE** control automatically sets to *None*. Once **DSYNC_EN** is enabled by the user, the remaining four trigger options become available for selection. The option **FPGA on TSW1400** enables the trigger pulse generation in the Stratix IV FPGA on the TSW1400 capture card.

ADC			4	DAC
	KAS IMENTS		1	AFE5401-Q
(i) Read	d Me First	10	OP LEVEL SETTINGS	12
-	TRI	GGER & CAPTURE CON	FIGURATION	
f CLKIN	25MHz	DUT TRIGGER	✓ None	
FADC IN	10MHz	CAPTURE	FPGA on TSW 1400	inches.
FAFE_CLK	25MHz	TRIGGER PULSE WI	External Via SMA J30 on External Via FTDI on AFI	
fDCLK	100MHz	TRIGGER PER	External Via SW_TRIG S	witch on AFE5401

Figure 48. AFE5401-Q1 TRIGGER & CAPTURE CONFIGURATION Section (b)

As shown in Figure 49, when *FPGA on TSW1400* is selected for the trigger source, the controls *TRIGGER PULSE WIDTH* and *TRIGGER PERIOD* become active, allowing the user flexibility in configuring the trigger pulse repetition frequency (PRF).

	TRIGGER & CAPTURE CONFIGURATION									
f CLKIN	25MHz		PGA on TSW 1400	0						
f _{ADC_IN}	10MHz		ISDCpro Capture	0						
fafe_alk	25MHz	TRIGGER PULSE WIDTH	500n Sec							
f _{DCLK}	100MHz	TRIGGER PERIOD	бт Sec							

Figure 49. AFE5401-Q1 TOP LEVEL SETTINGS Tab (c)

The remaining three options for providing a trigger to the device include *External Via SMA J30 on AFE5401*, *External Via FTDI on AFE5401*, and *External Via SW_TRIG Switch on AFE5401*. Each trigger option requires a unique jumper configuration in the section of the EVM labeled *TRIG*. Press the

information button **1** to the right of the **DUT TRIGGER SOURCE** control to see the jumper configurations as shown in Figure 50.

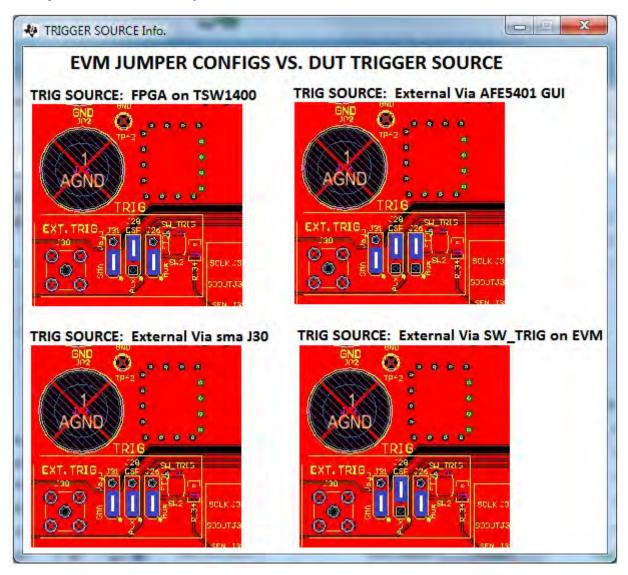


Figure 50. AFE5401-Q1 TRIGGER & CAPTURE CONFIGURATION Section (e)

The AFE5401-Q1 evaluation kit allows for several options for capturing data using the TSW1400 capture card. The GUI control *CAPTURE OPTIONS* lists these options as shown in Figure 51. As shown, when the *DUT TRIGGER SOURCE* is set to *None*, only *HSDCpro Capture Button (Blind Capture)* and *Trigger to TSW1400 SMA J11 (Blind Capture)* options are available, both of which are 'blind' captures.

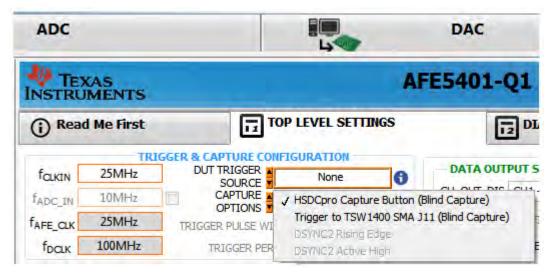


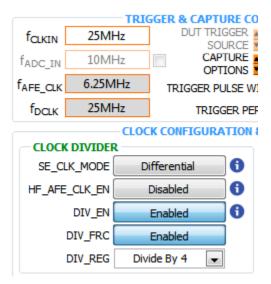
Figure 51. AFE5401-Q1 TRIGGER & CAPTURE CONFIGURATION Section (f)

Blind Capture means that channelization is impossible to determine as the output framing signals DSYNC1 and DSYNC2 are disabled. Appendix A provides an overview of blind captures. When **DUT TRIGGER SOURCE** is set to anything other than *None*, the remaining two **CAPTURE OPTIONS**, DSYNC2 Rising Edge and DSYNC2 Active High, become active. As the name implies, when DSYNC2 Rising Edge is selected, the FPGA receiver begins capture on the first detected rising edge of the DSYNC2 output signal. Similarly, if DSYNC2 Active High is selected, only samples corresponding to when the DSYNC2 output signal is high will be captured in the receiver. With these two options, correct channelization is guaranteed. These two receivers implementations are explored more in Appendix B.

7.2.2 CLOCK CONFIGURATION & PDN

The CLOCK CONFIGURATION & PDN section, as shown in Figure 52, provides controls for the device input clock, power down controls, and a software reset button (**SW_RST**). Pressing **SW_RST** resets all registers to a known power-on reset value, and these changes are reflected in all controls of the GUI. The

information buttons 1 next to some controls contain pertinent information to the EVM configuration or the datasheet.


AFE5401-Q1 GUI Software in Detail

www.ti.com

CAUTION

It is possible to configure the device such that it violates the datasheet specifications.

The example shown in Figure 53 shows such a violation when **DIV_REG** is set to Divide By 4 while the f_{CLKIN} to the device is set to 25MHz.

Figure 53. AFE5401-Q1 CLOCK CONFIGURATION & PDN Section (b)

In cases such as this, the message shown in Figure 54 appears, informing the user that a violation has occurred and correct operation cannot be guaranteed.

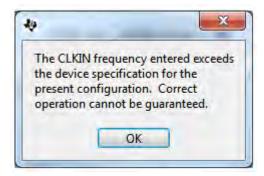


Figure 54. AFE5401-Q1 CLOCK CONFIGURATION & PDN Section (c)

7.2.3 Analog Config

The ANALOG CONFIG section shown in Figure 55 contains all the controls for the analog inputs to the AFE5401-Q1. As defined in the datasheet, the PGA gain increases by 15 dB when the equalizer function is enabled and is reflected in the GUI controls.

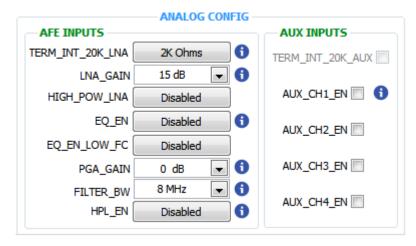
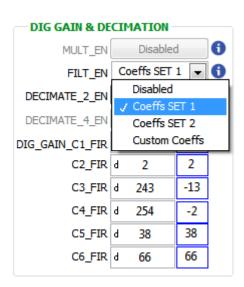


Figure 55. AFE5401-Q1 ANALOG CONFIG Section

AFE5401-Q1 GUI Software in Detail

7.2.4 Digital Configuration


The *DIGITAL CONFIGURATION* section, shown in Figure 56, provides all controls related to digital functionality of the device.

DATA OUTPUT SER	DIGITAL CONFIG	DIG GAIN & DE	α	MATION		
CH_OUT_DIS CH1-C	CH2 – CH3 – CH4 💌 🚹	MULT_EN		Disabled	ł	0
DSYNC1/2 CONFIG	URATION	FILT_EN		Disabled	-	0
DSYNC_EN	DSYNC1/2 Low	DECIMATE_2_EN		Disabled	1	0
DSYNC1_START_LOW	DSYNC1 Starts High	DECIMATE_4_EN		Disabled	1	0
		DIG_GAIN_C1_FIR	d	5	5	0
HONOR_REPEAT_TRIG	IGNORE	C2_FIR	d	2	2	
DELAY_COUNT	d 2	C3_FIR	d	243	-13]
COMP_DSYNC1	d 2 引	C4_FIR	d	254	-2]
SAMPLE_COUNT	d 1	C5_FIR	d	38	38]
DSYNC2_LOW	q 0	C6_FIR	d	66	66]
DSYNC1_HIGH	q 0	DIGITAL OFFS	Т			
OUTPUT BUFFER C	ONFIGURATION	OFFSET_DIS		Disabled]
OB_DISABLE	Active O/P Buffers	OFFSET_CH1	d	0		
OUT_MODE_EN	Disabled	OFFSET_CH2	d	0		
OUT_BLANK_HIZ	Disabled	OFFSET_CH3	d	0		
OFF_BIN_DATA_FMT	2's Complement	OFFSET_CH4	d	0		
DCLK_INVERT	Disabled	DIGITAL INVER	SI	ON		
STR_CTRL_DATA	Lo Cload - 3.3V 🔍	INVERT_CH1		INVERT_	CH2	1
STR_CTRL_CLK	Lo Cload - 3.3V 🗨	INVERT_CH3		INVERT_	CH4 📃	

Figure 56. AFE5401-Q1 DIGITAL CONFIGURATION Section (a)

In the *DIG GAIN & DECIMATION* sub-section, the FIR filter coefficients are selected from the control *FILT_EN* as shown in Figure 57. Only when *Custom Coeffs* is selected can the *Cx_FIR* controls be input in either decimal or signed 2's complement format.

Figure 57. AFE5401-Q1 DIGITAL CONFIGURATION Section (b)

Also worth noting is that in order to configure the device for decimating by 4, both **DECIMATE_2_EN** and **DECIMATE_4_EN** should be Enabled. As these controls are changed, the **ADC Output Data Rate** displayed in the fixed left panel of the GUI is automatically updated.

7.2.5 PIN CTRL

The *PIN CTRL* section, shown in Figure 58, provides signals from the GUI to specific device pins. *RESET* is a self-resetting pulse that resets all SPI registers to the default power-on state. This function does the same as the *SW_RST* control. A third, alternative, method to reset the device is to press the *SW_RESET* button located at *SW1* in the RESET section of the EVM.

- PIN CTRL -	
RESET 📃	
STDBY	
TRIG	

Figure 58. AFE5401-Q1 PIN CTRL Section

The device can set to standby mode by checking the **STDBY** box, thus, providing a logic high value to this device pin. This function does the same as the **STDBY** control in the GUI. Finally, as mentioned in Section 7.1, a single pulse trigger signal can be provided to device pin **TRIG** as an option for triggering the generation of the DSYNC1/2 output framing signals.

AFE5401-Q1 GUI Software in Detail

7.2.6 LAST WRITE

The LAST WRITE section, shown in Figure 59, displays the most recent data write to the serial interface of the device. It is useful for quickly understanding the register address of each control. This section is provided on both control tabs of the GUI.

Figure 59. AFE5401-Q1 LAST WRITE Section

7.3 DIAGNOSTICS & TEST MODES Tab

The *DIAGNOSTICS* & *TEST MODES* tab shown in Figure 60 provides all controls for configuring the device for test modes and other diagnostics available.

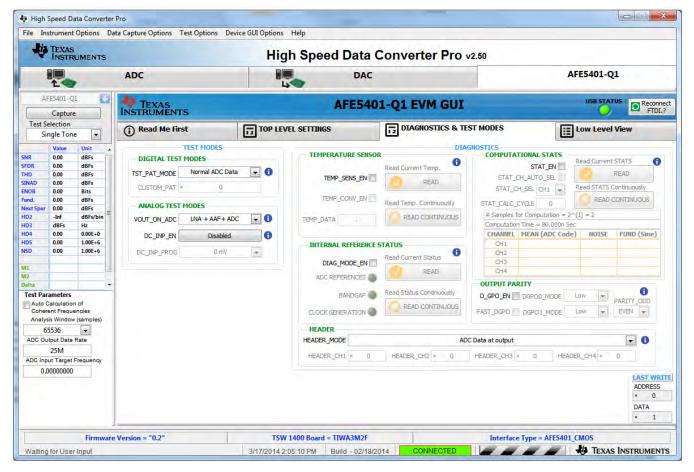


Figure 60. AFE5401-Q1 DIAGNOSTICS & TEST MODES Tab (a)

7.4 Low Level View Tab

The *Low Level View* tab shown in Figure 61 provides a register map with bit descriptions for all registers of the device. Writing and Read back of any register is possible on this tab. Also, the **Save Config** button allows for saving to a .cfg file the present configuration of all registers as well as the *TRIGGER* & *CAPTURE CONFIGURATION*. The **Load Config** button allows a user to recall such a saved state.

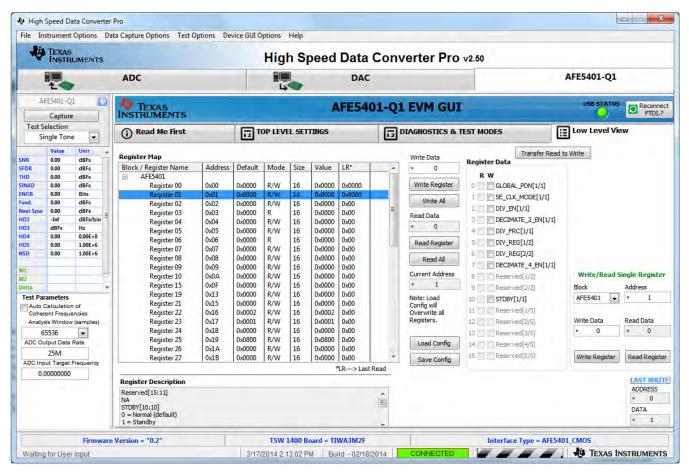
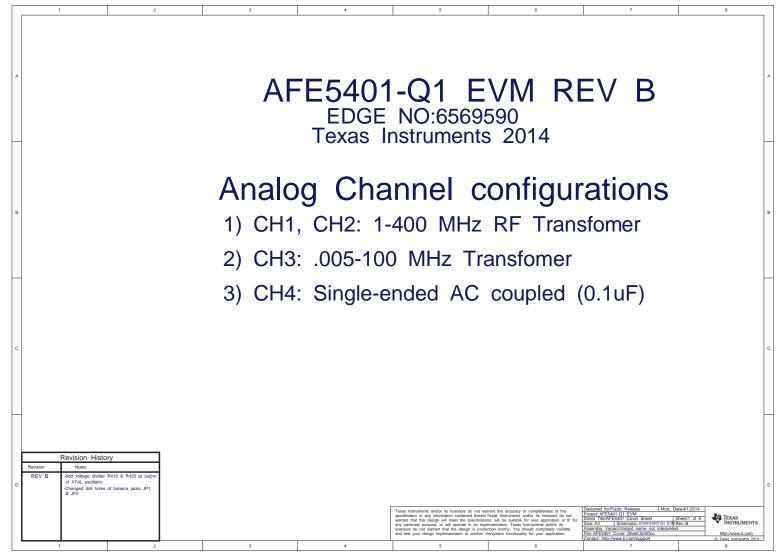



Figure 61. AFE5401-Q1 DIAGNOSTICS & TEST MODES Tab (b)

8 AFE5401-Q1 EVM Schematic

Figure 62 through Figure 70 show the AFE5401-Q1 EVM schematics.

AFE5401-Q1 EVM Schematic

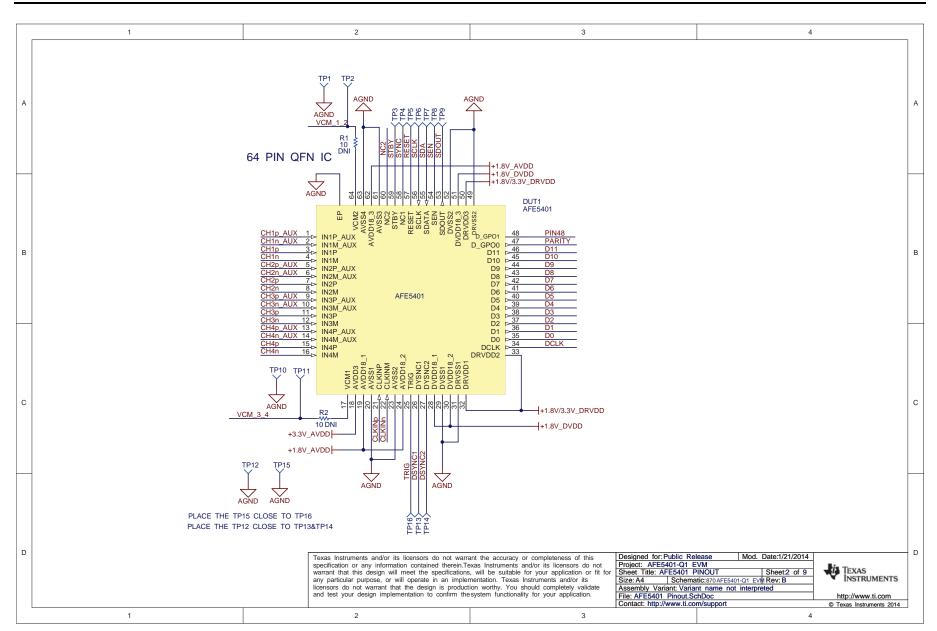


Figure 63. AFE5401-Q1 EVM Schematic Sheet 2

AFE5401-Q1 EVM Schematic

www.ti.com

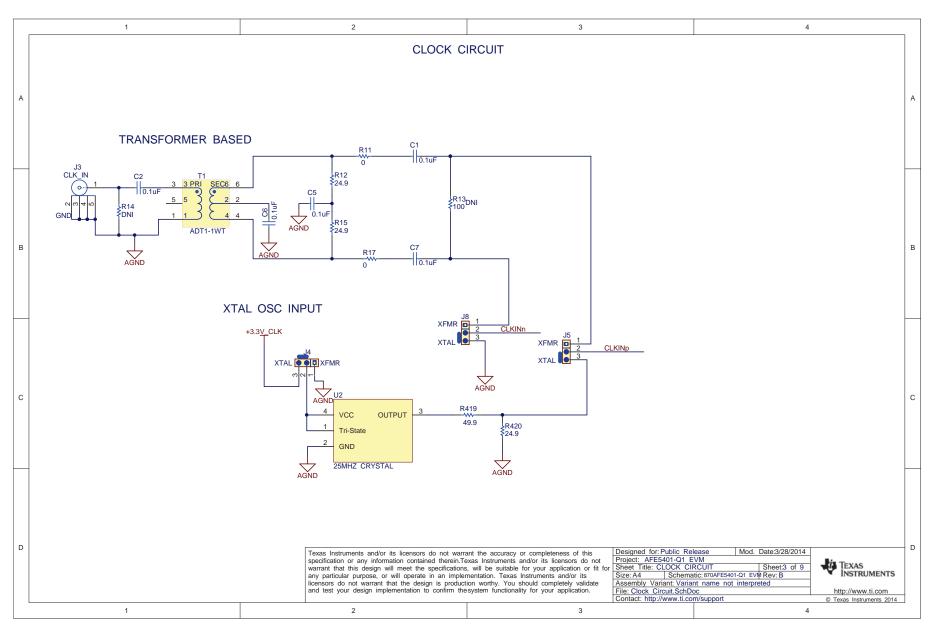


Figure 64. AFE5401-Q1 EVM Schematic Sheet 3

AFE5401-Q1 EVM Schematic

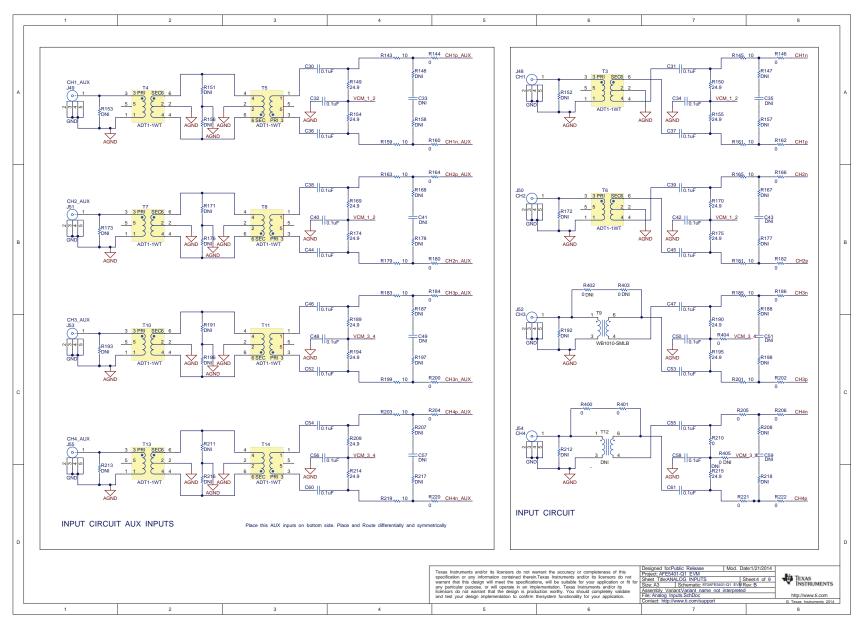


Figure 65. AFE5401-Q1 EVM Schematic Sheet 4

AFE5401-Q1 EVM Schematic

www.ti.com

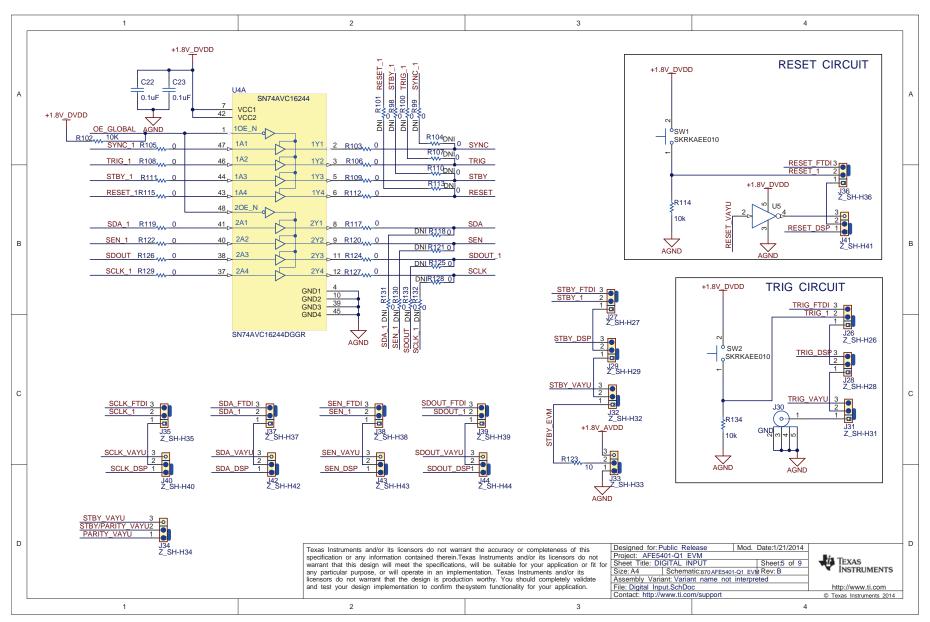


Figure 66. AFE5401-Q1 EVM Schematic Sheet 5

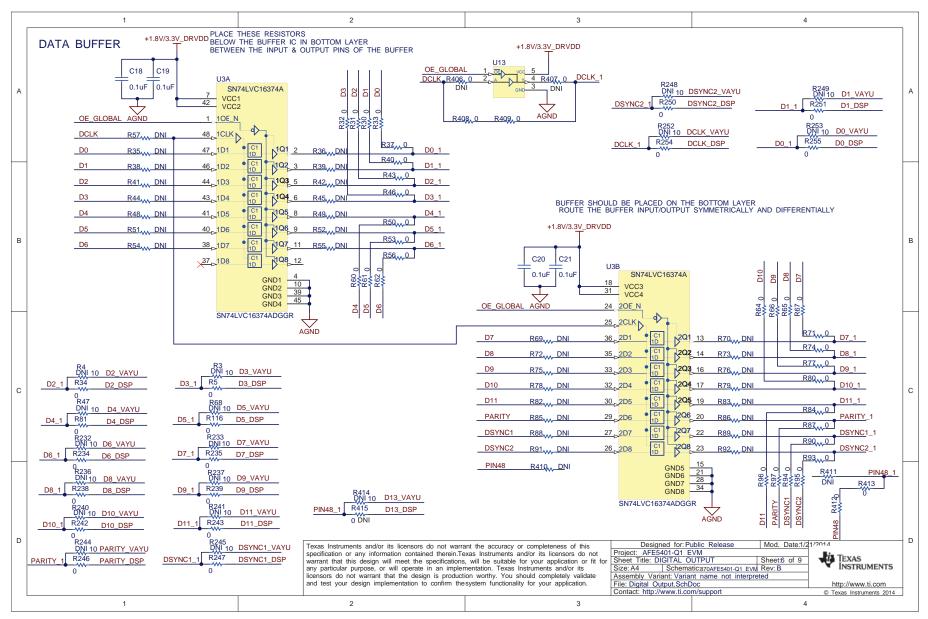


Figure 67. AFE5401-Q1 EVM Schematic Sheet 6

TI Confidential — NDA Restrictions

AFE5401-Q1 EVM Schematic

www.ti.com

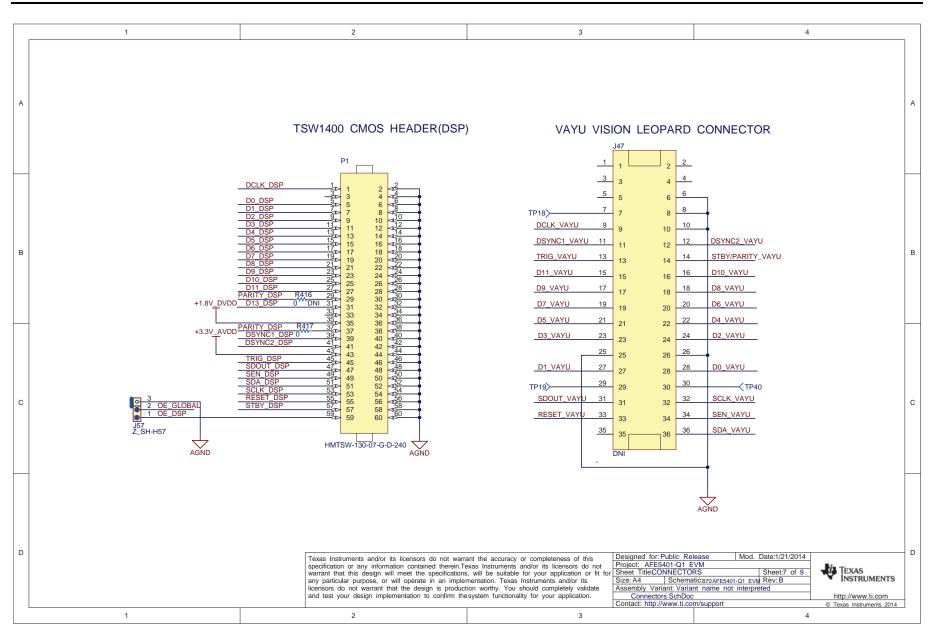
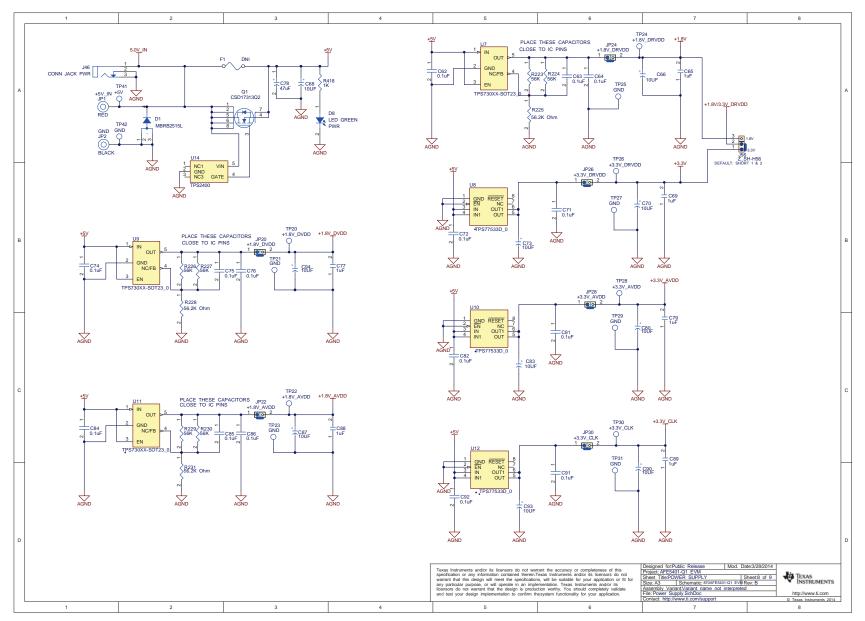



Figure 68. AFE5401-Q1 EVM Schematic Sheet 7

AFE5401-Q1 EVM Schematic

AFE5401-Q1 EVM Schematic

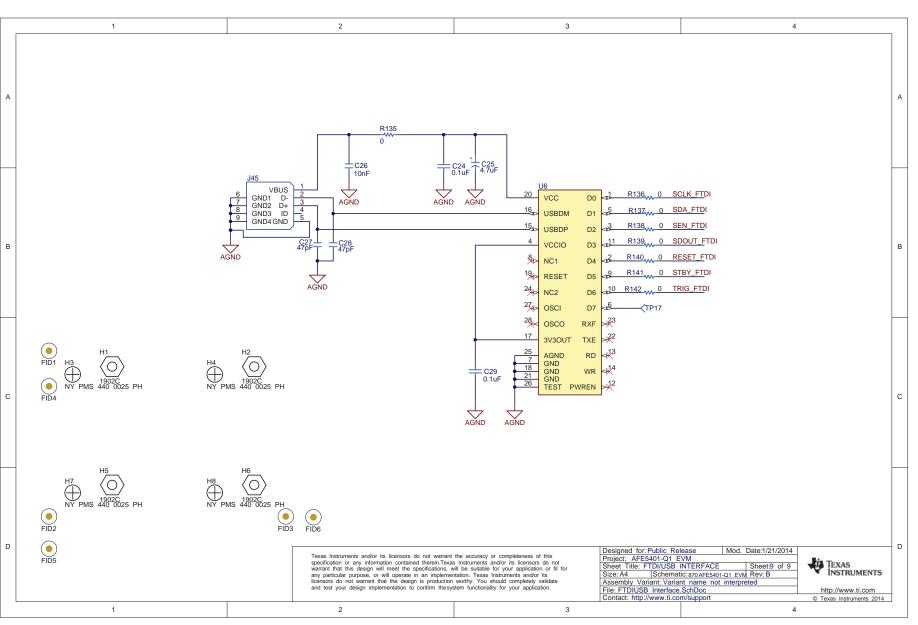


Figure 70. AFE5401-Q1 EVM Schematic Sheet 9

9 AFE5401-Q1 EVM Bill of Materials (BOM)

Table 3 lists the BOM for this EVM.

Table 3. AFE5401-Q1 EVM Bill of Materials

Item	Designator	Description	Manufacturer	PartNumber	QTY
1	C1, C2, C5, C6, C7, C30, C31, C32, C34, C36, C37, C38, C39, C40, C42, C44, C45, C46, C47, C48, C50, C52, C53, C54, C55, C56, C58, C60, C61	CAPACITOR, CERAMIC, 0.1UF, 10%, 16V, SMT0402	AVX	0402YC104KAT2A	29
2	C18, C19, C20, C21, C22, C23, C24, C29	CAPACITOR, CERAMIC, 0.1UF, 10%, 16V, SMT0402	TDK Corporation	C1005X5R1C104K050BA	8
3	C25	CAP TANTALUM 4.7UF 20V 10% SMD	AVX	TAJA475K020RNJ	1
4	C26	CAP 10000PF 50V CERM X7R 0603	MURATA	GRM188R71H103KA01D	1
5	C27, C28	CAP CERAMIC 47PF 50V 0603 SMD	MURATA	GRM1885C1H470JA01D	2
6	C62, C63, C64, C71, C72, C74, C75, C76, C81, C82, C84, C85, C86, C91, C92	CAP CER .10UF 50V X7R 10% 0603	AVX	06035C104JAT2A	15
7	C65, C69, C77, C79, C88, C89	CAP CER 1.0UF 16V X7R 10% 0603	AVX	0603YC105KAT2A	6
8	C66, C68, C70, C73, C80, C83, C87, C90, C93, C94	CAP TANT 10UF 16V 10% 1210	AVX	TAJB106K016RNJ	10
9	C78	CAP TANT 47UF 10V 10% 1210	AVX	TPSB476K010R0250	1
10	D1	DIODE SCHOTTKY 15V 25A D2PAK	ON SEMICONDUCTOR	MBRB2515LT4G	1
11	D8	LED GREEN CLEAR 1206 SMD	LITE-ON Inc	LTST-C150KGKT	1
12	DUT1	AFE5401 Quad Channel Analog Front End	TEXAS INSTRUMENTS	AFE5401	1
13	H1, H2, H5, H6	Standoff, Hex, 0.5"L #4-40 Nylon	KEYSTONE ELECTRONICS	1902C	4
14	H3, H4, H7, H8	Machine Screw, Round, #4-40 x 1/4, Nylon, Philips panhead	B&F FASTENER SUPPLY	NY PMS 440 0025 PH	4
15	J3, J30, J48, J49, J50, J51, J52, J53, J54, J55	CONN, SMA, RECEPTACLE STRAIGHT	AMPHENOL	901-144-8RFX	10
16	J4, J5, J8, J26, J27, J28, J29, J31, J32, J33, J34, J35, J36, J37, J38, J39, J40, J41, J42, J43, J44, J56, J57	JUMPER,3P,.100CC	SULLINS CONNECTOR SOLUTIONS	PBC03SAAN	23
17	J45	CONN RECEPT USB 5POS RT ANG SMD	MOLEX	678038020	1
18	J46	CONN POWERJACK MINI R/A T/H	SWITCHCRAFT	RAPC722X	1
19	JP1	BANANA JACK, 15A, TURRET, RED	Alectron	ST-351A	1
20	JP2	BANANA JACK, 15A, TURRET, BLACK	Alectron	ST-351B	1
21	JP20, JP22, JP24, JP26, JP28, JP30	CONN HEADER 2POS .100" T/H GOLD	SAMTEC	HMTSW-102-07-G-S240	6
22	P1	CONNECTOR, MALE, 2.54 MM PITCH, DOUBLE ROW, VERTICAL, 60-PIN, TH, ROHS	SAMTEC	HMTSW-130-07-G-D-240	1
23	Q1	MOSFET N-CH 30V 5A 6SON	TEXAS INSTRUMENTS	CSD17313Q2	1

Table 3. AFE5401-Q1 EVM Bill of Materials (continued)

Item	Designator	Description	Manufacturer	PartNumber	QTY
24	R5, R11, R17, R30, R31, R32, R33, R34, R37, R40, R43, R46, R50, R53, R56, R60, R61, R62, R64, R65, R66, R67, R71, R74, R77, R80, R81, R84, R87, R90, R93, R94, R95, R96, R97, R103, R105, R106, R108, R109, R111, R112, R115, R116, R117, R119, R120, R122, R124, R126, R127, R129, R135, R136, R137, R138, R139, R140, R141, R142, R144, R146, R160, R162, R164, R166, R180, R182, R184, R186, R200, R202, R204, R205, R206, R210, R220, R221, R222, R234, R235, R238, R239, R242, R243, R246, R247, R250, R251, R254, R255, R400, R401, R404, R408, R409, R412, R413, R417	RES, 0 ohm, 5%, 0.063W, 0402	PANASONIC	ERJ-2GE0R00X	99
25	R12, R15, R149, R150, R154, R155, R169, R170, R174, R175, R189, R190, R194, R195, R209, R214, R420	RESISTOR, THICK FILM, 24.9 OHM, 1%, 0.1W, SMT0402	PANASONIC	ERJ-2RKF24R9X	17
26	R102	RESISTOR, THICK FILM, 10K OHM, 1%, 0.1W, SMT0402	PANASONIC	ERJ-2RKF1002X	1
27	R114, R134	RES, 10k ohm, 5%, 0.125W, 0805	PANASONIC	ERJ-6GEYJ103V	2
28	R123	RESISTOR, THICK FILM, 10 OHM, 1%, 0.1W, SMT0603	VISHAY	CRCW060310R0FKEA	1
29	R143, R145, R159, R161, R163, R165, R179, R181, R183, R185, R199, R201, R203, R219	RESISTOR, THICK FILM, 10 OHM, 1%, 0.063W, SMT0402	VISHAY	CRCW040210R0FKED	14
30	R223, R224, R226, R227, R229, R230	RES 56.0K OHM 1/10W 1% 0603 SMD	PANASONIC	ERJ-3EKF5602V	6
31	R225, R228, R231	RES 56.2K OHM 1/10W 1% 0603 SMD	PANASONIC	ERJ-3EKF5622V	3
32	R418	RES 1K OHM 1/10W 1% 0402 SMD	PANASONIC	ERJ-2RKF1001X	1
33	R419	RESISTOR, THICK FILM, 49.9 OHM, 1%, 0.1W, SMT0402	PANASONIC	ERJ-2RKF49R9X	1
34	SW1, SW2	Switch, Push Button, SMD	ALPS	SKRKAEE010	2
35	T1, T3, T4, T5, T6, T7, T8, T10, T11, T13, T14	TRANSFORMER, RF, 75 OHM, 0.4 MHZ TO 800 MHZ, 6-PIN, ROHS	MINI-CIRCUITS	ADT1-1WT	11
36	Т9	TRANSFORMER, WIDE BAND RF, SMT	COILCRAFT	WB1010-SMLB	1
37	TP1, TP10, TP12, TP15, TP17, TP21, TP23, TP25, TP27, TP29, TP31, TP42	Testpoint (Black)	KEYSTONE ELECTRONICS	5001	12
38	TP2, TP11, TP18, TP19, TP40	Testpoint (White)	KEYSTONE ELECTRONICS	5002	5
39	TP3, TP4, TP5, TP13, TP14, TP16	Testpoint (Blue)	KEYSTONE ELECTRONICS	5117	6
40	TP6, TP7, TP8, TP9	Testpoint (Yellow)	KEYSTONE ELECTRONICS	5004	4
41	TP20, TP22, TP24, TP26, TP28, TP30, TP41	Testpoint (Red)	KEYSTONE ELECTRONICS	5000	7
42	U2	OSC 25.000 MHZ 3.3V SMD	ECS Inc	ECS-3953M-250-BN-TR	1
43	U3	IC, 16-BIT EDGE TRIGGERED D-TYPE FLIPFLOP, TSSOP-48 ROHS	TEXAS INSTRUMENTS	SN74LVC16374ADGGR	1
44	U4	IC, 16-BIT BUFFER/DRIVER 3-STATE OUTPUTS, TSSOP-48, ROHS	TEXAS INSTRUMENTS	SN74AVC16244DGGR	1
45	U5	IC, SINGLE INVERTER GATE, SOT23-5, DBV	TEXAS INSTRUMENTS	SN74LVC1GU04DBVT	1
46	U6	IC USB TO PARALLEL FIFO 28-SSOP	FTDI	FT245RL	1
47	U7, U9, U11	IC LDO REG 250MA ADJ-V SOT23-5	TEXAS INSTRUMENTS	TPS73201DBVR	3

Table 3. AFE5401-Q1 EVM Bill of Materials (continued)

ltem	Designator	Description	Manufacturer	PartNumber	QTY
48	U8, U10, U12	IC 3.3V 500MA LDO REG 8-SOIC	TEXAS INSTRUMENTS	TPS77533D	3
49	U13	IC, SINGLE BUS BUFFER GATE WITH 3-STATE OUTPUT, SOT553-5, DRL	TEXAS INSTRUMENTS	SN74LVC1G125DRLR	1
50	U14	IC OVERVOLT PROT CTRLR SOT23-5	TEXAS INSTRUMENTS	TPS2400DBVT	1
51	Z_SH-H1, Z_SH-H4, Z_SH-H5, Z_SH-H8, Z_SH- H26, Z_SH-H27, Z_SH-H28, Z_SH-H29, Z_SH- H31, Z_SH-H32, Z_SH-H33, Z_SH-H34, Z_SH- H35, Z_SH-H36, Z_SH-H37, Z_SH-H38, Z_SH- H39, Z_SH-H40, Z_SH-H41, Z_SH-H42, Z_SH- H43, Z_SH-H44, Z_SH-H56, Z_SH-H57, Z_SH- H58, Z_SH-H59, Z_SH-H60, Z_SH-H61, Z_SH- H62	SHUNT FOR HEADER	SAMTEC	SNT-100-BK-T	29
52	C33, C35, C41, C43, C49, C51, C57, C59	CAPACITOR, SMT0402	-	CAP-SMT0402	0
53	F1	FUSE 2.0A 63V FAST SMD 1206	TE CONNECTIVITY	1206SFF200F/63-2	0
54	J47	CONNECTOR, FPC, STRAIGHT, 0.5 MM PITCH, 36-PIN, SMT, ROHS	MOLEX	52559-3679	0
55	R1, R2	RESISTOR, THICK FILM, 10 OHM, 5%, 0.1W, SMT0402	PANASONIC	ERJ-2GEJ100	0
56	R3, R4, R47, R68, R232, R233, R236, R237, R240, R241, R244, R245, R248, R249, R252, R253, R414	RESISTOR, THICK FILM, 10 OHM, 1%, 0.063W, SMT0402	VISHAY	CRCW040210R0F100	0
57	R13	RESISTOR, THICK FILM, 100 OHM, 5%, 0.1W, SMT0402	PANASONIC	ERJ-2GEJ101	0
58	R14, R147, R148, R151, R152, R153, R156, R157, R158, R167, R168, R171, R172, R173, R176, R177, R178, R187, R188, R191, R192, R193, R196, R197, R198, R207, R208, R211, R212, R213, R216, R217, R218	RESISTOR, SMT0402	-	RES-SMT0402	0
59	R35, R36, R38, R39, R41, R42, R44, R45, R48, R49, R51, R52, R54, R55, R57, R69, R70, R72, R73, R75, R76, R78, R79, R82, R83, R85, R86, R88, R89, R91, R92, R98, R99, R100, R101, R104, R107, R110, R113, R118, R121, R125, R128, R130, R131, R132, R133, R402, R403, R405, R406, R407, R410, R411, R415, R416	RES, 0 ohm, 5%, 0.063W, 0402	PANASONIC	ERJ-2GE0R00X	0
60	R215	RESISTOR, THICK FILM, 24.9 OHM, 1%, 0.1W, SMT0402	PANASONIC	ERJ-2RKF24R9X	0
61	T12	TRANSFORMER, WIDE BAND RF, SMT	COILCRAFT	WB1010-SMLB	0

AFE5401-Q1 EVM Layout

10 AFE5401-Q1 EVM Layout

As shown in Figure 71, all analog inputs should be differentially and symmetrically routed to differential input pins of the AFE for best performance. CMOS outputs should be kept as short as possible to reduce the trace capacitance which will load the CMOS output buffers. It is recommended to match the lengths of the output traces including DCLK, DSYNC1, and DSYNC2 to eliminate skew and potential incorrect channelization in the receiver.

The device package consists of an exposed pad. In addition to providing a path for heat dissipation, the pad is also internally connected to the analog ground. Therefore, it is necessary to solder the exposed pad to the ground plane for best thermal and electrical performance. For detailed information, see application notes *QFN Layout Guidelines* (SLOA122) and *AQF/SON PCB Attachment* (SLUA271).

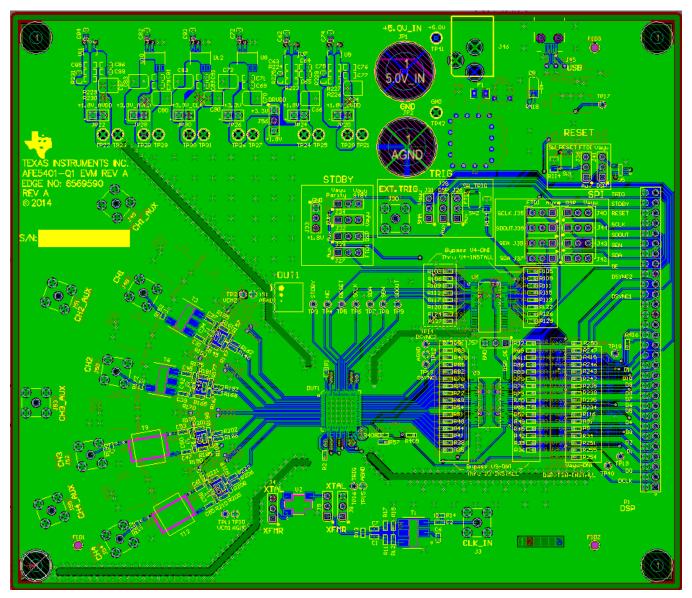


Figure 71. AFE5401-Q1 EVM Layout

Appendix A Blind Capture of RAMP Test Pattern

The simplest capture implementation is one in which no data framing is used (that is, **DSYNC_EN** = 0).

- 1. Perform the following steps as highlighted in Figure 72 and Figure 73.
 - (a) Press the **SW_RST** button on the TOP LEVEL SETTINGS tab.
 - (b) Power down all but Channel 1 on the TOP LEVEL SETTINGS tab
 - (c) Set **TEST_PAT_MODE** to *Full Scale RAMP* on the *DIAGNOSTICS* & *TEST MODES* tab.

High Speed Data Converte	ata Capture Options Test Options Dev	vice GUI Options Help				
TEXAS INSTRUMENTS		High Speed I	Data Converter Pro v2.50			
1	ADC		DAC		AFE5401-Q1	S
AFE5401-Q1	TEXAS INSTRUMENTS	A	E5401-Q1 EVM GUI			Reconnec FTDI.?
Test Selection Single Tone	() Read Me First	TOP LEVEL SETTINGS	DIAGNOSTICS & TEST MO	DES	Low Level Vi	ew
Value Unit SNR 0.00 dBFs SFDR 0.00 dBFs THD 0.00 dBFs SINAD 0.00 dBFs	fakin 25MHz DUT TR S fadc_in 10MHz CA	ILGEER None OURCE None OURCE None OURCE ISSUE OF TONS HISOCPro Capture OUSE WIDTH 19 Sec	DIGITAL CONFIG DATA OUTPUT SERIALIZATION CH_OUT_DIS CH1-CH2-CH3-CH4 C	URATION DIG GAIN & DEC MULT_EN FILT_EN	IMATION Disabled 0 Disabled • 0	PIN CTRL RESET
ENOB 0.00 Bits 0.00 dBFs dBFs NextSpur 0.00 dBFs HD2 -Inf dBFs/bin H03 dBFs Hz HD4 0.00 0.00E+0		GGER PERIOD 3m Sec	DSYNC_EN DSYNC1/2 Low DSYNC1_Starts High DSYNC1_START_LOW DSYNC1 Starts High HONOR_REPEAT_TRIG IGNORE	DECIMATE_2_EN DECIMATE_4_EN DIG_GAIN_C1_FIR d C2_FIR d		
HDS 0.00 1.00E+6 NSD 0.00 1.00E+6 M1 M2 Delta	HF_AFE_CLK_EN Disabled DIV_EN Disabled DIV_FRC Disabled DIV_REG Divide By 1	STDBY GLOBAL_PDN PDN_CH1 PDN_CH2 PDN_CH3 PDN_CH4	DELAY_COUNT 4 2 COMP_DSVNC1 4 2 3 SAMPLE_COUNT 4 1 DSVNC2 LOW 4 0	C3_FIR d C4_FIR d C5_FIR d C6_FIR d	254 -2 38 38	
Test Parameters Auto Calculation of Coherent Frequencies Analysis Window (samples) 65536	ARE INPUTS TERM_INT_20K_LNA 2K Ohms LNA_GAIN 15 dB	AUX INPUTS	DSYNC1_HIGH 4 0 OUTPUT BUFFER CONFIGURATION OB_DISABLE Active O/P Buffers	OFFSET_DIS	Disabled 0	
ADC Output Data Rate 25M ADC Input Target Frequency 0.00000000	HIGH_POW_LNA Disabled EQ_EN Disabled EQ_EN_LOW_FC Disabled	AUX_CH1_EN ()	OUT_MODE_EN Disabled OUT_BLANK_HIZ Disabled OFF_BIN_DATA_FMT 2's Complement	OFFSET_CH2 d OFFSET_CH3 d OFFSET_CH4 d	0	LAST WRIT
	PGA_GAIN 0 dB FILTER_BW 8 MHz HPL_EN Disabled	AUX_CH3_EN	DCLK_INVERT Disabled STR_CTRL_DATA Lo Cload - 3.3V STR_CTRL_CLK Lo Cload - 3.3V	DIGITAL INVERS INVERT_CH1	INVERT_CH2	ADDRESS × 2D DATA × 2000
Firmwar	re Version = "0.2"	TSW 1400 Board = TIW	A3M2F	Interface Type = AFE	5401_CMOS	

Figure 72. GUI Setup for Blind RAMP Test (a)

Appendix A

www.ti.com

ile Instrume	nt Options D	ata Capture Options Test Options D	evice GUI Options	Help			
	NS RUMENTS		High	n Speed Data C	onverter Pro	v2.50	
		ADC					AFE5401-Q1
AFES401		TEXAS INSTRUMENTS		AFE540:	L-Q1 EVM GUI	1	USB STATUS
Test Selectio Single To	Provent in the local data	() Read Me First	TOP LEVE	L SETTINGS	DIAGNOSTICS & T	EST MODES	Low Level View
Value IR 0.00 IR 0.00 D 0.00 DD 0.00 D2 -Inf D33 dBfs D00 0.00 D0 0.00 L Z Mato Calculat Coheent Free Analysis Wind Analysis Wind Analysis	ion of quencies	TEST MODES DIGITAL TEST MODES TST_PAT_MODE Full Scale RAN CUSTOM_PAT > D ANALOG TEST MODES VOUT_ON_ADC LNA + AAF+ A DC_JNP_EN Disabled DC_JNP_PROG 0 mV	DC 💽 🕄	TEMPERATURE SENSOR TEMP_SENS_EN	Read Current Temp.	COMPUTATIONAL STATS STAT_CH_AUTO_SEL STAT_CH_SEL CH1 * STAT_CALC_CYCLE 0 * Samples for Computation = 2 Computation Time = 80.000n S CHANNEL MEAN (ADC Cod CH1 CH2 CH2 CH4 OUTPUT PARITY D_GPO_EN © DGPO0_MODE FAST_DGPO © DGPO1_MODE	ec
65536 ADC Output Da 25M ADC Input Targ 0.000000	ta Rate			HEADER_MODE HEADER_CH1 × 0	AE	DC Data at output HEADER_CH3 × 0 HEA	DER_CH4 × 0
		e Version = "0.2"		400 Board = TIWA3M2F		Interface Type = AFE5401	× 2 DATA × E00

Figure 73. GUI Setup for Blind RAMP Test (b)

Appendix A

- Capture and view the RAMP by performing the following steps; also illustrated in Figure 74:
 (a) Press the *ADC* tab in *HSDCpro*
 - (b) Change the plot type from Real FFT to Codes
 - (c) Press the *Capture* button.

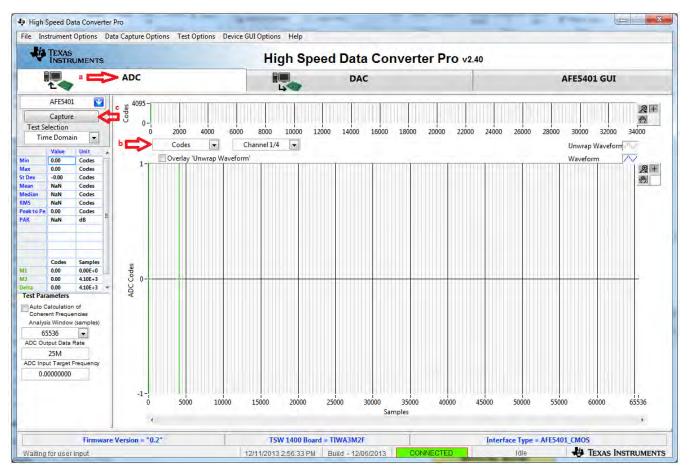
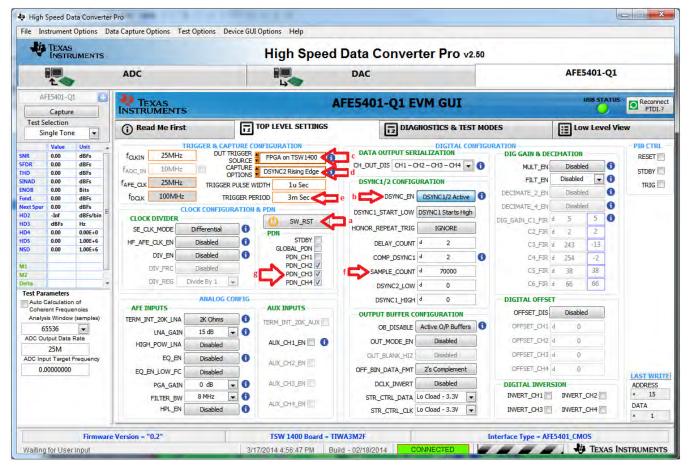


Figure 74. GUI Setup For Blind RAMP Test (c)

3. One might or might not observe the RAMP waveform in *Channel1/4* of *HSDCpro*. This is due to the fact that the output consists of four channels of data which are serialized. Without any framing, through the use of DYSNC1 and DSYNC2 output signals, the FPGA has no way of determining what sample belongs to which channels. It only knows that every 4th sample (if 4x serialization is used) belongs to the same channel. Therefore, the capturing RAMP waveform appears randomly on one of the four channels. By recapturing multiple times, the 'law of averages' mandates that the data sent from Channel 1 of the DUT eventually is displayed as channel 1 by the FPGA firmware.

Appendix B FPGA Triggered Capture of a RAMP Test Pattern

As stated in the datasheet, when a rising edge is detected on the **TRIG** pin of the AFE5401-Q1, the DSYNC1/2 output signals are generated as defined by several SPI registers. As described in Section 7.2.1, there are two methods that the FPGA uses to capture and frame data:


- (a) N sample capture from first rising edge of the DSYNC2 signal where N is set in the HSDCpro GUI.
- (b) N sample capture during active high state of the DSYNC2 signal where N is set in the HSDCpro GUI.

Each of these methods are explored here using a RAMP test pattern.

Capture on Rising Edge of DSYNC2

The receiver implementation is designed to begin data capture on the rising edge of a DSYNC2 output signal. From the *TOP LEVEL SETTINGS* tab of the *AFE5401-Q1 GUI*, perform the following procedures as shown in Figure 75:

- (a) Click the SW_RST button
- (b) Set DSYNC_EN to DSYNC1/2 Active
- (c) Set DUT TRIGGER SOURCE to FPGA on TSW1400
- (d) Set CAPTURE OPTIONS to DSYNC2 Rising Edge
- (e) Set TRIGGER PERIOD to 6m Sec
- (f) Set SAMPLE_COUNT to 70,000
- (g) Check *PDN_CHx* for x=2,3,4
- (h) Set TST_PAT_MODE to Full Scale RAMP on the DIAGNOSTICS & TEST MODES tab of the GUI (not shown in Figure 75).

Figure 75. FPGA DSYNC2 Rising Edge Triggered RAMP Capture (a)

From the *ADC* tab of the GUI press the *Capture* button to see the captured RAMP function. Because *DSYNC_EN* is enabled and a trigger is being provided to the AFE5401-Q1 TRIG pin, the DYSNC1 and DSYNC2 outputs are generated. The FPGA firmware uses the DSYNC2 rising edge to 'mark' the start of a serialization. Therefore, the position of the channel data is known and can be displayed in its proper channel within *HSDCpro*, whereas, this was a random process when *DSYNC_EN* was disabled. Figure 76 illustrates this by displaying channels 1 and 2 simultaneously by using the *Test Options* drop-down menu in *HSDCpro*.

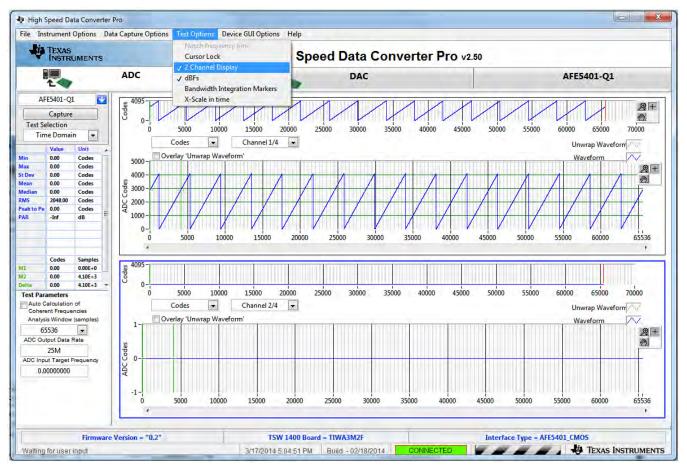


Figure 76. FPGA DSYNC2 Rising Edge Triggered RAMP Capture (b)

Appendix B

www.ti.com

The RAMP captured in Figure 76 shows no discontinuities because *OUT_MODE_EN* is disabled. With *OUT_MODE_EN* enabled and *OUT_BLANK_HIZ* enabled there are two mechanisms that would cause a discontinuity: (1) if SAMPLE_COUNT is less than the number of samples being captured and displayed in *HSDCpro*, default set to 65536 samples or (2) if a trigger occurs before the capture of the 65k samples. Figure 77 shows the GUI setup with *OUT_MODE_EN* and *OUT_BLANK_HIZ* enabled with the *SAMPLE_COUNT* set to 20,000 samples.

TEXA INST	RUMENTS		High Speed	Data Converter Pro v2.5	50		
		ADC	1	DAC		AFE5401-Q1	<
AFE5401 Capto		V TEXAS INSTRUMENTS	A	FE5401-Q1 EVM GUI		USB STATUS	Reconi FTDI
Fest Selection Time Don		() Read Me First	TOP LEVEL SETTINGS	DIAGNOSTICS & TEST	MODES	Low Level Vi	ew
Value 0.00 4095.0 ev 1139.8 m 3477.0	7 Codes	fakin 25MHz D	CAPTURE CONFIGURATION UT TRIGGER FPGA on TSW1400 SOURCE DSWNC2 Rising Edge OPTIONS DSWNC2 Rising Edge	DIGITAL CONF DATA OUTPUT SERIALIZATION CH_OUT_DIS CH1 - CH2 - CH3 - CH4 DSYNC1/2 CONFIGURATION	DIG GAIN & DE	Disabled Jisabled	PIN CTR RESET STDBY TRIG
lian 4095.0 5 1827.9 6 to Pe 4095.0 0.99	9 Codes	fDCLK 100MHz	TRIGGER PERIOD 3m Sec IGURATION & PDN	DSYNC_EN DSYNC1/2 Active DSYNC1_START_LOW DSYNC1 Starts High HONOR_REPEAT_TRIG IGNORE	DECIMATE_2_EN DECIMATE_4_EN DIG_GAIN_C1_FIR C2_FIR		Indo
Codes 2047.0 1337.0	0 0.00E+0 0 4.10E+3	HF_AFE_CLK_EN Disabled DIV_EN Disabled DIV_FRC Disabled DIV_FRC Disabled DIV_FRC Divide By 1	STDBY GLOBAL_PDN PDN_CH1	SAMPLE_COUNT 4 20000	C3_FIR C4_FIR C5_FIR C5_FIR C6_FIR	d 243 -13 d 254 -2 d 38 38	
st Parameter Auto Calculat Coherent Fred Analysis Wind 65536 DC Output Da	ion of quencies ow (samples)	AFE INPUTS TERM_INT_20K_LNA 2K Ohm LNA_GAIN 15 dB	AUX INPUTS AUX INPUTS TERM_INT_20K_AUX		OFFSET_DIS OFFSET_DIS OFFSET_CH1	T Disabled d O	
25M C Input Targ 0.0000000	et Frequency	HIGH_POW_LNA Disable EQ_EN Disable EQ_EN_LOW_FC Disable PGA_GAIN 0 dB	d O AUX_CH2_EN	OUT_MODE_EN Enabled OUT_BLANK_HIZ Enabled OFF_BIN_DATA_FMT 2's Complement DCLK_INVERT Disabled	OFFSET_CH3 OFFSET_CH4	d O d O	ADDRES
		FILTER_BW 8 MHz HPL_EN Disable	AUX CH4 EN	STR_CTRL_DATA Lo Cload - 3.3V STR_CTRL_CLK Lo Cload - 3.3V	INVERT_CH1	INVERT_CH2	× 15 DATA × 0

Figure 77. FPGA DSYNC2 Rising Edge Triggered RAMP Capture (c)

Figure 78 shows that once the **SAMPLE_COUNT** of 20,000 is achieved, the output is blanked for all subsequent samples, at least until the next **TRIG** event is encountered, thus, generating another DSYNC2 rising edge on which to capture.

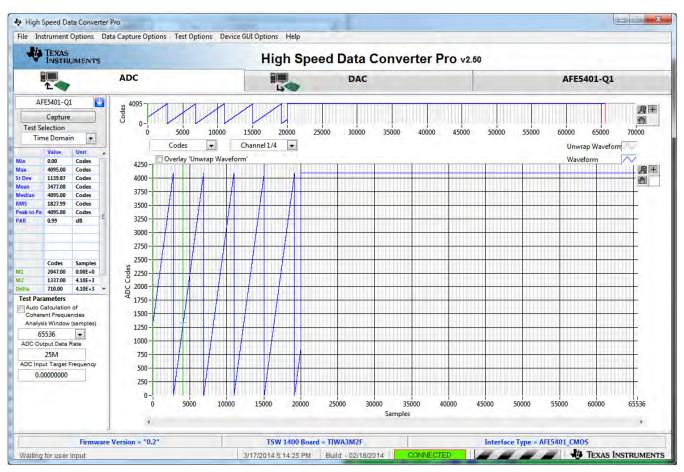


Figure 78. FPGA DSYNC2 Rising Edge Triggered RAMP Capture (d)

Appendix B

www.ti.com

By changing the trigger period to ~500 μ s, which equates to 12,500 samples/channel for a sampling frequency of 25MSPS, one can see how the *BLANKING_PHASE* ends and another *SAMPLE_PHASE* begins as shown in Figure 79 and Figure 80.

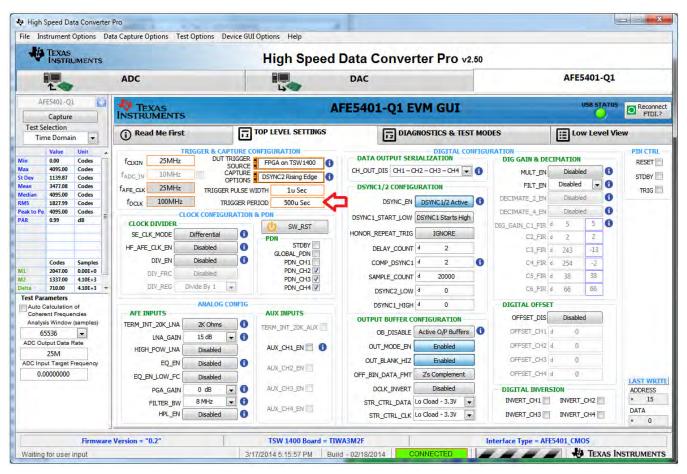


Figure 79. FPGA DSYNC2 Rising Edge Triggered RAMP Capture (e)

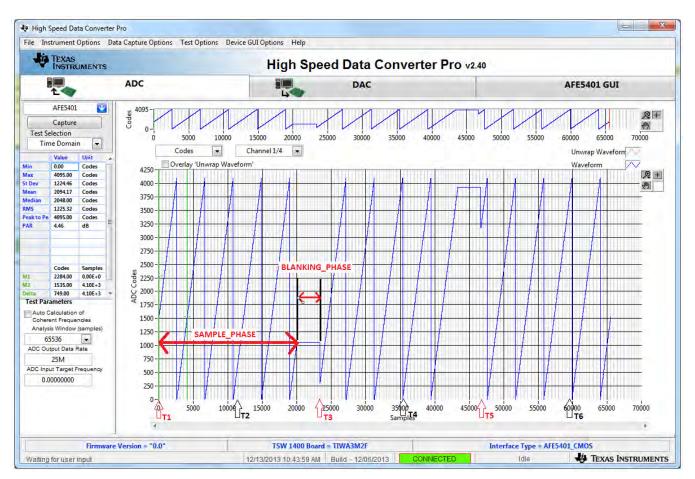
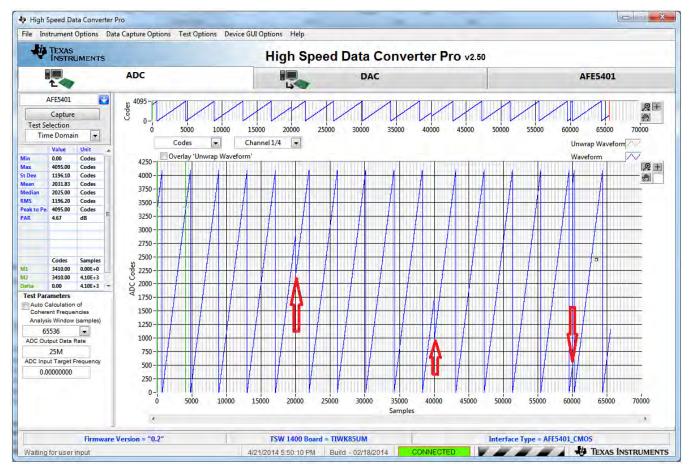


Figure 80. FPGA DSYNC2 Rising Edge Triggered RAMP Capture (f)

The approximate locations of the triggers are shown on the x-axis of Figure 80. Those triggers colored in BLACK are ones that are ignored because they occur during an active SAMPLE_PHASE. Those triggers colored RED invoke a new SAMPLE_PHASE and end the BLANKING_PHASE.




Revision History

www.ti.com

Capture on DSYNC2 Active High

This receiver implementation is designed to capture data only during the active high state of the DSYNC2 output signal. With the GUI in the same state as that shown in Figure 77, with the exception of **CAPTURE OPTIONS** now set to DSYNC2 Active High, a capture displayed in Figure 81 illustrates the BLANKING PHASE has been eliminated. Discontinuities in the captured waveform at multiples of the SAMPLE_COUNT correspond to the time when the DSYNC2 output signal goes low and when the subsequent DSYNC2 signal (generated from the subsequent trigger) goes high. With this implementation the **OUT_MODE_EN** and **OUT_BLANK_HIZ** controls become obsolete as the data during this time is ignored by the receiver.

Revision History

Changes from Original (March 2014) to A Revision

Page

- Changed destination directory instruction the default directory must be used. Added a NOTE: regarding same issue... 6
- Changed destination directory instruction the default directory must be used. Added a NOTE: regarding same issue. 11

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS

Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

REGULATORY COMPLIANCE INFORMATION

As noted in the EVM User's Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules.

For EVMs **not** subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user's sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization.

For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

For EVMs annotated as IC – INDUSTRY CANADA Compliant

This Class A or B digital apparatus complies with Canadian ICES-003.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Concerning EVMs including radio transmitters

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concerning EVMs including detachable antennas

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.

Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l'autorité de l'utilisateur pour actionner l'équipement.

Concernant les EVMs avec appareils radio

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

[Important Notice for Users of EVMs for RF Products in Japan]

This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan

If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:

- Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or
- 3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.

Texas Instruments Japan Limited (address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan

http://www.tij.co.jp

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】

本開発キットは技術基準適合証明を受けておりません。

本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

日本テキサス・インスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル http://www.tij.co.jp

EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMERS

For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

- 1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.
- 2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.
- 3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.
- 4. You will take care of proper disposal and recycling of the EVM's electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI's recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated