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Analyzing the impact of clock noise on an 
RF-sampling DAC system

Introduction
The digital-to-analog converter (DAC) is a key component 
in a wireless communication system. With the develop-
ment of modern complementary metal-oxide semiconductor 
(CMOS) technology, TI’s latest DAC is a radio-frequency 
(RF) sampling DAC with gigahertz sampling. 

Compared to intermediate-frequency sampling DACs, 
RF-sampling DACs offer higher integration (Figure 1). 
Such DACs are popular in fourth-generation (4G) wireless 
systems such as macro frequency-division duplex (FDD) 
and time-division duplex (TDD) systems.

Because RF-sampling DACs sample at the RF frequency 
and are located close to the antenna port, their perfor-
mance directly impacts the entire base-station transmis-
sion system. The high-speed sampling clock plays a very 
important role in RF-sampling DAC performance because 
noise on the sampling clock directly translates to the 
output of the DAC.

This article describes how to evaluate the impact of 
clock noise on high-speed DAC performance.

Two different kinds of clock noise, random noise and 
clock spurs, are the primary types of noise under 
consideration.

By Fanlong Li
China FAE (MGTS), China ZHA, Shanghai China

Figure 1. An RF-sampling DAC helps achieve highly-integrated solutions
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Random noise
Random noise obeys Gaussian distribution and can be 
described or quantized by clock jitter in the time domain 
or by phase noise in the frequency domain.

Using a unipolar 3-bit DAC as an example and assuming 
there isn’t jitter on the sampling clock, two equally spaced 
inputs will produce to two equally spaced outputs (See 
Figure 2a). As shown in the left graph in Figure 2b, if there 
is jitter on the sampling clock, then the sampling time of the 
DAC for a certain digital input code is not strictly defined, 
which is shown in the right graph in Figure 2b. Due to the 
random clock jitter, DAC sampling time will drift. 

The quantized output of the DAC passes through a 
shaping filter to produce the analog output signal. If the 
sampling clock has no jitter, every sampling time is exactly 
correct, which results in the analog output signal shown in 
the left graph in Figure 2a. For a clock with jitter, however, 
the sampling time of the DAC will be unpredictable.

Assuming a sampling time shift is ∆t, the sampling 
instance the analog output signal will show a correspond-
ing amplitude shift, ∆y, as shown in the right graph in 
Figure 2b. ∆y is the amplitude error and considered noise 
caused by unpredictability.

Theoretical analysis of random clock noise on 
DAC performance
Now consider how clock noise impacts DAC output noise 
mathematically.

Again, the DAC output will generate current or voltage 
noise (∆y) caused by sampled clock jitter. Assuming that 
the clock jitter is random, the DAC output noise will also 
be random. The generated output noise will degrade the 
DAC output’s signal-to-noise ratio (SNR).

Reference 1 gives a theoretical analysis of random clock 
noise on analog-to-digital converter (ADC) performance in 
the frequency domain. But for a DAC, only the sinc func-
tion for the signal is required.

Equation 1 calculates the impact of clock noise on DAC 
performance:
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where fSIG is the signal frequency and fCLK is the 
frequency of the DAC sampling clock.

Figure 2. DAC sampling with and without clock jitter
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Theoretical analysis of clock spurs on DAC 
performance
Unlike the random properties of clock noise, a clock spur 
is a deterministic time error in the sampling clock. An 
interesting question to ponder is if there is a spur at a 
certain frequency offset from the center frequency of the 
DAC sampling clock, what kind of behavior will show at 
the output of the DAC, such as what is the spur’s location 
and spur’s amplitude?

First consider the clock-spur location at the DAC 
output. For any time-continuous signal xa(t), Equation 2 
calculates the discrete sampled signal as:

and
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where x(nTS) is a discrete sampled signal and p(t) is the 
impulse function, which also represents the ideal sampling 
function.

Equation 2 indicates that the sampling process will 
multiply the signal to be sampled with the period of 
impulse function, which is TS = 1/fS in the time domain. In 
the frequency domain, because the sampling process is 
equivalently a convolution operation, the two signals will 
convolute together. If the sampling frequency, fS, is known, 
then Equation 3 calculates the Fourier transformation of 
the impulse series as:

where
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and P(jω) is the discrete Fourier transformation of p(t).

For a sampling clock with a fixed spur, Equation 4 gives 
the spectrum expression as:
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ωS2 stands for the spur frquency on DAC sample clock, 
and α is a constant. 

Assuming that the spectrum expression of a time-
continuous signal is XS(jω), Equation 5 provides the 
output signal spectrum when sampled by a clock signal 
with a fixed spur:
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From Equation 5, note that the spur at the DAC output 
has the same frequency offset as in the sampling clock. 

Figure 3 shows an example of a DAC clock with a spur 
to sample the bandwidth signal. For the spur amplitude 
changing at the DAC output, the signal noise ratio (SNR) 
of the DAC can be used to replace and thus follow 
Equation 1.

Figure 3. The clock spur’s location transferred to the DAC output
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In Figure 3, if the spur falls within the signal bandwidth 
shown as B, then the spur of the sampling clock will hit 
the signal and impact the band performance. On the other 
hand, the clock phase noise can be taken as an infinite 
number of spurs with infinitely-small frequency spacing.

In general, to get the double-band phase noise, integrate 
the single sideband phase noise and double it. For single 
sideband phase-noise integration, use these rules to deter-
mine the integration limits:

•	 A low limit of integration: In the time domain, the signal 
is frame-based. If the clock jitter frequency is less than 
the frame period, the slowly changing jitter can be taken 
as a constant for a certain frame. Within the frame, the 
phase changing of the carrier is almost zero and it will 
not do harm to demodulate. For a 20-MHz long-term 
evolution (LTE) signal, the frame period is 10 ms, which 
means 100 Hz, so the phase noise can be integrated 
from 100 Hz.

•	 A high limit of integration: Use half of the signal band-
width. For a 20-MHz LTE signal, the upper limit is 
10 MHz. Therefore, for a single sideband, the integral 
bandwidth is from 100 Hz to 10 MHz for a 20-MHz LTE 
signal.

Analyzing clock noise for DAC system 
specifications
After analyzing the location and magnitude of the clock 
noise transfer to the DAC output, use the noise level and 
noise-integration bandwidth to calculate the performance 
impairments. At a system level, the clock phase noise will 
affect the error vector magnitude (EVM) and spurious-
free dynamic range (SFDR) of DAC output signals, espe-
cially when digitally modulating the output waveform.

The constellation plot in Figure 4 defines EVM. Starting 
from the definition, the relationship between EVM and 
clock phase noise can be determined in a DAC sampling 
system. Here, quadrature phase-shift keying (QPSK) 
modulation is the example, although the derivation still 
holds for other modulations.

Equation 6 defines error vector magnitude (EVM) as 
the ratio between error vector and reference vector:
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where x(t) is the vector of the reference signal and s(t) is 
the vector of the input signal.

Taking the QPSK constellation plot into consideration, 
the EVM can now be determined. Assuming that the 
radius in Figure 4 is R, according to the definition for error 
vector magnitude and trigonometric formula, the error 
vector (E) can be determined with Equation 7.

 E R R2 2 22 2= − × cos( )φ  
(7)

When φ is small, according to the Taylor series, substi-
tute cos(φ) = 1 – (φ2/2) to get Equation 8, which shows 
the relationship between phase noise in radian and EVM.
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where Phase_NoiseRMS is the root-mean-square (RMS) 
clock phase noise in degrees.

Equation 9 calculates the phase noise from the 
measured phase-noise plot:
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where L(f) is the power spectral density for the clock 
phase noise.
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Equation 9 can be used to obtain the phase noise in 
radians by integrating the phase-noise power density over 
a certain bandwidth.

A simple way to get an approximate result of phase 
noise is to use the trapezium method (Figure 5). First, 
convert the decibels of phase noise into a linear value, and 
then calculate the area for A1, A2, A3, A4, etc. Get the 
total area and double it for double-side phase noise for the 
total phase noise in radians.

Figure 4. QPSK-signal constellation plot 
with phase error
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Here is a summary of the process for 
obtaining the impact of clock phase noise on 
a DAC:

•	 Measure the phase noise of the sampling 
clock and get the phase-noise plot.

•	 Calculate the DAC output noise according 
to Equation 1.

•	 Obtain the integration bandwidth for noise.

•	 Obtain the clock jitter in radians across a 
specific bandwidth according to the trape-
zium method.

•	 Calculate the error vector magnitude 
(EVM) according to Equation 9.

To obtain the impact of a clock spur on 
DAC SFDR, consider the impact of the 
sampling clock spur on DAC output with two 
pieces of information:

•	 Offset information: The frequency offset 
from the main output signal is the same as 
the spur offset frequency from the sam-
pling clock.

•	 Amplitude information: The amplitude of a 
spur at the output can be replaced by SNR from 
Equation 1, which is similar to random noise.

Calculations versus measurements
According to the trapezium method, the calculated EVM is 
1.14%. The practical measurement is 0.512 × 2 = 1.02%, 
which matches the theoretical calculations very well. The 
measured EVM in the phase-noise plot is the single side-
band result, which needs to be doubled when considering 
the double-sideband EVM shown in Figure 6.

Figure 7 shows the clock spur tested with the DAC38RF83 
evaluation-module board using the external clock mode. 
Figure 7a is the clock spur input and Figure 7b is the 
clock spur output after the RF DAC with a 1.2288-GSPS 
signal. According to Equation 1, the clock spur at the DAC 
output is 36 dBc in theory, which matches the testing 
results well.

Conclusion
Clock noise from a RF-sampling DAC will impact its error 
vector magnitude (EVM) and SFDR. This was shown in 
this article through practical measurements and theoreti-
cal analysis of these phenomena. Application engineers 
and system designers can use the equations presented to 
perform transmit-chain budget analysis of the DAC output 
to determine if noise may be a problem in a clock design.

Reference
1. Thomas Neu, “Clocking the RF ADC: Should you worry 

about jitter or phase noise?” Analog Applications 
Journal (SLYT705), 1Q17.

Figure 6. A practical measurement of 
clock phase noise on EVM
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