I TEXAS Application Report
INSTRUMENTS SPRABW1 — April 2014

How to Develop a Project With Tl SYS/BIOS

Jeanne Yi MCU SAE Team

ABSTRACT

T1 SYS/BIOS is a real-time operating system kernel. It is also a component of TI RTOS. Tl
RTOS is an integration system; it includes Tl SYS/BIOS kernel, XDCtools, middleware,
MCU driver library, and other kinds of components. TI-RTOS is a one-stop solution for
developing applications for Tl embedded processors and is tightly integrated with TI's
Code Composer Studio™ (CCS) development environment. TI-RTOS also provides many
example project packages with which you may start to develop a project with TI

SYS/BIOS.
Contents

0 = TP 3
1 (=Y o T 1= 1 1o 4
1.1 System REQUIFEMENTSoiiiiiiiiie et e e e e e e e e eee s 4

1.2 Download the Installation Packagesccoiiiiiiiiiiiiicie e 4

1.3 Installing CCS 5.1.1.00031, SYS/BIOS 6.33.4.39, and XDCtools 3.23.4.27cccovvvvvvveeeenenn. 4

2 Create Your First SYS/BIOS Project.........ccccimiiimmrciiiiirirrscesss s s sssssmssssss s s e s s ssssssssssssssssssmssssssnns 5
2.1 Startup Code COmMPOSEr STUTIOeeiiiiiiiiiiiiiiiieiieeieee ettt eaaaeaaeeeaeeeseasssasssssssnnnnnnnnes 5

2.2 Create @ SYS/BIOS CCS PrOJECt......cooiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e snenannennes 5

2.3 Link the Memory Map File for the Project..............co i 7

S = T 11T I { g =T o] =T o R 9

T B LY o1 o I g (= o (o)1= PP 10

2.6 FOr MOre REFEIENCE.ccceeeeeiiee et e e e e ettt e e e e e e e e et aeeaaes 11

3 Use of the Basic Components for a SYS/BIOS Project.........cccccvmiimiimiiimmimmssnsssssssssssssssssssenennes 11
3.1 Use .cfg File to Configure the System ... 11

3.2 Entrance of the SyStem ... 13

3.3 Dynamically or Statically Create the Task..........oooeeeiiiiiii e, 14
3.3.1 Dynamically Creating the Task...........coooeiiiii e, 14

3.3.2 Statically Creating the TaskK........ccooooi 14

3.4 Usage of the SemMaphoresoooo e 16

3.5 Use Of the MaiIDOXEScooeiiiiiiieeeeeee ettt neneannsnnnnnne 17
3.5.1 Introduction About the MailbOXeScooeiiiiiiiii 17

3.5.2 Use MailboXes in YOUr PrOjeCtcoooiiiiiiiiii e 17

3.5.3 Often-used SYS/BIOS API Function for MailboXcccooeviiiiiiiiiii 18

3.6 Use of the HWi TasKS.......coooiiiiiiiiii e 19
3.6.1 Introduction to the HWi........coooeiiiiiiie 19

3.6.2 Add Hwi Module in YOUr Project...........ooooiiiiiiii 19

3.6.3 An Hwi Instance Example Based on Concerto™ F28M35Xcccoeeeeeiiiiiieieieeeeeeenn. 20

= (=T =T 3T - 23

I3 TEXAS
SPRABW1 INSTRUMENTS
Figures
Figure 1. Folders in the Directory C:\ti........cccceiiiiiiiiiiii e 4
Figure 2. CCS 5.1 Welcome Displayccccuriiiiiiiiiiimmniiniis s sssssss s sssssssss s s s 5
Figure 3. CCS Workspace LAUNCREN oo srrrrrcesss s s s e s s s s s s s e s s s e s s s e r e e n e s 5
Figure 4. NeW CCS ProjecCt ... ammn e e s 6
Figure 5. RTSC Configuration Settings for the SYS/BIOS Project..........ccccoccmmrrriiiiiiiiiinennneeinnns 7
Figure 6. General Setting for the Project.......... e 8
Figure 7. CCS Project EXplorer WiNAOW..............uuuuuummmmmmmmnnensssss s ssssssnes 9
Figure 8. CCS CoNs0le WINAOW.........coiiiiiummimireiiiissssssrss s sssss s sssss s s s ssmnns s s 10
Figure 9. CCS Problems WIiNAOW............cuuuuuuummmmmmin s e 10
Figure 10. ccxml File Edit WINAOW.............uuueiiii s 10
Figure 11. CCS Debug WINAOW.........cooiiiimeiiiie s ssssss s ssnsn e e 11
Figure 12. XDCtools GUI Window (SYS/BIOS System Component Overview)cccccevniniciinnnes 12
Figure 13. XDCtools GUI Window (SYS/BIOS Runtime Options).........ccceeeeememmmmmmmmmmmmnmnnnnnnnnnnnnnnnnns 12
Figure 14. XDCtools GUI Window (Task Thread Management).............cceeuueeeemmmmmmmnmnnnnnnnnnnnnnnnnnnnnnes 15
Figure 15. XDCtools GUI Window (Script Source Code for Task)cceeeeeeemmmmmmmmmmmnnnnnnnnnnnnnnnnnnnnns 15
Figure 16. XDCtools GUl Window (Semaphore Management)cuueeemmmmmmmmmmmmmmmnnmnnnnnnnnnnnnnnnn. 17
Figure 17. XDCtools GUI Window (Script Source Code for Semaphore)cccccuuuemmmmnennnnnnnnnnnnes 17
Figure 18. Selection of Synchronization Modules.................euuememmmmmm s 17
Figure 19. XDCtools GUI Window (Mailbox Module Settings)..........ccccccuummmmmmmmmmmmmmmmmmmnnnnnnns 18
Figure 20. XDCtools GUI Window (Mailbox Instance Settings).........cccccuuuummmmmmmmmmmmmmnnnnnes 18
Figure 21. XDCtools GUI Window (Hardware Interrupt Module Settings)ccceeueeemmmeennnnnnnnnnnnes 20
Figure 22. XDCtools GUI Window (Hardware Interrupt Instance Settings)cccccccueummeennennnnnnnnees 21
Figure 23. Interrupt 0 to 91 Priority (PRIO to PRI22) Registers.........cccccummmmmmmmmmmmmmnnnnns 22
Tables

Table 1. Devices Supported by TI-RTOS and TI SYS/BIOS.........cccommremmmrccrrrrrrrrecsssssss e eneeeemanes 3
Table 2. Interrupts from NVIC to Cortex-IM3............oiiiiiiircrcr e e e e e e 21
Table 3. Peripherals Register Map.........c.ccciiimiii s rrms s s s s s s s s e s e e nm s s s e mmnnnnes 22
Table 4. Interrupt 0 to 91 Priority (PRIO to PRI22) Registers Field Descriptions 22
2 How to Develop a Project With TI SYS/BIOS

I3 TEXAS

INSTRUMENTS

SPRABW1

Overview

TI-RTOS is a real-time operating system for Tl devices. The first released package of TI-RTOS
was MCU-SDK V1.00.00.68. The most recent released package is TI-RTOS 1.21.00.19. TI-
RTOS facilitates the development of applications for TI microcontrollers. This product contains
several software components and examples. The components include

e SYS/BIOS
e |IPC

e MWare

e NDK

e StellarisWare

e UIA

e XDCtools

The examples within TI-RTOS have used the software components together.

T1 SYS/BIOS is the real-time OS kernel of TI-RTOS. TI SYS/BIOS is a scalable real-time kernel
designed for applications that require real-time scheduling and synchronization or real-time
instrumentation. Tl SYS/BIOS provides preemptive multithreading, hardware abstraction, real-
time analysis, and configuration tools. TI SYS/BIOS is designed to minimize memory and CPU
requirements on the target. It must be used together with the proper version of XDCtools.

The devices dctsupported by SYS/BIOS include MSP430™ MCUs, F28M35X, TM4C MCUs,
and AM335X. The devices supported by TI-RTOS only include F28M35X and TM4C MCUs.
Table 1 lists the devices supported by TI-RTOS and TI SYS/BIOS. (For more details, see on the
website http://www.ti.com/Isds/ti/tools-software/rtos.page#support.)

Table 1. Devices Supported by TI-RTOS and Tl SYS/BIOS
MSP430 MCUs F28M35x TM4C AM335x
TI-RTOS Yes Yes
SYS/BIOS Yes Yes Yes Yes
kernel

This document primarily discusses how to use the basic elements of SYS/BIOS, such as tasks,
semaphores, mailboxes, Hwi, and so forth, together with the CCS and XDCtools to develop a
project. SYS/BIOS 6.33.4.39 is the version we used. We used the F28M35x device and we
worked only with its Cortex™-M3 MCU core.

For more training detail about SYS/BIOS, download the reference resource from www.ti.com. If
you have questions when developing your project, we strongly recommend that you to raise

your questions on the BIOS forum of TI's E2E Community:

http://e2e.ti.com/support/embedded/bios/f/355.aspx or on the Chinese technical support forum

http://www.deyisupport.com.

How to Develop a Project With TI SYS/BIOS

3

http://www.ti.com/lsds/ti/tools-software/rtos.page#support
http://www.ti.com/
http://e2e.ti.com/support/embedded/bios/f/355.aspx
http://www.deyisupport.com/

I3 TEXAS

SPRABW1 INSTRUMENTS
1 Preparation
1.1 System Requirements
We used is Windows 7™ but Windows Vista or Windows XP (SP2 or SP3) is acceptable. To
install CCS and TI-RTOS, at least 4GB of free disk space are required.
1.2 Download the Installation Packages
To use SYS/BIOS, you must install TI CCS on your PC. To support SYS/BIOS 6.33.4.39, you
must install the CCS 5.1.1.00031 or higher version. You can download the CCS installation
packages from the website http://processors.wiki.ti.com/index.php/Download CCS.
Download SYS/BIOS installation package from the website http://software-
dl.ti.com/dsps/dsps public _sw/sdo_sb/targetcontent/bios/sysbios/6 33 04 39/index FDS.html.
SYS/BIOS 6.33.4.39 is recommended for use with XDCtools 3.23.4.27, so you should download
the XDCtools installation package from the website http://software-
dl.ti.com/dsps/dsps public _sw/sdo_sb/targetcontent/rtsc/3 23 02 47/index FDS.html. Choose
and download the correct version of the package for your PC environment.
If you want to use TI-RTOS package for your devices, download the CCS 5.3.0.00039 or higher
version. You could download the TI-RTOS package from the website http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html.
1.3 Installing CCS 5.1.1.00031, SYS/BIOS 6.33.4.39, and XDCtools 3.23.4.27
Perform the following steps:
1. Install CCS and install it in the default installation directory of c:\ti. When selecting
components, do not choose any SYS/BIOS components.
2. Install the SYS/BIOS also in the default installation directory of c:\ti.
3. Install the XDCtools in the default installation directory of c:\ti.
When the installation completes successfully, there are three folders in the directory of c:\ti, as
shown in Figure 1.
CCSV5
wdctools 3 23 02 47
bios_6_33_04_39
Figure 1. Folders in the Directory c:\ti
4 How to Develop a Project With TI SYS/BIOS

http://processors.wiki.ti.com/index.php/Download_CCS
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/bios/sysbios/6_33_04_39/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/bios/sysbios/6_33_04_39/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_23_02_47/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_23_02_47/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html

I3 TEXAS
INSTRUMENTS SPRABW1

2 Create Your First SYS/BIOS Project

2.1 Startup Code Composer Studio

Open Code Composer Studio v5 from the start menu or your desktop shortcut (see Figure 2).
After a few seconds of the welcome display, the Workspace Launcher is displayed (see Figure
3). Input your desired workspace path and click OK.

@ Code Composer™ Studio v5

Texas
INSTRUMENTS

Figure 2. CCS 5.1 Welcome Display

. Workspace Lau @

i Select a workspace

Code Composer Studio stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: Chcesd_1Workspace v

["] Use this as the default and do not ask again

l OK ‘ l Cancel

Figure 3. CCS Workspace Launcher

2.2 Create a SYS/BIOS CCS Project

1. Inthe CCS menus, select File>New—->CCS Project. The New CCS Project dialog box is
displayed.

How to Develop a Project With TI SYS/BIOS 5

I3 TexAs
SPRABW1 INSTRUMENTS

2. Choose the device family that is supported by SYS/BIOS; Figure 4 shows the SYS/BIOS project
templates list. You can choose a template from this list as the template of your project. We
choose a Task Mutex example.

NOTE: It is best to define a new location for your project; otherwise, an uncomfortable
situation may arise later.

v« New CCS Project ==X

CCS Project E Tf j

Create a new CCS Project.

Project name: MyExample

' Output type: |Executable hd
Define a new LT l l
location for _\ | []Use defauitioeation
the prOJeCt <§ Location: C:\ccsS_lWorkspace\MyE)(ample| Browse...
| —Device
Choose the
supported “<‘ Family: lARM / vl
device family Variant: 28M35x Concerto - [F28M35H52c1 v] i
|
Connection:l V] |
» Advanced settings
~ Prgjett templates and e l

Creates an empty project fully initialized - W
for the selected device.

Ape filter text

[5 SYS/BIOS
| Minimal

SYS/BIOS \
project

templates list & Typical
l&r Typical (with separate confjg projec =

|= Generic Examples

—

\ 1 » -

@:‘ < Back MNext = [Finish l l Cancel

Figure 4. New CCS Project

3. When all items are entered, the [Next>] button is enabled. Click the [Next>] button; the
RTSC Configuration Settings are displayed, as shown in Figure 5.

4. Select the correct version for XDCtools and SYS/BIOS components shown in the figure.

5. Click the [Finish] button; the code files mutex.c and mutex.cfg for this project will be
generated automatically.

6 How to Develop a Project With TI SYS/BIOS

I3 TEXAS

INSTRUMENTS SPRABW1
. New CCS Project T e))
RTSC Configuration Settings “ 'h'.'_:_
Select the RTSC Configuration project settings. E?
XDC 3.23.2.47 _\<: XDCtools version: l3.23.2.4? /:H More...]

=\ Products and Repositories |<>@ Order|

[|=h Grace (MSP430) Add..
DE‘m Inter-processor Communication

LT [¥]=h SYs/BIOS Remove
ggg/flg%s Y [)&% 634218
e [V]% 633439 Select All

&% 632554
DE‘m System Analyzer (UIA Target)
[|=h XDAIS

Deselect All

ti.targets.arm.elf.M3

Do nothing K
for this field Platform: ti.platforms.concertoM3:F28M35H52C1

ild-profile: release

@:‘ MNext = [Finish l l Cancel]

Figure 5. RTSC Configuration Settings for the SYS/BIOS Project

2.3 Link the Memory Map File for the Project

1. Now the project and the files should be listed in the Project Explorer. If you cannot see the
Project Explorer, open it by clicking the tool menu of CCS View—>Project Explorer.

2. Right-click the project name, select Properties, and click General in the left block to open the
General settings page (see Figure 6).

3. Choose the emulator connection method from the connection pulldown list.

4. Click the [Browse...] button to the right of the Linker command file: setting line and find the
correct link file F28M35H52C1.cmd in the SYS/BIOS installation directory
“C:\ti\bios_6_33_04_39\packages\ti\sysbios\examples\m3\include”.

5. After making these settings, click the [Apply] button and close the dialog box. Two more files,
F28M35H52C1.cmd and F28M35H52C1.ccxml., are automatically added into the project files
list. The F28M35H52C1.cmd file is the memory map file while the F28M35H52C1.ccxml file is
the target configuration file.

How to Develop a Project With TI SYS/BIOS 7

SPRABW1

I3 TexAs
INSTRUMENTS

6. To customize the memory map for your project, simply double-click the F28M35H52C1.cmd file
to open it. Then you can edit this file according to your memory arrangement.

«+ Properties for MyExample

type filter text
Resource
General
Build
ARM Compiler
Processor Options
Optimization
Debug Options
Include Options
MISRA-C:2004
Advanced Options
ARM Linker
XDCtools
Debug

'f?:' Show advanced settings

General

Configuration: IDebug [Active]

'l [Manage Configurations...

= Main | 2 RTSC

Output type: | RTSC Application (Executable)

- || Select emulator
for your device

Device
Family: ARM -
| Marianr <select or type filter text> ~ [F28m3sHs2c \-}\-->
ConecTom-Fexasiassuments X0S1002 USE Emulztor = (applissie-whotePTOjEc) | |
~ Advanced settings
Link the target-
Device endianness: [Iittle '] Speciﬂc Command
Compiler version: [Tlv4‘9.1 ;],VMcre‘.. l fl h
, ‘ ile here.
| Ouspotformat | eabi (ELF) T T
m““”“““ﬁ cmd BToWse... I
Runtime support library: rtsvZM3_T_le_eabilib -
Restore Defaults Apply
OK] l Cancel

Figure 6. General Setting for the Project

The contents of the F28M35H52C1.cmd follow:

{

}

MEMORY

FLASH_BOOT (RWX): origin = 0x200030, length = 0x4

FLASH (RWX)

> origin = 0x200034, length = Ox7FF9C

CO03SRAM (RWX) : origin = 0x20000000, length = 0x8000
S07SHRAM (RWX) : origin = 0x20008000, length = 0x10000
CTOMMSGRAM (R) : origin = 0x2007F000, length = 0x800
MTOCMSGRAM (RW) : origin = 0x2007F800, length = 0x800

SECTIONS

[* Allocate program areas: */
dext :> FLASH

.cinit :>FLASH

.pinit :>FLASH
.init_array : > FLASH

/* Initialized sections go in Flash */

.const :>FLASH

/* Allocate uninitialized data sections: */

.data : > CO3SRAM
.bss : > CO3SRAM
.sysmem :> CO3SRAM
.stack : > CO3SRAM

How to Develop a Project With TI SYS/BIOS

I3 TEXAS
INSTRUMENTS SPRABW1

.cio : > CO3SRAM

.neardata :> CO3SRAM

.rodata :> CO03SRAM

.args : > CO3SRAM
}

__STACK_TOP = __stack + 256;

You can modify this file to customize the memory map for your device.

24 Build the Project

1. Open the Project Explorer window.

2. Right-click on the project name and select the Build Project command in the popup menu (see
Figure 7).

The build message is displayed in the Console window (see Figure 8) and the detailed error and
warning message is displayed in the Problems window (see Figure 9). If the building is done
successfully, an .out program file is generated in the related folder.

4 = MyExample [Active - Debug]

- 3% Binaries

: wi Includes

4 (= Debug
- = configPkg The output file will be
- @ mutex.obj - [ARM/le] / generated for running.
- @ MyExample.out - [ARM/le]

= ccsObjs.opt

= ccsSres.opt
makefile
mutex.pp
=l MyExample.map
objects.mk
sources.mk
subdir_rules.mk
subdir_vars.mk
> L& F28M35H52C1.cmd
> el mutex.c
7] F28M35H52C1.coxml [Active]
makefile.defs
A mutex.cfa [SYS/BIOS]

Figure 7. CCS Project Explorer Window

How to Develop a Project With TI SYS/BIOS 9

I3 TexAs
SPRABW1 INSTRUMENTS

El Console 3 | [Z! Problems | & Available Products & & | BB 2 Brriv"
CDT Build Console [MyExample]

#¥* Build of configuration Debug for project MyExample ****

C:\ti\ccsv5\utils\bin\gmake -k all

'Building target: MyExample.out'

"Invoking: ARM Linker'

"C:/ti/ccsvo/tools/compiler/tms470/bin/cl470" -mv7M3 --code_state=16 --abi=eabi -me -g --gcc --define=ccs --diag_warning=225 --display_error_number
--gen_func_subsections=on --ual -z --stack_size=256 -m"MyExample.map" --heap_size=0 fi"C:_/ti/ccsvS/tDUls/compiler/thsﬁ?@/lib"

-1"C:/ti/ccsv5/tools/compiler/tms470/include” --reread_libs --warn_sections --rom_model -o "MyExample.out™ -1"./configPkg/linker.cmd” “./mutex.obj”
-1"rtsv7M3_T_le_eabi.lib"™ "../F28M35H52C1.cmd"
<Linking>

"Finished building target: MyExample.out'

**¥% Build Finished *¥¥*

Figure 8. CCS Console Window

& Console |[£{ Problems &3 & Available Products =08
0 items

Degosintion Resource Path Location

Figure 9. CCS Problems Window
2.5 Debug the Project

The F28M35H52C1.ccxml file is a Target Configuration file. By double-clicking on the file name
in the Project Explorer window, you can get the Ul display for this file (see Figure 10). Before
downloading the .out file to the device, you can test the connection of the emulator by clicking
the [Test Connection] button.

% F28M35H52C1.coxml &2 =07

Basic

General Setup Advanced Setup
This section describes the general configuration about the target.

Connection ITexas Instruments XDS100v2 USB Emulator - Target Configuration: lists the configuration options for the target.

Board or Device type filter text

["] F28M35H2081 2
[F28m35H20C1

[F28m35H2281 -
Test Connection

D F28M35H22C1 To test a connection, all changes must have been saved, the
D F28M35H32B1 configuration file contains no errors and the connection type supports this function.

[] F28m35H32C1 -
[F28M35H5081

[] F28m35H50C1
[] F28m35H5281

F28M35H52C1
[F28M35M20B1 -

Save Configuration

Save

m

Note: Support for more devices may be available from the update manager.

4 i 2

Figure 10. ccxml File Edit Window
1. Connect one JTAG emulator with the PC.

10 How to Develop a Project With TI SYS/BIOS

i3 TExAS
INSTRUMENTS SPRABW1

2. Open the Target Configuration window.

3. Right-click the ccxml file and choose Launch Selected Configuration to open the CCS Debug
window.

4. Right-click the device core name and choose Connect Target from the popup menu to connect
CCS with the emulator.

5. After the connection is made, download the .out program file to the target emulator, and then
begin debugging the program.

Connect Target | — Download Program ,—— | Device core name
'+ CCS Debug - Source not fourAComposer Studio

File Edit View! Projett ols Run Scripts Window Help
milhd 4* @ & - AR < I

%> Debug 3 = | |~ & 62~ =08
4 % F28M35H52C1.coxml [Code Composer Studio - Device Debug@ing]
x@ Texas Instruments XDS100v2 USB Emulator/Cortex_M3_0 (Disconnected : Running)
& Texas Instruments XDS100v2 USB Emulator/C28xx_0 (Disconnected : Unknown)

Figure 11. CCS Debug Window
2.6 For More Reference

For more details about project building and debugging, refer the document TI SYS/BIOS Real-
time Operating System v6.x User’s Guide (http://www.ti.com/lit/ug/spruex3m/spruex3m.pdf).

3 Use of the Basic Components for a SYS/BIOS Project

3.1 Use .cfg File to Configure the System

You can configure SYS/BIOS applications by modifying the *.cfg configuration file in the project.
This file is written in the XDCscript language, which is a superset of JavaScript. CCS provides a
graphical configuration editor called XGCONF. You can edit the file by using the XGCONF GUI
interface. XGCONF is the default editor for files listed in the Project Explorer window. With the
GUI editor, it is easier to view and configure the system components. You can choose the
required components simply by clicking the icon, or you can configure the parameters by
choosing the related options.

For details about how to configure the parameters for your project with the XDC GUI editor, refer
the Tl SYS/BIOS user guide (SPRUEX3M http://www.ti.com/lit/ug/spruex3m/spruex3m.pdf). If
you are familiar with the JavaScript syntax, you can also edit the file with a text editor.

How to Develop a Project With TI SYS/BIOS 11

http://www.ti.com/lit/ug/spruex3m/spruex3m.pdf
http://www.ti.com/lit/ug/spruex3m/spruex3m.pdf

I3 TEXAS

SPRABW1 INSTRUMENTS

& SYS/BIOS - System Overview

System Overview [Runtime ” Error Handling H Device Support ” Advanced

Threads
ldle Clack Timer
[v)
BIOS
& Task Swi Huwi
& & &
Startup Synchronization
Semaphore Event Mailbox
- Startup D D)
Diagnostics Memory Mangement
@ErrurHand\ing L Memoary Gl
(v)

HeapMem HeapBuf HeapMultiBuf
& [v)

MCU SDK | SYS/BIOS & | XDC/Startup Properties Source
Figure 12. XDCtools GUI Window (SYS/BIOS System Component Overview)

£ SYS/BIOS - Basic Runtime Options Bo @

I Welcome HSystem Overview} Runtime

[Error Handling H Device Support ” Advanced]

~ Library Selection Options

SYS/BIOS library type
'Q'Instrumented
() Non-instrumented
() Custom
' Debug

~ Dynamic Instance Creation Support

Enable Dynamic Instance Creation

A savings in code and data size can be achieved by disabling
dynamic instance creation.

~ Runtime Memory Options
The library options above allow you to select pre-built libraries or System (Hwi and Swi) stack size 4096
rebuild the SYS/BIOS from sources based on your application’s .
configuration settings. Heap size 8192
Heap section null

Enable Asserts The heap configured above is used for the standard C malloc()

and free() functions or when the 'heap’ argument to
Memory alloc() is null.

Enable Logs
avel_compile -03 -g --optimize_with_debug

~ Threading Options

Enable Tasks These settings should reflect the hardware platform that runs your
Enable Software Interrupts application.

Enable Clock Manager

C Standard Library Lock

~ Platform Settings

CPU clock frequency (Hz) 75000000

MCU SDK |SYS/BIOS & | XDC/Startup Properties Source

Figure 13. XDCtools GUI Window (SYS/BIOS Runtime Options)

12 How to Develop a Project With TI SYS/BIOS

I3 TEXAS
INSTRUMENTS

SPRABW1

3.2 Entrance of the System

Like most systems, the entrance of the system is the function of main(). But the real entrance of
SYS/BIOS OS is the caller of BIOS_start() at the end of main(). The initialization for the
hardware of MCU, such as the GPIO port setting, peripheral interface configuration, must be

done before BIOS_start() is called.

A typical example of main() follows:

Int main(Void) //[Entrance of the system, the return type could be any type you want.
{

Error_Block eb;

Task_Params taskParams;

/* Call board init functions. */
Board_initGeneral();
Board_initGPIO();
Board_initUART();

/* Turn on user LED */
GPIO_write(Board_LED, Board_LED_ON);

[* Create the task */
Error_init(&eb);
Task_Params_init(&taskParams);
taskParams.instance->name = "echo";
echo = Task_create(echoFxn, &taskParams, &eb);
if (echo == NULL) {
System_printf("Task was not created\n");
System_abort("Aborting...\n");

}

[* Enable interrupts and start SYS/BIOS */
BIOS_start(); //[Entrance of the SYS/BIOS
return (0);

To ensure the project can be built successfully, generally four head files must be included in

your file. These head files are:
e <xdc/std.h>

o <xdc/runtime/System.h>
e <xdc/cfg/global.h>

o <ti/sysbios/BIOS.h>

How to Develop a Project With TI SYS/BIOS 13

I3 TEXAS

SPRABW1 INSTRUMENTS

3.3

3.3.1

3.3.2

14

Dynamically or Statically Create the Task

The task is basically a thread unit in the SYS/BIOS system. You can put your desired action,
which is not related with to? the interrupt, into a task. Sixteen priorities (0 through 15) were
defined for the task. Because task 0 is used by the default system idle task, you can define the
priority of your task from 1 to 15. The task with a priority of O has the lowest priority in the tasks
schedule. If you want a task to be initially inactive, set its priority to —1. Such tasks are not
scheduled to run until their priority is increased at runtime.

The tasks could be created dynamically or statically. Certainly, a task must be created once
dynamically or statically within a project.

If you will use tasks in your project, you must include the head file of <ti/sysbios/knl/Task.h> in
your code file.
Dynamically Creating the Task

Dynamically creating the task means the tasks are created in the .c code file. The task is created
when the program calls the calling function in which the task code is created.

A typical example of creating the task dynamically follows:

Task_Handle taskHandle;
Task_Params taskParams;
Error_Block eb;
Task_Params_init(&taskParams);
taskParams.stackSize = 640; /Idefine the stack size for the task
taskParams.priority = 2; /ldefine the priority of the task
taskParams.instance->name = "Serial";
Error_init(&eb);
taskHandle = Task_create(SerialMain, &taskParams, &eb);
if (taskHandle == NULL) {
System_printf("Task_create() failed\n");
BIOS_exit(0);
}

Statically Creating the Task

Statically creating the task means the tasks are created in the .cfg file. Once you add a task
instance in the .cfg file, the task is created when the main() is run.

As described in Section 3.1, you can edit the .cfg file by the GUI tool or script text editor.

Open the Outline window and double-click the Task icon; the GUI of the Task Thread
Management is displayed (see Figure 14). Tasks could be added or removed in the GUI. Also,
the parameters such as Function entry, Priority, Stack size, and so forth for the task could be
defined visually in the editor boxes. When you modify the value of the settings in the GUI
window, the script source code is automatically generated in the source window of the .cfg file
(see Figure 15).

How to Develop a Project With TI SYS/BIOS

I3 TEXAS
INSTRUMENTS SPRABW1

7 CCS Edit - MyExample/mutexcfg - Code Composer Studi
File Edit View Navigate Project Run Scripts Window Help

H+EB@ Rty fviE oD 5 %, CCS Debug [| >
o | mutexcrg 1 = 0| 2= outline = B=~-=8
&5 | 4 Task Thread Management - Instance Settings e @ & type filter text
. @ BIOS
Instance d
(et][stence |[agvances] . tod
~ Required Settings @ Defaults
Lol o @ Diags
andle [tas ® Error
Function task0_function_entry @ HeapMem
Priority 1 © Hui
® log
i 4 ® LoggerBuf
Use the vital flag to prevent system exit until this thread exits o loggerd
[¥] Task is vital © Main
~ Stack Control ® Memory Double-click
® Program
Stack size 2048 ® Semaphare to open the
Stack memory section .bss:taskStackSection ® SysMin
management
Stack pointer null ® System _a ageme
4 ® Task
Stack heap nul ;St % window.
~ Thread Context © Text
Argument 0 0
Argument 1 0
Environment pointer null
SYS/BIOS | Task 22 |Properties | Source
& *mutex.cfg 2 -

68 * Uncomment this line to disable the output of characters by SysMin
69 * when the program exits. SysMin writes characters to a circular buffer.
70 * This buffer can be viewed using the SysMin Output view in ROV.
71SysMin.flushAtExit = false;

72 */

73

74 1*

75 * The BIOS module will create the default heap for the system.

76 * Specify the size of this default heap.

77 %/

78BI0S.heapSize = 0x2000;

79

8@ /* System stack size (used by ISRs and Swis) */

81Program.stack = 0x1000;

82

83 /* Circular buffer size for System_printf() */

84 SysMin.bufSize = 0x400;

85

86 /*

87 * Create and install logger for the whole system

88 */

89var loggerBufParams = new LoggerBuf.Params();

90 loggerBufParams.numEntries = 32; . : =
91var logger® = LoggerBuf.create(loggerBufParams); Scrlpt source COde IS
92Defaults.common$.logger = logger®; generated automatica”y for

93 Main.common$.diags_INFO = Diags.ALWAYS_OM; .

91 task creation.

95 System. SupportPro: i |

96

7var task@Params = new Task.Params();
98 task@Params.instance.name = "task@";
99task@Params.priority = 3;

100 task@Params.stackSize = 1024;

101 Program.global.task® = Task.create("&task® function_entry", task@Params);
10

4 b
SYS/BIOS | Task Properties Source

Figure 15. XDCtools GUI Window (Script Source Code for Task)

Once the task has been created statically, it is not necessary to dynamically add creation code in
the .cfile.

How to Develop a Project With TI SYS/BIOS 15

SPRABW1

I3 TexAs
INSTRUMENTS

3.4

16

Statically creating the task is a good method because you could view the list of all of the tasks in
your project in the Task Thread Management XDC GUI window. But if the task would not be
lively during the system running period, it should be created dynamically.

For more detailed introduction about task thread, refer to the Tl SYS/BIOS v6.35 Real-time
Operating System User’s Guide (SPRUEX3M http://www.ti.com/lit/ug/spruex3m/spruex3m.pdf).

Usage of the Semaphores

Semaphore is one of the synchronization modules in the TI SYS/BIOS system. Semaphores are
often used to coordinate access to a shared resource among a set of competing tasks.
Semaphore objects can be declared as either counting or binary semaphores. For more details
about semaphores, refer to the TI SYS/BIOS v6.35 Real-time Operating System User’s Guide
(SPRUEX3M) (http://www.ti.com/lit/ug/spruex3m/spruex3m.pdf).

The head file <ti/sysbios/knl/Semaphore.h> must be included in your code file if you intend to
use semaphores to do synchronization between the competing tasks.

Two often-used functions for the semaphores are:

Bool Semaphore_pend(Semaphore_Handle sem, Ulnt timeout);

Void Semaphore_post(Semaphore_Handle sem);

You could call Semaphore_pend(semHandle,BIOS_WAIT_FOREVER) in a task thread to wait
for the other task thread releasing the share resource by calling Semaphore_post(semHandle).

Open the Outline window and double-click the Semaphore icon; the GUI of the Semaphore
Management is displayed (see Figure 16). Semaphores could be added or removed by simply
click the [Add] or [Remove] button in the Semaphore Management interface. The type of
semaphores and the other required settings could be set by clicking the selection box or input
characters in the edit box. After a semaphore is added, the related script source code is also
generated automatically (see Figure 17). Handle will be the first parameter of the
Semaphore_pend() and Semaphore_post() functions.

File Edit View Navigate Project Run Scripts Window Help

CvHR R~ i%p~id~ ERCR RS £ % CCS Debug [|
o [mutexety 22 = 0|82 outline 2 (B
&5 | ; Semaphore Management - Instance Settings [AREEER Y type filter text
Module || Instance ||Advanced © BIOS
® Clock
~ Semaphores ~ Required Setting ® Defaults
Hand hored o Do
semaphore
Dl Add an semaphore ® Error
Remove Initial count 0 © HeapMem
® Hwi
Semaphore type () Counting semaphore ® Log .
© Binay Semaphore © Loggersut Double-click
© loggerd
CE o o to open the
These options are only available when Event support is enabled by the Semaphore module. ® Mem management
Event instance null v © Program .
@ Semaphore W|ndow
EventId 1 © semaphore®

® SysMin
® System
® Task

© task)
® Text

SYS/BIOS | Task |Semaphore % | Properties | Source

How to Develop a Project With TI SYS/BIOS

http://www.ti.com/lit/ug/spruex3m/spruex3m.pdf
http://www.ti.com/lit/ug/spruex3m/spruex3m.pdf

I3 TEXAS
INSTRUMENTS

SPRABW1

Figure 16. XDCtools GUI Window (Semaphore Management)

& *mutex.cfg &I
72 */
73
74 /%
75 * The BIOS module will create the default heap for the system.
76 * Specify the size of this default heap.
77 */
78 BI0S.heapSize = 0x2000;
79

80 /* System stack size (used by ISRs and Swis) */
81 Program.stack = 0x1000;

82

83 /* Circular buffer size for System_printf() */
84 SysMin.bufSize = 9x400;

85

86 /*

87 * Create and install logger for the whole system
88 */

89var loggerBufParams = new LoggerBuf.Params();
90 loggerBufParams.numEntries = 32;

91var logger@® = LoggerBuf.create(loggerBufParams);
92 Defaults.common$.logger = logger®;
93Main.common$.diags_INFO = Diags.ALWAYS_ON;

94

95 System.SupportProxy = SysMin;

96

97var task@Params = new Task.Params();

98 task@Params.instance.name = "taske";

99 task@Params.priority = 3;

100 task@Params.stackSize = 1024;

Script source code of
101 Program.global.task® = Task.create("&task@_function_entry", task@Params); / Semaphore SettingS

102 var semaphore phore-Params ()T
- Maphore@Params.instance.name = "semaphore@”;

104 semaphore@Params .mode = Semaphore.Mode BINARY;

106

105Program.global. semaphore@ = Semaphore.create(null, semaphore@Params);

Figure 17. XDCtools GUI Window (Script Source Code for Semaphore)

3.5 Use of the Mailboxes

3.5.1 Introduction About the Mailboxes

Mailboxes are used to pass buffers from one task to another task in the system. The mailbox
module copies the buffer to fixed-size internal buffers. The size and number of these buffers are
specified when a mailbox instance is created. All buffers sent and received with a same mailbox

instance must be of the same size.

3.5.2 Use Mailboxes in Your Project

To use mailboxes in the project, you must ensure the mailbox component has been selected in
the System Overview window (see Figure 18). Once the mailbox is added into your configuration
(see Figure19), the related script code is added in the source code window. On the other hand,
the head file <ti/sysbios/knl/Mailbox.h> must be included in your code file.

var Mailbox = xdc.useModule('ti.sysbios.knl.Mailbox');

/lthis script code adds the mailbox module into the project.

§ynchr0nizati0n

I{:" This icon means

Semaphare
(V) (V)

the component is
selected.

SR

Figure 18. Selection of Synchronization Modules

How to Develop a Project With TI SYS/BIOS 17

SPRABW1

I3 TexAs
INSTRUMENTS

4 *mutexcfg i

& Mailbox Synchronization Manager - Module Settings

Module Instance || Advanced

Wl ¢

The Meailbox module provides a fixed length fifo message queue for Task communication and synchronization. Instances of this module are used by Tasks to communicate, in a flow-

controlled manner, with other threads in the system

: Mailbox module to my configuration

SYS/BIOS | Task Semaphore Mailbox & | Properties Source

Figure 19. XDCtools GUI Window (Mailbox Module Settings)

Open the Outline window and double-click the Mailbox icon, the GUI of the Semaphore
Management is displayed (see Figure 20). Mailboxes can be added or removed by simply
clicking the [Add] or [Remove] button. Normally, it is necessary to define only the Handle name,
the size, and the number parameters for a mailbox. However, the size of the mailbox must be
same as the size of the buffer which you will operate with this mailbox.

This size must be the same as the size
of the buf parameter in the
Mailbox_pend() and Mailbox_post().

& *mutexcfg &2

& Mailbox Synchronization Manager - Instance Settin

m Instance ||Advanced

B2 Outline 22

@ev=t

type filter text

= ® BIOS
Module Settings| ® Clock
~ Mailboxes ~ Required Settings ® Defaults
® Diags
Handle
® Error
Size of messages (char: ® HeapMem
Max number of messages 8 © Huwi
® Log
~ Event Synchronization ® LoggerBuf
The events below can be used to synchronize with threads that need to wait for messages to arrive in the mailbox {reader event) or for space to @ logger0
become available in the mailbox for a new message to be posted (writer event). # Mailbox
Reader event null id null & mailbox
. o mailboxl
Writer event null id null
@ Main
~ Message Memory Management & Memory
® Program
Heap null ® Semaphore
Buffer section null o semaphore0
Buffer pointer null © SysMin
i ® System
Buffer size (chars) 0 ® Tack
© task0
® Text

SYS/BIOS |Task Semaphore Mailbox 2 | Properties Source

Figure 20. XDCtools GUI Window (Mailbox Instance Settings)

3.5.3 Often-used SYS/BIOS API Function for Mailbox

Two often-used functions for mailbox are:

18 How to Develop a Project With TI SYS/BIOS

I3 TEXAS
INSTRUMENTS SPRABW1

Bool Mailbox_pend(Mailbox_Handle handle, Ptr buf, Ulnt timeout);
Bool Mailbox_post(Mailbox_Handle handle, Ptr buf, Uint timeout);

Mailbox_pend() is used to read a buffer from a mailbox. If no buffer is available (that is, the
mailbox is empty) and the time-out parameter is WAIT_FOREVER, Mailbox_pend() blocks.

Mailbox_post() is used to post a buffer to the mailbox. If no buffer slots are available (that is, the
mailbox is full) and the time-out parameter is WAIT_FOREVER, Mailbox_post() blocks.

3.6 Use of the Hwi Tasks

3.6.1 Introduction to the Hwi

The Hwi is a special type of target- and device-specific task. Hwis are used to manage hardware
interrupts, and they must be applied in response to external asynchronous events. For a detailed
introduction, refer Section 3.3 in the TI SYS/BIOS v6.33 Real-time Operating System User’s
Guide (SPRUEX3M) (http://www.ti.com/lit/ug/spruex3m/spruex3m.pdf).

3.6.2 Add Hwi Module in Your Project

To use Hwi tasks, the target-specific hardware interrupts module must be added into the
configuration of the project. We use Cortex-M3 core as the example. Figure 21 shows the
module settings. If you are not familiar with the configuration, try to keep the default values of
most options.

How to Develop a Project With TI SYS/BIOS 19

http://www.ti.com/lit/ug/spruex3m/spruex3m.pdf

I3 TexAs
SPRABW1 INSTRUMENTS

& M3 Hardware Interrupts - Module Settings

Module Instance ||Advanced

The Hwi module provides M3-specific interrupt management services that extend those provided by the generic ti.sysbios.hal. Hwi module.

M3-specific Hardware Interrupt to my configuration

~ Interrupt Handling

fir &

~ Stack Management

Priority threshold for Hwi_disable() 32 System (Hwi and Swi) stack size 4096

| Initialize stack
| Check for stack overflow

~ Exception Handling ~ Dispatcher

Enable full exception decoding | Enable interrupt nesting

| Enable software interrupt support
= Advanced | Enable Task support
Auto stack alignment in exception | Enable Irp tracking
All faults ignore BUS Faults
Trap on divide by zero
Trap on all unaligned accesses
User exception context buffer address 0x0
User exception stack buffer address null

User exception hook function null

MCU SDK | SYS/BIOS XDC/Startup Task ti_sysbios_family_arm_m3_Hwi0 2 Properties Source

Figure 21. XDCtools GUI Window (Hardware Interrupt Module Settings)

The following script code is automatically added into the source of the .cfg file after the “Add M3-
specific Hardware Interrupt to my configuration” checkbox is selected.

var ti_sysbios_family_arm_m3_Hwi = xdc.useModule('ti.sysbios.family.arm.m3.Hwi');

3.6.3 An Hwi Instance Example Based on Concerto™ F28M35x

We use the IPC3 interrupt as the example to introduce how to configure the Hwi task for it.

Open the Outline window and double-click the Hwi icon, the GUI of the M3 Hardware Interrupts
— Instance Settings is displayed (see Figure 22). Hwis can be added or removed by simply
clicking the [Add] or [Remove] button. The “ISR function” processes the respond for the interrupt.

For the Interrupt number and Interrupt priority settings, we must refer the data sheet and the
Reference Manual about the device.

20 How to Develop a Project With TI SYS/BIOS

I3 TEXAS
INSTRUMENTS

SPRABW1

& M3 Hardware Interrupts - Instance Settings

Advanced

~ Required Settings

Module nstance

~ Hwis

ti_sysbios_family_arm|

Handle ti_sysbios_family_arm_m3_Hwi0

ISR function IPC_rxIntHndlr
Interrupt nufber 98
~ Additional Settings

Argument passed to ISR function_0

Interrupt priority
Enable at startup

[AR

type filter text
® 8I0S
4 ® Clock
° clocko
® Defauits
© Diags
® Error
+ ® HeapMem
4 ® Hwi (tisysbios.family.arm.m3)
© ti_sysbios_family_arm_m3_Hwi0
@ Hui (ti.sysbios.hal)
® Load
® Log
+ @ Mailbox
@ Main
® Mcusdk
@ Memory
@ Program
» ® Semaphore
@ Startup
- ® Swi
® Syslex
® System
- @ Task
® Text
© Timestamp

Figure 22. XDCtools GUI Window (Hardware Interrupt Instance Settings)

Table 2 is an interrupts table taken from SPRS742H
(http://www.ti.com/lit/ds/symlink/f28m35h52c.pdf). In this table, we see that CTOMIPC3 has a

vector number of 98 and an interrupt number of 82. The vector number 98 is the interrupt
number 98 which was entered in the XDCtool shown as Figure 22.

Table 2. Interrupts from NVIC to Cortex-M3
(Bit imzztf:;ula:?;tem] Vector Number Vector Address or Offset Description

59 75 0x0000.012C UART3
60 76 0x0000.0130 UART4

61-63 77-19 - Reserved
64 80 0x0000.0140 CAN1 INTO
65 81 0x0000.0144 CAN1 INT1
66 82 0x0000.0148 CAN1INTO
67 83 0x0000.014C CAN1 INT1

68-71 84-87 - Reserved
72 88 0x0D000.0160 ADCINT1
73 89 0x0000.0164 ADCINT2
74 20 0x0000.0168 ADCINT3
75 a1 0x0000.016C ADCINT4
76 92 0x0000.0170 ADCINTS
7 93 0x0000.0174 ADCINTE
78 94 0x0000.0178 ADCINT?
79 95 0x0000.017C ADCINTS8
80 96 0x0000.0180 CTOMIPCA
a1 a7 0x0000.0184 CTOMIPC2
82 (€D 0x0000.0188 CTOMIPC3
a3 99 0x0000.018C CTOMIPC4

In SPRUH22B (http://www.ti.com/lit/ug/spruh22f/spruh22f.pdf), the priority register for interrupt

82 has been assigned to PRI20. See Table 3 for the definition. Then, we determined that bit 22
in Table 4, which is bit 6 of the PRI20 register, is used for the interrupt priority setting for
interrupt 82. To set the priority of interrupt 82, the value of PRI20 should be set to hex value
0x20 (equal to decimal value 32). This value is the value 32, which should be entered into the
“Interrupt priority” edit box of the Instance Settings GUI (see Figure 22).

How to Develop a Project With TI SYS/BIOS 21

http://www.ti.com/lit/ds/symlink/f28m35h52c.pdf
http://www.ti.com/lit/ug/spruh22f/spruh22f.pdf

I3 TEXAS

SPRABW1 INSTRUMENTS
Table 3. Peripherals Register Map

Offset Name Type Reset Description
0x408 PRIZ RIW 0x0000.0000 Interrupt 8-11 Priority
0x40C PRI3 RIW 0x0000.0000 Interrupt 12-15 Priority
0x410 PRI4 RIW 0x0000.0000 Interrupt 16-19 Priority
Ox414 PRI5 RIW 0x0000.0000 Interrupt 20-23 Priority
0x418 PRI RIW 0x0000.0000 Interrupt 24-27 Priority
0x41C PRI7 RIW 0x0000.0000 Interrupt 28-31 Priority
0x420 PRIB RIW 0x0000.0000 Interrupt 32-35 Priority
0x424 PRI9 RIW 0x0000.0000 Interrupt 36-39 Priority
0x428 PRI10 RIW 0x0000.0000 Interrupt 40-43 Priority
0x42C PRI11 RIW 0x0000.0000 Interrupt 44-47 Priority
0x430 PRI12 RIW 0x0000.0000 Interrupt 48-51 Priority
0x434 PRI13 RIW 0x0000.0000 Interrupt 52-55 Priority
0x438 PRI14 RIW 0x0000.0000 Interrupt 56-59 Priority
0x43C PRI15 RIW 0x0000.0000 Interrupt 60-63 Priority
0x440 PRI16 RIW 0x0000.0000 Interrupt 64-67 Priority
Ox444 PRIN7 RIW 0x0000.0000 Interrupt 68-71 Priority
0x448 PRI18 RIW 0x0000.0000 Interrupt 72-75 Priority
0x44C PRI19 RIW 0x0000.0000 Interrupt 76-79 Priority

< UxA50 PRIZO RIW 0x0000.0000 Interrupt 80-83 Priority

k| 29 28 24 23 21 20 16
| INTD | Reserved | INTC | Reserved
RW-0 R-0 RW-0 R-0
15 13 12 8 T 5 4 1]
| INTB | Reserved | INTA | Reserved
RW-0 R-0 RW-0 R-0

22

Figure 23. Interrupt 0 to 91 Priority (PRIO to PRI22) Registers

Table 4. Interrupt 0 to 91 Priority (PRIO to PRI22) Registers Field Descriptions
Bit Field Value |Description

31-29 |[INTD Interrupt Priority for Interrupt [4n+3]
This field holds a priority value, 0-7, for the interrupt with the number [4n+3], where n is the number
of the Interrupt Priority register (n=0 for PRIO, and so on). The lower the value, the greater the
priority of the corresponding interrupt.

28-24 | Reserved Reserved

23-21 NINTC Interrupt Priority for Interrupt [4n+2]

b This field holds a priority value, 0-7, for the interrupt with the number [4n+2], where n is the number
of the Interrupt Priority register (n=0 for PRIO, and so on). The lower the value, the greater the
priority of the corresponding interrupt.

20-16 | Reserved Reserved
15-13 | INTB Interrupt Priority for Interrupt [4n+1
This field holds a priority value, 0-7, for the interrupt with the number [4n+1], where n is the number
of the Interrupt Priority register (n=0 for PRIO, and so on). The lower the value, the greater the
priority of the corresponding interrupt.
12-8 | Reserved Reserved
7-5 INTA Interrupt Priority for Interrupt [4n]
This field holds a priority value, 0-7, for the interrupt with the number [4n], where n is the number of
the Interrupt Priority register (n=0 for PRI0, and so on). The lower the value, the greater the priority
of the corresponding interrupt.
4-0 Reserved Reserved

How to Develop a Project With TI SYS/BIOS

I3 TEXAS
INSTRUMENTS SPRABW1

To use the Hwi tasks in your project, the head file <ti/sysbios/family/arm/m3/Hwi.h> must be
included in your .c file. The other hardware-related head files such as hw_ints.h, which is in the
“MWare\inc”, should also be included in your .c files.

In this example, the ISR function body is as follows:

void IPC_rxIntHndlIr(void)

/I stat
IPC_cntxt.rx_isr ++;

/l mark CM3 is busy
IPC_setBusylndn();

/I post semaphore to task
CM3_Post_ HCT_RX_Semaphore();

Il Acknowledge IPC INT3 from C28 to ACK
HWREG(MTOCIPC_BASE + IPC_O_CTOMIPCACK) |= IPC_CTOMIPCACK_IPC3;

To make a Hwi task work normally, it is very important to set the correct configuration for the
task.

References

TI-RTOS 1.21 Getting Started Guide (SPRUHD3G)

TI SYS/BIOS v6.35 Real-time Operating System User’s Guide (SPRUEX3M)
TI SYS/BIOS Real-time Operating System v6.x User’s Guide (SPRUEX3J)
Concerto Microcontrollers (SPRS742H)

Concerto F28M35x Technical Reference Manual (SPRUH22B)

GOALODN~

How to Develop a Project With TI SYS/BIOS 23

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESDA48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent Tl deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

Tl assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of significant portions of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. Tl is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
Tl is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify Tl and its representatives against any damages arising out of the use
of any Tl components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No Tl components are authorized for use in FDA Class Ill (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those Tl components which Tl has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, Tl will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters
DLP® Products

DSP

Clocks and Timers
Interface

Logic

Power Mgmt
Microcontrollers
RFID

OMAP Applications Processors
Wireless Connectivity

dataconverter.ti.com

www.dlp.com

dsp.ti.com
www.ti.com/clocks

interface.ti.com

logic.ti.com

power.ti.com
microcontroller.ti.com

www.ti-rfid.com
www.ti.com/omap

Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial

Medical

Security

Space, Avionics and Defense
Video and Imaging

Tl E2E Community

www.ti.com/wirelessconnectivity

www.ti.com/computers

www.ti.com/consumer-apps

www.ti.com/energy
www.ti.com/industrial

www.ti.com/medical

www.ti.com/security
www.ti.com/space-avionics-defense

www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

