
MSP430x09x Family

User's Guide

Literature Number: SLAU321

September 2010

2 SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Contents

Preface .. 11

1 System Resets, Interrupts, and Operating Modes, Compact System Control Module (CSYS) 13
1.1 Compact System Control Module Introduction .. 14
1.2 Principle of Operation ... 14

1.2.1 Device Descriptor Table ... 14
1.2.2 Start-Up Code (SUC) .. 14
1.2.3 Boot Loader Code .. 14
1.2.4 JTAG Mailbox (JMB) System ... 14

1.3 Memory Map – Uses and Abilities .. 15
1.3.1 Vacant Memory Space ... 15
1.3.2 Start-Up Code (SUC) .. 15
1.3.3 SYS Interrupt Vector Generators ... 16

1.4 Interrupts .. 17
1.4.1 (Non)-Maskable Interrupts (NMI) ... 17
1.4.2 SNMI Timing .. 18
1.4.3 Maskable Interrupts .. 18

1.5 Operating Modes .. 20
1.5.1 Entering and Exiting Low-Power Modes .. 22

1.6 Principles for Low-Power Applications .. 23
1.7 Connection of Unused Pins .. 23
1.8 Reset and Subtypes ... 24
1.9 RST/NMI/SVMOUT Logic .. 25
1.10 Interrupt Vectors ... 26
1.11 Special Function Registers ... 27
1.12 CSYS Registers ... 31
1.13 CSYS PMM Register Replica .. 38

2 Compact Clock System (CCS) ... 39
2.1 Compact Clock System (CCS) Introduction .. 40
2.2 CCS Module Operation ... 41

2.2.1 Operation From Low-Power Modes Requested by Peripheral Modules 41
2.2.2 Internal Low-Frequency Oscillator .. 41
2.2.3 Internal Trimmable High-Frequency Oscillator ... 41
2.2.4 External Clock Source ... 41
2.2.5 Compact Clock System Module Fail-Safe Operation .. 42

2.3 CCS Module Registers ... 43

3 CPU ... 49
3.1 CPU Introduction .. 50
3.2 CPU Registers ... 51

3.2.1 Program Counter (PC) ... 51
3.2.2 Stack Pointer (SP) .. 52
3.2.3 Status Register (SR) ... 53
3.2.4 Constant Generator Registers CG1 and CG2 .. 53
3.2.5 General-Purpose Registers R4 to R15 .. 54

3.3 Addressing Modes ... 55
3.3.1 Register Mode .. 55

3SLAU321–September 2010 Contents
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com

3.3.2 Indexed Mode ... 56
3.3.3 Symbolic Mode ... 57
3.3.4 Absolute Mode .. 58
3.3.5 Indirect Register Mode ... 59
3.3.6 Indirect Autoincrement Mode ... 60
3.3.7 Immediate Mode .. 61

3.4 Instruction Set .. 62
3.4.1 Double-Operand (Format I) Instructions ... 63
3.4.2 Single-Operand (Format II) Instructions ... 64
3.4.3 Jumps .. 65
3.4.4 Instruction Set ... 66
3.4.5 Instruction Cycles and Lengths ... 117
3.4.6 Instruction Set Description ... 119

4 Versatile I/O Port .. 121
4.1 Versatile I/O Ports (VersaPorts) and Digital I/O Ports .. 122
4.2 Versatile I/O Port Introduction .. 122
4.3 Versatile I/O Port Operation .. 123

4.3.1 Input Register PxIN ... 123
4.3.2 Output Registers PxOUT ... 123
4.3.3 Direction Registers PxDIR ... 124
4.3.4 Pullup/Pulldown Resistor Enable Registers PxREN .. 124
4.3.5 Function Select Registers PxSELxx .. 124
4.3.6 Versatile I/O Port Interrupts .. 124
4.3.7 Configuring Unused Port Pins ... 126

4.4 Versatile I/O Port Registers ... 127

5 Watchdog Timer (WDT_A) ... 131
5.1 WDT_A Introduction ... 132
5.2 WDT_A Operation ... 134

5.2.1 Watchdog Timer Counter (WDTCNT) .. 134
5.2.2 Watchdog Mode ... 134
5.2.3 Interval Timer Mode .. 134
5.2.4 Watchdog Timer Interrupts .. 134
5.2.5 Clock Fail-Safe Feature .. 135
5.2.6 Operation in Low-Power Modes ... 135
5.2.7 Software Examples ... 135

5.3 WDT_A Registers .. 136

6 Timer_A .. 137
6.1 Timer_A Introduction .. 138
6.2 Timer_A Operation ... 139

6.2.1 16-Bit Timer Counter ... 139
6.2.2 Starting the Timer ... 140
6.2.3 Timer Mode Control ... 140
6.2.4 Capture/Compare Blocks .. 144
6.2.5 Output Unit ... 146
6.2.6 Timer_A Interrupts .. 150

6.3 Timer_A Registers ... 152

7 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL) 157
7.1 Analog-Functions Pool Module Introduction .. 158
7.2 Principle of Operation ... 158

7.2.1 Analog Elementary Functions ... 158
7.2.2 Digital Elementary Functions .. 158

7.3 A-POOL Analog Components and Paths ... 159

4 Contents SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com

7.3.1 Reference Voltage Source ... 159
7.3.2 Internal vs External Reference Voltage Source ... 159
7.3.3 Temperature Sensor .. 160
7.3.4 Input Voltage Dividers .. 160
7.3.5 Comparator in Non-Compensated Mode .. 160
7.3.6 Comparator in Compensated Mode .. 161
7.3.7 DAC and Output Buffer ... 161

7.4 A-POOL Digital Components and Paths .. 162
7.4.1 Deglitching filter ... 162
7.4.2 Clock Logic and Prescaler ... 163
7.4.3 Conversion Register and Conversion Buffer Register ... 163
7.4.4 Fractional and Integer Numbers .. 164
7.4.5 Numeric Saturation and End of Conversion Indication ... 164
7.4.6 Interrupt Logic ... 165

7.5 Simple Application Examples With A-POOL-main ... 165
7.5.1 DAC Operation for Classical Digital Control Purposes ... 165
7.5.2 ADC Conversions Without Error Compensation .. 165
7.5.3 ADC Conversions With Overdrive Compensation .. 166
7.5.4 ADC Conversions With Offset Compensation ... 168
7.5.5 Evaluation of DAC Buffer Offset .. 169
7.5.6 ADC Conversions for Measuring .. 169
7.5.7 Windowed ADC Conversions .. 170
7.5.8 Full Analog Signal Chain Setup With Interleaved SVM Operations 172
7.5.9 Multiple ADC Channels .. 173

7.6 A-POOL Control Registers .. 175

8 MSP430L092 Loader Code (Quick Start) ... 185
8.1 Loader Code Introduction ... 186

8.1.1 Typical Two-Chip Application .. 186
8.1.2 Code Generation, Conventions, and Restrictions .. 187
8.1.3 Start-Up Behavior and Timing ... 187
8.1.4 Failsafe Mechanism .. 188
8.1.5 Data Structure of the SPI Memory .. 188
8.1.6 Data/Program Containers .. 189
8.1.7 Interrupt Handling ... 190

8.2 Target Hardware ... 191
8.2.1 Selection of the SPI Devices Supported by the Loader .. 191
8.2.2 Booster Converters ... 192
8.2.3 Adaptation Networks .. 193

5SLAU321–September 2010 Contents
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com

List of Figures

1-1. Interrupt Priority.. 17

1-2. NMI Interrupts with Reentrance Protection .. 18

1-3. Interrupt Processing... 19

1-4. Return From Interrupt ... 19

1-5. Operation Modes for the MSP430x09x Family .. 21

1-6. BOR/POR/PUC Reset Circuit.. 24

1-7. RST/NMI/SVMOUT Circuit ... 25

2-1. CCS Block Diagram ... 40

2-2. Oscillator Fault Logic for Devices With HF-OSC .. 42

3-1. CPU Block Diagram ... 51

3-2. Program Counter .. 52

3-3. Stack Counter.. 52

3-4. Stack Usage.. 52

3-5. PUSH SP - POP SP Sequence ... 52

3-6. Status Register Bits ... 53

3-7. Register-Byte/Byte-Register Operations.. 54

3-8. Operand Fetch Operation .. 60

3-9. Double Operand Instruction Format .. 63

3-10. Single Operand Instruction Format.. 64

3-11. Jump Instruction Format.. 65

3-12. Decrement Overlap.. 82

3-13. Main Program Interrupt.. 102

3-14. Destination Operand – Arithmetic Shift Left .. 103

3-15. Destination Operand-Carry Left Shift.. 104

3-16. Destination Operand – Arithmetic Right Shift .. 105

3-17. Destination Operand—Carry Right Shift .. 106

3-18. Destination Operand Byte Swap ... 113

3-19. Destination Operand Sign Extension.. 114

3-20. Core Instruction Map .. 119

4-1. Typical Schematic of the Port Logic ... 123

5-1. Watchdog Timer Block Diagram ... 133

6-1. Timer_A Block Diagram ... 139

6-2. Up Mode .. 141

6-3. Up Mode Flag Setting ... 141

6-4. Continuous Mode .. 141

6-5. Continuous Mode Flag Setting ... 142

6-6. Continuous Mode Time Intervals .. 142

6-7. Up/Down Mode ... 143

6-8. Up/Down Mode Flag Setting.. 143

6-9. Output Unit in Up/Down Mode ... 144

6-10. Capture Signal (SCS = 1)... 144

6-11. Capture Cycle .. 145

6-12. Output Example – Timer in Up Mode ... 147

6-13. Output Example – Timer in Continuous Mode ... 148

6-14. Output Example – Timer in Up/Down Mode.. 149

6-15. Capture/Compare TAxCCR0 Interrupt Flag .. 150

7-1. A-POOL Analog Components and Signal Paths (With Digital Components in Gray)........................... 159

6 List of Figures SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com

7-2. Comparator in Non-Compensated Mode ... 160

7-3. Comparator in Compensated Mode ... 161

7-4. A-POOL Digital Components (With Analog Components in Gray) .. 162

7-5. Conversion Register and Conversion Buffer ... 163

7-6. Simple ADC Conversion Principle ... 166

7-7. Overdrive Compensation Up-Ramp ... 167

7-8. Overdrive Compensation Down-Ramp.. 167

7-9. Overdrive Compensation by Up/Down-Ramp Concatenation.. 167

7-10. Comparator Offset ... 168

7-11. ADC Conversion With Overall Compensation.. 169

7-12. Windowed ADC Conversion .. 171

7-13. ADC Conversions Range Terminated... 171

7-14. Full Signal-Chain Timing Diagram ... 172

7-15. Multichannel ADC Conversion ... 173

8-1. Debugging Scenarios With MSP430x09x Devices .. 186

8-2. Component Optimized Application Circuit for 0.9-V Supply .. 187

8-3. Timing of Successful Load Operation ... 188

8-4. Data Structures in SPI Memory .. 189

8-5. Data/Program Container .. 190

8-6. Secondary Interrupt Vectors.. 190

8-7. Generic Block Diagram of Target Hardware ... 191

8 Booster Converter Type A .. 192

9 Booster Converter Type B .. 192

10 Booster Converter Type C .. 192

11 Booster Converter Type D .. 192

12 Booster Converter Type E .. 192

13 Booster Converter Type F .. 192

14 Adaptation Network Type A .. 193

15 Adaptation Network Type B .. 193

16 Adaptation Network Type C .. 193

17 Adaptation Network Type D .. 193

7SLAU321–September 2010 List of Figures
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com

List of Tables

1-1. Memory Map ... 15

1-2. Operating Modes for the MSP430x09x Family .. 22

1-3. Connection of Unused Pins .. 23

1-4. Interrupt Sources, Flags, and Vectors .. 26

1-5. SFR Base Address .. 27

1-6. Special Function Registers... 27

1-7. CSYS Base Address .. 31

1-8. SYS Configuration Registers... 31

2-1. CCS Register Base Address... 43

2-2. CCS Control Registers.. 43

3-1. Description of Status Register Bits.. 53

3-2. Values of Constant Generators CG1, CG2 .. 53

3-3. Source/Destination Operand Addressing Modes.. 55

3-4. Register Mode Description ... 55

3-5. Indexed Mode Description ... 56

3-6. Symbolic Mode Description .. 57

3-7. Absolute Mode Description... 58

3-8. Indirect Mode Description .. 59

3-9. Indirect Autoincrement Mode Description .. 60

3-10. Immediate Mode Description... 61

3-11. Double Operand Instructions .. 63

3-12. Single Operand Instructions.. 64

3-13. Jump Instructions.. 65

3-14. Interrupt and Reset Cycles ... 117

3-15. Format-II Instruction Cycles and Lengths... 117

3-16. Format 1 Instruction Cycles and Lengths... 118

3-17. MSP430 Instruction Set ... 119

4-1. I/O Configuration ... 124

4-2. I/O Function Selection... 124

4-3. Writing to PxIESx .. 126

4-4. Versatile I/O Ports Base Address.. 127

4-5. Versatile I/O Port Control Registers ... 127

5-1. Watchdog Timer Registers ... 136

6-1. Timer Modes.. 140

6-2. Output Modes .. 146

6-3. Timer_A Registers ... 152

7-1. Deglitching Filter ... 162

7-2. Clock enable for A-POOL in Various Operation Cases ... 163

7-3. Fractional and Integer Values used with A-POOL... 164

7-4. Integer, Q7, Q15 and Corresponding Internal Voltages .. 164

7-5. Saturation Schemes for Up and Down Ramps... 164

7-6. Interrupt Logic Behavior... 165

7-7. A-POOL Base Address.. 175

7-8. A-POOL Control Registers.. 175

8-1. Debugging Scenarios With MSP430x09x Devices .. 186

8-2. Secondary Interrupt Vectors.. 191

8-3. SPI Commands Used by Loader... 191

8 List of Tables SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com

8-4. Values of Components .. 192

9SLAU321–September 2010 List of Tables
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

10 List of Tables SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Preface
SLAU321–September 2010

Read This First

About This Manual

This manual describes the modules and peripherals of the family of devices. Each description presents
the module or peripheral in a general sense. Not all features and functions of all modules or peripherals
may be present on all devices. In addition, modules or peripherals may differ in their exact implementation
between device families, or may not be fully implemented on an individual device or device family.

Pin functions, internal signal connections, and operational parameters differ from device to device. The
user should consult the device-specific data sheet for these details.

Related Documentation From Texas Instruments

For related documentation see the web site http://www.ti.com/msp430.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can
radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable
protection against radio frequency interference. Operation of this equipment in other environments may
cause interference with radio communications, in which case the user at his own expense will be required
to take whatever measures may be required to correct this interference.

Notational Conventions

Program examples, are shown in a special typeface.

Glossary

ACLK Auxiliary Clock

ADC Analog-to-Digital Converter

BOR Brown-Out Reset; see System Resets, Interrupts, and Operating Modes

BSL Bootstrap Loader; see www.ti.com/msp430 for application reports

CPU Central Processing Unit See RISC 16-Bit CPU

DAC Digital-to-Analog Converter

DCO Digitally Controlled Oscillator; see FLL+ Module

dst Destination; see RISC 16-Bit CPU

FLL Frequency Locked Loop; see FLL+ Module

GIE Modes General Interrupt Enable; see System Resets Interrupts and Operating

INT(N/2) Integer portion of N/2

I/O Input/Output; see Digital I/O

ISR Interrupt Service Routine

LSB Least-Significant Bit

LSD Least-Significant Digit

LPM Low-Power Mode; see System Resets Interrupts and Operating Modes; also named PM for Power Mode

MAB Memory Address Bus

11SLAU321–September 2010 Read This First
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com

MCLK Master Clock

MDB Memory Data Bus

MSB Most-Significant Bit

MSD Most-Significant Digit

NMI (Non)-Maskable Interrupt; see System Resets Interrupts and Operating Modes; also split to UNMI and SNMI

PC Program Counter; see RISC 16-Bit CPU

PM Power Mode See; system Resets Interrupts and Operating Modes

POR Power-On Reset; see System Resets Interrupts and Operating Modes

PUC Power-Up Clear; see System Resets Interrupts and Operating Modes

RAM Random Access Memory

SCG System Clock Generator; see System Resets Interrupts and Operating Modes

SFR Special Function Register; see System Resets, Interrupts, and Operating Modes

SMCLK Sub-System Master Clock

SNMI System NMI; see System Resets, Interrupts, and Operating Modes

SP Stack Pointer; see RISC 16-Bit CPU

SR Status Register; see RISC 16-Bit CPU

src Source; see RISC 16-Bit CPU

TOS Top of stack; see RISC 16-Bit CPU

UNMI User NMI; see System Resets, Interrupts, and Operating Modes

WDT Watchdog Timer; see Watchdog Timer

z16 16 bit address space

Register Bit Conventions

Each register is shown with a key indicating the accessibility of the each individual bit, and the initial
condition:

Register Bit Accessibility and Initial Condition

Key Bit Accessibility

rw Read/write

r Read only

r0 Read as 0

r1 Read as 1

w Write only

w0 Write as 0

w1 Write as 1

(w) No register bit implemented; writing a 1 results in a pulse. The register bit is always read as 0.

h0 Cleared by hardware

h1 Set by hardware

-0,-1 Condition after PUC

-(0),-(1) Condition after POR

-[0],-[1] Condition after BOR

-{0},-{1} Condition after Brownout

12 Read This First SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Chapter 1
SLAU321–September 2010

System Resets, Interrupts, and Operating Modes,
Compact System Control Module (CSYS)

The Compact System Control Module (CSYS) is integrated into various devices with different feature sets.
It provides start-up functionality and interrupt support functions.

The following list shows the basic feature set of CSYS.

• Power on reset (BOR/POR) handling
• Power up clear (PUC) handling
• NMI (SNMI/UNMI) event source selection and management
• Address decoding
• Providing an user data exchange mechanism via the JTAG Mailbox (JMB)
• Configuration management (device descriptors)
• Providing interrupt vector generators for resets and NMIs

Topic ... Page

1.1 Compact System Control Module Introduction .. 14
1.2 Principle of Operation .. 14
1.3 Memory Map – Uses and Abilities .. 15
1.4 Interrupts ... 17
1.5 Operating Modes ... 20
1.6 Principles for Low-Power Applications .. 23
1.7 Connection of Unused Pins .. 23
1.8 Reset and Subtypes ... 24
1.9 RST/NMI/SVMOUT Logic .. 25
1.10 Interrupt Vectors ... 26
1.11 Special Function Registers ... 27
1.12 CSYS Registers ... 31
1.13 CSYS PMM Register Replica ... 38

13SLAU321–September 2010 System Resets, Interrupts, and Operating Modes, Compact System Control
Module (CSYS)Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Compact System Control Module Introduction www.ti.com

1.1 Compact System Control Module Introduction

The CSYS module is responsible for interaction between various modules throughout the system. The
functions CSYS provides for are not inherent to the modules themselves. Address decoding, bus
arbitration, interrupt event collection/prioritization, and reset generation are some of the many functions
that CSYS provides.

1.2 Principle of Operation

The CSYS module provides a series of services that can be used by the application program. Some of
these services however can be locked to fulfill code protection requirements. Some bit fields used for
common functions are defined as reserved when not implemented on a particular device; this allows a
maximum of compatibility among the devices within the MSP430 microcontroller family with CSYS
modules.

1.2.1 Device Descriptor Table

Each MSP430 provides a data structure in memory that allows an unambiguous identification of the
device. Device adaptive software -tools and libraries need a more detailed description of the available
modules on a given device. The SYS module provides this information and can be used by device
adaptive software tools and libraries to clearly identify a particular device and all modules/capabilities
contained within it. The validity of the device descriptor can be verified by CRC (cyclic redundancy check).

1.2.2 Start-Up Code (SUC)

The start-up code is always executed after a BOR. The SUC provides basic routines for testing ROM
mask and other test related functions. SUC gives control immediately to the user code on normal startups
(no test functions invoked). All POR and PUC requests fire an security BOR during SUC execution. This
insures completion of SUC before entering user code.

1.2.3 Boot Loader Code

The MSP430 boot loader is software that is executed after startup on certain devices (e.g. MSP430L092).
This boot loader enables the user to store its code to external memory accessible via I2C or SPI. The boot
loader scans the external memory devices for a valid code signature an then loads the associated code
into the internal RAM memory and invokes it. A set functions supporting this was introduced to support
code development and testing during the prototyping phase of the final product.

1.2.4 JTAG Mailbox (JMB) System

The CSYS module provides the capability to exchange user data via the regular JTAG test/debug
interface. The idea behind the JTAG mailbox system is to have a direct interface to the CPU during
debugging, programming and test that is identical for all MSP430 devices of this family and uses only few
or no user application resources. The JTAG interface was chosen because it is available on all MSP430
devices and is a dedicated resource for debugging, programming, and test.

Applications of the JTAG mailbox system are:

• Providing entry password for software security fuse
• Run-time data exchange (RTDX)

14 System Resets, Interrupts, and Operating Modes, Compact System Control SLAU321–September 2010
Module (CSYS) Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Memory Map – Uses and Abilities

1.3 Memory Map – Uses and Abilities

The memory map shown in Table 1-1 represents the MSP430x09x device. Though the address ranges
differs from device to device, overall behavior remains the same.

Table 1-1. Memory Map

May generate NMI on read/write/fetch

Protectable against read access

Protectable against write access

Generates PUC on fetch access

Mirrored Memory location optional

Address Name/Purpose Properties

00000h - 00FFFFh Peripherals (with gaps)

00000h - 000FFh Reserved for system -extension

00100h - 00FEFh Peripherals X

00FF0h - 00FF3h Descriptor type X

00FF4h - 00FF7h Start address of descriptor structure X

01C00h - 023FFh RAM 2k

01C00 - 01C7F Calibration RAM (lockable) X

01C80 - 0237F Application Memory (lockable) X

02380 - 023FF Appl. Memory (non lockable)

02380 - 023FF Alternate Interrupt Vectors

02400h - 0F7FFh Vacant Memory X

0F800h - 0FFFFh Program Memory

0F800h - 0F87Fh Start-Up Code (SUC) memory mirror X

0F880h - 0FF7Fh Application Program

0FF80h - 0FFFFh Interrupt Vectors

10000h - FFFFFh Vacant Memory X

1.3.1 Vacant Memory Space

Accesses to vacant memory space generates an NMI interrupt. Reads from vacant memory results in the
value 3FFFh. In the case of a fetch, this is taken as JMP $. Fetch accesses from vacant peripheral space
result in a PUC.

1.3.2 Start-Up Code (SUC)

After a BOR, the memory location 0F800h is the reset vector to start the start-up code. The start-up code
evaluates if test routines are to be invoked an executes them before the control is handed over to the
application code. The SUC also checks for a password to allow JTAG access of the MSP430x09x
application code for debug purposes.

15SLAU321–September 2010 System Resets, Interrupts, and Operating Modes, Compact System Control
Module (CSYS)Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Memory Map – Uses and Abilities www.ti.com

1.3.3 SYS Interrupt Vector Generators

The CSYS module collects all user NMI (UNMI) sources, system NMI (SNMI) sources, and
BOR/POR/PUC sources of all the other modules. They are combined into three interrupt vectors. The
interrupt vector registers SYSRSTIV, SYSSNIV, and SYSUNIV are used to determine which flags
requested an interrupt or a BOR/POR/PUC reset. The interrupt with the highest priority of a group, when
enabled, generates a number in the corresponding SYSRSTIV, SYSSNIV, or SYSUNIV register. This
number can be directly added to the program counter, causing a branch to the appropriate portion of the
interrupt service routine. Disabled interrupts do not affect the SYSRSTIV, SYSSNIV, or SYSUNIV values.
A read access to the SYSRSTIV, SYSSNIV, or SYSUNIV register automatically resets the highest pending
interrupt flag of that register. If another interrupt flag is set, another interrupt is immediately generated after
servicing the initial interrupt. A write access to the SYSRSTIV, SYSSNIV, or SYSUNIV register
automatically resets all pending interrupt flags of the group.

1.3.3.1 The following software example shows the recommended use of SYSSNIV. The SYSSNIV value is
added to the PC to automatically jump to the appropriate routine. For SYSRSTIV and SYSUNIV, a
similar software approach can be used. The following is an example for a generic MSP430x09x device.
Vectors can change in priority for a given device. See the device-specific data sheet for the vector
locations. All vectors should be coded symbolically to allow for easy portability of code.

SNI_ISR: ADD &SYSSNIV,PC ; Add offset to jump table
RETI ; Vector 0: No interrupt
JMP SVML_ISR ; Vector 2: SVMLIFG
JMP SVMH_ISR ; Vector 4: SVMHIFG
JMP DLYL_ISR ; Vector 6: DLYLIFG
JMP DLYH_ISR ; Vector 8: DLYHIFG
JMP VMA_ISR ; Vector 10: VMAIFG
JMP JMBI_ISR ; Vector 12: JMBINIFG

JMBO_ISR: ; Vector 14: JMBOUTIFG
... ; Task_E starts here
RETI ; Return
SVML_ISR: ; Vector 2
... ; Task_2 starts here
RETI ; Return

SVMH_ISR: ; Vector 4
... ; Task_4 starts here
RETI ; Return

DELL_ISR: ; Vector 6
... ; Task_6 starts here
RETI ; Return

DELH_ISR: ; Vector 8
... ; Task_8 starts here
RETI ; Return

VMA_ISR: ; Vector A
... ; Task_A starts here
RETI ; Return

JMBI_ISR: ; Vector C
... ; Task_C starts here
RETI ; Return

16 System Resets, Interrupts, and Operating Modes, Compact System Control SLAU321–September 2010
Module (CSYS) Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

POR/PUC
circuit

Interrupt
daisy chain
and vectors

CPU

PUC

INT

NMI

RST/NMI

WDT_int

.
.

.

MAB - 6LSBs

Module#1_int

Module#2_int

WDT_int

Module#n_int

Module#m_int

high priority

low priority

GIE

System NMI

User NMI

.
.

.
.

www.ti.com Interrupts

1.4 Interrupts

Interrupt priorities are fixed and defined by the arrangement of the modules in the connection chain as
shown in Figure 1-1. Interrupt priorities determine what interrupt is taken when more than one interrupt is
pending simultaneously.

There are three types of interrupts:

• System reset
• (Non)-maskable NMI
• Maskable

Figure 1-1. Interrupt Priority

1.4.1 (Non)-Maskable Interrupts (NMI)

The MSP430x09x family supports two levels of NMI interrupts, system NMI (SNMI) and user NMI (UNMI).
In general, (non)-maskable NMI interrupts are not masked by the general interrupt enable bit (GIE). The
user NMI sources are enabled by individual interrupt enable bits (NMIIE, ACCVIE, and OFIE). When a
user NMI interrupt is accepted, other NMIs of that level are automatically disabled to prevent nesting of
consecutive NMIs of the same level. Program execution begins at the address stored in the
(non)-maskable interrupt vector as shown in Table 1-4. To allow software backward compatibility to users
of earlier MSP430 families, the software may, but does not need to, re-enable user NMI sources. The
block diagram for NMI sources is shown in Figure 1-2.

A (non)-maskable user NMI interrupt can be generated by following sources

• An edge on the RST/NMI pin when configured in NMI mode
• An oscillator fault occurs

A (non)-maskable system NMI interrupt can be generated by following sources:

• SVM supply voltage fault
• Vacant memory access
• JTAG mailbox event

17SLAU321–September 2010 System Resets, Interrupts, and Operating Modes, Compact System Control
Module (CSYS)Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

NMI IFG1.4 (NMIIFG)

IE1.4 (NMIIE)

.
.

.

...IFG

...IE

OSC Fault IFG1.1 (OFIFG)

IE1.1 (OFIE)

User NMI

S

R

PUC

User NMI
_IRQA

.
.

.

RETI

SVM IFG1.8 (SVMIFG)

IE1.8 (SVMIE)

.
.

.

...IFG

...IE

JMB event SYSJMBIFG

SYSJMBIE

S

R

PUC

RETI

.
.

.

0 RETI

System NMI

_IRQA

Del. FF

System NMI

Interrupts www.ti.com

1.4.2 SNMI Timing

Consecutive system NMIs that occur at a higher rate than they can be handled (interrupt storm) allow the
main program to execute one instruction after the system NMI handler is finished with an RETI instruction,
before the system NMI handler is executed again. Consecutive system NMIs are not interrupted by user
NMIs in this case. This avoids a blocking behavior on high SNMI rates.

Figure 1-2. NMI Interrupts with Reentrance Protection

1.4.3 Maskable Interrupts

Maskable interrupts are caused by peripherals with interrupt capability. Each maskable interrupt source
can be disabled individually by an interrupt enable bit, or all maskable interrupts can be disabled by the
general interrupt enable (GIE) bit in the status register (SR).

Each individual peripheral interrupt is discussed in its respective module chapter of this manual.

1.4.3.1 Interrupt Processing

When an interrupt is requested from a peripheral and the peripheral interrupt enable bit and GIE bit are
set, the interrupt service routine is requested. Only the individual enable bit must be set for(non)-maskable
interrupts to be requested.

18 System Resets, Interrupts, and Operating Modes, Compact System Control SLAU321–September 2010
Module (CSYS) Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Item 1

Item 1SP TOS

Before Interrupt After Interrupt

Item 1

Item 1

SP TOS

PC

SR

Item 1

Item 1

SP TOS

Before After

Item 1

Item 1SP TOS

PC

SR

PC

SR

Return From Interrupt

www.ti.com Interrupts

1.4.3.2 Interrupt Acceptance

The interrupt latency is 6 cycles, starting with the acceptance of an interrupt request and lasting until the
start of execution of the first instruction of the interrupt-service routine, as shown in Figure 1-3. The
interrupt logic executes the following:

1. Any currently executing instruction is completed.
2. The PC, which points to the next instruction, is pushed onto the stack.
3. The SR is pushed onto the stack.
4. The interrupt with the highest priority is selected if multiple interrupts occurred during the last

instruction and are pending for service.
5. The interrupt request flag resets automatically on single-source flags. Multiple source flags remain set

for servicing by software.
6. The SR is cleared. This terminates any low-power mode. Because the GIE bit is cleared, further

interrupts are disabled.
7. The content of the interrupt vector is loaded into the PC, and the program continues with the interrupt

service routine at that address.

Figure 1-3. Interrupt Processing

1.4.3.3 Return From Interrupt

The interrupt handling routine terminates with the instruction:
RETI (return from an interrupt service routine)

The return from the interrupt takes 5 cycles to execute the following actions and is shown in Figure 1-4

1. The SR with all previous settings pops from the stack. All previous settings of GIE, CPUOFF, etc. are
now in effect, regardless of the settings used during the interrupt service routine.

2. The PC pops from the stack and begins execution at the point where it was interrupted.

Figure 1-4. Return From Interrupt

19SLAU321–September 2010 System Resets, Interrupts, and Operating Modes, Compact System Control
Module (CSYS)Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Operating Modes www.ti.com

1.4.3.4 Interrupt Nesting

Interrupt nesting is enabled if the GIE bit is set inside an interrupt service routine. When interrupt nesting
is enabled, any interrupt occurring during an interrupt service routine interrupts the routine, regardless of
the interrupt priorities.

1.4.3.5 Interrupt Nesting of NMIs

A user NMI is always be able to interrupt the service program of any maskable interrupt. A user NMI is not
able to interrupt another user NMI. A system NMI is always able to interrupt the services program of any
maskable interrupt and any user NMI. A system NMI is not able to interrupt another system NMI. Any
reset (BOR, POR, or PUC) is able to interrupt any ongoing program and restart the system.

1.5 Operating Modes

The MSP430 family is designed for ultra low power applications and uses different operating modes. The
operating modes for the MSP430x09x family are shown in Figure 1-5 and Table 1-2. See the
device-specific data sheet for the operating modes available.

The operating modes take into account three different needs:

• Ultra low power
• Speed and data throughput
• Minimization of individual peripheral current consumption

The low-power modes LPM0 through LPM4 are configured with the CPUOFF, OSCOFF, SCG0, and
SCG1 bits in the status register. The advantage of including the CPUOFF, OSCOFF, SCG0, and SCG1
mode-control bits in the status register is that the present operating mode is saved onto the stack during
an interrupt service routine. Program flow returns to the previous operating mode if the saved SR value is
not altered during the interrupt service routine. Program flow can be returned to a different operating mode
by manipulating the saved SR value on the stack inside of the interrupt service routine. The mode-control
bits and the stack can be accessed with any instruction. When setting any of the mode-control bits, the
selected operating mode takes effect immediately. Peripherals operating with any disabled clock are
disabled until the clock becomes active. The peripherals may also be disabled with their individual control
register settings. All I/O port pins and RAM/registers are unchanged. Wake-up is possible through all
enabled interrupts.

20 System Resets, Interrupts, and Operating Modes, Compact System Control SLAU321–September 2010
Module (CSYS) Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

BOR

POR

PUC

RST/NMI
(Reset event)
(see Note B)

security

violation

DoBOR

event

WDT Active

Time expired,Overflow

WDT Active

Security Key Violation

Peripheral area fetch

JTAG-POR DoPOR event

SUC execution

Active Mode:CPU is Active,

Various Modules are active

LPM0:
CPU/MCLK=off,

HF-OSC=on,
LF-OSC=on
ACLK=on,
SMCLK=on

CPUOFF=1

OSCOFF=0

SCG0=0

SCG1=0

CPUOFF=1

OSCOFF=0

SCG0=1

SCG1=0
CPUOFF=1

OSCOFF=0

SCG0=0

SCG1=1

CPUOFF=1
OSCOFF=0

SCG0=1

SCG1=1

CPUOFF=1

OSCOFF=1
SCG0=1

SCG1=1

See
Note A

brownout

fault

Events

Operating modes/Reset phases

Arbitrary transitions

SVM event

(SVMOE=1)

LPM1:
CPU/MCLK=off,

HF-OSC=off,
LF-OSC=on
ACLK=on,
SMCLK=on

LPM2:
CPU/MCLK=off,

HF-OSC=on,
LF-OSC=on
ACLK=on,
SMCLK=off

LPM3:
CPU/MCLK=off,

HF-OSC=off,
LF-OSC=on
ACLK=on,
SMCLK=off

LPM4:
CPU/MCLK=off,

HF-OSC=off,
LF-OSC=on
ACLK=off,
SMCLK=off

See
Note A

See
Note A

See
Note A

See
Note A

www.ti.com Operating Modes

A Any enabled interrupt and NMI performs this transition.

B An enabled reset always restarts the device.

Figure 1-5. Operation Modes for the MSP430x09x Family

21SLAU321–September 2010 System Resets, Interrupts, and Operating Modes, Compact System Control
Module (CSYS)Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Operating Modes www.ti.com

Table 1-2. Operating Modes for the MSP430x09x Family

SCG1 SCG0 OSCOFF CPUOFF Mode CPU and Clocks Status

CPU is enabled.
0 0 0 0 Active

MCLK, ACLK, SMCLK, and VLOCLK are active.

CPU is disabled.

0 0 0 1 LPM0 MCLK is inactive. ACLK, SMCLK, and VLOCLK are active.

HF-OSC is on.

CPU is disabled.

0 1 0 1 LPM1 MCLK is inactive. ACLK, SMCLK, and VLOCLK are active.

HF-OSC is off (LF-OSC is used instead where HF-OSC is selected).

CPU is disabled.

1 0 0 1 LPM2 MCLK and SMCLK are inactive. ACLK and VLOCLK are active.

HF-OSC is on.

CPU is disabled.

1 1 0 1 LPM3 MCLK and SMCLK are inactive. ACLK and VLOCLK are active.

HF-OSC is off (LF-OSC is used instead where HF-OSC is selected).

CPU is disabled.

MCLK, ACLK, and SMCLK are inactive.

1 1 1 1 LPM4 VLOCLK is active.

HF-OSC is off.

LF-OSC is on.

1.5.1 Entering and Exiting Low-Power Modes

An enabled interrupt event wakes the MSP430 from low-power operating modes LPM0 through LPM4.
LPM5 exit is only possible via a power cycle, a RST/NMI event, or wakeup from I/O, when available on
some devices. The program flow for entering and exiting LPM0 through LPM4 is:

• Enter interrupt service routine:

– The PC and SR are stored on the stack
– The CPUOFF, SCG1, and OSCOFF bits are automatically reset (SCG0 remains as is)

• Options for returning from the interrupt service routine:

– The original SR is popped from the stack, restoring the previous operating mode.
– The SR bits stored on the stack can be modified within the interrupt service routine returning to a

different operating mode when the RETI instruction is executed.
; Enter LPM0 Example

BIS #GIE+CPUOFF,SR ; Enter LPM0
; ... ; Program stops here

;
; Exit LPM0 Interrupt Service Routine

BIC #CPUOFF,0(SP) ; Exit LPM0 on RETI
RETI

; Enter LPM3 Example
BIS #GIE+CPUOFF+SCG1+SCG0,SR ; Enter LPM3
; ... ; Program stops here

;
; Exit LPM3 Interrupt Service Routine

BIC #CPUOFF+SCG1+SCG0,0(SP) ; Exit LPM3 on RETI
RETI

; Enter LPM4 Example
BIS #GIE+CPUOFF+OSCOFF+SCG1+SCG0,SR ; Enter LPM4

; ... ; Program stops here
;

22 System Resets, Interrupts, and Operating Modes, Compact System Control SLAU321–September 2010
Module (CSYS) Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Principles for Low-Power Applications

; Exit LPM4 Interrupt Service Routine
BIC #CPUOFF+OSCOFF+SCG1+SCG0,0(SP) ; Exit LPM4 on RETI
RETI

1.6 Principles for Low-Power Applications

Often, the most important factor for reducing power consumption is using the MSP430's clock system to
maximize the time in LPM3 or LPM4 modes whenever possible.

• Use interrupts to wake the processor and control program flow.
• Peripherals should be switched on only when needed.
• Use low-power integrated peripheral modules in place of software driven functions. For example

Timer0_A3 and Timer1_A3 can automatically generate PWM and capture external timing with no CPU
resources.

• Calculated branching and fast table lookups should be used in place of flag polling and long software
calculations.

• Avoid frequent subroutine and function calls due to overhead.
• For longer software routines, single-cycle CPU registers should be used.

1.7 Connection of Unused Pins

The correct termination of all unused pins is listed in Table 1-3.

Table 1-3. Connection of Unused Pins

Pin Potential Comment

TDI/TMS/TCK Open When used for JTAG function

RST/NMI/SVMOUT VCC or VSS 10-nF capacitor to GND/VSS

Px.0 to Px.7 Open Switched to port function, output direction

TDO Open Convention: leave TDO terminal as JTAG function

23SLAU321–September 2010 System Resets, Interrupts, and Operating Modes, Compact System Control
Module (CSYS)Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

BORshaddow

brownout circuit

RSTIFG

RST/NMI/..

SYSNMI

s

s

BORIFG

DoBor event

s

BOR Delay

tBOR BOR

SVMIFG

PSSPORIFG

DoPor event

s

from SVM

s

SVMIE

ASVMIFG

from ASVM

s

ASVMIE
POR Delay

tPOR POR

WDTPWVIFG

WDT_PWV

s

PUC Logic

Module

PUCs

…
.

MCLK

Brownout Delay

tBrownout

clr

clr

Vcc

See Note

Reset and Subtypes www.ti.com

1.8 Reset and Subtypes

BOR (brownout reset), POR (power on reset), and PUC (power up clear) can be seen as special types of
non-maskable interrupts with restart behavior of the complete system. Figure 1-6 shows their
dependencies—a BOR reset represents the highest impacts to hardware and causes a reload of
device-dependent hardware, while a PUC only resets the CPU and starts over with program execution.

NOTE: See Figure 1-7

Figure 1-6. BOR/POR/PUC Reset Circuit

24 System Resets, Interrupts, and Operating Modes, Compact System Control SLAU321–September 2010
Module (CSYS) Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

RST/NMI/

SVMOUT

Brownout

Circuit

and Delay

RSTNMI
clr

Reset

Logic

SWBOR

BOR

POR

PUCReset-

signals

and

violations

..
.

..
.

Interrupt

signals

maskable/

unmaskable

Interrupt

Logic

nmi

CPUirq

SVMOE

from SVM logic

SVMPD

PortsOn

SVMPO

set

SVSEN

SWPOR

www.ti.com RST/NMI/SVMOUT Logic

1.9 RST/NMI/SVMOUT Logic

The exact signal path from brownout circuit to the reset logic is shown in Figure 1-7. The external
RST/NMI/SVMOUT terminal is pulled low on a brownout condition. The RST terminal can be used as
reset source for the rest of the application. Setting SVMOE high enables the internal SVM logic to fire
resets as soon a SVM event is detected. SVM events can be undervoltage or overvoltage conditions.

PortsOn is a control signal that enables logical output terminals. On a brownout condition all logical output
terminals (except RST/NMI/SVMOUT) are forced to high impedance. SVMPD enables the circuit to force
those logical output terminals to high impedance during on SVM events. SVMPO captures those events
and has to be cleared to reenable the logical outputs. Brownout clears SVMPO.

Figure 1-7. RST/NMI/SVMOUT Circuit

25SLAU321–September 2010 System Resets, Interrupts, and Operating Modes, Compact System Control
Module (CSYS)Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Interrupt Vectors www.ti.com

1.10 Interrupt Vectors

The interrupt vectors and the power-up starting address are located in the address range 0FFFFh to
0FF80h, for a maximum of 64 interrupt sources. A vector is programmed by the user this vector points to
the start of the corresponding interrupt service routine. See the device-specific data sheet for the complete
interrupt vector list.

Table 1-4. Interrupt Sources, Flags, and Vectors

Interrupt Source Interrupt Flag System Interrupt Word Address Priority

Reset: … …Power-up, external reset, WDTIFG, KEYV HighestReset 0FFFEhwatchdog

System NMI (non)-maskable 0FFFCh

...User NMI: NMIIFG (non)-maskable 0FFFAhNMI, oscillator fault OFIFG (non)-maskable

device specific 0FFF8h

⋮ ⋮
Watchdog timer WDTIFG maskable

⋮ ⋮
device specific

reserved SWI (maskable) ⋮ Lowest

Some interrupt enable bits, and interrupt flags and control bits for the RST/NMI pin are located in the
Special Function Registers (SFRs). The SFRs are located in the peripheral address range and are byte
and word accessible. See the device-specific data sheet for the SFR configuration.

26 System Resets, Interrupts, and Operating Modes, Compact System Control SLAU321–September 2010
Module (CSYS) Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Special Function Registers

1.11 Special Function Registers

The special function registers, SFR, are listed in Table 1-6. The base address for the SFR registers is
listed in Table 1-5.

Table 1-5. SFR Base Address

Module Base address

SFR 00100h

Table 1-6. Special Function Registers

Register AddressRegister Short Form Register Type Initial StateAccess Offset

SFRIE1 read/write word 00h 0000h

Interrupt enable register SFRIE1_L (IE1) read/write byte 00h 00h

SFRIE1_H (IE2) read/write byte 01h 00h

SFRIFG1 read/write word 02h 0082h

Interrupt flag register SFRIFG1_L (IFG1) read/write byte 02h 82h

SFRIFG1_H (IFG2) read/write byte 03h 00h

SFRRPCR read/write word 04h 000Eh

Reset pin control register SFRRPCR_L read/write byte 04h 0Eh

SFRRPCR_H read/write byte 05h 00h

27SLAU321–September 2010 System Resets, Interrupts, and Operating Modes, Compact System Control
Module (CSYS)Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Special Function Registers www.ti.com

SFRIFG1, SFRIFG1_L, SFRIFG1_H, Interrupt Flag Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved SVMIFG

r0 r0 r0 r0 r0 r0 r0 rw-0

7 6 5 4 3 2 1 0

JMBOUTIFG JMBINIFG Reserved NMIIFG VMAIFG Reserved OFIFG WDTIFG

rw-1 rw-0 r0 rw-0 rw-0 r0 rw-1 rw-0

Reserved Bits 15-9 Reserved. Reads back as 0.

SVMIFG Bit 8 SVM interrupt flag. This bit signals that the A-POOL comparator signaled an SVM event either low voltage or
high voltage depending on setup

0 No interrupt pending

1 Interrupt pending

JMBOUTIFG Bit 7 JTAG mailbox output interrupt flag

0 No interrupt pending. When in 16-bit mode (JMBMODE = 0), this bit is cleared automatically when
JMBO0 has been written by the CPU. When in 32-bit mode (JMBMODE = 1), this bit is cleared
automatically when both JMBO0 and JMBO1 have been written by the CPU. This bit is also cleared
when the associated vector in SYSSNIV has been read

1 Interrupt pending, JMBO registers are ready for new messages. In 16-bit mode (JMBMODE = 0)
JMBO0 has been received by JTAG. In 32-bit mode (JMBMODE = 1) , JMBO0 and JMBO1 have been
received by JTAG

JMBINIFG Bit 6 JTAG mailbox input interrupt flag

0 No interrupt pending. When in 16-bit mode (JMBMODE = 0), this bit is cleared automatically when
JMBI0 is read by the CPU. When in 32-bit mode (JMBMODE = 1), this bit is cleared automatically
when both JMBI0 and JMBI1 have been read by the CPU. This bit is also cleared when the associated
vector in SYSSNIV has been read

1 Interrupt pending, a message is waiting in the JMBIN registers. In 16-bit mode (JMBMODE = 0) when
JMBI0 has been written by JTAG. In 32 bit mode (JMBMODE = 1) when JMBI0 and JMBI1 have been
written by JTAG

Reserved Bit 5 Reserved. Reads back as 0.

NMIIFG Bit 4 NMI pin interrupt flag

0 No interrupt pending

1 Interrupt pending

VMAIFG Bit 3 Vacant memory access interrupt flag

0 No interrupt pending

1 Interrupt pending

Reserved Bit 2 Reserved. Reads back as 0.

OFIFG Bit 1 Oscillator fault interrupt flag

0 No interrupt pending

1 Interrupt pending

WDTIFG Bit 0 Watchdog timer interrupt flag. In watchdog mode, WDTIFG remains set until reset by software. In interval
mode, WDTIFG is reset automatically by servicing the interrupt, or can be reset by software. Because other
bits in ~IFG1 may be used for other modules, it is recommended to clear WDTIFG by using BIS.B or BIC.B
instructions, rather than MOV.B or CLR.B instructions.

0 No interrupt pending

1 Interrupt pending

28 System Resets, Interrupts, and Operating Modes, Compact System Control SLAU321–September 2010
Module (CSYS) Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Special Function Registers

SFRIE1, SFRIE1_L, SFRIE1_H, Interrupt Enable Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved SVMIE

r0 r0 r0 r0 r0 r0 r0 rw-0

7 6 5 4 3 2 1 0

JMBOUTIE JMBINIE Reserved NMIIE VMAIE Reserved OFIE WDTIE

rw-0 rw-0 r0 rw-0 rw-0 r0 rw-0 rw-0

Reserved Bits 15-9 Reserved. Reads back as 0.

SVMIE Bit 8 SVM interrupt enable flag.

0 Interrupts disabled

1 Interrupts enabled

JMBOUTIE Bit 7 JTAG mailbox output interrupt enable flag.

0 Interrupts disabled

1 Interrupts enabled

JMBINIE Bit 6 JTAG mailbox input interrupt enable flag.

0 Interrupts disabled

1 Interrupts enabled

Reserved Bit 5 Reserved. Reads back as 0.

NMIIE Bit 4 NMI pin interrupt enable flag.

0 Interrupts disabled

1 Interrupts enabled

VMAIE Bit 3 Vacant memory access interrupt enable flag.

0 Interrupts disabled

1 Interrupts enabled

Reserved Bit 2 Reserved. Reads back as 0.

OFIE Bit 1 Oscillator fault interrupt enable flag.

0 Interrupts disabled

1 Interrupts enabled

WDTIE Bit 0 Watchdog timer interrupt enable. This bit enables the WDTIFG interrupt for interval timer mode. It is not
necessary to set this bit for watchdog mode. Because other bits in ~IE1 may be used for other modules, it is
recommended to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B
instruction

0 Interrupts disabled

1 Interrupts enabled

29SLAU321–September 2010 System Resets, Interrupts, and Operating Modes, Compact System Control
Module (CSYS)Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Special Function Registers www.ti.com

SFRRPCR, SFRRPCR_H, SFRRPCR_L, Reset Pin Control Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved

7 6 5 4 3 2 1 0

Reserved SYSRSTRE SYSRSTUP SYSNMIES SYSNMI

Reserved Bits 15-4 Reserved. Reads back as 0.

SYSRSTRE Bit 3 Reset Pin resistor enable

0 Pullup / pulldown resistor at the RST/NMI pin is disabled

1 Pullup / pulldown resistor at the RST/NMI pin is enabled

SYSRSTUP Bit 2 Reset resistor pin pullup / pulldown

0 Pulldown is selected

1 Pullup is selected

SYSNMIES Bit 1 NMI edge select. This bit selects the interrupt edge for the NMI interrupt when SYSNMI = 1. Modifying this
bit can trigger an NMI. Modify this bit when SYSNMI = 0 to avoid triggering an accidental NMI

0 NMI on rising edge

1 NMI on falling edge

SYSNMI Bit 0 NMI select. This bit selects the function for the RST/NMI pin

0 Reset function

1 NMI function

30 System Resets, Interrupts, and Operating Modes, Compact System Control SLAU321–September 2010
Module (CSYS) Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com CSYS Registers

1.12 CSYS Registers

The CSYS registers are listed in and Table 1-8. A detailed description of each register and its bits is also
provided. Each register starts at a word boundary. Both word and byte data can be written to the SYS
registers.

Table 1-7. CSYS Base Address

Module Base Address

CSYS 00180h

Table 1-8. SYS Configuration Registers

Register AddressRegister Short Form Register Type Initial StateAccess Offset

SYSCTL read/write word 00h 0000h

System control register SYSCTLL read/write byte 00h 00h

SYSCTLH read/write byte 01h 00h

SYSJMBC read/write word 06h 000Ch

JTAG mailbox control register SYSJMBCL read/write byte 06h 0Ch

SYSJMBH read/write byte 07h 00h

SYSJMBI0 read/write word 08h 0000h

JTAG mailbox input register 0 SYSJMBI0L read/write byte 08h 00h

SYSJMBI0H read/write byte 09h 00h

SYSJMBI1 read/write word 0Ah 0000h

JTAG mailbox input register 1 SYSJMBI1L read/write byte 0Ah 00h

SYSJMBI1H read/write byte 0Bh 00h

SYSJMBO0 read/write word 0Ch 0000h

JTAG mailbox output register 0 SYSJMBO0L read/write byte 0Ch 00h

SYSJMBO0H read/write byte 0Dh 00h

SYSJMBO1 read/write word 0Eh 0000h

JTAG mailbox output register 1 SYSJMBO1L read/write byte 0Eh 00h

SYSJMBO1H read/write byte 0Fh 00h

SYSCNF read/write word 10h 0300h

System configuration register SYSCNFL read/write byte 10h 00h

SYSCNFH read/write byte 11h 03h

Bus error vector generator SYSBERRIV read only word 18h 0000h

User NMI vector generator SYSUNIV read only word 1Ah 0000h

System NMI vector generator SYSSNIV read only word 1Ch 0000h

Reset vector generator SYSRSTIV read only word 1Eh 0002h

31SLAU321–September 2010 System Resets, Interrupts, and Operating Modes, Compact System Control
Module (CSYS)Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

CSYS Registers www.ti.com

SYSCTL, SYSCTL_L, SYSCTL_H, SYS Control Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved SYSTEDIS ETUNLOCK Reserved SYSJTAGDIS Reserved
DIS

r0 r0 rw-[0] rw-[0] r0 r0 rw-[0] r0

7 6 5 4 3 2 1 0

Reserved SYSJTAGPIN Reserved SYSRIVECT

r0 r0 r1 r0 r0 r0 r0 rw-[0]

Reserved Bits 15-14 Reserved. Reads back as 0.

SYSTEDIS Bit 13 Internally used for control purposes

ETUNLOCKDIS Bit 12 ET wrapper control bit. This bit is electrically "ORed" with the ETUNLOCKDIS bit from JTAG to generate
the final ETUNLOCKDIS signal. If one of those bits is set to unlock, then the unlock function is enabled.

0 Unlocked ET wrapper locks after access again except ETUNLOCDIS in JTAG is set.

1 Unlocked ET wrapper stays unlocked after accesses

Reserved Bits 11-10 Reserved. Reads back as 0.

SYSJTAGDIS Bit 9 JTAG disable

0 JTAG enabled

1 JTAG disabled

Reserved Bits 8-6 Reserved. Reads back as 0.

SYSJTAGPIN Bit 5 Dedicated JTAG pins enable. Setting this bit disables the shared functionality of the JTAG pins and
permanently enables the JTAG function. This bit can only be set once. Once set, it remains set until a
BOR occurs.

0 SBW is primary JTAG interface

1 Explicit 4-wire JTAG is primary JTAG interface

Reserved Bits 4-1 Reserved. Reads back as 0.

SYSRIVECT Bit 0 RAM based Interrupt Vectors

0 Interrupt vectors generated with end address: top of lower 64k memory 0FFFFh

1 Interrupt vectors generated with end address: top of RAM

32 System Resets, Interrupts, and Operating Modes, Compact System Control SLAU321–September 2010
Module (CSYS) Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com CSYS Registers

SYSJMBC, SYSJMBC_L, SYSBMBC_H, JTAG Mailbox Control Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

JMBCLR1OFF JMBCLR0OFF Reserved JMBMODE JMBMODE JMBOUT0FG JMBIN1FG JMBIN0FG

rw-(0) rw-(0) r0 rw-0 r-(1) r-(1) rw-(0) rw-(0)

Reserved Bits 15-8 Reserved. Reads back as 0.

JMBCLR1OFF Bit 7 Incoming JTAG Mailbox 1 flag auto-clear disable

0 JMBIN1FG cleared on read of JMB1IN register

1 JMBIN1FG cleared by SW

JMBCLR0OFF Bit 6 Incoming JTAG Mailbox 0 flag auto-clear disable

0 JMBIN0FG cleared on read of JMB0IN register

1 JMBIN0FG cleared by SW

Reserved Bit 5 Reserved. Reads back as 0.

JMBMODE Bit 4 This bit defined the operation mode of JMB for JMBI0/1 and JMBO0/1. Before switching this bit pad and
flush out any partial content to avoid data drops

0 16 bit transfers using JMBO0 and JMBI0 only

1 32 bit transfers using JMBO0/1 and JMBI0/1

JMBMODE Bit 3 Outgoing JTAG Mailbox 1 flag. This bit is cleared automatically when a message is written to the upper byte
of JMBO1 or as word access (by the CPU, DMA, etc.) and is set after the message was read via JTAG

0 JMBO1 is not ready to receive new data

1 JMBO1 is ready to receive new data

JMBOUT0FG Bit 2 Outgoing JTAG Mailbox 0 flag. This bit is cleared automatically when a message is written to the upper byte
of JMBO0 or as word access (by the CPU, DMA, etc.) and is set after the message was read via JTAG

0 JMBO0 is not ready to receive new data

1 JMBO0 is ready to receive new data

JMBIN1FG Bit 1 Incoming JTAG Mailbox 1 flag. This bit is set when a new message (provided via JTAG) is available in
JMBI1. This flag is cleared automatically on read of JMBI1 when JMBCLR1OFF = 0 (auto clear mode). On
JMBCLR1OFF = 1 JMBIN1FG needs to be cleared by SW

0 JMBI1 has no new data

1 JMBI1 has new data available

JMBIN0FG Bit 0 Incoming JTAG Mailbox 0 flag. This bit is set when a new message (provided via JTAG) is available in
JMBI1. This flag is cleared automatically on read of JMBI0 when JMBCLR0OFF = 0 (auto clear mode). On
JMBCLR0OFF = 1 JMBIN1FG needs to be cleared by SW

0 JMBI0 has no new data

1 JMBI0 has new data available

33SLAU321–September 2010 System Resets, Interrupts, and Operating Modes, Compact System Control
Module (CSYS)Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

CSYS Registers www.ti.com

SYSJMBI0, SYSJMBI0_L, SYSJMBI0_H, JTAG Mailbox Input 0 Register
SYSJMBI1, SYSJMBI1_L, SYSJMBI1_H, JTAG Mailbox Input 1 Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

MSGHI

r-<0> r-<0> r-<0> r-<0> r-<0> r-<0> r-<0> r-<0>

7 6 5 4 3 2 1 0

MSGLO

r-<0> r-<0> r-<0> r-<0> r-<0> r-<0> r-<0> r-<0>

MSGHI Bits 15-8 JTAG mailbox incoming message high byte

MSGLO Bits 7-0 JTAG mailbox incoming message low byte

SYSJMBO0, SYSJMBO0_L, SYSJMBO0_H, JTAG Mailbox Output 0 Register
SYSJMBO1, SYSJMBO1_L, SYSJMBO1_H, JTAG Mailbox Output 1 Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

MSGHI

rw-<0> rw-<0> rw-<0> rw-<0> rw-<0> rw-<0> rw-<0> rw-<0>

7 6 5 4 3 2 1 0

MSGLO

rw-<0> rw-<0> rw-<0> rw-<0> rw-<0> rw-<0> rw-<0> rw-<0>

MSGHI Bits 15-8 JTAG mailbox outgoing message high byte

MSGLO Bits 7-0 JTAG mailbox outgoing message low byte

34 System Resets, Interrupts, and Operating Modes, Compact System Control SLAU321–September 2010
Module (CSYS) Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com CSYS Registers

SYSCNF, SYSCNFL, SYSCNFH SYS Configuration Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved RAMLCK1 RAMLCK0

r0 r0 r0 r0 r0 r0 rw-[1] rw-[1]

7 6 5 4 3 2 1 0

Reserved SVMEN SVMPD SVMPO SVMOE Reserved

r0 r0 rw-0 rw-0 rw-{0} rw-0 r0 r0

Reserved Bits 15-10 Reserved. Reads back as 0.

RAMLCK1 Bit 9 Write lock enable for application’s code RAM

0 Write accesses to code RAM are possible

1 Write accesses to code RAM are ignored

RAMLCK0 Bit 8 Write lock enable for configuration RAM (128 Bytes of RAM)

0 Write accesses to configuration RAM are possible

1 Write accesses to configuration RAM are ignored

Reserved Bits 7-6 Reserved. Reads back as 0.

SVMEN Bit 5 SVM input enable

0 SVM input disabled

1 SVM input enabled

SVMPD Bit 4 SVM based port disable

0 SVM event has no impact to the SVMPO bit

1 SVM event sets SVMPO that forces all PORTS (except RST/NMI/SVMOUT) in high impedance

SVMPO Bit 3 SVM based Ports off flag. Can be set by SVM when SVMPD = 1

0 PortsOn signal is not forced to zero

1 PortsOn signal is forced to zero

SVMOE Bit 2 SVM output enable

0 SVM events do not drive RST/NMI/SVMOUT

1 SVM event pulls RST/NMI/SVMOUT pin low

Reserved Bits 1-0 Reserved. Reads back as 0.

SYSBERRIV, SYSBERRIV_H, SYSBERRIV_L, Bus Error Interrupt Vector Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 SYSBERRVEC 0

r0 r0 r0 r-0 r-0 r-0 r-0 r0

SYSBERRVEC Bits 4-1 Bus error interrupt vector. It generates a value that can be used as address offset for fast interrupt service
routine handling for bus errors. Check the data sheet of the particular device for the corresponding bus error
table. Writing to this register clears all pending bus error interrupt flags. Reading this register clears the
highest pending bus error (displaying this register with the debugger does not affect its content).

0000h No interrupt pending

0002h... Valid bus error from peripheral (see device-specific data sheet)

NOTE: Additional events for more complex devices will be appended to this table.
Sources that are removed will reduce the length of this table. The vectors are
expected to be accessed symbolic only with the corresponding include file of the
used device.

35SLAU321–September 2010 System Resets, Interrupts, and Operating Modes, Compact System Control
Module (CSYS)Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

CSYS Registers www.ti.com

SYSUNIV, SYSUNIV_H, SYSUNIV_L, User NMI Interrupt Vector Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 SYSUNVEC 0

r0 r0 r0 r-0 r-0 r-0 r-0 r0

SYSUNVEC Bits 4-1 User NMI interrupt vector. It generates a value that can be used as address offset for fast interrupt service
routine handling. Writing to this register clears all pending user NMI interrupt flags. Reading this register
clears the highest pending interrupt flag (displaying this register with the debugger does not affect its
content).

Value Interrupt Type

0000h No interrupt pending

0002h NMIIFG interrupt pending (highest priority)

0004h OFIFG interrupt pending

0006h Bus error interrupt pending (check SYSBERRIV)

⋮ Reserved for future extensions

NOTE: Additional events for more complex devices will be appended to this table.
Sources that are removed will reduce the length of this table. The vectors are
expected to be accessed symbolic only with the corresponding include file of the
used device.

SYSSNIV, SYSSNIV_H, SYSSNIV_L, SYS NMI Interrupt Vector Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 SYSSNVEC 0

r0 r0 r0 r-0 r-0 r-0 r-0 r0

SYSSNVEC Bits 4-1 System NMI interrupt vector. It generates a value that can be used as address offset for fast interrupt service
routine handling. Writing to this register clears all pending system NMI interrupt flags. Reading this register
clears the highest pending interrupt flag (displaying this register with the debugger does not affect its
content).

Value Interrupt Type

0000h No interrupt pending

0002h SVMIFG interrupt pending (highest priority)

0004h VMAIFG interrupt pending

0006h JMBINIFG interrupt pending

0008h JMBOUTIFG interrupt pending

⋮ Reserved for future extensions

NOTE: Additional events for more complex devices will be appended to this table.
Sources that are removed will reduce the length of this table. The vectors are
expected to be accessed symbolic only with the corresponding include file of the
used device.

36 System Resets, Interrupts, and Operating Modes, Compact System Control SLAU321–September 2010
Module (CSYS) Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com CSYS Registers

SYSRSTIV, SYSRSTIV_H, SYSRSTIV_L, SYS Reset Interrupt Vector Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 SYSRSTVEC 0

r0 r0 r0 r-0 r-0 r-0 r-0 r0

SYSRSTVEC Bits 4-1 Reset interrupt vector. It generates a value that can be used as address offset for fast interrupt service
routine handling to identify the last cause of a Reset (BOR, POR, PUC). Writing to this register clears all
pending reset source flags. Reading this register clears the highest pending interrupt flag (displaying this
register with the debugger does not affect its content). Signals that alter the RST/NMI pin generate a double
event. A SVMBOR generates an SVMBOR vector followed by an RST/NMI BOR vector; a brownout also
causes a RST/NMI vector).

Value Interrupt Type

0000h No interrupt pending

0002h Brownout (BOR) (highest priority)

0004h RST/NMI (BOR)

0006h DoBOR (BOR)

0008h Security violation (BOR)

000Ah DoPOR (POR)

000Ch WDT time out (PUC)

000Eh WDT key violation (PUC)

0010h PERF peripheral/configuration area fetch (PUC)

⋮ Reserved for future extensions

NOTE: Additional events for more complex devices will be appended to this table.
Sources that are removed will reduce the length of this table. The vectors are
expected to be accessed symbolic only with the corresponding include file of the
used device.

37SLAU321–September 2010 System Resets, Interrupts, and Operating Modes, Compact System Control
Module (CSYS)Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

CSYS PMM Register Replica www.ti.com

1.13 CSYS PMM Register Replica

The CSYS module hosts the control bits PMMSWBOR and PMMSWPOR for devices that do not have an
own power management module (PMM). The function of those bits are explained in the PMMCTL0
definition.

Power Management Control 0 Register, PMMCTL0

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

PMMKEY, read as 96h, Must be written as A5h

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

Reserved PMMSWPOR PMMSWBOR Reserved

r0 r0 r0 r0 rw-(0) rw-[0] r0 r0

PMMKEY Bits 15-8 PMM password. Always read as 096h. Must be written with 0A5h or a PUC is generated.

Reserved Bits 7-4 Reserved. Reads back as 0.

PMMSWPOR Bit 3 Software power-on reset. Setting this bit to one triggers a POR. This bit is self clearing.

PMMSWBOR Bit 2 Software brownout reset. Setting this bit to one triggers a BOR. This bit is self clearing.

Reserved Bits 1-0 Reserved. Reads back as 0.

38 System Resets, Interrupts, and Operating Modes, Compact System Control SLAU321–September 2010
Module (CSYS) Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Chapter 2
SLAU321–September 2010

Compact Clock System (CCS)

The compact clock system (CCS) module provides the clocks for the MSP430x09x device family. This
chapter describes the operation of the CCS module.

Topic ... Page

2.1 Compact Clock System (CCS) Introduction .. 40
2.2 CCS Module Operation ... 41
2.3 CCS Module Registers ... 43

39SLAU321–September 2010 Compact Clock System (CCS)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

00

01

10

11

0

1
MCLK

CPUOFF

1

Divider

/1/2/4/8/16/32

3

DIVMx

0

1
ACLK

OSCOFF

1

Divider

/1/2/4/8/16/32

3

DIVAx

0

1
SMCLK

SCG 1

1

Divider

/1/2/4/8/16/32

3

DIVSx

SELAx

HF-OSC/DCO

SCG0

SELMx

LF-OSC/VLO

SELSx

00

01

10

11

00

01

10

11

CLKIN / XIN

ACLK enable logic

MCLK enable logic

SMCLK enable logic

VLOCLK

XOUT

XT

XTOFF

1

0

/2

DIVCLK

Compact Clock System (CCS) Introduction www.ti.com

2.1 Compact Clock System (CCS) Introduction

The CCS module is used to generate the system clocks required for the MSP430x09x family devices.
Using two internal clock signals and one external, the user can select the best balance of performance
and low power consumption. The Compact Clock System module can be configured to operate without
any external components.

The Compact Clock System includes three clock sources

• HFCLK: From an internal high-frequency oscillator (HF-OSC) in the 1-MHz range that can be trimmed
to 3% accuracy by the user software.

• LFCLK: From an internal low-frequency oscillator (LF-OSC) in the 20-kHz range that is designed for
low power with consumption currents in the sub-microampere range.

• CLKIN: Optional external clock source that can be operated from dc up to 4-MHz range.

Four clock signals are available from the CCS module:

• ACLK: Auxiliary clock. ACLK is sourced from HFCLK, LFCLK, or CLKIN. ACLK is software selectable
for individual peripheral modules. ACLK can be divided by 1, 2, 4, 8, 16 or 32.

• MCLK: Master clock. MCLK is sourced from HFCLK, LFCLK, or CLKIN. MCLK can be divided by 1, 2,
4, 8, 16 or 32. MCLK is used by the CPU and system.

• SMCLK: Subsystem master clock. SMCLK is sourced from HFCLK, LFCLK, or CLKIN. SMCLK is
software selectable for individual peripheral modules. SMCLK can be divided by 1, 2, 4, 8,16 or 32.

• VLOCLK: Low-frequency clock as permanent clock source.

The block diagram of the CCS module is shown in Figure 2-1.

Figure 2-1. CCS Block Diagram

40 Compact Clock System (CCS) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com CCS Module Operation

2.2 CCS Module Operation

After a PUC, the CSS module default configuration is:

• HF-OSC is selected as the source for ACLK. ACLK defaults to divide by 8.
• HF-OSC is selected as the source for MCLK. MCLK defaults to divide by 8
• HF-OSC is selected as the source for SMCLK. SMCLK defaults to divide by 8.

Status register control bits (SCG1, OSCOFF, and CPUOFF) configure the MSP430 operating modes and
enable or disable portions of the CCS module (see System Resets, Interrupts, and Operating Modes
chapter). The CCSCTLx registers configure the CCS module. The CCS module can be configured or
reconfigured by software at any time during program execution.

2.2.1 Operation From Low-Power Modes Requested by Peripheral Modules

Peripheral modules can request a clock from the CCS module if their state of operation still requires an
operational clock. A peripheral module asserts one of three possible clock request signals: ACLK_REQ,
MCLK_REQ, or SMCLK_REQ.

Any clock request from a peripheral module will cause its respective clock off signal to be overridden, but
does not change the setting of clock off control bit. For example, a peripheral module may require the
MCLK source that is currently disabled by the CPUOFF bit. The module can request the MCLK source by
setting the MCLK_REQ bit. This causes the CPUOFF bit to have no effect, thereby allowing the MCLK to
be sourced to the requesting peripheral module.

2.2.2 Internal Low-Frequency Oscillator

The internal ultra-low-voltage low-frequency oscillator (LF-OSC) provides a typical frequency of 20 kHz
(see device-specific data sheet for parameters) without requiring a crystal. The LF-OSC provides for a
low-cost ultra-low-voltage clock source for applications that do not need an accurate time base.

The LFCLK is selected when it is used to source ACLK, MCLK, or SMCLK (SELA= 1 or SELM = 1, or
SELS = 1).

2.2.3 Internal Trimmable High-Frequency Oscillator

The internal trimmable ultra-low-voltage high-frequency oscillator (HF-OSC) can be used for cost-sensitive
applications in which an external clock source is not required or desired. The high-frequency oscillator
may be internally trimmed and provides a stable frequency that can be used as input into all clock trees.
The typical frequency of the HF-OSC is 1 MHz.

HF-OSC is selected when it is used to source ACLK, MCLK, or SMCLK (SELA = 0, SELM = 0, or
SELS = 0).

2.2.4 External Clock Source

CLKIN may be used with external clock signals on the CLKIN-pin by selecting CLKIN as source. When
used with an external signal, the external frequency must meet the data sheet parameters.

CLKIN is selected under any of the following conditions:

• CLKIN/XIN is a source for ACLK (SELA = 2 and OSCOFF = 0)
• CLKIN/XIN is a source for MCLK (SELM = 2 and CPUOFF = 0)
• CLKIN/XIN is a source for SMCLK (SELS = 2 and SCG1 = 0)

The CLKIN/XIN pin is shared with a general-purpose I/O port. CLKIN/XIN is used as clock source.
CLKIN/XIN is not checked for the presence of a valid clock. When CLKIN/XIN is configured as analog
input pin CLKIN/XIN cannot be used as clock input.

41SLAU321–September 2010 Compact Clock System (CCS)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

UNMI
OFIE

Q

Qset

clr

Qset
X -OscFault

Qset

clr

XOFFG

XFOF

Qset
HF -OscFault

Qset

clr

HFOFFG

HFOF

POR
OFIFG

NMIA.OFIFG

CCS Module Operation www.ti.com

2.2.5 Compact Clock System Module Fail-Safe Operation

The Compact Clock System module incorporates an oscillator-fault fail-safe feature. This feature detects
an oscillator fault for HF-OSC and LF-OSC as shown in Figure 2-2. The available fault conditions are:

• HF-OSC fault (HFOFFG)
• X-OSC fault (XOFFG)

The oscillator fault bits are set if the corresponding oscillator is turned on and not operating properly. The
fault bits remain set as long as the fault condition exists and need to be cleared by software.

A fault of the HF-OSC is detected if no transition on HFCLK is sensed for a period of up to five LFCLK
cycles. If this is detected, all clock trees sourced by HFCLK are sourced by LFCLK instead.

A fault of the CLKIN/XIN is detected when the optional oscillator on XIN stops. If this is detected, all clock
trees sourced by CLKIN/XIN are sourced by LFCLK instead.

Figure 2-2. Oscillator Fault Logic for Devices With HF-OSC

42 Compact Clock System (CCS) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com CCS Module Registers

2.3 CCS Module Registers

The CCS module registers and their address offsets are listed in Table 2-2. The base for the CCS
registers is listed in Table 2-1. The password defined in the CCSCTL0 register controls access to the CCS
registers. Once the correct password is written, the write access is enabled. The write access is disabled
by writing a wrong password in byte mode to the CCSCTL0 upper byte. Word accesses to CCSCTL0 with
a wrong password triggers a PUC. A write access to a register other than CCSCTL0 while write access is
not enabled causes a PUC.

Table 2-1. CCS Register Base Address

Module Base Address

CCS 001A0h

Table 2-2. CCS Control Registers

Register AddressRegister Short Form Register Type Initial StateAccess Offset

CCSCTL0 word 00h 9600h

Compact clock system control 0 CCSCTL0_L read/write byte 00h 00h

CCSCTL0_H byte 01h 96h

CCSCTL1 word 02h 0001h

Compact clock system control 1 CCSCTL1_L read/write byte 02h 01h

CCSCTL1_H byte 03h 00h

CCSCTL2 word 04h 0028h

Compact clock system control 2 CCSCTL2_L read/write byte 04h 28h

CCSCTL2_H byte 05h 00h

CCSCTL4 word 08h 0100h

Compact clock system control 4 CCSCTL4_L read/write byte 08h 00h

CCSCTL4_H byte 09h 01h

CCSCTL5 word 0Ah 0333h

Compact clock system control 5 CCSCTL5_L read/write byte 0Ah 33h

CCSCTL5_H byte 0Bh 03h

CCSCTL6 word 0Ch 0001h

Compact clock system control 6 CCSCTL6_L read/write byte 0Ch 01h

CCSCTL6_H byte 0Dh 00h

CCSCTL7 word 0Eh 0003h

Compact clock system control 7 CCSCTL7_L read/write byte 0Eh 03h

CCSCTL7_H byte 0Fh 00h

CCSCTL8 word 10h 0007h

Compact clock system control 8 CCSCTL8_L read/write byte 10h 07h

CCSCTL8_H byte 11h 00h

43SLAU321–September 2010 Compact Clock System (CCS)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

CCS Module Registers www.ti.com

CCSCTL0, Compact Clock System Control 0 Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

CCSKEY, Read as 96h, Must be written as A5h

rw-1 rw-0 rw-0 rw-1 rw-0 rw-1 rw-1 rw-0

7 6 5 4 3 2 1 0

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

CCSKEY Bits 15-8 CCSKEY password. Value 0x00h locks Control Register. Must always be written with A5h to unlock or 00h to
lock. Any other values generate a PUC. Always read as 96h.

Reserved Bits 7-0 Reserved. Reads back as 0.

CCSCTL1, Compact Clock System Control 1 Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved DIVCLK

r0 r0 r0 r0 r0 r0 r0 rw-[1]

Reserved Bits 15-1 Reserved. Reads back as 0.

DIVCLK Bit 0 Clock division for CLKIN / X-OSC

0 CLKIN / X-OSC is directly used for clock generation

1 CLKIN/ X-OSC is divided by two for clock generation

CCSCTL2, Compact Clock System Control 2 Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved FSELx

r0 rw-[0] rw-[1] rw-[0] rw-[1] rw-[0] rw-[0] rw-[0]

Reserved Bits 15-7 Reserved. Reads back as 0.

FSELx Bits 6-0 Frequency trimming of the HF-OSC (applies only for devices that feature the HF-OSC)

0000000 Highest adjustable frequency

⋮ ⋮
0101000 Center frequency

⋮ ⋮
1111111 Lowest adjustable frequency

44 Compact Clock System (CCS) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com CCS Module Registers

CCSCTL4, Compact Clock System Control 4 Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved SELAx

r0 r0 r0 r0 r0 r0 rw-0 rw-1

7 6 5 4 3 2 1 0

Reserved SELSx Reserved SELMx

r0 r0 rw-0 rw-0 r0 r0 rw-0 rw-0

Reserved Bits 15-10 Reserved. Reads back as 0.

SELAx Bits 9-8 Select the ACLK source

00 HFCLK / DCO

01 LFCLK / VLO

10 CLKIN / X-OSC

11 Reserved (defaults to LFCLK / VLO)

Reserved Bits 7-6 Reserved. Reads back as 0.

SELSx Bits 5-4 Select the SMCLK source

00 HFCLK / DCO

01 LFCLK / VLO

10 CLKIN / X-OSC

11 Reserved (defaults to LFCLK / VLO)

Reserved Bits 3-2 Reserved. Reads back as 0.

SELMx Bits 1-0 Select the MCLK source

00 HFCLK / DCO

01 LFCLK / VLO

10 CLKIN / X-OSC

11 Reserved (defaults to LFCLK / VLO)

45SLAU321–September 2010 Compact Clock System (CCS)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

CCS Module Registers www.ti.com

CCSCTL5, Compact Clock System Control 5 Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved DIVAx

r0 r0 r0 r0 r0 rw-0 rw-1 rw-1

7 6 5 4 3 2 1 0

Reserved DIVSx Reserved DIVMx

r0 rw-0 rw-1 rw-1 r0 rw-0 rw-1 rw-1

Reserved Bits 15-11 Reserved. Reads back as 0.

DIVAx Bits 10-8 ACLK source divider

000 /1

001 /2

010 /4

011 /8

100 /16

101 /32

110 Reserved, defaults to /32

111 Reserved, defaults to /32

Reserved Bit 7 Reserved. Reads back as 0.

DIVSx Bits 6-4 SMCLK source divider

000 /1

001 /2

010 /4

011 /8

100 /16

101 /32

110 Reserved, defaults to /32

111 Reserved, defaults to /32

Reserved Bit 3 Reserved. Reads back as 0.

DIVMx Bits 2-0 MCLK source divider

000 /1

001 /2

010 /4

011 /8

100 /16

101 /32

110 Reserved, defaults to /32

111 Reserved, defaults to /32

CCSCTL6, Compact Clock System Control 6 Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved XTOFF

r0 r0 r0 r0 r0 r0 r0 rw-1

Reserved Bits 15-1 Reserved. Reads back as 0.

XTOFF Bit 0 XT off. This bit turns off the XT oscillator.

0 XT is on if XT is selected via the port selection.

1 XT is off if it is not used as a source for ACLK, MCLK, or SMCLK.

46 Compact Clock System (CCS) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com CCS Module Registers

CCSCTL7, Compact Clock System Control 7 Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved XOFFG HFOFFG

r0 r0 r0 r0 r0 r0 rw-(1) rw-(1)

Reserved Bits 15-2 Reserved. Reads back as 0.

XOFFG Bit 1 Crystal oscillator (X-OSC) fault flag. If this bit is set, the OFIFG flag is also set. XOFFG is set if a X-OSC
fault condition exists. The XOFFG can be cleared via software. If the X-OSC fault condition still remains, the
XOFFG remains set.

0 No fault condition occurred after the last reset.

1 X-OSC fault. A X-OSC fault occurred after the last reset.

HFOFFG Bit 0 High-frequency oscillator (HF-OSC) fault flag. If this bit is set, the OFIFG flag is also set. HFOFFG is set if a
HF-OSC fault condition exists. The HFOFFG can be cleared via software. If the HF-OSC fault condition still
remains, the HFOFFG remains set.

0 No fault condition occurred after the last reset.

1 HF-OSC fault. A HF-OSC fault occurred after the last reset.

CCSCTL8, Compact Clock System Control 8 Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved SMCLKREQEN MCLKREQEN ACLKREQEN

r0 r0 r0 r0 r0 rw-(1) rw-(1) rw-(1)

Reserved Bits 15-3 Reserved. Reads back as 0.

SMCLKREQEN Bit 2 SMCLK clock request enable. Peripheral modules can request the SMCLK to remain switched on.

0 SMCLK is turned off if the respective low power mode is entered.

1 SMCLK remains active in case a peripheral is using it even if it is selected to be switched off according
to the current low–power mode.

MCLKREQEN Bit 1 MCLK clock request enable. Peripheral modules can request the MCLK to remain switched on.

0 MCLK is turned off if the respective low power mode is entered.

1 MCLK remains active in case a peripheral is using it even if it is selected to be switched off according
to the current low–power mode.

ACLKREQEN Bit 0 ACLK clock request enable. Peripheral modules can request the ACLK to remain switched on. Refer to the
device specific data sheet which peripheral supports the clock request.

0 ACLK is turned off if the respective low power mode is entered.

1 ACLK remains active in case a peripheral is using it even if it is selected to be switched off according to
the current low–power mode.

47SLAU321–September 2010 Compact Clock System (CCS)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

48 Compact Clock System (CCS) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Chapter 3
SLAU321–September 2010

CPU

This chapter describes the MSP430 CPU, addressing modes, and instruction set.

Topic ... Page

3.1 CPU Introduction ... 50
3.2 CPU Registers .. 51
3.3 Addressing Modes .. 55
3.4 Instruction Set .. 62

49SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

CPU Introduction www.ti.com

3.1 CPU Introduction

The CPU incorporates features specifically designed for modern programming techniques such as
calculated branching, table processing and the use of high-level languages such as C. The CPU can
address the complete address range without paging.

The CPU features include:

• RISC architecture with 27 instructions and 7 addressing modes.
• Orthogonal architecture with every instruction usable with every addressing mode.
• Full register access including program counter, status registers, and stack pointer.
• Single-cycle register operations.
• Large 16-bit register file reduces fetches to memory.
• 16-bit address bus allows direct access and branching throughout entire memory range.
• 16-bit data bus allows direct manipulation of word-wide arguments.
• Constant generator provides six most used immediate values and reduces code size.
• Direct memory-to-memory transfers without intermediate register holding.
• Word and byte addressing and instruction formats.

The block diagram of the CPU is shown in Figure 3-1.

50 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

015

MDB- Memory Data Bus MemoryAddress Bus - MAB

16

Zero, Z

Carry, C

Overflow, V

Negative, N

16-bit ALU

dst src

R8 General Purpose

R9 General Purpose

R10 General Purpose

R11 General Purpose

R12 General Purpose

R13 General Purpose

R14 General Purpose

R15 General Purpose

R4 General Purpose

R5 General Purpose

R6 General Purpose

R7 General Purpose

R3/CG2 Constant Generator

R2/SR/CG1 Status

R1/SP Stack Pointer

R0/PC Program Counter 0

0

16

MCLK

www.ti.com CPU Registers

Figure 3-1. CPU Block Diagram

3.2 CPU Registers

The CPU incorporates sixteen 16-bit registers. R0, R1, R2 and R3 have dedicated functions. R4 to R15
are working registers for general use.

3.2.1 Program Counter (PC)

The 16-bit program counter (PC/R0) points to the next instruction to be executed. Each instruction uses an
even number of bytes (two, four, or six), and the PC is incremented accordingly. Instruction accesses in
the 64-KB address space are performed on word boundaries, and the PC is aligned to even addresses.
Figure 3-2 shows the program counter.

51SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

I3

I1

I2

I3

0xxxh

0xxxh - 2

0xxxh - 4

0xxxh - 6

0xxxh - 8

I1

I2

SP

0123h SP

I1

I2

I3 SP

PUSH #0123h POP R8Address

0123h

SP1

SPold

SP1

PUSH SP

The stack pointer is changed after

a PUSH SP instruction.

SP1SP2

POP SP

The stack pointer is not changed after a POP SP

instruction. The POP SP instruction places SP into the1

stack pointer SP (SP =SP)2 1

CPU Registers www.ti.com

Figure 3-2. Program Counter
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Program Counter Bits 15 to 1 0

The PC can be addressed with all instructions and addressing modes. A few examples:
MOV #LABEL,PC ; Branch to address LABEL
MOV LABEL,PC ; Branch to address contained in LABEL
MOV @R14,PC ; Branch indirect to address in R14

3.2.2 Stack Pointer (SP)

The stack pointer (SP/R1) is used by the CPU to store the return addresses of subroutine calls and
interrupts. It uses a predecrement, postincrement scheme. In addition, the SP can be used by software
with all instructions and addressing modes. Figure 3-3 shows the SP. The SP is initialized into RAM by the
user, and is aligned to even addresses.

Figure 3-4 shows stack usage.

Figure 3-3. Stack Counter
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Stack Pointer Bits 15 to 1 0

MOV 2(SP),R6 ; Item I2 -> R6
MOV R7,0(SP) ; Overwrite TOS with R7
PUSH #0123h ; Put 0123h onto TOS
POP R8 ; R8 = 0123h

Figure 3-4. Stack Usage

The special cases of using the SP as an argument to the PUSH and POP instructions are described and
shown in Figure 3-5.

Figure 3-5. PUSH SP - POP SP Sequence

52 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com CPU Registers

3.2.3 Status Register (SR)

The status register (SR/R2), used as a source or destination register, can be used in the register mode
only addressed with word instructions. The remaining combinations of addressing modes are used to
support the constant generator. Figure 3-6 shows the SR bits.

Figure 3-6. Status Register Bits
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OSC CPUReserved V SCG1 SCG0 GIE N Z COFF OFF

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Table 3-1 describes the status register bits.

Table 3-1. Description of Status Register Bits

Bit Description

V Overflow bit. This bit is set when the result of an arithmetic operation overflows the signed-variable range.

Set when:ADD(.B),ADDC(.B)

Positive + Positive = Negative

Negative + Negative = Positive

Otherwise reset

Set when:SUB(.B),SUBC(.B),CMP(.B)

Positive – Negative = Negative

Negative – Positive = Positive

Otherwise reset

SCG1 System clock generator 1. When set, turns off the SMCLK.

SCG0 System clock generator 0. When set, turns off the DCO dc generator, if DCOCLK is not used for MCLK or SMCLK.

OSCOFF Oscillator Off. When set, turns off the LFXT1 crystal oscillator, when LFXT1CLK is not use for MCLK or SMCLK.

CPUOFF CPU off. When set, turns off the CPU.

GIE General interrupt enable. When set, enables maskable interrupts. When reset, all maskable interrupts are disabled.

N Negative bit. Set when the result of a byte or word operation is negative and cleared when the result is not negative.

Word operation: N is set to the value of bit 15 of the result.

Byte operation: N is set to the value of bit 7 of the result.

Z Zero bit. Set when the result of a byte or word operation is 0 and cleared when the result is not 0.

C Carry bit. Set when the result of a byte or word operation produced a carry and cleared when no carry occurred.

3.2.4 Constant Generator Registers CG1 and CG2

Six commonly-used constants are generated with the constant generator registers R2 and R3, without
requiring an additional 16-bit word of program code. The constants are selected with the source-register
addressing modes (As), as described in Table 3-2.

Table 3-2. Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 00 – – – – – Register mode

R2 01 (0) Absolute address mode

R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 0FFFFh 1, word processing

53SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Unused

High Byte Low Byte

Byte

Register-Byte Operation

0h

High Byte Low Byte

Byte

Byte-Register Operation

Register

Memory Register

Memory

CPU Registers www.ti.com

The constant generator advantages are:

• No special instructions required
• No additional code word for the six constants
• No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six constants is used as an
immediate source operand. Registers R2 and R3, used in the constant mode, cannot be addressed
explicitly; they act as source-only registers.

3.2.4.1 Constant Generator - Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the constant generator allows
the MSP430 assembler to support 24 additional, emulated instructions. For example, the single-operand
instruction
CLR dst

is emulated by the double-operand instruction with the same length:
MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As=00.
INC dst

is replaced by:
ADD 0(R3),dst

3.2.5 General-Purpose Registers R4 to R15

The twelve registers, R4-R15, are general-purpose registers. All of these registers can be used as data
registers, address pointers, or index values and can be accessed with byte or word instructions as shown
in Figure 3-7.

Figure 3-7. Register-Byte/Byte-Register Operations

Example Register-Byte Operation Example Byte-Register Operation

R5 = 0A28Fh R5 = 01202h

R6 = 0203h R6 = 0223h

Mem(0203h) = 012h Mem(0223h) = 05Fh

ADD.B R5,0(R6) ADD.B @R6,R5

08Fh 05Fh

+ 012h + 002h

0A1h 00061h

Mem (0203h) = 0A1h R5 = 00061h

C = 0, Z = 0, N = 1 C = 0, Z = 0, N = 0

(Low byte of register) (Addressed byte)

+ (Addressed byte) + (Low byte of register)

->(Addressed byte) ->(Low byte of register, zero to High byte)

54 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

0A023hR10

R11

PC

0FA15h

PC
old

0A023hR10

R11

PC PC + 2
old

0A023h

Before: After:

www.ti.com Addressing Modes

3.3 Addressing Modes

Seven addressing modes for the source operand and four addressing modes for the destination operand
can address the complete address space with no exceptions. The bit numbers in Table 3-3 describe the
contents of the As (source) and Ad (destination) mode bits.

Table 3-3. Source/Destination Operand Addressing Modes

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register contents are operand

01/1 Indexed mode X(Rn) (Rn + X) points to the operand. X is stored in the next word.

01/1 Symbolic mode ADDR (PC + X) points to the operand. X is stored in the next word.
Indexed mode X(PC) is used.

01/1 Absolute mode &ADDR The word following the instruction contains the absolute
address. X is stored in the next word. Indexed mode X(SR) is
used.

10/- Indirect register mode @Rn Rn is used as a pointer to the operand.

11/- Indirect autoincrement @Rn+ Rn is used as a pointer to the operand. Rn is incremented
afterwards by 1 for .B instructions and by 2 for .W instructions.

11/- Immediate mode #N The word following the instruction contains the immediate
constant N. Indirect autoincrement mode @PC+ is used.

The seven addressing modes are explained in detail in the following sections. Most of the examples show
the same addressing mode for the source and destination, but any valid combination of source and
destination addressing modes is possible in an instruction.

NOTE: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used as generic labels.
They are only labels. They have no special meaning.

3.3.1 Register Mode

The register mode is described in Table 3-4.

Table 3-4. Register Mode Description

Assembler Code Content of ROM

MOV R10,R11 MOV R10,R11

Length: One or two words

Operation: Move the content of R10 to R11. R10 is not affected.

Comment: Valid for source and destination

Example: MOV R10,R11

55SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

00006h

Address

Space

00002h

04596h PC

0FF16h

0FF14h

0FF12h

0xxxxh

05555h

01094h

01092h

01090h 0xxxxh

0xxxxh

01234h

01084h

01082h

01080h 0xxxxh

01080h

0108Ch

R5

R6

0108Ch

+0006h

01092h

01080h

+0002h

01082h

Register
Before:

00006h

Address

Space

00002h

04596h

PC

0FF16h

0FF14h

0FF12h

0xxxxh

01234h

01094h

01092h

01090h 0xxxxh

0xxxxh

01234h

01084h

01082h

01080h 0xxxxh

01080h

0108Ch

R5

R6

Register
After:

0xxxxh

Addressing Modes www.ti.com

NOTE: Data in Registers

The data in the register can be accessed using word or byte instructions. If byte instructions
are used, the high byte is always 0 in the result. The status bits are handled according to the
result of the byte instructions.

3.3.2 Indexed Mode

The indexed mode is described in Table 3-5.

Table 3-5. Indexed Mode Description

Assembler Code Content of ROM

MOV 2(R5),6(R6) MOV X(R5),Y(R6)

X = 2

Y = 6

Length: Two or three words

Operation: Move the contents of the source address (contents of R5 + 2) to the destination address (contents of R6 + 6). The
source and destination registers (R5 and R6) are not affected. In indexed mode, the program counter is
incremented automatically so that program execution continues with the next instruction.

Comment: Valid for source and destination

Example: MOV 2(R5),6(R6);

56 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

011FEh

Address

Space

0F102h

04090h PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

05555h

01116h

01114h

01112h 0xxxxh

0FF14h

+0F102h

0F016h

0FF16h

+01 1FEh

01114h

Register
Before:

011FEh

Address

Space

0F102h

04090h

PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

0A123h

01116h

01114h

01112h 0xxxxh

Register
After:

0xxxxh

www.ti.com Addressing Modes

3.3.3 Symbolic Mode

The symbolic mode is described in Table 3-6.

Table 3-6. Symbolic Mode Description

Assembler Code Content of ROM

MOV EDE,TONI MOV X(PC),Y(PC)

X = EDE – PC

Y = TONI – PC

Length: Two or three words

Operation: Move the contents of the source address EDE (contents of PC + X) to the destination address TONI (contents of
PC + Y). The words after the instruction contain the differences between the PC and the source or destination
addresses. The assembler computes and inserts offsets X and Y automatically. With symbolic mode, the program
counter (PC) is incremented automatically so that program execution continues with the next instruction.

Comment: Valid for source and destination

Example:

MOV EDE,TONI ;Source address EDE = 0F016h
;Dest. address TONI = 01114h

57SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

01114h

Address

Space

0F016h

04292h PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

01234h

01116h

01114h

01112h 0xxxxh

Register
Before:

01114h

Address

Space

0F016h

04292h

PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

0A123h

01116h

01114h

01112h 0xxxxh

Register
After:

0xxxxh

Addressing Modes www.ti.com

3.3.4 Absolute Mode

The absolute mode is described in Table 3-7.

Table 3-7. Absolute Mode Description

Assembler Code Content of ROM

MOV &EDE,&TONI MOV X(0),Y(0)

X = EDE

Y = TONI

Length: Two or three words

Operation: Move the contents of the source address EDE to the destination address TONI. The words after the instruction
contain the absolute address of the source and destination addresses. With absolute mode, the PC is
incremented automatically so that program execution continues with the next instruction.

Comment: Valid for source and destination

Example:

MOV &EDE,&TONI ;Source address EDE = 0F016h
;Dest. address TONI = 01114h

This address mode is mainly for hardware peripheral modules that are located at an absolute, fixed
address. These are addressed with absolute mode to ensure software transportability (for example,
position-independent code).

58 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

0000h

Address

Space

04AEBh PC

0FF16h

0FF14h

0FF12h

0xxxxh

05BC1h

0xxxxh

0xxh

012h

0xxh

0FA33h

002A7h

R10

R11

Register
Before:

0000h

Address

Space

04AEBh

PC

0FF16h

0FF14h

0FF12h

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxh

05Bh

002A8h

002A7h

002A6h 0xxh

0FA33h

002A7h

R10

R11

Register
After:

0xxxxh0xxxxh

0xxxxh 0xxxxh

0FA34h

0FA32h

0FA30h

002A8h

002A7h

002A6h

www.ti.com Addressing Modes

3.3.5 Indirect Register Mode

The indirect register mode is described in Table 3-8.

Table 3-8. Indirect Mode Description

Assembler Code Content of ROM

MOV @R10,0(R11) MOV @R10,0(R11)

Length: One or two words

Operation: Move the contents of the source address (contents of R10) to the destination address (contents of R11). The
registers are not modified.

Comment: Valid only for source operand. The substitute for destination operand is 0(Rd).

Example: MOV.B @R10,0(R11)

59SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

00000h

Address

Space

04ABBh PC

0FF16h

0FF14h

0FF12h

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxxxh

01234h

010AAh

010A8h

010A6h 0xxxxh

0FA32h

010A8h

R10

R11

Register
Before:

Address

Space

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxxxh

05BC1h

010AAh

010A8h

010A6h 0xxxxh

0FA34hR10

R11

Register
After:

0xxxxh

0xxxxh

0FF18h

00000h

04ABBh

PC

0FF16h

0FF14h

0FF12h

0xxxxh

0xxxxh

0FF18h

010A8h

Instruction Address Operand

+1/ +2

Addressing Modes www.ti.com

3.3.6 Indirect Autoincrement Mode

The indirect autoincrement mode is described in Table 3-9.

Table 3-9. Indirect Autoincrement Mode Description

Assembler Code Content of ROM

MOV @R10+,0(R11) MOV @R10+,0(R11)

Length: One or two words

Operation: Move the contents of the source address (contents of R10) to the destination address (contents of R11). Register
R10 is incremented by 1 for a byte operation, or 2 for a word operation after the fetch; it points to the next address
without any overhead. This is useful for table processing.

Comment: Valid only for source operand. The substitute for destination operand is 0(Rd) plus second instruction INCD Rd.

Example: MOV @R10+,0(R11)

The autoincrementing of the register contents occurs after the operand is fetched. This is shown in
Figure 3-8.

Figure 3-8. Operand Fetch Operation

60 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

01192h

Address

Space

00045h

040B0h PC

0FF16h

0FF14h

0FF12h

0xxxxh

01234h

0xxxxh

0FF16h

+01192h

010A8h

Register
Before:

01192h

Address

Space

00045h

040B0h

PC

0FF16h

0FF14h

0FF12h

0xxxxh010AAh

010A8h

010A6h 0xxxxh

Register
After:

0xxxxh0FF18h

010AAh

010A8h

010A6h

00045h

www.ti.com Addressing Modes

3.3.7 Immediate Mode

The immediate mode is described in Table 3-10.

Table 3-10. Immediate Mode Description

Assembler Code Content of ROM

MOV #45h,TONI MOV @PC+,X(PC)

45

X = TONI – PC

Length: Two or three words

It is one word less if a constant of CG1 or CG2 can be used.

Operation: Move the immediate constant 45h, which is contained in the word following the instruction, to destination address
TONI. When fetching the source, the program counter points to the word following the instruction and moves the
contents to the destination.

Comment: Valid only for a source operand.

Example: MOV #45h,TONI

61SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

3.4 Instruction Set

The complete MSP430 instruction set consists of 27 core instructions and 24 emulated instructions. The
core instructions are instructions that have unique op-codes decoded by the CPU. The emulated
instructions are instructions that make code easier to write and read, but do not have op-codes
themselves, instead they are replaced automatically by the assembler with an equivalent core instruction.
There is no code or performance penalty for using emulated instruction.

There are three core-instruction formats:

• Dual-operand
• Single-operand
• Jump

All single-operand and dual-operand instructions can be byte or word instructions by using .B or .W
extensions. Byte instructions are used to access byte data or byte peripherals. Word instructions are used
to access word data or word peripherals. If no extension is used, the instruction is a word instruction.

The source and destination of an instruction are defined by the following fields:

src The source operand defined by As and S-reg
dst The destination operand defined by Ad and D-reg
As The addressing bits responsible for the addressing mode used for the source (src)
S-reg The working register used for the source (src)
Ad The addressing bits responsible for the addressing mode used for the destination (dst)
D-reg The working register used for the destination (dst)
B/W Byte or word operation:

0: word operation
1: byte operation

NOTE: Destination Address

Destination addresses are valid anywhere in the memory map. However, when using an
instruction that modifies the contents of the destination, the user must ensure the destination
address is writable. Fore example, a masked-ROM location would be a valid destination
address, but the contents are not modifiable, so the results of the instruction would be lost.

62 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

3.4.1 Double-Operand (Format I) Instructions

Figure 3-9 illustrates the double-operand instruction format.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op-code S-Reg Ad B/W As D-Reg

Figure 3-9. Double Operand Instruction Format

Table 3-11 lists and describes the double operand instructions.

Table 3-11. Double Operand Instructions

Status BitsS-Reg,Mnemonic OperationD-Reg V N Z C

src → dst - - - -MOV(.B) src,dst

src + dst → dst * * * *ADD(.B) src,dst

src + dst + C → dst * * * *ADDC(.B) src,dst

dst + .not.src + 1 → dst * * * *SUB(.B) src,dst

dst + .not.src + C → dst * * * *SUBC(.B) src,dst

dst - src * * * *CMP(.B) src,dst

src + dst + C → dst (decimally) * * * *DADD(.B) src,dst

src .and. dst 0 * * *BIT(.B) src,dst

not.src .and. dst → dst - - - -BIC(.B) src,dst

src .or. dst → dst - - - -BIS(.B) src,dst

src .xor. dst → dst * * * *XOR(.B) src,dst

src .and. dst → dst 0 * * *AND(.B) src,dst

* The status bit is affected
– The status bit is not affected
0 The status bit is cleared
1 The status bit is set

NOTE: Instructions CMP and SUB

The instructions CMP and SUB are identical except for the storage of the result. The same is
true for the BIT and AND instructions.

63SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

3.4.2 Single-Operand (Format II) Instructions

Figure 3-10 illustrates the single-operand instruction format.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op-code B/W Ad D/S-Reg

Figure 3-10. Single Operand Instruction Format

Table 3-12 lists and describes the single operand instructions.

Table 3-12. Single Operand Instructions

Status BitsS-Reg,Mnemonic OperationD-Reg V N Z C

C → MSB →.......LSB → C * * * *RRC(.B) dst

MSB → MSB →....LSB → C 0 * * *RRA(.B) dst

SP – 2 → SP, src → @SP - - - -PUSH(.B) src

Swap bytes - - - -SWPB dst

SP – 2 → SP, PC+2 → @SP - - - -CALL dst

dst → PC

TOS → SR, SP + 2 → SP * * * *RETI

TOS → PC,SP + 2 → SP

Bit 7 → Bit 8........Bit 15 0 * * *SXT dst

* The status bit is affected
– The status bit is not affected
0 The status bit is cleared
1 The status bit is set

All addressing modes are possible for the CALL instruction. If the symbolic mode (ADDRESS), the
immediate mode (#N), the absolute mode (&EDE) or the indexed mode x(RN) is used, the word that
follows contains the address information.

64 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

3.4.3 Jumps

Figure 3-11 shows the conditional-jump instruction format.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op-code C 10-Bit PC Offset

Figure 3-11. Jump Instruction Format

Table 3-13 lists and describes the jump instructions

Table 3-13. Jump Instructions

Mnemonic S-Reg, D-Reg Operation

Jump to label if zero bit is setJEQ/JZ Label

Jump to label if zero bit is resetJNE/JNZ Label

Jump to label if carry bit is setJC Label

Jump to label if carry bit is resetJNC Label

Jump to label if negative bit is setJN Label

Jump to label if (N .XOR. V) = 0JGE Label

Jump to label if (N .XOR. V) = 1JL Label

Jump to label unconditionallyJMP Label

Conditional jumps support program branching relative to the PC and do not affect the status bits. The
possible jump range is from –511 to +512 words relative to the PC value at the jump instruction. The
10-bit program-counter offset is treated as a signed 10-bit value that is doubled and added to the program
counter:

PCnew = PCold + 2 + PCoffset × 2

65SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

3.4.4 Instruction Set

*ADC[.W] Add carry to destination

*ADC.B Add carry to destination

Syntax ADC dst or ADC.W dst
ADC.B dst

Operation dst + C -> dst

Emulation ADDC #0,dst ADDC.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents of the
destination are lost.

Status Bit N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Set if dst was incremented from 0FFFFh to 0000, reset otherwise

Set if dst was incremented from 0FFh to 00, reset otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to by R12.
ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

Example The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by R12.
ADD.B @R13,0(R12) ; Add LSDs
ADC.B 1(R12) ; Add carry to MSD

66 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

ADD[.W] Add source to destination

ADD.B Add source to destination

Syntax ADD src,dst or ADD.W src,dst

ADD.B src,dst

Operation src + dst -> dst

Description The source operand is added to the destination operand. The source operand is not
affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the result, cleared if not

V:Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is increased by 10. The jump to TONI is performed on a carry.
ADD #10,R5
JC TONI ; Carry occurred
...... ; No carry

Example R5 is increased by 10. The jump to TONI is performed on a carry.
ADD.B #10,R5 ; Add 10 to Lowbyte of R5
JC TONI ; Carry occurred, if (R5) ≥ 246 [0Ah+0F6h]
...... ; No carry

67SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

ADDC[.W] Add source and carry to destination

ADDC.B Add source and carry to destination

Syntax ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

Operation src + dst + C -> dst

Description The source operand and the carry bit (C) are added to the destination operand. The
source operand is not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB of the result, reset otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 32-bit counter pointed to by R13 is added to a 32-bit counter, eleven words
(20/2 + 2/2) above the pointer in R13.
ADD @R13+,20(R13) ; ADD LSDs with no carry in
ADDC @R13+,20(R13) ; ADD MSDs with carry
... ; resulting from the LSDs

Example The 24-bit counter pointed to by R13 is added to a 24-bit counter, eleven words above
the pointer in R13.
ADD.B @R13+,10(R13) ; ADD LSDs with no carry in
ADDC.B @R13+,10(R13) ; ADD medium Bits with carry
ADDC.B @R13+,10(R13) ; ADD MSDs with carry
... ; resulting from the LSDs

68 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

AND[.W] Source AND destination

AND.B Source AND destination

Syntax AND src,dst or AND.W src,dst
AND.B src,dst

Operation src .AND. dst -> dst

Description The source operand and the destination operand are logically ANDed. The result is
placed into the destination.

Status Bits N: Set if result MSB is set, reset if not set

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R5 are used as a mask (#0AA55h) for the word addressed by TOM. If the
result is zero, a branch is taken to label TONI.
MOV #0AA55h,R5 ; Load mask into register R5
AND R5,TOM ; mask word addressed by TOM with R5
JZ TONI ;
...... ; Result is not zero
;
;
; or
;
;
AND #0AA55h,TOM
JZ TONI

Example The bits of mask #0A5h are logically ANDed with the low byte TOM. If the result is zero,
a branch is taken to label TONI.
AND.B #0A5h,TOM ; mask Lowbyte TOM with 0A5h
JZ TONI ;
...... ; Result is not zero

69SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

BIC[.W] Clear bits in destination

BIC[.W] Clear bits in destination

Syntax BIC src,dst or BIC.W src,dst
BIC.B src,dst

Operation .NOT.src .AND. dst -> dst

Description The inverted source operand and the destination operand are logically ANDed. The
result is placed into the destination. The source operand is not affected.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The six MSBs of the RAM word LEO are cleared.
BIC #0FC00h,LEO ; Clear 6 MSBs in MEM(LEO)

Example The five MSBs of the RAM byte LEO are cleared.
BIC.B #0F8h,LEO ; Clear 5 MSBs in Ram location LEO

70 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

BIS[.W] Set bits in destination

BIS.B Set bits in destination

Syntax BIS src,dst or BIS.W src,dst
BIS.B src,dst

Operation src .OR. dst -> dst

Description The source operand and the destination operand are logically ORed. The result is placed
into the destination. The source operand is not affected.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The six LSBs of the RAM word TOM are set.
BIS #003Fh,TOM ; set the six LSBs in RAM location TOM

Example The three MSBs of RAM byte TOM are set.
BIS.B #0E0h,TOM ; set the 3 MSBs in RAM location TOM

71SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

BIT[.W] Test bits in destination

BIT.B Test bits in destination

Syntax BIT src,dst or BIT.W src,dst

Operation src .AND. dst

Description The source and destination operands are logically ANDed. The result affects only the
status bits. The source and destination operands are not affected.

Status Bits N: Set if MSB of result is set, reset otherwise

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (.NOT. Zero)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example If bit 9 of R8 is set, a branch is taken to label TOM.
BIT #0200h,R8 ; bit 9 of R8 set?
JNZ TOM ; Yes, branch to TOM
... ; No, proceed

Example If bit 3 of R8 is set, a branch is taken to label TOM.
BIT.B #8,R8
JC TOM

Example A serial communication receive bit (RCV) is tested. Because the carry bit is equal to the
state of the tested bit while using the BIT instruction to test a single bit, the carry bit is
used by the subsequent instruction; the read information is shifted into register RECBUF.
;
; Serial communication with LSB is shifted first:

; xxxx xxxx xxxx xxxx
BIT.B #RCV,RCCTL ; Bit info into carry
RRC RECBUF ; Carry -> MSB of RECBUF

; cxxx xxxx
...... ; repeat previous two instructions
...... ; 8 times

; cccc cccc
; ^ ^
; MSB LSB

; Serial communication with MSB shifted first:
BIT.B #RCV,RCCTL ; Bit info into carry
RLC.B RECBUF ; Carry -> LSB of RECBUF

; xxxx xxxc
...... ; repeat previous two instructions
...... ; 8 times

; cccc cccc
; |
; MSB LSB

72 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

*BR, BRANCH Branch to destination

Syntax BR dst

Operation dst -> PC

Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the 64K address space. All
source addressing modes can be used. The branch instruction is a word instruction.

Status Bits Status bits are not affected.

Example Examples for all addressing modes are given.
BR #EXEC ; Branch to label EXEC or direct branch (e.g. #0A4h)

; Core instruction MOV @PC+,PC
BR EXEC ; Branch to the address contained in EXEC

; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5

BR @R5 ; Branch to the address contained in the word
; pointed to by R5.
; Core instruction MOV @R5+,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time--S/W flow uses R5 pointer--it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

73SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

CALL Subroutine

Syntax CALL dst

Operation dst -> tmp dst is evaluated and stored

SP - 2 -> SP

PC -> @SP PC updated to TOS

tmp -> PC dst saved to PC

Description A subroutine call is made to an address anywhere in the 64K address space. All
addressing modes can be used. The return address (the address of the following
instruction) is stored on the stack. The call instruction is a word instruction.

Status Bits Status bits are not affected.

Example Examples for all addressing modes are given.
CALL #EXEC ; Call on label EXEC or immediate address (e.g. #0A4h)

; SP-2 -> SP, PC+2 -> @SP, @PC+ -> PC
CALL EXEC ; Call on the address contained in EXEC

; SP-2 -> SP, PC+2 ->SP, X(PC) -> PC
; Indirect address

CALL &EXEC ; Call on the address contained in absolute address
; EXEC
; SP-2 -> SP, PC+2 -> @SP, X(0) -> PC
; Indirect address

CALL R5 ; Call on the address contained in R5
; SP-2 -> SP, PC+2 -> @SP, R5 -> PC
; Indirect R5

CALL @R5 ; Call on the address contained in the word
; pointed to by R5
; SP-2 -> SP, PC+2 -> @SP, @R5 -> PC
; Indirect, indirect R5

CALL @R5+ ; Call on the address contained in the word
; pointed to by R5 and increment pointer in R5.
; The next time S/W flow uses R5 pointer
; it can alter the program execution due to
; access to next address in a table pointed to by R5
; SP-2 -> SP, PC+2 -> @SP, @R5 -> PC
; Indirect, indirect R5 with autoincrement

CALL X(R5) ; Call on the address contained in the address pointed
; to by R5 + X (e.g. table with address starting at X)
; X can be an address or a label
; SP-2 -> SP, PC+2 -> @SP, X(R5) -> PC
; Indirect, indirect R5 + X

74 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

*CLR[.W] Clear destination

*CLR.B Clear destination

Syntax CLR dst or CLR.W dst
CLR.B dst

Operation 0 -> dst

Emulation MOV #0,dst MOV.B #0,dst

Description The destination operand is cleared.

Status Bits Status bits are not affected.

Example RAM word TONI is cleared.
CLR TONI ; 0 -> TONI

Example Register R5 is cleared.
CLR R5

Example RAM byte TONI is cleared.
CLR.B TONI ; 0 -> TONI

75SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

*CLRC Clear carry bit

Syntax CLRC

Operation 0 -> C

Emulation BIC #1,SR

Description The carry bit (C) is cleared. The clear carry instruction is a word instruction.

Status Bits N: Not affected

Z: Not affected

C: Cleared

V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter pointed to by
R12.
CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16=bit counter to low word of 32=bit counter
DADC 2(R12) ; add carry to high word of 32=bit counter

76 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

*CLRN Clear negative bit

Syntax CLRN

Operation 0 -> N

or

(.NOT.src .AND. dst -> dst)

Emulation BIC #4,SR

Description The constant 04h is inverted (0FFFBh) and is logically ANDed with the destination
operand. The result is placed into the destination. The clear negative bit instruction is a
word instruction.

Status Bits N: Reset to 0

Z: Not affected

C: Not affected

V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The Negative bit in the status register is cleared. This avoids special treatment with
negative numbers of the subroutine called.

CLRN
CALL SUBR
......
......

SUBR JN SUBRET ; If input is negative: do nothing and return
......
......
......

SUBRET RET

77SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

*CLRZ Clear zero bit

Syntax CLRZ

Operation 0 -> Z

or

(.NOT.src .AND. dst -> dst)

Emulation BIC #2,SR

Description The constant 02h is inverted (0FFFDh) and logically ANDed with the destination
operand. The result is placed into the destination. The clear zero bit instruction is a word
instruction.

Status Bits N: Not affected

Z: Reset to 0

C: Not affected

V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The zero bit in the status register is cleared.
CLRZ

78 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

CMP[.W] Compare source and destination

CMP.B Compare source and destination

Syntax CMP src,dst or CMP.W src,dst
CMP.B src,dst

Operation dst + .NOT.src + 1

or

(dst - src)

Description The source operand is subtracted from the destination operand. This is accomplished by
adding the 1s complement of the source operand plus 1. The two operands are not
affected and the result is not stored; only the status bits are affected.

Status Bits N: Set if result is negative, reset if positive (src ≥ dst)

Z: Set if result is zero, reset otherwise (src = dst)

C: Set if there is a carry from the MSB of the result, reset otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 and R6 are compared. If they are equal, the program continues at the label EQUAL.
CMP R5,R6 ; R5 = R6?
JEQ EQUAL ; YES, JUMP

Example Two RAM blocks are compared. If they are not equal, the program branches to the label
ERROR.

MOV #NUM,R5 ; number of words to be compared
MOV #BLOCK1,R6 ; BLOCK1 start address in R6
MOV #BLOCK2,R7 ; BLOCK2 start address in R7

L$1 CMP @R6+,0(R7) ; Are Words equal? R6 increments
JNZ ERROR ; No, branch to ERROR
INCD R7 ; Increment R7 pointer
DEC R5 ; Are all words compared?
JNZ L$1 ; No, another compare

Example The RAM bytes addressed by EDE and TONI are compared. If they are equal, the
program continues at the label EQUAL.
CMP.B EDE,TONI ; MEM(EDE) = MEM(TONI)?
JEQ EQUAL ; YES, JUMP

79SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

*DADC[.W] Add carry decimally to destination

*DADC.B Add carry decimally to destination

Syntax DADC dst or DADC.W src,dst
DADC.B dst

Operation dst + C -> dst (decimally)

Emulation DADD #0,dst DADD.B #0,dst

Description The carry bit (C) is added decimally to the destination.

Status Bits N: Set if MSB is 1

Z: Set if dst is 0, reset otherwise

C: Set if destination increments from 9999 to 0000, reset otherwise

Set if destination increments from 99 to 00, reset otherwise

V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The four-digit decimal number contained in R5 is added to an eight-digit decimal number
pointed to by R8.
CLRC ; Reset carry

; next instruction’s start condition is defined
DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

Example The two-digit decimal number contained in R5 is added to a four-digit decimal number
pointed to by R8.
CLRC ; Reset carry

; next instruction’s start condition is defined
DADD.B R5,0(R8) ; Add LSDs + C
DADC.B 1(R8) ; Add carry to MSDs

80 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

DADD[.W] Source and carry added decimally to destination

DADD.B Source and carry added decimally to destination

Syntax DADD src,dst or DADD.W src,dst
DADD.B src,dst

Operation src + dst + C -> dst (decimally)

Description The source operand and the destination operand are treated as four binary coded
decimals (BCD) with positive signs. The source operand and the carry bit (C)are added
decimally to the destination operand. The source operand is not affected. The previous
contents of the destination are lost. The result is not defined for non-BCD numbers.

Status Bits N: Set if the MSB is 1, reset otherwise

Z: Set if result is zero, reset otherwise

C: Set if the result is greater than 9999

Set if the result is greater than 99

V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The eight-digit BCD number contained in R5 and R6 is added decimally to an eight-digit
BCD number contained in R3 and R4 (R6 and R4 contain the MSDs).
CLRC ; clear carry
DADD R5,R3 ; add LSDs
DADD R6,R4 ; add MSDs with carry
JC OVERFLOW ; If carry occurs go to error handling routine

Example The two-digit decimal counter in the RAM byte CNT is incremented by one.
CLRC ; clear carry
DADD.B #1,CNT

or
SETC
DADD.B #0,CNT ; equivalent to DADC.B CNT

81SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

EDE

EDE+254

TONI

TONI+254

Instruction Set www.ti.com

*DEC[.W] Decrement destination

*DEC.B Decrement destination

Syntax DEC dst or DEC.W dst
DEC.B dst

Operation dst - 1 -> dst

Emulation SUB #1,dst

Emulation SUB.B #1,dst

Description The destination operand is decremented by one. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 1, reset otherwise

C: Reset if dst contained 0, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.

Set if initial value of destination was 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF,and GIE are not affected.

Example R10 is decremented by 1.
DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to
memory location starting with
; TONI. Tables should not overlap: start of destination address TONI
must not be within the range EDE
; to EDE+0FEh

MOV #EDE,R6
MOV #255,R10

L$1 MOV.B @R6+,TONI-EDE-1(R6)
DEC R10
JNZ L$1

Do not transfer tables using the routine above with the overlap shown in Figure 3-12.

Figure 3-12. Decrement Overlap

82 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

*DECD[.W] Double-decrement destination

*DECD.B Double-decrement destination

Syntax DECD dst or DECD.W dst
DECD.B dst

Operation dst - 2 -> dst

Emulation SUB #2,dst

Emulation SUB.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 2, reset otherwise

C: Reset if dst contained 0 or 1, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.

Set if initial value of destination was 081 or 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R10 is decremented by 2.
DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to
; memory location starting with TONI
; Tables should not overlap: start of destination address TONI must not be
; within the range EDE to EDE+0FEh

MOV #EDE,R6
MOV #510,R10

L$1 MOV @R6+,TONI-EDE-2(R6)
DECD R10
JNZ L$1

Example Memory at location LEO is decremented by two.
DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two.
DECD.B STATUS

83SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

*DINT Disable (general) interrupts

Syntax DINT

Operation 0 -> GIE

or

(0FFF7h .AND. SR -> SR / .NOT.src .AND. dst -> dst)

Emulation BIC #8,SR

Description All interrupts are disabled.

The constant 08h is inverted and logically ANDed with the status register (SR). The
result is placed into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is reset. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is cleared to allow a
nondisrupted move of a 32-bit counter. This ensures that the counter is not modified
during the move by any interrupt.
DINT ; All interrupt events using the GIE bit are disabled
NOP
MOV COUNTHI,R5 ; Copy counter
MOV COUNTLO,R6
EINT ; All interrupt events using the GIE bit are enabled

NOTE: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by a NOP instruction.

84 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

*EINT Enable (general) interrupts

Syntax EINT

Operation 1 -> GIE

or

(0008h .OR. SR -> SR / .src .OR. dst -> dst)

Emulation BIS #8,SR

Description All interrupts are enabled.

The constant #08h and the status register SR are logically ORed. The result is placed
into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is set. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is set.
; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read. P1IFG is
; the address of the register where all interrupt events are latched.

PUSH.B &P1IN
BIC.B @SP,&P1IFG ; Reset only accepted flags
EINT ; Preset port 1 interrupt flags stored on stack

; other interrupts are allowed
BIT #Mask,@SP
JEQ MaskOK ; Flags are present identically to mask: jump
......

MaskOK BIC #Mask,@SP
......
INCD SP ; Housekeeping: inverse to PUSH instruction

; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

NOTE: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the
interrupts are enable.

85SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

*INC[.W] Increment destination

*INC.B Increment destination

Syntax INC dst or INC.W dst
INC.B dst

Operation dst + 1 -> dst

Emulation ADD #1,dst

Description The destination operand is incremented by one. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise

C: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise

Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The status byte, STATUS, of a process is incremented. When it is equal to 11, a branch
to OVFL is taken.
INC.B STATUS
CMP.B #11,STATUS
JEQ OVFL

86 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

*INCD[.W] Double-increment destination

*INCD.B Double-increment destination

Syntax INCD dst or INCD.W dst
INCD.B dst

Operation dst + 2 -> dst

Emulation ADD #2,dst

Emulation ADD.B #2,dst

Example The destination operand is incremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFEh, reset otherwise

Set if dst contained 0FEh, reset otherwise

C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise

Set if dst contained 0FEh or 0FFh, reset otherwise

V: Set if dst contained 07FFEh or 07FFFh, reset otherwise

Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The item on the top of the stack (TOS) is removed without using a register.
PUSH R5 ; R5 is the result of a calculation, which is stored

; in the system stack
INCD SP ; Remove TOS by double-increment from stack

; Do not use INCD.B, SP is a word-aligned register
RET

Example The byte on the top of the stack is incremented by two.
INCD.B 0(SP) ; Byte on TOS is increment by two

87SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

*INV[.W] Invert destination

*INV.B Invert destination

Syntax INV dst
INV.B dst

Operation .NOT.dst -> dst

Emulation XOR #0FFFFh,dst

Emulation XOR.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)

Set if result is not zero, reset otherwise (= .NOT. Zero)

V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Content of R5 is negated (twos complement).
MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5 is now negated, R5 = 0FF52h

Example Content of memory byte LEO is negated.
MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated, MEM(LEO) = 052h

88 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

JC Jump if carry set

JHS Jump if higher or same

Syntax JC label
JHS label

Operation If C = 1: PC + 2 offset -> PC

If C = 0: execute following instruction

Description The status register carry bit (C) is tested. If it is set, the 10-bit signed offset contained in
the instruction LSBs is added to the program counter. If C is reset, the next instruction
following the jump is executed. JC (jump if carry/higher or same) is used for the
comparison of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected.

Example The P1IN.1 signal is used to define or control the program flow.
BIT.B #02h,&P1IN ; State of signal -> Carry
JC PROGA ; If carry=1 then execute program routine A
...... ; Carry=0, execute program here

Example R5 is compared to 15. If the content is higher or the same, branch to LABEL.
CMP #15,R5
JHS LABEL ; Jump is taken if R5 >= 15
...... ; Continue here if R5 < 15

89SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

JEQ, JZ Jump if equal, jump if zero

Syntax JEQ label
JZ label

Operation If Z = 1: PC + 2 offset -> PC

If Z = 0: execute following instruction

Description The status register zero bit (Z) is tested. If it is set, the 10-bit signed offset contained in
the instruction LSBs is added to the program counter. If Z is not set, the instruction
following the jump is executed.

Status Bits Status bits are not affected.

Example Jump to address TONI if R7 contains zero.
TST R7 ; Test R7
JZ TONI ; if zero: JUMP

Example Jump to address LEO if R6 is equal to the table contents.
CMP R6,Table(R5) ; Compare content of R6 with content of

; MEM (table address + content of R5)
JEQ LEO ; Jump if both data are equal
...... ; No, data are not equal, continue here

Example Branch to LABEL if R5 is 0.
TST R5
JZ LABEL
......

90 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

JGE Jump if greater or equal

Syntax JGE label

Operation If (N .XOR. V) = 0 then jump to label: PC + 2 P offset -> PC

If (N .XOR. V) = 1 then execute the following instruction

Description The status register negative bit (N) and overflow bit (V) are tested. If both N and V are
set or reset, the 10-bit signed offset contained in the instruction LSBs is added to the
program counter. If only one is set, the instruction following the jump is executed.

This allows comparison of signed integers.

Status Bits Status bits are not affected.

Example When the content of R6 is greater or equal to the memory pointed to by R7, the program
continues at label EDE.
CMP @R7,R6 ; R6 >= (R7)?, compare on signed numbers
JGE EDE ; Yes, R6 >= (R7)
...... ; No, proceed
......
......

91SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

JL Jump if less

Syntax JL label

Operation If (N .XOR. V) = 1 then jump to label: PC + 2 offset -> PC

If (N .XOR. V) = 0 then execute following instruction

Description The status register negative bit (N) and overflow bit (V) are tested. If only one is set, the
10-bit signed offset contained in the instruction LSBs is added to the program counter. If
both N and V are set or reset, the instruction following the jump is executed.

This allows comparison of signed integers.

Status Bits Status bits are not affected.

Example When the content of R6 is less than the memory pointed to by R7, the program
continues at label EDE.
CMP @R7,R6 ; R6 < (R7)?, compare on signed numbers
JL EDE ; Yes, R6 < (R7)
...... ; No, proceed
......
......

92 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

JMP Jump unconditionally

Syntax JMP label

Operation PC + 2 × offset -> PC

Description The 10-bit signed offset contained in the instruction LSBs is added to the program
counter.

Status Bits Status bits are not affected.

Hint This one-word instruction replaces the BRANCH instruction in the range of –511 to +512
words relative to the current program counter.

93SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

JN Jump if negative

Syntax JN label

Operation if N = 1: PC + 2 ×offset -> PC

if N = 0: execute following instruction

Description The negative bit (N) of the status register is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If N is reset, the next
instruction following the jump is executed.

Status Bits Status bits are not affected.

Example The result of a computation in R5 is to be subtracted from COUNT. If the result is
negative, COUNT is to be cleared and the program continues execution in another path.

SUB R5,COUNT ; COUNT - R5 -> COUNT
JN L$1 ; If negative continue with COUNT=0 at PC=L$1
...... ; Continue with COUNT>=0
......
......
......

L$1 CLR COUNT
......
......
......

94 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

JNC Jump if carry not set

JLO Jump if lower

Syntax JNC label
JLO label

Operation if C = 0: PC + 2 offset -> PC

if C = 1: execute following instruction

Description The status register carry bit (C) is tested. If it is reset, the 10-bit signed offset contained
in the instruction LSBs is added to the program counter. If C is set, the next instruction
following the jump is executed. JNC (jump if no carry/lower) is used for the comparison
of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected.

Example The result in R6 is added in BUFFER. If an overflow occurs, an error handling routine at
address ERROR is used.

ADD R6,BUFFER ; BUFFER + R6 -> BUFFER
JNC CONT ; No carry, jump to CONT

ERROR ; Error handler start
......
......
......

CONT ; Continue with normal program flow
......
......

Example Branch to STL2 if byte STATUS contains 1 or 0.
CMP.B #2,STATUS
JLO STL 2 ; STATUS < 2
...... ; STATUS >= 2, continue here

95SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

JNE Jump if not equal

JNZ Jump if not zero

Syntax JNE label
JNZ label

Operation If Z = 0: PC + 2 a offset -> PC

If Z= 1: execute following instruction

Description The status register zero bit (Z) is tested. If it is reset, the 10-bit signed offset contained in
the instruction LSBs is added to the program counter. If Z is set, the next instruction
following the jump is executed.

Status Bits Status bits are not affected.

Example Jump to address TONI if R7 and R8 have different contents.
CMP R7,R8 ; COMPARE R7 WITH R8
JNE TONI ; if different: jump
...... ; if equal, continue

96 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

MOV[.W] Move source to destination

MOV.B Move source to destination

Syntax MOV src,dst or MOV.W src,dst
MOV.B src,dst

Operation src -> dst

Description The source operand is moved to the destination.

The source operand is not affected. The previous contents of the destination are lost.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF,and GIE are not affected.

Example The contents of table EDE (word data) are copied to table TOM. The length of the tables
must be 020h locations.

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter

Loop MOV @R10+,TOM-EDE-2(R10) ; Use pointer in R10 for both tables
DEC R9 ; Decrement counter
JNZ Loop ; Counter not 0, continue copying
...... ; Copying completed
......
......

Example The contents of table EDE (byte data) are copied to table TOM. The length of the tables
should be 020h locations

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter

Loop MOV.B @R10+,TOM-EDE-1(R10) ; Use pointer in R10 for
; both tables

DEC R9 ; Decrement counter
JNZ Loop ; Counter not 0, continue

; copying
...... ; Copying completed
......
......

97SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

*NOP No operation

Syntax NOP

Operation None

Emulation MOV #0, R3

Description No operation is performed. The instruction may be used for the elimination of instructions
during the software check or for defined waiting times.

Status Bits Status bits are not affected.

The NOP instruction is mainly used for two purposes:

• To fill one, two, or three memory words
• To adjust software timing

NOTE: Emulating No-Operation Instruction

Other instructions can emulate the NOP function while providing different
numbers of instruction cycles and code words. Some examples are:

MOV #0,R3 ; 1 cycle, 1 word
MOV 0(R4),0(R4) ; 6 cycles, 3 words
MOV @R4,0(R4) ; 5 cycles, 2 words
BIC #0,EDE(R4) ; 4 cycles, 2 words
JMP $+2 ; 2 cycles, 1 word
BIC #0,R5 ; 1 cycle, 1 word

However, care should be taken when using these examples to prevent
unintended results. For example, if MOV 0(R4), 0(R4) is used and the
value in R4 is 120h, then a security violation will occur with the watchdog
timer (address 120h) because the security key was not used.

98 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

*POP[.W] Pop word from stack to destination

*POP.B Pop byte from stack to destination

Syntax POP dst
POP.B dst

Operation @SP -> temp

SP + 2 -> SP

temp -> dst

Emulation MOV @SP+,dst or MOV.W @SP+,dst

Emulation MOV.B @SP+,dst

Description The stack location pointed to by the stack pointer (TOS) is moved to the destination. The
stack pointer is incremented by two afterwards.

Status Bits Status bits are not affected.

Example The contents of R7 and the status register are restored from the stack.
POP R7 ; Restore R7
POP SR ; Restore status register

Example The contents of RAM byte LEO is restored from the stack.
POP.B LEO ; The low byte of the stack is moved to LEO.

Example The contents of R7 is restored from the stack.
POP.B R7 ; The low byte of the stack is moved to R7,

; the high byte of R7 is 00h

Example The contents of the memory pointed to by R7 and the status register are restored from
the stack.
POP.B 0(R7) ; The low byte of the stack is moved to the

; the byte which is pointed to by R7
; Example: R7 = 203h
; Mem(R7) = low byte of system stack
; Example: R7 = 20Ah
; Mem(R7) = low byte of system stack

POP SR ; Last word on stack moved to the SR

NOTE: The System Stack Pointer

The system stack pinter (SP) is always incremented by two, independent
of the byte suffix.

99SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

PUSH[.W] Push word onto stack

PUSH.B Push byte onto stack

Syntax PUSH src or PUSH.W src
PUSH.B src

Operation SP - 2 -> SP

src -> @SP

Description The stack pointer is decremented by two, then the source operand is moved to the RAM
word addressed by the stack pointer (TOS).

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The contents of the status register and R8 are saved on the stack.
PUSH SR ; save status register
PUSH R8 ; save R8

Example The contents of the peripheral TCDAT is saved on the stack.
PUSH.B &TCDAT ; save data from 8-bit peripheral module,

; address TCDAT, onto stack

NOTE: System Stack Pointer

The System stack pointer (SP) is always decremented by two,
independent of the byte suffix.

100 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

*RET Return from subroutine

Syntax RET

Operation @SP -> PC

SP + 2 -> SP

Emulation MOV @SP+,PC

Description The return address pushed onto the stack by a CALL instruction is moved to the
program counter. The program continues at the code address following the subroutine
call.

Status Bits Status bits are not affected.

101SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

PC -6

PC -4

PC -2

PC

PC +2

PC +4

PC +6

PC +8

PC = PCi

PCi +2

PCi +4

PCi +n-4

PCi +n-2

PCi +n

Interrupt Request

Interrupt Accepted

PC+2 is Stored

Onto Stack

RETI

Instruction Set www.ti.com

RETI Return from interrupt

Syntax RETI

Operation TOS -> SR

SP + 2 -> SP

TOS -> PC

SP + 2 -> SP

Description The status register is restored to the value at the beginning of the interrupt service
routine by replacing the present SR contents with the TOS contents. The stack pointer
(SP) is incremented by two.

The program counter is restored to the value at the beginning of interrupt service. This is
the consecutive step after the interrupted program flow. Restoration is performed by
replacing the present PC contents with the TOS memory contents. The stack pointer
(SP) is incremented.

Status Bits N: Restored from system stack

Z: Restored from system stack

C: Restored from system stack

V: Restored from system stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from system stack.

Example Figure 3-13 illustrates the main program interrupt.

Figure 3-13. Main Program Interrupt

102 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

15 0

7 0

C

Byte

Word

0

www.ti.com Instruction Set

*RLA[.W] Rotate left arithmetically

*RLA.B Rotate left arithmetically

Syntax RLA dst or RLA.W dst
RLA.B dst

Operation C <- MSB <- MSB-1 LSB+1 <- LSB <- 0

Emulation ADD dst,dst ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 3-14. The MSB is
shifted into the carry bit (C) and the LSB is filled with 0. The RLA instruction acts as a
signed multiplication by 2.

An overflow occurs if dst ≥ 04000h and dst < 0C000h before operation is performed: the
result has changed sign.

Figure 3-14. Destination Operand – Arithmetic Shift Left

An overflow occurs if dst ≥ 040h and dst < 0C0h before the operation is performed: the
result has changed sign.

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Loaded from the MSB

V: Set if an arithmetic overflow occurs:

the initial value is 04000h ≤ dst < 0C000h; reset otherwise

Set if an arithmetic overflow occurs:

the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF,and GIE are not affected.

Example R7 is multiplied by 2.
RLA R7 ; Shift left R7 (x 2)

Example The low byte of R7 is multiplied by 4.
RLA.B R7 ; Shift left low byte of R7 (x 2)
RLA.B R7 ; Shift left low byte of R7 (x 4)

NOTE: RLA Substitution

The assembler does not recognize the instruction:

RLA @R5+, RLA.B @R5+, or RLA(.B) @R5

It must be substituted by:

ADD @R5+,-2(R5), ADD.B @R5+,-1(R5), or ADD(.B) @R5

103SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

15 0

7 0

C

Byte

Word

Instruction Set www.ti.com

*RLC[.W] Rotate left through carry

*RLC.B Rotate left through carry

Syntax RLC dst or RLC.W dst
RLC.B dst

Operation C <- MSB <- MSB-1 LSB+1 <- LSB <- C

Emulation ADDC dst,dst

Description The destination operand is shifted left one position as shown in Figure 3-15. The carry
bit (C) is shifted into the LSB and the MSB is shifted into the carry bit (C).

Figure 3-15. Destination Operand-Carry Left Shift

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Loaded from the MSB

V: Set if an arithmetic overflow occurs

the initial value is 04000h ≤ dst < 0C000h; reset otherwise

Set if an arithmetic overflow occurs:

the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted left one position.
RLC R5 ; (R5 x 2) + C -> R5

Example The input P1IN.1 information is shifted into the LSB of R5.
BIT.B #2,&P1IN ; Information -> Carry
RLC R5 ; Carry=P0in.1 -> LSB of R5

Example The MEM(LEO) content is shifted left one position.
RLC.B LEO ; Mem(LEO) x 2 + C -> Mem(LEO)

NOTE: RLC and RLC.B Substitution

The assembler does not recognize the instruction:

RLC @R5+, RLC @R5, or RLC(.B) @R5

It must be substitued by:

ADDC @R5+,-2(R5), ADDC.B @R5+,-1(R5), or ADDC(.B) @R5

104 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

15 0

15 0

C

Byte

Word

www.ti.com Instruction Set

RRA[.W] Rotate right arithmetically

RRA.B Rotate right arithmetically

Syntax RRA dst or RRA.W dst
RRA.B dst

Operation MSB -> MSB, MSB -> MSB-1, ... LSB+1 -> LSB, LSB -> C

Description The destination operand is shifted right one position as shown in Figure 3-16. The MSB
is shifted into the MSB, the MSB is shifted into the MSB-1, and the LSB+1 is shifted into
the LSB.

Figure 3-16. Destination Operand – Arithmetic Right Shift

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Loaded from the LSB

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted right one position. The MSB retains the old value. It operates equal to an
arithmetic division by 2.
RRA R5 ; R5/2 -> R5
; The value in R5 is multiplied by 0.75 (0.5 + 0.25).
;
PUSH R5 ; Hold R5 temporarily using stack
RRA R5 ; R5 x 0.5 -> R5
ADD @SP+,R5 ; R5 x 0.5 + R5 = 1.5 x R5 -> R5
RRA R5 ; (1.5 x R5) x 0.5 = 0.75 x R5 -> R5
......

Example The low byte of R5 is shifted right one position. The MSB retains the old value. It
operates equal to an arithmetic division by 2.
RRA.B R5 ; R5/2 -> R5: operation is on low byte only

; High byte of R5 is reset
PUSH.B R5 ; R5 x 0.5 -> TOS
RRA.B @SP ; TOS x 0.5 = 0.5 x R5 x 0.5 = 0.25 x R5 -> TOS
ADD.B @SP+,R5 ; R5 x 0.5 + R5 x 0.25 = 0.75 x R5 -> R5
......

105SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

15 0

7 0

C

Byte

Word

Instruction Set www.ti.com

RRC[.W] Rotate right through carry

RRC.B Rotate right through carry

Syntax RRC dst or RRC.W dst
RRC dst

Operation C -> MSB -> MSB-1 LSB+1 -> LSB -> C

Description The destination operand is shifted right one position as shown in Figure 3-17. The carry
bit (C) is shifted into the MSB, the LSB is shifted into the carry bit (C).

Figure 3-17. Destination Operand—Carry Right Shift

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Loaded from the LSB

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIEare not affected.

Example R5 is shifted right one position. The MSB is loaded with 1.
SETC ; Prepare carry for MSB
RRC R5 ; R5/2 + 8000h -> R5

Example R5 is shifted right one position. The MSB is loaded with 1.
SETC ; Prepare carry for MSB
RRC.B R5 ; R5/2 + 80h -> R5; low byte of R5 is used

106 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

*SBC[.W] Subtract source and borrow/.NOT. carry from destination

*SBC.B Subtract source and borrow/.NOT. carry from destination

Syntax SBC dst or SBC.W dst
SBC.B dst

Operation dst + 0FFFFh + C -> dst

dst + 0FFh + C -> dst

Emulation SUBC #0,dst SUBC.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

Mode Bits OSCOFF, CPUOFF,and GIE are not affected.

Example The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter pointed to by
R12.
SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by
R12.
SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

NOTE: Borrow Implementation

The borrow is treated as a .NOT. carry: Borrow Carry bit
Yes 0
No 1

107SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

*SETC Set carry bit

Syntax SETC

Operation 1 -> C

Emulation BIS #1,SR

Description The carry bit (C) is set.

Status Bits N: Not affected

Z: Not affected

C: Set

V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Emulation of the decimal subtraction:

Subtract R5 from R6 decimally

Assume that R5 = 03987h and R6 = 04137h
DSUB ADD #06666h,R5 ; Move content R5 from 0-9 to 6-0Fh

; R5 = 03987h + 06666h = 09FEDh
INV R5 ; Invert this (result back to 0-9)

; R5 = .NOT. R5 = 06012h
SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h - R5 - 1)
; R6 = R6 + R5 + 1
; R6 = 0150h

108 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

*SETN Set negative bit

Syntax SETN

Operation 1 -> N

Emulation BIS #4,SR

Description The negative bit (N) is set.

Status Bits N: Set

Z: Not affected

C: Not affected

V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

109SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

*SETZ Set zero bit

Syntax SETZ

Operation 1 -> Z

Emulation BIS #2,SR

Description The zero bit (Z) is set.

Status Bits N: Not affected

Z: Set

C: Not affected

V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

110 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

SUB[.W] Subtract source from destination

SUB.B Subtract source from destination

Syntax SUB src,dst or SUB.W src,dst
SUB.B src,dst

Operation dst + .NOT.src + 1 -> dst

or

[(dst - src -> dst)]

Description The source operand is subtracted from the destination operand by adding the source
operand's 1s complement and the constant 1. The source operand is not affected. The
previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example See example at the SBC instruction.

Example See example at the SBC.B instruction.

NOTE: Borrow Is Treated as a .NOT.

The borrow is treated as a .NOT. carry: Borrow Carry bit
Yes 0
No 1

111SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

SUBC[.W], SBB[.W] Subtract source and borrow/.NOT. carry from destination

SUBC.B, SBB.B Subtract source and borrow/.NOT. carry from destination

Syntax SUBC src,dst or SUBC.W src,dst or
SBB src,dst or SBB.W src,dst
SUBC.B src,dst or SBB.B src,dst

Operation dst + .NOT.src + C -> dst

or

(dst - src - 1 + C -> dst)

Description The source operand is subtracted from the destination operand by adding the source
operand's 1s complement and the carry bit (C). The source operand is not affected. The
previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive.

Z: Set if result is zero, reset otherwise.

C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Two floating point mantissas (24 bits) are subtracted.

LSBs are in R13 and R10, MSBs are in R12 and R9.
SUB.W R13,R10 ; 16-bit part, LSBs
SUBC.B R12,R9 ; 8-bit part, MSBs

Example The 16-bit counter pointed to by R13 is subtracted from a 16-bit counter in R10 and
R11(MSD).
SUB.B @R13+,R10 ; Subtract LSDs without carry
SUBC.B @R13,R11 ; Subtract MSDs with carry
... ; resulting from the LSDs

NOTE: Borrow Implementation

The borrow is treated as a .NOT. carry: Borrow Carry bit
Yes 0
No 1

112 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

15 8 7 0

www.ti.com Instruction Set

SWPB Swap bytes

Syntax SWPB dst

Operation Bits 15 to 8 <-> bits 7 to 0

Description The destination operand high and low bytes are exchanged as shown in Figure 3-18.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3-18. Destination Operand Byte Swap

Example MOV #040BFh,R7 ; 0100000010111111 -> R7
SWPB R7 ; 1011111101000000 in R7

Example The value in R5 is multiplied by 256. The result is stored in R5,R4.
SWPB R5 ;
MOV R5,R4 ; Copy the swapped value to R4
BIC #0FF00h,R5 ; Correct the result
BIC #00FFh,R4 ; Correct the result

113SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

15 8 7 0

Instruction Set www.ti.com

SXT Extend Sign

Syntax SXT dst

Operation Bit 7 -> Bit 8 Bit 15

Description The sign of the low byte is extended into the high byte as shown in Figure 3-19.

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (.NOT. Zero)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3-19. Destination Operand Sign Extension

Example R7 is loaded with the P1IN value. The operation of the sign-extend instruction expands
bit 8 to bit 15 with the value of bit 7.

R7 is then added to R6.
MOV.B &P1IN,R7 ; P1IN = 080h: 1000 0000
SXT R7 ; R7 = 0FF80h: 1111 1111 1000 0000

114 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

*TST[.W] Test destination

*TST.B Test destination

Syntax TST dst or TST.W dst
TST.B dst

Operation dst + 0FFFFh + 1

dst + 0FFh + 1

Emulation CMP #0,dst CMP.B #0,dst

Description The destination operand is compared with zero. The status bits are set according to the
result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive

Z: Set if destination contains zero, reset otherwise

C: Set

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero, continue at
R7POS.

TST R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

Example The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive but not
zero, continue at R7POS.

TST.B R7 ; Test low byte of R7
JN R7NEG ; Low byte of R7 is negative
JZ R7ZERO ; Low byte of R7 is zero

R7POS ; Low byte of R7 is positive but not zero
R7NEG ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

115SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

XOR[.W] Exclusive OR of source with destination

XOR.B Exclusive OR of source with destination

Syntax XOR src,dst or XOR.W src,dst
XOR.B src,dst

Operation src .XOR. dst -> dst

Description The source and destination operands are exclusive ORed. The result is placed into the
destination. The source operand is not affected.

Status Bits N: Set if result MSB is set, reset if not set

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)

V: Set if both operands are negative

Mode Bits OSCOFF, CPUOFF,and GIE are not affected.

Example The bits set in R6 toggle the bits in the RAM word TONI.
XOR R6,TONI ; Toggle bits of word TONI on the bits set in R6

Example The bits set in R6 toggle the bits in the RAM byte TONI.
XOR.B R6,TONI ; Toggle bits of byte TONI on the bits set in

; low byte of R6

Example Reset to 0 those bits in low byte of R7 that are different from bits in RAM byte EDE.
XOR.B EDE,R7 ; Set different bit to "1s"
INV.B R7 ; Invert Lowbyte, Highbyte is 0h

116 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Instruction Set

3.4.5 Instruction Cycles and Lengths

The number of CPU clock cycles required for an instruction depends on the instruction format and the
addressing modes used - not the instruction itself. The number of clock cycles refers to the MCLK.

3.4.5.1 Interrupt and Reset Cycles

Table 3-14 lists the CPU cycles for interrupt overhead and reset.

Table 3-14. Interrupt and Reset Cycles

Action No. of Cycles Length of Instruction

Return from interrupt (RETI) 5 1

Interrupt accepted 6 -

WDT reset 4 -

Reset (RST/NMI) 4 -

3.4.5.2 Format-II (Single Operand) Instruction Cycles and Lengths

Table 3-15 lists the length and CPU cycles for all addressing modes of format-II instructions.

Table 3-15. Format-II Instruction Cycles and Lengths

No. of Cycles

RRA, RRC Length of
Addressing Mode SWPB, SXT PUSH CALL Instruction Example

Rn 1 3 4 1 SWPB R5

@Rn 3 4 4 1 RRC @R9

@Rn+ 3 5 5 1 SWPB @R10+

#N (See note) 4 5 2 CALL #0F000h

X(Rn) 4 5 5 2 CALL 2(R7)

EDE 4 5 5 2 PUSH EDE

&EDE 4 5 5 2 SXT &EDE

NOTE: Instruction Format II Immediate Mode

Do not use instruction RRA, RRC, SWPB, and SXT with the immediate mode in the destination
field. Use of these in the immediate mode reuslts in an unpredictable program operation.

3.4.5.3 Format-III (Jump) Instruction Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to execute, regardless of whether
the jump is taken or not.

117SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

3.4.5.4 Format-I (Double Operand) Instruction Cycles and Lengths

Table 3-16 lists the length and CPU cycles for all addressing modes of format-I instructions.

Table 3-16. Format 1 Instruction Cycles and Lengths

Addressing Mode Length of
Src Dst No. of Cycles Instruction Example

Rn Rm 1 1 MOV R5,R8

PC 2 1 BR R9

x(Rm) 4 2 ADD R5,4(R6)

EDE 4 2 XOR R8,EDE

&EDE 4 2 MOV R5,&EDE

@Rn Rm 2 1 AND @R4,R5

PC 2 1 BR @R8

x(Rm) 5 2 XOR @R5,8(R6)

EDE 5 2 MOV @R5,EDE

&EDE 5 2 XOR @R5,&EDE

@Rn+ Rm 2 1 ADD @R5+,R6

PC 3 1 BR @R9+

x(Rm) 5 2 XOR @R5,8(R6)

EDE 5 2 MOV @R9+,EDE

&EDE 5 2 MOV @R9+,&EDE

#N Rm 2 2 MOV #20,R9

PC 3 2 BR #2AEh

x(Rm) 5 3 MOV #0300h,0(SP)

EDE 5 3 ADD #33,EDE

&EDE 5 3 ADD #33,&EDE

x(Rn) Rm 3 2 MOV 2(R5),R7

PC 3 2 BR 2(R6)

TONI 6 3 MOV 4(R7),TONI

x(Rm) 6 3 ADD 4(R4),6(R9)

&TONI 6 3 MOV 2(R4),&TONI

EDE Rm 3 2 AND EDE,R6

PC 3 2 BR EDE

TONI 6 3 CMP EDE,TONI

x(Rm) 6 3 MOV EDE,0(SP)

&TONI 6 3 MOV EDE,&TONI

&EDE Rm 3 2 MOV &EDE,R8

PC 3 2 BRA &EDE

TONI 6 3 MOV &EDE,TONI

x(Rm) 6 3 MOV &EDE,0(SP)

&TONI 6 3 MOV &EDE,&TONI

118 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

0xxx

4xxx

8xxx

Cxxx

1xxx

14xx

18xx

1Cxx

20xx

24xx

28xx

2Cxx

30xx

34xx

38xx

3Cxx

4xxx

5xxx

6xxx

7xxx

8xxx

9xxx

Axxx

Bxxx

Cxxx

Dxxx

Exxx

Fxxx

RRC RRC.B SWPB RRA RRA.B SXT PUSH PUSH.B CALL RETI

000 040 080 0C0 100 140 180 1C0 200 240 280 2C0 300 340 380 3C0

JNE/JNZ

JEQ/JZ

JNC

JC

JN

JGE

JL

JMP

MOV, MOV.B

ADD, ADD.B

ADDC, ADDC.B

SUBC, SUBC.B

SUB, SUB.B

CMP, CMP.B

DADD, DADD.B

BIT, BIT.B

BIC, BIC.B

BIS, BIS.B

XOR, XOR.B

AND, AND.B

www.ti.com Instruction Set

3.4.6 Instruction Set Description

The instruction map is shown in Figure 3-20 and the complete instruction set is summarized in Table 3-17.

Figure 3-20. Core Instruction Map

Table 3-17. MSP430 Instruction Set

Mnemonic Description V N Z C

ADC(.B) (1) dst Add C to destination dst + C → dst * * * *

ADD(.B) src,dst Add source to destination src + dst → dst * * * *

ADDC(.B) src,dst Add source and C to destination src + dst + C → dst * * * *

AND(.B) src,dst AND source and destination src .and. dst → dst 0 * * *

BIC(.B) src,dst Clear bits in destination not.src .and. dst → dst - - - -

BIS(.B) src,dst Set bits in destination src .or. dst → dst - - - -

BIT(.B) src,dst Test bits in destination src .and. dst 0 * * *

BR (1) dst Branch to destination dst → PC - - - -

CALL dst Call destination PC+2 → stack, dst → PC - - - -

CLR(.B) (1) dst Clear destination 0 → dst - - - -

CLRC (1) Clear C 0 → C - - - 0

CLRN (1) Clear N 0 → N - 0 - -

CLRZ (1) Clear Z 0 → Z - - 0 -

CMP(.B) src,dst Compare source and destination dst - src * * * *

DADC(.B) (1) dst Add C decimally to destination dst + C → dst (decimally) * * * *

DADD(.B) src,dst Add source and C decimally to dst src + dst + C → dst (decimally) * * * *

DEC(.B) (1) dst Decrement destination dst - 1 → dst * * * *

(1) Emulated Instruction

119SLAU321–September 2010 CPU
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Instruction Set www.ti.com

Table 3-17. MSP430 Instruction Set (continued)

Mnemonic Description V N Z C

DECD(.B) (1) dst Double-decrement destination dst - 2 → dst * * * *

DINT (1) Disable interrupts 0 → GIE - - - -

EINT (1) Enable interrupts 1 → GIE - - - -

INC(.B) (1) dst Increment destination dst +1 → dst * * * *

INCD(.B) (1) dst Double-increment destination dst+2 → dst * * * *

INV(.B) (1) dst Invert destination not.dst → dst * * * *

JC/JHS label Jump if C set/Jump if higher or same - - - -

JEQ/JZ label Jump if equal/Jump if Z set - - - -

JGE label Jump if greater or equal - - - -

JL label Jump if less - - - -

JMP label Jump PC + 2 × offset → PC - - - -

JN label Jump if N set - - - -

JNC/JLO label Jump if C not set/Jump if lower - - - -

JNE/JNZ label Jump if not equal/Jump if Z not set - - - -

MOV(.B) src,dst Move source to destination src → dst - - - -

NOP (2) No operation - - - -

POP(.B) (2) dst Pop item from stack to destination @SP → dst, SP+2 → SP - - - -

PUSH(.B) src Push source onto stack SP - 2 → SP, src → @SP - - - -

RET (2) Return from subroutine @SP → PC, SP + 2 → SP - - - -

RETI Return from interrupt * * * *

RLA(.B) (2) dst Rotate left arithmetically * * * *

RLC(.B) (2) dst Rotate left through C * * * *

RRA(.B) dst Rotate right arithmetically 0 * * *

RRC(.B) dst Rotate right through C * * * *

SBC(.B) (2) dst Subtract not(C) from destination dst + 0FFFFh + C → dst * * * *

SETC (2) Set C 1 → C - - - 1

SETN (2) Set N 1 → N - 1 - -

SETZ (2) Set Z 1 → C - - 1 -

SUB(.B) src,dst Subtract source from destination dst + .not.src + 1 → dst * * * *

SUBC(.B) src,dst Subtract source and not(C) from dst dst + .not.src + C → dst * * * *

SWPB dst Swap bytes - - - -

SXT dst Extend sign 0 * * *

TST(.B) (2) dst Test destination dst + 0FFFFh + 1 0 * * 1

XOR(.B) src,dst Exclusive OR source and destination src .xor. dst → dst * * * *
(2) Emulated Instruction

120 CPU SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Chapter 4
SLAU321–September 2010

Versatile I/O Port

This chapter describes the operation of the versatile I/O ports. The versatile port combo P1/P2 is
implemented in all MSP430x09x devices.

Topic ... Page

4.1 Versatile I/O Ports (VersaPorts) and Digital I/O Ports ... 122
4.2 Versatile I/O Port Introduction ... 122
4.3 Versatile I/O Port Operation .. 123
4.4 Versatile I/O Port Registers ... 127

121SLAU321–September 2010 Versatile I/O Port
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Versatile I/O Ports (VersaPorts) and Digital I/O Ports www.ti.com

4.1 Versatile I/O Ports (VersaPorts) and Digital I/O Ports

MSP430 devices have digital I/O ports or versatile I/O ports implemented. See the device-specific data
sheet to determine which port type is available for each device. VersaPorts are used where higher
flexibility of the possible configuration is required. This is typically the case in lower pin count devices with
a high number of internal modules. Versatile I/O ports and digital I/O ports with different port identifiers can
coexist; they use the same address space reserved for ports in general.

4.2 Versatile I/O Port Introduction

Most ports have eight I/O pins; however, some ports may support fewer. See the device-specific data
sheet for ports available. Every I/O pin is individually configurable for input or output direction, and each
I/O line can be individually read or written to. All ports have individually configurable pullup or pulldown
resistors.

All versatile I/O ports have interrupt capability. Each interrupt for a port Px I/O line can be individually
enabled and configured to provide an interrupt on a rising edge or falling edge of an input signal. All I/O
lines from each versatile port source a single interrupt vector.

Individual ports can be accessed as byte-wide ports or can be combined into word-wide ports and
accessed via word formats. Port pairs P1/P2, P3/P4, etc. are associated with the names PA, PB, etc.,
respectively. When writing to port PA with word operations, all 16 bits are written to the port. Writing to the
lower byte of the PA port using byte operations leaves the upper byte unchanged. Similarly, writing to the
upper byte of the PA port using byte instructions leaves the lower byte unchanged. Ports PB, PC, etc.,
behave similarly. The unused bits of ports that are not fully equipped are a do-not-care when writing to
them.

Reading of the PA port using word operations causes all 16 bits to be transferred to the destination.
Reading the lower or upper byte of the PA port (P1 or P2) and storing to memory using byte operations
causes only the lower or upper byte to be transferred to the destination, respectively. Reading of the PA
port and storing to a general purpose register using byte operations causes the byte transferred to be
written to the least significant byte of the register. The upper significant byte of the destination register is
cleared automatically. Ports PB, PC, etc., behave similarly. Unused bits are read as zeros when reading
from a port that is not fully equipped.

The I/O features include:

• Independently programmable individual I/Os
• Any combination of input or output
• Individually configurable P1 and P2 interrupts
• Independent input and output data registers
• Individually configurable pullup or pulldown resistors

Figure 4-1 shows a typical basic logic for a versatile I/O. The direction of a port is determined either by
PxDIR or by the module itself. All module inputs use the same Module x IN.

122 Versatile I/O Port SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

PxREN.x

00

01

10

11

PxDIR.x

00

01

10

11

PxOUT.x

Third Module OUT

First Module OUT

Second Module OUT

PxSEL0.x

PxSEL1.x

0

1Vcc

Vss

PxIN.x

EN 1
EN 2

DModule x IN

#

Pad Logic

Px.x/Mod1/Mod2/Mod 3

PortsOn

PxIRQ.x
PxIE.x

PxIES.x Set

Q

PxIFG.x

w

Third Module Out Control

www.ti.com Versatile I/O Port Operation

Figure 4-1. Typical Schematic of the Port Logic

4.3 Versatile I/O Port Operation

The versatile I/O port is configured with user software. The setup and operation of the versatile I/O is
discussed in the following sections.

4.3.1 Input Register PxIN

Each bit in each PxIN register reflects the value of the input signal at the corresponding I/O pin when the
pin is configured as I/O function. These registers are read only.

Bit = 0: The input is low
Bit = 1: The input is high

4.3.2 Output Registers PxOUT

Each bit in each PxOUT register is the value to be output on the corresponding I/O pin when the pin is
configured as I/O function, output direction, and the pullup/down resistor is disabled.

Bit = 0: The output is low
Bit = 1: The output is high

If the pin's pullup/down resistor is enabled, the corresponding bit in the PxOUT register selects pullup or
pulldown.

Bit = 0: The pin is pulled down
Bit = 1: The pin is pulled up

123SLAU321–September 2010 Versatile I/O Port
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Versatile I/O Port Operation www.ti.com

4.3.3 Direction Registers PxDIR

Each bit in each PxDIR register selects the direction of the corresponding I/O pin, regardless of the
selected function for the pin. PxDIR bits for I/O pins that are selected for other functions must be set as
required by the other function.

Bit = 0: The port pin is switched to input direction
Bit = 1: The port pin is switched to output direction

4.3.4 Pullup/Pulldown Resistor Enable Registers PxREN

Each bit in each PxREN register enables or disables the pullup/down resistor of the corresponding I/O pin.
The corresponding bit in the PxOUT register selects if the pin is pulled up or pulled down.

Bit = 0: Pullup/down resistor disabled
Bit = 1: Pullup/down resistor enabled

Table 4-1 summarizes the usage of PxDIRx, PxRENx, and PxOUTx for proper I/O configuration.

Table 4-1. I/O Configuration

PxDIRx PxRENx PxOUTx I/O Configuration

0 0 x Input

0 1 0 Input with pulldown resistor

0 1 1 Input with pullup resistor

1 x x Output

4.3.5 Function Select Registers PxSELxx

Port pins are often multiplexed with other peripheral module functions. See the device-specific data sheet
to determine pin functions. Each port pin uses two bits to select the pin function – I/O port or one of the
three possible peripheral module function. Table 4-2 shows how to select the various module functions.

Table 4-2. I/O Function Selection

PxSEL0x PxSEL1x I/O Configuration

0 0 I/O port function is selected for the pin

0 1 Primary module function is selected

1 0 Secondary module function is selected

1 1 Tertiary module function is selected

Setting the PxSELxx bits to a module function does not automatically set the pin direction. Other
peripheral module functions may require the PxDIRx bits to be configured according to the direction
needed for the module function. See the pin schematics in the device-specific data sheet.

When a port pin is selected as an input to peripheral modules, the input signal to those peripheral
modules is a latched representation of the signal at the device pin.

While PxSELxx is other than 00, the internal input signal follows the signal at the pin for all connected
modules. However, if PxSELxx = 00, the input to the peripherals maintain the value of the input signal at
the device pin before the PxSELxx bits were reset.

4.3.6 Versatile I/O Port Interrupts

Each pin of the versatile port has interrupt capability, configured with the PxIFG, PxIE, and PxIES
registers. All port interrupt flags are prioritized, with bit 0 being the highest, and combined to source a
single interrupt vector. The highest priority enabled interrupt generates a number in the PxIV register. This
number can be evaluated or added to the program counter to automatically enter the appropriate software
routine. Disabled Px interrupts do not affect the PxIV value.

124 Versatile I/O Port SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Versatile I/O Port Operation

Each PxIFGx bit is the interrupt flag for its corresponding I/O pin and is set when the selected input signal
edge occurs at the pin. All PxIFGx interrupt flags request an interrupt when their corresponding PxIE bit
and the GIE bit are set. Software can also set each PxIFG flag, providing a way to generate a software
initiated interrupt.

Bit = 0: No interrupt is pending
Bit = 1: An interrupt is pending

Only transitions, not static levels, cause interrupts. If any PxIFGx flag becomes set during a Px interrupt
service routine, or is set after the RETI instruction of a Px interrupt service routine is executed, the set
PxIFGx flag generates another interrupt. This ensures that each transition is acknowledged.

NOTE: PxIFG Flags When Changing PxOUT, PxDIR, or PxREN

Writing to PxOUT, PxDIR or PxREN can result in setting the corresponding PxIFG flags

Any access, read or write, of the PxIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, assume that PxIFG.0 has the highest priority. If the PxIFG.0 and PxIFG.2 flags are set when
the interrupt service routine accesses the PxIV register, PxIFG.0 is reset automatically. After the RETI
instruction of the interrupt service routine is executed, the PxIFG.2 will generate another interrupt.

4.3.6.1 P1IV Software Example

The following software example shows the recommended use of P1IV and the handling overhead. The
P1IV value is added to the PC to automatically jump to the appropriate routine. For the other ports this is
similar.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself.
;Interrupt handler for P1IFGx Cycles
P1_HND: ... ; Interrupt latency 6

ADD &P1IV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP P1_0_HND ; Vector 2: Port 1 bit 0 2
JMP P1_1_HND ; Vector 4: Port 1 bit 1 2
JMP P1_2_HND ; Vector 6: Port 1 bit 2 2
JMP P1_3_HND ; Vector 8: Port 1 bit 3 2
JMP P1_4_HND ; Vector 10: Port 1 bit 4 2
JMP P1_5_HND ; Vector 12: Port 1 bit 5 2
JMP P1_6_HND ; Vector 14: Port 1 bit 6 2
JMP P1_7_HND ; Vector 16: Port 1 bit 7 2

P1_7_HND ; Vector 16: Port 1 bit 7
... ; Task starts here
RETI ; Back to main program 5

P1_6_HND ; Vector 14: Port 1 bit 6
... ; Task starts here
RETI ; Back to main program 5

P1_5_HND ; Vector 12: Port 1 bit 5
... ; Task starts here
RETI ; Back to main program 5

P1_4_HND ; Vector 10: Port 1 bit 4
... ; Task starts here
RETI ; Back to main program 5

P1_3_HND ; Vector 8: Port 1 bit 3
... ; Task starts here
RETI ; Back to main program 5

P1_2_HND ; Vector 6: Port 1 bit 2
... ; Task starts here
RETI ; Back to main program 5

125SLAU321–September 2010 Versatile I/O Port
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Versatile I/O Port Operation www.ti.com

P1_1_HND ; Vector 4: Port 1 bit 1
... ; Task starts here
RETI ; Back to main program 5

P1_0_HND ; Vector 2: Port 1 bit 0
... ; Task starts here
RETI ; Back to main program 5

4.3.6.2 Interrupt Edge Select Registers PxIES

Each PxIES bit selects the interrupt edge for the corresponding I/O pin.
Bit = 0: The PxIFGx flag is set with a low-to-high transition
Bit = 1: The PxIFGx flag is set with a high-to-low transition

NOTE: Writing to PxIESx

Writing to PxIES can result in setting the corresponding interrupt flags (see Table 4-3).

Table 4-3. Writing to PxIESx

PxIESx PxINx PxIFGx

0 → 1 0 May be set

0 → 1 1 Unchanged

1 → 0 0 Unchanged

1 → 0 1 May be set

4.3.6.3 Interrupt Enable PxIE

Each PxIE bit enables the associated PxIFG interrupt flag.
Bit = 0: The interrupt is disabled
Bit = 1: The interrupt is enabled

4.3.7 Configuring Unused Port Pins

Unused I/O pins should be configured as I/O function, output direction, and left unconnected on the PC
board, to prevent a floating input and reduce power consumption. The value of the PxOUT bit is don't
care, since the pin is unconnected. Alternatively, the integrated pullup/pulldown resistor can be enabled by
setting the PxREN bit of the unused pin to prevent the floating input. See Chapter 1 for termination of
unused pins.

126 Versatile I/O Port SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Versatile I/O Port Registers

4.4 Versatile I/O Port Registers

The digital I/O registers are listed in Table 4-4, along with their base addresses. The address offset is
given in Table 4-5.

Table 4-4. Versatile I/O Ports Base Address

Module Base Address

VersaPort combo P1/P2 0200h

VersaPort combo P3/P4 0220h

VersaPort combo P5/P6 0240h

VersaPort combo P7/P8 0280h

VersaPort combo P9/P10 02A0h

VersaPort combo P11/P12 02C0h

Table 4-5. Versatile I/O Port Control Registers

Port Register Short Form Register Type Address Offset Initial State

P1 (1) P1 Interrupt Vector P1IV read/write 0Eh 0000h

P2 (1) P2 Interrupt Vector P2IV read/write 1Eh 0000h

Input P1IN read only 00h -

Output P1OUT read/write 02h Unchanged (2)

Direction P1DIR read/write 04h 00h (2)

Resistor Enable P1REN read/write 06h 00h (2)

P1 (1) Port Select 0 P1SEL0 read/write 0Ah 00h (2)

Port Select 1 P1SEL1 read/write 0Ch 00h (2)

Interrupt Edge Select P1IES read/write 18h Unchanged

Interrupt Enable P1IE read/write 1Ah 00h

Interrupt Flag P1IFG read/write 1Ch 00h

Input P2IN read only 01h -

Output P2OUT read/write 03h Unchanged (2)

Direction P2DIR read/write 05h 00h (2)

Resistor Enable P2REN read/write 07h 00h (2)

P2 (1) Port Select 0 P2SEL0 read/write 0Bh 00h (2)

Port Select 1 P2SEL1 read/write 0Dh 00h (2)

Interrupt Edge Select P2IES read/write 19h Unchanged

Interrupt Enable P2IE read/write 1Bh 00h

Interrupt Flag P2IFG read/write 1Dh 00h
(1) Similar for port combos P3/P4, P5/P6, etc.
(2) Unless otherwise noted in device specific data sheet

127SLAU321–September 2010 Versatile I/O Port
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Versatile I/O Port Registers www.ti.com

P1IV, Port 1 Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 P1IVx 0

r0 r0 r0 r-0 r-0 r-0 r-0 r0

P1IVx Bits 4-1 Port 1 interrupt vector value. Writing to this register clears all pending interrupt flags

P1IV Interrupt Source Interrupt Flag Priority

00h No interrupt pending -

02h Port 1.0 interrupt P1IFG.0 Highest

04h Port 1.1 interrupt P1IFG.1

06h Port 1.2 interrupt P1IFG.2

08h Port 1.3 interrupt P1IFG.3

0Ah Port 1.4 interrupt P1IFG.4

0Ch Port 1.5 interrupt P1IFG.5

0Eh Port 1.6 interrupt P1IFG.6

10h Port 1.7 interrupt P1IFG.7 Lowest

P2IV, Port 2 Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 P2IVx 0

r0 r0 r0 r-0 r-0 r-0 r-0 r0

P2IVx Bits 4-1 Port 2 interrupt vector value. Writing to this register clears all pending interrupt flags

P1IV Interrupt Source Interrupt Flag Priority

00h No interrupt pending -

02h Port 1.0 interrupt P2IFG.0 Highest

04h Port 1.1 interrupt P2IFG.1

06h Port 1.2 interrupt P2IFG.2

08h Port 1.3 interrupt P2IFG.3

0Ah Port 1.4 interrupt P2IFG.4

0Ch Port 1.5 interrupt P2IFG.5

0Eh Port 1.6 interrupt P2IFG.6

10h Port 1.7 interrupt P2IFG.7 Lowest

PxIN, Port x Input Register

7 6 5 4 3 2 1 0

PxIN

r r r r r r r r

PxIN Bits 7-0 Port x input register. Read only.

128 Versatile I/O Port SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Versatile I/O Port Registers

PxOUT, Port x Output Register

7 6 5 4 3 2 1 0

PxOUT

rw rw rw rw rw rw rw rw

PxOUT Bits 7-0 Port x output register

When I/O configured to output mode:

0 The output is low

1 The output is high

When I/O configured to input mode and pullups/pulldowns enabled:

0 Pulldown selected

1 Pullup selected

PxDIR, Port x Direction Register

7 6 5 4 3 2 1 0

PxDIR

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

PxDIR Bits 7-0 Port x direction register

0 Port configured as input

1 Port configured as output

PxREN, Port x Resistor Enable Register

7 6 5 4 3 2 1 0

PxREN

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

PxREN Bits 7-0 Port x Pullup/pulldown resistor enable register

0 Pullup/pulldown disabled

1 Pullup/pulldown enabled

PxSEL0, PxSEL1, Port x Function Select Registers

7 6 5 4 3 2 1 0

PxSEL0/1

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

PxSEL0/1 Bits 7-0 Port x function select register. These two eight bit register determine the function of each port pin. The
chosen functions for a particular pin are device dependent. Check the port schematics of the device data
sheet.

PxSEL0.x PxSEL1.x I/O Configuration

0 0 I/O Port function is selected for the pin

0 1 primary module function is selected

1 0 secondary module function is selected

1 1 ternary module function is selected

PxIES, Port x Interrupt Edge Select Register

7 6 5 4 3 2 1 0

PxIES

rw rw rw rw rw rw rw rw

PxIES Bits 7-0 Port x interrupt edge select register

0 PxIFGx flag is set with a low-to-high transition

1 PxIFGx flag is set with a high-to-low transition

129SLAU321–September 2010 Versatile I/O Port
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Versatile I/O Port Registers www.ti.com

PxIE, Port x Interrupt Enable Register

7 6 5 4 3 2 1 0

PxIE

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

PxIE Bits 7-0 Port x interrupt enable register

0 Corresponding port interrupt disabled

1 Corresponding port interrupt enabled

PxIFG, Port x Interrupt Flag Register

7 6 5 4 3 2 1 0

PxIFG

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

PxIFG Bits 7-0 Port x interrupt flag register

0 No interrupt is pending

1 Interrupt is pending

130 Versatile I/O Port SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Chapter 5
SLAU321–September 2010

Watchdog Timer (WDT_A)

The watchdog timer is a 32-bit timer that can be used as a watchdog or as an interval timer. This chapter
describes the watchdog timer. The enhanced watchdog timer, WDT_A, is implemented in all devices.

Topic ... Page

5.1 WDT_A Introduction ... 132
5.2 WDT_A Operation .. 134
5.3 WDT_A Registers .. 136

131SLAU321–September 2010 Watchdog Timer (WDT_A)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

WDT_A Introduction www.ti.com

5.1 WDT_A Introduction

The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart
after a software problem occurs. If the selected time interval expires, a system reset is generated. If the
watchdog function is not needed in an application, the module can be configured as an interval timer and
can generate interrupts at selected time intervals.

Features of the watchdog timer module include:

• Eight software-selectable time intervals
• Watchdog mode
• Interval mode
• Password-protected access to Watchdog Timer Control (WDTCTL) register
• Selectable clock source
• Can be stopped to conserve power
• Clock fail-safe feature

The watchdog timer block diagram is shown in Figure 5-1.

NOTE: Watchdog timer powers up active.

After a PUC, the WDT_A module is automatically configured in the watchdog mode with an
initial ~32-ms reset interval using the SMCLK. The user must setup or halt the WDT_A prior
to the expiration of the initial reset interval.

132 Watchdog Timer (WDT_A) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

WDTQn

Q6 16-bit

Counter

CLK

01

00

PUC

SMCLK

ACLK

Clear

Password

Compare

0

0

0

0

1

1

1

1

WDTCNTCL

WDTTMSEL

WDTSSEL0

WDTSSEL1

WDTIS1

WDTIS2

WDTIS0

WDTHOLD

EQU

EQU

Write Enable

Low Byte
R / W

MDB

LSB

MSB

WDTCTL

(Asyn)

Int.

Flag

Pulse

Generator

VLOCLK

Clock

Request
Logic

X_CLK request

SMCLK request

ACLK request

VLOCLK request

10

11

Q9

Q13

Q15

Q19

Q23

Q27

Q31

X_CLK

11

10

01

00

11

10

01

00

0

1

16-bit

Counter

CLK

32Bit WDT extension

www.ti.com WDT_A Introduction

Figure 5-1. Watchdog Timer Block Diagram

133SLAU321–September 2010 Watchdog Timer (WDT_A)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

WDT_A Operation www.ti.com

5.2 WDT_A Operation

The watchdog timer module can be configured as either a watchdog or interval timer with the WDTCTL
register. WDTCTL is a 16-bit password-protected read/write register. Any read or write access must use
word instructions and write accesses must include the write password 05Ah in the upper byte. Any write to
WDTCTL with any value other than 05Ah in the upper byte is a password violation and triggers a PUC
system reset, regardless of timer mode. Any read of WDTCTL reads 069h in the upper byte. Byte reads
on WDTCTL high or low part result in the value of the low byte. Writing byte wide to upper or lower parts
of WDTCTL results in a PUC.

5.2.1 Watchdog Timer Counter (WDTCNT)

The WDTCNT is a 32-bit up counter that is not directly accessible by software. The WDTCNT is controlled
and its time intervals are selected through the Watchdog Timer Control (WDTCTL) register. The WDTCNT
can be sourced from SMCLK, ACLK, VLOCLK, and X_CLK on some devices. The clock source is
selected with the WDTSSEL bits. The timer interval is selected with the WDTIS bits.

5.2.2 Watchdog Mode

After a PUC condition, the WDT module is configured in the watchdog mode with an initial ~32-ms reset
interval using the SMCLK. The user must setup, halt, or clear the watchdog timer prior to the expiration of
the initial reset interval or another PUC is generated. When the watchdog timer is configured to operate in
watchdog mode, either writing to WDTCTL with an incorrect password, or expiration of the selected time
interval triggers a PUC. A PUC resets the watchdog timer to its default condition.

5.2.3 Interval Timer Mode

Setting the WDTTMSEL bit to 1 selects the interval timer mode. This mode can be used to provide
periodic interrupts. In interval timer mode, the WDTIFG flag is set at the expiration of the selected time
interval. A PUC is not generated in interval timer mode at expiration of the selected timer interval, and the
WDTIFG enable bit WDTIE remains unchanged

When the WDTIE bit and the GIE bit are set, the WDTIFG flag requests an interrupt. The WDTIFG
interrupt flag is automatically reset when its interrupt request is serviced, or may be reset by software. The
interrupt vector address in interval timer mode is different from that in watchdog mode.

NOTE: Modifying the watchdog timer

The watchdog timer interval should be changed together with WDTCNTCL = 1 in a single
instruction to avoid an unexpected immediate PUC or interrupt. The watchdog timer should
be halted before changing the clock source to avoid a possible incorrect interval.

5.2.4 Watchdog Timer Interrupts

The watchdog timer uses two bits in the SFRs for interrupt control:

• WDT interrupt flag, WDTIFG, located in SFRIFG1.0
• WDT interrupt enable, WDTIE, located in SFRIE1.0

When using the watchdog timer in the watchdog mode, the WDTIFG flag sources a reset vector interrupt.
The WDTIFG can be used by the reset interrupt service routine to determine if the watchdog caused the
device to reset. If the flag is set, the watchdog timer initiated the reset condition, either by timing out or by
a password violation. If WDTIFG is cleared, the reset was caused by a different source.

When using the watchdog timer in interval timer mode, the WDTIFG flag is set after the selected time
interval and requests a watchdog timer interval timer interrupt if the WDTIE and the GIE bits are set. The
interval timer interrupt vector is different from the reset vector used in watchdog mode. In interval timer
mode, the WDTIFG flag is reset automatically when the interrupt is serviced, or can be reset with
software.

134 Watchdog Timer (WDT_A) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com WDT_A Operation

5.2.5 Clock Fail-Safe Feature

The WDT_A provides a fail-safe clocking feature, ensuring the clock to the WDT_A cannot be disabled
while in watchdog mode. This means the low-power modes may be affected by the choice for the WDT_A
clock.

If SMCLK or ACLK fails as the WDT_A clock source, VLOCLK is automatically selected as the WDT_A
clock source.

When the WDT_A module is used in interval timer mode, there is no fail-safe feature within WDT_A for
the clock source.

5.2.6 Operation in Low-Power Modes

The devices have several low-power modes. Different clock signals are available in different low-power
modes. The requirements of the application and the type of clocking that is used determine how the
WDT_A should be configured. For example, the WDT_A should not be configured in watchdog mode with
a clock source that is originally sourced from DCO, XT1 in high-frequency mode, or XT2 via SMCLK or
ACLK if the user wants to use low-power mode 3. In this case, SMCLK or ACLK would remain enabled,
increasing the current consumption of LPM3. When the watchdog timer is not required, the WDTHOLD bit
can be used to hold the WDTCNT, reducing power consumption.

5.2.7 Software Examples

Any write operation to WDTCTL must be a word operation with 05Ah (WDTPW) in the upper byte:
; Periodically clear an active watchdog
MOV #WDTPW+WDTIS2+WDTIS1+WDTCNTCL,&WDTCTL
;
; Change watchdog timer interval
MOV #WDTPW+WDTCNTCL+SSEL,&WDTCTL
;
; Stop the watchdog
MOV #WDTPW+WDTHOLD,&WDTCTL
;
; Change WDT to interval timer mode, clock/8192 interval
MOV #WDTPW+WDTCNTCL+WDTTMSEL+WDTIS2+WDTIS0,&WDTCTL

135SLAU321–September 2010 Watchdog Timer (WDT_A)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

WDT_A Registers www.ti.com

5.3 WDT_A Registers

The watchdog timer module registers are listed in Table 5-1. The base register or the watchdog timer
module registers and special function registers (SFRs) can be found in device-specific data sheets. The
address offset is given in Table 5-1.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 5-1. Watchdog Timer Registers

RegisterRegister Short Form Register Type Address Offset Initial StateAccess

Watchdog Timer Control WDTCTL Read/write Word 0Ch 6904h

WDTCTL_L Read/write Byte 0Ch 04h

WDTCTL_H Read/write Byte 0Dh 69h

Watchdog Timer Control Register (WDTCTL)

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Read as 069h
WDTPW, must be written as 05Ah

7 6 5 4 3 2 1 0

WDTHOLD WDTSSEL WDTTMSEL WDTCNTCL WDTIS

rw-0 rw-0 rw-0 rw-0 r0(w) rw-1 rw-0 rw-0

WDTPW Bits 15-8 Watchdog timer password. Always read as 069h. Must be written as 05Ah, or a PUC is generated.

WDTHOLD Bit 7 Watchdog timer hold. This bit stops the watchdog timer. Setting WDTHOLD = 1 when the WDT is not in use
conserves power.

0 Watchdog timer is not stopped.

1 Watchdog timer is stopped.

WDTSSEL Bits 6-5 Watchdog timer clock source select

00 SMCLK

01 ACLK

10 VLOCLK

11 X_CLK; VLOCLK in devices that do not support X_CLK

WDTTMSEL Bit 4 Watchdog timer mode select

0 Watchdog mode

1 Interval timer mode

WDTCNTCL Bit 3 Watchdog timer counter clear. Setting WDTCNTCL = 1 clears the count value to 0000h. WDTCNTCL is
automatically reset.

0 No action

1 WDTCNT = 0000h

WDTIS Bits 2-0 Watchdog timer interval select. These bits select the watchdog timer interval to set the WDTIFG flag and/or
generate a PUC.

000 Watchdog clock source /2G (18:12:16 at 32 kHz)

001 Watchdog clock source /128M (01:08:16 at 32 kHz

010 Watchdog clock source /8192k (00:04:16 at 32 kHz)

011 Watchdog clock source /512k (00:00:16 at 32 kHz)

100 Watchdog clock source /32k (1 s at 32 kHz)

101 Watchdog clock source /8192 (250 ms at 32 kHz)

110 Watchdog clock source /512 (15,6 ms at 32 kHz)

111 Watchdog clock source /64 (1.95 ms at 32 kHz)

136 Watchdog Timer (WDT_A) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Chapter 6
SLAU321–September 2010

Timer_A

Timer_A is a 16-bit timer/counter with multiple capture/compare registers. There can be multiple Timer_A
modules on a given device (see the device-specific data sheet). This chapter describes the operation and
use of the Timer_A module.

Topic ... Page

6.1 Timer_A Introduction ... 138
6.2 Timer_A Operation ... 139
6.3 Timer_A Registers ... 152

137SLAU321–September 2010 Timer_A
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Timer_A Introduction www.ti.com

6.1 Timer_A Introduction

Timer_A is a 16-bit timer/counter with up to seven capture/compare registers. Timer_A can support
multiple capture/compares, PWM outputs, and interval timing. Timer_A also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.

Timer_A features include:

• Asynchronous 16-bit timer/counter with four operating modes
• Selectable and configurable clock source
• Up to seven configurable capture/compare registers
• Configurable outputs with pulse width modulation (PWM) capability
• Asynchronous input and output latching
• Interrupt vector register for fast decoding of all Timer_A interrupts

The block diagram of Timer_A is shown in Figure 6-1.

NOTE: Use of the word count

Count is used throughout this chapter. It means the counter must be in the process of
counting for the action to take place. If a particular value is directly written to the counter, an
associated action does not take place.

NOTE: Nomenclature

There may be multiple instantiations of Timer_A on a given device. The prefix TAx is used,
where x is a greater than equal to zero indicating the Timer_A instantiation. For devices with
one instantiation, x = 0. The suffix n, where n = 0 to 6, represents the specific
capture/compare registers associated with the Timer_A instantiation.

138 Timer_A SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

CCR6

Compararator 6
CCI

15 0

CCIS

OUTMOD

Capture

Mode

CM

Sync

SCS

COVlogic

Output

Unit4 D Set Q
EQU0

OUT

OUT6 Signal

Reset

GND

VCC

CCI6A

CCI6B

EQU6

Divider

/1/2/4/8

Count

Mode

T16-bit imer

TAxR

RC

Set TAxCTL
TAIFG

15 0

TASSEL MCID

00

01

10

11

Clear

Timer Clock

EQU0

Timer Clock

Timer Clock

TAxCCR6

SCCI Y
A

EN

CCR1

POR

TACLR

CCR0

Timer Block

00

01

10

11

Set TAxCCR6

CCIFG

CAP

1

0

1

0

CCR2

CCR3

ACLK

SMCLK

TAxCLK

IDEX

Divider

/1.../8

CCR4

CCR5

2 2 3 2

2 2

3

www.ti.com Timer_A Operation

Figure 6-1. Timer_A Block Diagram

6.2 Timer_A Operation

The Timer_A module is configured with user software. The setup and operation of Timer_A are discussed
in the following sections.

6.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TAxR, increments or decrements (depending on mode of operation) with
each rising edge of the clock signal. TAxR can be read or written with software. Additionally, the timer can
generate an interrupt when it overflows.

139SLAU321–September 2010 Timer_A
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Timer_A Operation www.ti.com

TAxR may be cleared by setting the TACLR bit. Setting TACLR also clears the clock divider and count
direction for up/down mode.

NOTE: Modifying Timer_A registers

It is recommended to stop the timer before modifying its operation (with exception of the
interrupt enable, interrupt flag, and TACLR) to avoid errant operating conditions.

When the timer clock is asynchronous to the CPU clock, any read from TAxR should occur
while the timer is not operating or the results may be unpredictable. Alternatively, the timer
may be read multiple times while operating, and a majority vote taken in software to
determine the correct reading. Any write to TAxR takes effect immediately.

6.2.1.1 Clock Source Select and Divider

The timer clock can be sourced from ACLK, SMCLK, or externally via TAxCLK. The clock source is
selected with the TASSEL bits. The selected clock source may be passed directly to the timer or divided
by 2, 4, or 8, using the ID bits. The selected clock source can be further divided by 2, 3, 4, 5, 6, 7, or 8
using the IDEX bits. The timer clock dividers are reset when TACLR is set.

NOTE: Timer_A dividers

Setting the TACLR bit clears the contents of TAxR and the clock dividers. The clock dividers
are implemented as down counters. Therefore, when the TACLR bit is cleared, the timer
clock immediately begins clocking at the first rising edge of the Timer_A clock source
selected with the TASSEL bits and continues clocking at the divider settings set by the ID
and IDEX bits.

6.2.2 Starting the Timer

The timer may be started or restarted in the following ways:

• The timer counts when MC > { 0 } and the clock source is active.
• When the timer mode is either up or up/down, the timer may be stopped by writing 0 to TAxCCR0. The

timer may then be restarted by writing a nonzero value to TAxCCR0. In this scenario, the timer starts
incrementing in the up direction from zero.

6.2.3 Timer Mode Control

The timer has four modes of operation: stop, up, continuous, and up/down (see Table 6-1). The operating
mode is selected with the MC bits.

Table 6-1. Timer Modes

MCx Mode Description

00 Stop The timer is halted.

01 Up The timer repeatedly counts from zero to the value of TAxCCR0

10 Continuous The timer repeatedly counts from zero to 0FFFFh.

11 Up/down The timer repeatedly counts from zero up to the value of TAxCCR0 and back down to zero.

6.2.3.1 Up Mode

The up mode is used if the timer period must be different from 0FFFFh counts. The timer repeatedly
counts up to the value of compare register TAxCCR0, which defines the period (see Figure 6-2). The
number of timer counts in the period is TAxCCR0 + 1. When the timer value equals TAxCCR0, the timer
restarts counting from zero. If up mode is selected when the timer value is greater than TAxCCR0, the
timer immediately restarts counting from zero.

140 Timer_A SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

TAxCCR0

CCR0-1 CCR0 0h

Timer Clock

Timer

Set TAxCTL TAIFG

Set TAxCCR0 CCIFG

1h CCR0-1 CCR0 0h

0h

0FFFFh

www.ti.com Timer_A Operation

Figure 6-2. Up Mode

The TAxCCR0 CCIFG interrupt flag is set when the timer counts to the TAxCCR0 value. The TAIFG
interrupt flag is set when the timer counts from TAxCCR0 to zero. Figure 6-3 shows the flag set cycle.

Figure 6-3. Up Mode Flag Setting

6.2.3.1.1 Changing Period Register TAxCCR0

When changing TAxCCR0 while the timer is running, if the new period is greater than or equal to the old
period or greater than the current count value, the timer counts up to the new period. If the new period is
less than the current count value, the timer rolls to zero. However, one additional count may occur before
the counter rolls to zero.

6.2.3.2 Continuous Mode

In the continuous mode, the timer repeatedly counts up to 0FFFFh and restarts from zero as shown in
Figure 6-4. The capture/compare register TAxCCR0 works the same way as the other capture/compare
registers.

Figure 6-4. Continuous Mode

The TAIFG interrupt flag is set when the timer counts from 0FFFFh to zero. Figure 6-5 shows the flag set
cycle.

141SLAU321–September 2010 Timer_A
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

FFFEh FFFFh 0h

Timer Clock

Timer

Set TAxCTL TAIFG

1h FFFEh FFFFh 0h

0FFFFh

TAxCCR0a

TAxCCR0b TAxCCR0c
TAxCCR0d

t
1

t
0

t
0

TAxCCR1a

TAxCCR1b TAxCCR1c

TAxCCR1d

t
1

t
1

t
0

Timer_A Operation www.ti.com

Figure 6-5. Continuous Mode Flag Setting

6.2.3.3 Use of Continuous Mode

The continuous mode can be used to generate independent time intervals and output frequencies. Each
time an interval is completed, an interrupt is generated. The next time interval is added to the TAxCCRn
register in the interrupt service routine. Figure 6-6 shows two separate time intervals, t0 and t1, being
added to the capture/compare registers. In this usage, the time interval is controlled by hardware, not
software, without impact from interrupt latency. Up to n (where n = 0 to 6), independent time intervals or
output frequencies can be generated using capture/compare registers.

Figure 6-6. Continuous Mode Time Intervals

Time intervals can be produced with other modes as well, where TAxCCR0 is used as the period register.
Their handling is more complex since the sum of the old TAxCCRn data and the new period can be higher
than the TAxCCR0 value. When the previous TAxCCRn value plus tx is greater than the TAxCCR0 data,
the TAxCCR0 value must be subtracted to obtain the correct time interval.

6.2.3.4 Up/Down Mode

The up/down mode is used if the timer period must be different from 0FFFFh counts, and if symmetrical
pulse generation is needed. The timer repeatedly counts up to the value of compare register TAxCCR0
and back down to zero (see Figure 6-7). The period is twice the value in TAxCCR0.

142 Timer_A SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

0h

TAxCCR0

0FFFFh

CCR0-1 CCR0 CCR0-1

Timer Clock

Timer

Set TAxCTL TAIFG

Set TAxCCR0 CCIFG

CCR0-2 1h 0h

Up/Down

www.ti.com Timer_A Operation

Figure 6-7. Up/Down Mode

The count direction is latched. This allows the timer to be stopped and then restarted in the same direction
it was counting before it was stopped. If this is not desired, the TACLR bit must be set to clear the
direction. The TACLR bit also clears the TAxR value and the timer clock divider.

In up/down mode, the TAxCCR0 CCIFG interrupt flag and the TAIFG interrupt flag are set only once
during a period, separated by one-half the timer period. The TAxCCR0 CCIFG interrupt flag is set when
the timer counts from TAxCCR0-1 to TAxCCR0, and TAIFG is set when the timer completes counting
down from 0001h to 0000h. Figure 6-8 shows the flag set cycle.

Figure 6-8. Up/Down Mode Flag Setting

6.2.3.4.1 Changing Period Register TAxCCR0

When changing TAxCCR0 while the timer is running and counting in the down direction, the timer
continues its descent until it reaches zero. The new period takes affect after the counter counts down to
zero.

When the timer is counting in the up direction, and the new period is greater than or equal to the old
period or greater than the current count value, the timer counts up to the new period before counting
down. When the timer is counting in the up direction and the new period is less than the current count
value, the timer begins counting down. However, one additional count may occur before the counter
begins counting down.

6.2.3.5 Use of Up/Down Mode

The up/down mode supports applications that require dead times between output signals (see section
Timer_A Output Unit). For example, to avoid overload conditions, two outputs driving an H-bridge must
never be in a high state simultaneously. In the example shown in Figure 6-9, the tdead is:

tdead = ttimer × (TAxCCR1 – TAxCCR2)

Where:
tdead = Time during which both outputs need to be inactive
ttimer = Cycle time of the timer clock
TAxCCRn = Content of capture/compare register n

143SLAU321–September 2010 Timer_A
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

0h

0FFFFh

TAIFG

Output Mode 2: Toggle/Reset

Output Mode 6: Toggle/Set

TAxCCR0

TAxCCR1

EQU1
TAIFG Interrupt EventsEQU1

EQU0

EQU1 EQU1

EQU0

TAxCCR2

EQU2 EQU2EQU2 EQU2

Dead Time

Set TAxCCRn CCIFG

Capture

CCI

Timer

Timer Clock

n–2 n–1 n n+1 n+2 n+3 n+4

Timer_A Operation www.ti.com

The TAxCCRn registers are not buffered. They update immediately when written to. Therefore, any
required dead time is not maintained automatically.

Figure 6-9. Output Unit in Up/Down Mode

6.2.4 Capture/Compare Blocks

Up to seven identical capture/compare blocks, TAxCCRn (where n = 0 to 7), are present in Timer_A. Any
of the blocks may be used to capture the timer data or to generate time intervals.

6.2.4.1 Capture Mode

The capture mode is selected when CAP = 1. Capture mode is used to record time events. It can be used
for speed computations or time measurements. The capture inputs CCIxA and CCIxB are connected to
external pins or internal signals and are selected with the CCIS bits. The CM bits select the capture edge
of the input signal as rising, falling, or both. A capture occurs on the selected edge of the input signal. If a
capture occurs:

• The timer value is copied into the TAxCCRn register.
• The interrupt flag CCIFG is set.

The input signal level can be read at any time via the CCI bit. Devices may have different signals
connected to CCIxA and CCIxB. See the device-specific data sheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race condition. Setting the SCS
bit synchronizes the capture with the next timer clock. Setting the SCS bit to synchronize the capture
signal with the timer clock is recommended (see Figure 6-10).

Figure 6-10. Capture Signal (SCS = 1)

144 Timer_A SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Second
Capture

COV = 1
Taken

Capture
Taken

No
Capture
Taken

Read
Taken

Capture

Clear Bit COV
in Register TAxCCTLn

Idle

Idle

Capture

Capture Read and No Capture

Capture

Capture ReadCapture

www.ti.com Timer_A Operation

NOTE: Changing Capture Inputs

Changing capture inputs while in capture mode may cause unintended capture events. To
avoid this scenario, capture inputs should only be changed when capture mode is disabled
(CM = {0} or CAP = 0).

Overflow logic is provided in each capture/compare register to indicate if a second capture was performed
before the value from the first capture was read. Bit COV is set when this occurs as shown in Figure 6-11.
COV must be reset with software.

Figure 6-11. Capture Cycle

6.2.4.1.1 Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on both edges. Software then
sets CCIS1 = 1 and toggles bit CCIS0 to switch the capture signal between VCC and GND, initiating a
capture each time CCIS0 changes state:

MOV #CAP+SCS+CCIS1+CM_3,&TA0CCTL1 ; Setup TA0CCTL1, synch. capture mode
; Event trigger on both edges of capture input.

XOR #CCIS0,&TA0CCTL1 ; TA0CCR1 = TA0R

NOTE: Capture Initiated by Software

In general, changing capture inputs while in capture mode may cause unintended capture
events. For this scenario, switching the capture input between VCC and GND, disabling the
capture mode is not required.

145SLAU321–September 2010 Timer_A
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Timer_A Operation www.ti.com

6.2.4.2 Compare Mode

The compare mode is selected when CAP = 0. The compare mode is used to generate PWM output
signals or interrupts at specific time intervals. When TAxR counts to the value in a TAxCCRn, where n
represents the specific capture/compare register.

• Interrupt flag CCIFG is set.
• Internal signal EQUn = 1.
• EQUn affects the output according to the output mode.
• The input signal CCI is latched into SCCI.

6.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used to generate output signals,
such as PWM signals. Each output unit has eight operating modes that generate signals based on the
EQU0 and EQUn signals.

6.2.5.1 Output Modes

The output modes are defined by the OUTMOD bits and are described in Table 6-2. The OUTn signal is
changed with the rising edge of the timer clock for all modes except mode 0. Output modes 2, 3, 6, and 7
are not useful for output unit 0 because EQUn = EQU0.

Table 6-2. Output Modes

OUTMODx Mode Description

000 Output The output signal OUTn is defined by the OUT bit. The OUTn signal updates immediately
when OUT is updated.

001 Set The output is set when the timer counts to the TAxCCRn value. It remains set until a reset
of the timer, or until another output mode is selected and affects the output.

010 Toggle/Reset The output is toggled when the timer counts to the TAxCCRn value. It is reset when the
timer counts to the TAxCCR0 value.

011 Set/Reset The output is set when the timer counts to the TAxCCRn value. It is reset when the timer
counts to the TAxCCR0 value.

100 Toggle The output is toggled when the timer counts to the TAxCCRn value. The output period is
double the timer period.

101 Reset The output is reset when the timer counts to the TAxCCRn value. It remains reset until
another output mode is selected and affects the output.

110 Toggle/Set The output is toggled when the timer counts to the TAxCCRn value. It is set when the timer
counts to the TAxCCR0 value.

111 Reset/Set The output is reset when the timer counts to the TAxCCRn value. It is set when the timer
counts to the TAxCCR0 value.

146 Timer_A SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

0h

0FFFFh

EQU0
TAIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TAxCCR0

TAxCCR1

EQU1 EQU0
TAIFG

EQU1 EQU0
TAIFG

Interrupt Events

www.ti.com Timer_A Operation

6.2.5.1.1 Output Example—Timer in Up Mode

The OUTn signal is changed when the timer counts up to the TAxCCRn value and rolls from TAxCCR0 to
zero, depending on the output mode. An example is shown in Figure 6-12 using TAxCCR0 and TAxCCR1.

Figure 6-12. Output Example – Timer in Up Mode

6.2.5.1.2 Output Example – Timer in Continuous Mode

The OUTn signal is changed when the timer reaches the TAxCCRn and TAxCCR0 values, depending on
the output mode. An example is shown in Figure 6-13 using TAxCCR0 and TAxCCR1.

147SLAU321–September 2010 Timer_A
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

0h

0FFFFh

TAIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: oggle/SetT

Output Mode 7: Reset/Set

TAxCCR0

TAxCCR1

EQU1 TAIFG EQU1 EQU0 Interrupt EventsEQU0

Timer_A Operation www.ti.com

Figure 6-13. Output Example – Timer in Continuous Mode

6.2.5.1.3 Output Example – Timer in Up/Down Mode

The OUTn signal changes when the timer equals TAxCCRn in either count direction and when the timer
equals TAxCCR0, depending on the output mode. An example is shown in Figure 6-14 using TAxCCR0
and TAxCCR2.

148 Timer_A SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

0h

0FFFFh

TAIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TAxCCR0

TAxCCR2

EQU2

TAIFG
Interrupt Events

EQU2

EQU0

EQU2 EQU2

EQU0

www.ti.com Timer_A Operation

Figure 6-14. Output Example – Timer in Up/Down Mode

NOTE: Switching between output modes

When switching between output modes, one of the OUTMOD bits should remain set during
the transition, unless switching to mode 0. Otherwise, output glitching can occur, because a
NOR gate decodes output mode 0. A safe method for switching between output modes is to
use output mode 7 as a transition state:

BIS #OUTMOD_7,&TA0CCTL1 ; Set output mode=7
BIC #OUTMOD,&TA0CCTL1 ; Clear unwanted bits

149SLAU321–September 2010 Timer_A
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

D
Set

Q
IRQ, Interrupt Service Requested

Reset
Timer Clock

POR

CAP
EQU0

Capture

IRACC, Interrupt Request Accepted

CCIE

Timer_A Operation www.ti.com

6.2.6 Timer_A Interrupts

Two interrupt vectors are associated with the 16-bit Timer_A module:

• TAxCCR0 interrupt vector for TAxCCR0 CCIFG
• TAxIV interrupt vector for all other CCIFG flags and TAIFG

In capture mode, any CCIFG flag is set when a timer value is captured in the associated TAxCCRn
register. In compare mode, any CCIFG flag is set if TAxR counts to the associated TAxCCRn value.
Software may also set or clear any CCIFG flag. All CCIFG flags request an interrupt when their
corresponding CCIE bit and the GIE bit are set.

6.2.6.1 TAxCCR0 Interrupt

The TAxCCR0 CCIFG flag has the highest Timer_A interrupt priority and has a dedicated interrupt vector
as shown in Figure 6-15. The TAxCCR0 CCIFG flag is automatically reset when the TAxCCR0 interrupt
request is serviced.

Figure 6-15. Capture/Compare TAxCCR0 Interrupt Flag

6.2.6.2 TAxIV, Interrupt Vector Generator

The TAxCCRy CCIFG flags and TAIFG flags are prioritized and combined to source a single interrupt
vector. The interrupt vector register TAxIV is used to determine which flag requested an interrupt.

The highest-priority enabled interrupt generates a number in the TAxIV register (see register description).
This number can be evaluated or added to the program counter to automatically enter the appropriate
software routine. Disabled Timer_A interrupts do not affect the TAxIV value.

Any access, read or write, of the TAxIV register automatically resets the highest-pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, if the TAxCCR1 and TAxCCR2 CCIFG flags are set when the interrupt service routine
accesses the TAxIV register, TAxCCR1 CCIFG is reset automatically. After the RETI instruction of the
interrupt service routine is executed, the TAxCCR2 CCIFG flag generates another interrupt.

150 Timer_A SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Timer_A Operation

6.2.6.2.1 TAxIV Software Example

The following software example shows the recommended use of TAxIV and the handling overhead. The
TAxIV value is added to the PC to automatically jump to the appropriate routine. The example assumes a
single instantiation of the largest timer configuration available.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself. The latencies are:

• Capture/compare block TA0CCR0: 11 cycles
• Capture/compare blocks TA0CCR1, TA0CCR2, TA0CCR3, TA0CCR4, TA0CCR5, TA0CCR6:

16 cycles
• Timer overflow TA0IFG: 14 cycles
; Interrupt handler for TA0CCR0 CCIFG. Cycles
CCIFG_0_HND
; ... ; Start of handler Interrupt latency 6

RETI 5

; Interrupt handler for TA0IFG, TA0CCR1 through TA0CCR6 CCIFG.

TA0_HND ... ; Interrupt latency 6
ADD &TA0IV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP CCIFG_1_HND ; Vector 2: TA0CCR1 2
JMP CCIFG_2_HND ; Vector 4: TA0CCR2 2
JMP CCIFG_3_HND ; Vector 6: TA0CCR3 2
JMP CCIFG_4_HND ; Vector 8: TA0CCR4 2
JMP CCIFG_5_HND ; Vector 10: TA0CCR5 2
JMP CCIFG_6_HND ; Vector 12: TA0CCR6 2

TA0IFG_HND ; Vector 14: TA0IFG Flag
... ; Task starts here
RETI 5

CCIFG_6_HND ; Vector 12: TA0CCR6
... ; Task starts here
RETI ; Back to main program 5

CCIFG_5_HND ; Vector 10: TA0CCR5
... ; Task starts here
RETI ; Back to main program 5

CCIFG_4_HND ; Vector 8: TA0CCR4
... ; Task starts here
RETI ; Back to main program 5

CCIFG_3_HND ; Vector 6: TA0CCR3
... ; Task starts here
RETI ; Back to main program 5

CCIFG_2_HND ; Vector 4: TA0CCR2
... ; Task starts here
RETI ; Back to main program 5

CCIFG_1_HND ; Vector 2: TA0CCR1
... ; Task starts here
RETI ; Back to main program 5

151SLAU321–September 2010 Timer_A
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Timer_A Registers www.ti.com

6.3 Timer_A Registers

Timer_A registers are listed in Table 6-3 for the largest configuration available. The base address can be
found in the device-specific data sheet. The address offsets are listed in Table 6-3.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 6-3. Timer_A Registers

Register Register AddressRegister Short Form Initial StateType Access Offset

Timer_A Control TAxCTL Read/write Word 00h 0000h

TAxCTL_L Read/write Byte 00h 00h

TAxCTL_H Read/write Byte 01h 00h

Timer_A Capture/Compare Control 0 TAxCCTL0 Read/write Word 02h 0000h

TAxCCTL0_L Read/write Byte 02h 00h

TAxCCTL0_H Read/write Byte 03h 00h

Timer_A Capture/Compare Control 1 TAxCCTL1 Read/write Word 04h 0000h

TAxCCTL1_L Read/write Byte 04h 00h

TAxCCTL1_H Read/write Byte 05h 00h

Timer_A Capture/Compare Control 2 TAxCCTL2 Read/write Word 06h 0000h

TAxCCTL2_L Read/write Byte 06h 00h

TAxCCTL2_H Read/write Byte 07h 00h

Timer_A Capture/Compare Control 3 TAxCCTL3 Read/write Word 08h 0000h

TAxCCTL3_L Read/write Byte 08h 00h

TAxCCTL3_H Read/write Byte 09h 00h

Timer_A Capture/Compare Control 4 TAxCCTL4 Read/write Word 0Ah 0000h

TAxCCTL4_L Read/write Byte 0Ah 00h

TAxCCTL4_H Read/write Byte 0Bh 00h

Timer_A Capture/Compare Control 5 TAxCCTL5 Read/write Word 0Ch 0000h

TAxCCTL5_L Read/write Byte 0Ch 00h

TAxCCTL5_H Read/write Byte 0Dh 00h

Timer_A Capture/Compare Control 6 TAxCCTL6 Read/write Word 0Eh 0000h

TAxCCTL6_L Read/write Byte 0Eh 00h

TAxCCTL6_H Read/write Byte 0Fh 00h

Timer_A Counter TAxR Read/write Word 10h 0000h

TAxR_L Read/write Byte 10h 00h

TAxR_H Read/write Byte 11h 00h

Timer_A Capture/Compare 0 TAxCCR0 Read/write Word 12h 0000h

TAxCCR0_L Read/write Byte 12h 00h

TAxCCR0_H Read/write Byte 13h 00h

Timer_A Capture/Compare 1 TAxCCR1 Read/write Word 14h 0000h

TAxCCR1_L Read/write Byte 14h 00h

TAxCCR1_H Read/write Byte 15h 00h

Timer_A Capture/Compare 2 TAxCCR2 Read/write Word 16h 0000h

TAxCCR2_L Read/write Byte 16h 00h

TAxCCR2_H Read/write Byte 17h 00h

152 Timer_A SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Timer_A Registers

Table 6-3. Timer_A Registers (continued)

Register Register AddressRegister Short Form Initial StateType Access Offset

Timer_A Capture/Compare 3 TAxCCR3 Read/write Word 18h 0000h

TAxCCR3_L Read/write Byte 18h 00h

TAxCCR3_H Read/write Byte 19h 00h

Timer_A Capture/Compare 4 TAxCCR4 Read/write Word 1Ah 0000h

TAxCCR4_L Read/write Byte 1Ah 00h

TAxCCR4_H Read/write Byte 1Bh 00h

Timer_A Capture/Compare 5 TAxCCR5 Read/write Word 1Ch 0000h

TAxCCR5_L Read/write Byte 1Ch 00h

TAxCCR5_H Read/write Byte 1Dh 00h

Timer_A Capture/Compare 6 TAxCCR6 Read/write Word 1Eh 0000h

TAxCCR6_L Read/write Byte 1Eh 00h

TAxCCR6_H Read/write Byte 1Fh 00h

Timer_A Interrupt Vector TAxIV Read only Word 2Eh 0000h

TAxIV_L Read only Byte 2Eh 00h

TAxIV_H Read only Byte 2Fh 00h

Timer_A Expansion 0 TAxEX0 Read/write Word 20h 0000h

TAxEX0_L Read/write Byte 20h 00h

TAxEX0_H Read/write Byte 21h 00h

153SLAU321–September 2010 Timer_A
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Timer_A Registers www.ti.com

Timer_A Control Register (TAxCTL)

15 14 13 12 11 10 9 8

Unused TASSEL

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

ID MC Unused TACLR TAIE TAIFG

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) w-(0) rw-(0) rw-(0)

Unused Bits 15-10 Unused

TASSEL Bits 9-8 Timer_A clock source select

00 TAxCLK

01 ACLK

10 SMCLK

11 Inverted TAxCLK

ID Bits 7-6 Input divider. These bits along with the IDEX bits select the divider for the input clock.

00 /1

01 /2

10 /4

11 /8

MC Bits 5-4 Mode control. Setting MCx = 00h when Timer_A is not in use conserves power.

00 Stop mode: Timer is halted

01 Up mode: Timer counts up to TAxCCR0

10 Continuous mode: Timer counts up to 0FFFFh

11 Up/down mode: Timer counts up to TAxCCR0 then down to 0000h

Unused Bit 3 Unused

TACLR Bit 2 Timer_A clear. Setting this bit resets TAxR, the timer clock divider, and the count direction. The TACLR
bit is automatically reset and is always read as zero.

TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.

0 Interrupt disabled

1 Interrupt enabled

TAIFG Bit 0 Timer_A interrupt flag

0 No interrupt pending

1 Interrupt pending

Timer_A Counter Register (TAxR)

15 14 13 12 11 10 9 8

TAxR

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

TAxR

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

TAxR Bits 15-0 Timer_A register. The TAxR register is the count of Timer_A.

154 Timer_A SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Timer_A Registers

Capture/Compare Control Register (TAxCCTLn)

15 14 13 12 11 10 9 8

CM CCIS SCS SCCI Unused CAP

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r-(0) r-(0) rw-(0)

7 6 5 4 3 2 1 0

OUTMOD CCIE CCI OUT COV CCIFG

rw-(0) rw-(0) rw-(0) rw-(0) r rw-(0) rw-(0) rw-(0)

CM Bits 15-14 Capture mode

00 No capture

01 Capture on rising edge

10 Capture on falling edge

11 Capture on both rising and falling edges

CCIS Bits 13-12 Capture/compare input select. These bits select the TAxCCRn input signal. See the device-specific data
sheet for specific signal connections.

00 CCIxA

01 CCIxB

10 GND

11 VCC

SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input signal with the timer clock.

0 Asynchronous capture

1 Synchronous capture

SCCI Bit 10 Synchronized capture/compare input. The selected CCI input signal is latched with the EQUx signal and
can be read via this bit.

Unused Bit 9 Unused. Read only. Always read as 0.

CAP Bit 8 Capture mode

0 Compare mode

1 Capture mode

OUTMOD Bits 7-5 Output mode. Modes 2, 3, 6, and 7 are not useful for TAxCCR0 because EQUx = EQU0.

000 OUT bit value

001 Set

010 Toggle/reset

011 Set/reset

100 Toggle

101 Reset

110 Toggle/set

111 Reset/set

CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG
flag.

0 Interrupt disabled

1 Interrupt enabled

CCI Bit 3 Capture/compare input. The selected input signal can be read by this bit.

OUT Bit 2 Output. For output mode 0, this bit directly controls the state of the output.

0 Output low

1 Output high

COV Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software.

0 No capture overflow occurred

1 Capture overflow occurred

155SLAU321–September 2010 Timer_A
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Timer_A Registers www.ti.com

(continued)

CCIFG Bit 0 Capture/compare interrupt flag

0 No interrupt pending

1 Interrupt pending

Timer_A Interrupt Vector Register (TAxIV)

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 TAIV 0

r0 r0 r0 r0 r-(0) r-(0) r-(0) r0

TAIV Bits 15-0 Timer_A interrupt vector value

TAIV Contents Interrupt Source Interrupt Flag Interrupt Priority

00h No interrupt pending

02h Capture/compare 1 TAxCCR1 CCIFG Highest

04h Capture/compare 2 TAxCCR2 CCIFG

06h Capture/compare 3 TAxCCR3 CCIFG

08h Capture/compare 4 TAxCCR4 CCIFG

0Ah Capture/compare 5 TAxCCR5 CCIFG

0Ch Capture/compare 6 TAxCCR6 CCIFG

0Eh Timer overflow TAxCTL TAIFG Lowest

Timer_A Expansion 0 Register (TAxEX0)

15 14 13 12 11 10 9 8

Unused Unused Unused Unused Unused Unused Unused Unused

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Unused Unused Unused Unused Unused IDEX

r0 r0 r0 r0 r0 rw-(0) rw-(0) rw-(0)

Unused Bits 15-3 Unused. Read only. Always read as 0.

IDEX Bits 2-0 Input divider expansion. These bits along with the ID bits select the divider for the input clock.

000 /1

001 /2

010 /3

011 /4

100 /5

101 /6

110 /7

111 /8

156 Timer_A SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Chapter 7
SLAU321–September 2010

ADC, DAC, Comparator, SVM, ASVM,
Analog Functions Pool Module (A-POOL)

The Analog Functions Pool (A-POOL) module is integrated into various devices with different feature sets.
It provides the necessary functions to implement ADCs, DACs, and SVMs with various features.

Some elementary functions of A-POOL include:

• Reference voltage source
• Comparator
• Eight-bit elementary DAC
• Successive approximation register (SAR)
• Support for integer and fractional number representation

Topic ... Page

7.1 Analog-Functions Pool Module Introduction ... 158
7.2 Principle of Operation .. 158
7.3 A-POOL Analog Components and Paths .. 159
7.4 A-POOL Digital Components and Paths ... 162
7.5 Simple Application Examples With A-POOL-main .. 165
7.6 A-POOL Control Registers .. 175

157SLAU321–September 2010 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Analog-Functions Pool Module Introduction www.ti.com

7.1 Analog-Functions Pool Module Introduction

The Analog-Functions Pool Module (A-POOL) provides the necessary elements to build DACs, ADCs, and
other analog functions.

7.2 Principle of Operation

Analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) are complex analog functions
that consists of analog and digital components, some types use compensation methods and auto-zero
(AZ) mechanisms to eliminate error sources. Modern converters provide automatic range control and other
advanced features. A-POOL has none of those complex functions as ready modules; instead, it provides
analog and analog-oriented digital elementary functions that can be used to build complex analog
functions like DACs, ADCs, and SVMs of different kinds when combined through software.

7.2.1 Analog Elementary Functions

A summary of analog capabilities is listed below. Not all of those functions may be available at the same
time.

• Internal low-voltage reference source
• Ability to use external voltage reference
• Four independent analog inputs
• Two analog buffered outputs for DAC and reference
• Independently programmable voltage dividers for analog inputs
• Low-offset analog comparator with two speed ranges and complementary output
• Eight-bit DAC element (non-compensated)
• High-precision dual-range supply voltage divider
• Internal temperature sensor with temperature-proportional sensor voltage
• Analog signal paths allowing cross compensation on all eight internal sources

7.2.2 Digital Elementary Functions

A summary of the analog oriented digital functions is listed below. Not all of those functions may be
available at the same time.

• Control elements for all analog signal paths, input voltage dividers, and other resistive paths
• Control elements for enabling and setting the operation mode of reference source, comparator, and

analog buffer elements
• Saturating logic for the 8-bit up/down read/write counter
• Clock multiplexer allowing two independent time-based ramps
• Programmable clock prescaler for division rates 2N, up to 32
• Start/stop logic for counter clock with flexible event control
• Write and read logic for integer and fractional number representation
• Digital deglitching filter on comparator output
• Successive approximation register (SAR)

158 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

NSELx

+

-

CxIFG logic

CxOUT

Reference
256mV

REFON
CMPON

MDB and buffer register

CONVON
APVDIV Register

Vcc

4

8

0000

ADC - DAC - SAR - REG

Up- Dn Counter

Run/
Stop

00

2

set

clr
TA 0 EN

TA 0.0

CBSTP

0

1

OSWP

0

1
Aout

OSEL

CLKSELA0
A1

A3
A2

VREF

SMCLK

SLOPE

ODEN

D/A-8

DBON

TBSTP

TA 0.1

TA 1 EN

TA 1.0

De-
Glitching

DFSETx

SBSTP

VREFEN

SLOPE

EOCIFG logic

sEOC

0001

0010

0011

0100

0101

0110

0111

1000

PSELx

4

0000

0001

0010

0011

0100

0101

0110

0111
Pre - Scaler

by 1/2/4/8/16/32

CLKDIVx

SAREN

xCLK

xCLK

from AZ-logic

A
Z

E
N

C
T

MCLK
VLOCLK

01
10
11

1001

?

SVMIFG logic

R

R

6R

Vcc

www.ti.com A-POOL Analog Components and Paths

7.3 A-POOL Analog Components and Paths

The elements provided by A-POOL are suitable for complex function with up to 8-bit dynamics and
resolution. The multiplexers allow for high flexibility in input selections. All input signals are available on
the inverting and non-inverting input of the comparator, allowing elimination offsets and dynamic errors by
cross compensation. The voltages carried on the internal analog paths range from ground (VSS) to
approximately 256 mV. Higher voltage levels are scaled to this range. Figure 7-1 shows the block diagram
of the A-POOL analog components and analog signal paths.

Figure 7-1. A-POOL Analog Components and Signal Paths (With Digital Components in Gray)

7.3.1 Reference Voltage Source

A-POOL provides an internally buffered ultra-low-voltage (ULV) reference voltage source. This reference
source operates at a very low voltage of approximately 256 mV, allowing supply voltages far below 1 V.
The reference voltage can be trimmed by the user to compensate small mismatches. DAC conversions,
ADC conversions, supply-voltage monitoring, and temperature measurements require a reference voltage.
For those functions, REFON and VREFEN are set to 1, unless an external reference voltage is applied on
VREF. The internal reference source generates an interrupt (REFOKIFG) as soon as the voltage has
settled after switching the reference on; thus, time-consuming delay loops can be avoided.

7.3.2 Internal vs External Reference Voltage Source

To improve the overall accuracy of A-POOL or to scale the A-POOL functions to another reference voltage
range, an external reference voltage source can be connected on the external VREF terminal. The internal
reference voltage source should then remain off (REFON = 0, VREFEN = 1).

159SLAU321–September 2010 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

+

-

-

+

V EC

causing
“overdrive”

-

+
non-inverting

input

inverting
input

non-inverting
output

inverting
output

COMPON

“offset voltage”

COMPON=1, CTEN=1

A-POOL Analog Components and Paths www.ti.com

7.3.3 Temperature Sensor

The internal temperature sensor of A-POOL generates a voltage proportional to the temperature
measured. The temperature sensor is powered from the internal reference voltage source only.
Temperature measurement with an external reference voltage source is not possible.

7.3.4 Input Voltage Dividers

Many voltages in single-battery cell applications are higher than the nominal 256 mV used as internal
operation range for A-POOL-main. High-precision voltage dividers allow an extension of the voltage range
to 500 mV, 1 V and 2 V for various analog inputs. The predefined nominal division ratios are selectable (1,
2, 4, or 8; for higher accuracy, use the true division ratio given in the device-specific data sheet).

7.3.5 Comparator in Non-Compensated Mode

The A-POOL comparator is designed to operate from ground (VSS) to the nominal 256 mV. This
comparator can be operated in non compensated mode when CTEN = 1, CT-mode (continuous time). In
CT-mode, the full speed of the comparator is used, at the cost of a small internal offset voltage. The offset
voltage can be compensated in most applications with help of proper software using the same techniques
known from chopper stabilized amplifiers, etc. Figure 7-2 shows that the comparator of A-POOL in
CT-mode and the model with optimal comparator and the error sources offset voltage and overdrive.

Figure 7-2. Comparator in Non-Compensated Mode

About overdrive: Overdrive is the input difference voltage needed to get a distinct result from the
comparator within a defined response time. The higher the overdrive, the faster the reaction. Overdrive is
an auxiliary parameter to describe the dynamic behavior of a comparator. The overdrive of real
comparators is nonlinear; it depends on the voltage range, temperature and supply voltage.

About offset voltage: Offset voltage is a DC error voltage that needs to be overcome to cause a change
on the comparator's output.

Overdrive and offset effects are independent from each other and are superimposed on real comparators.
The comparator in A-POOL-main is a real comparator; compensation methods are shown later.

160 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

-

+
non-inverting

input

inverting
input CT

non-inverting
output

inverting
output

COMPON

COMPON=1, CTEN=0
A

Z
 (

a
u

to
 z

e
ro

)
p

h
a
s
e

A
Z

 r
e
c
o

v
e
ry

 p
h

a
s
e

C
o

m
p

a
re

 p
h

a
s
e

time
one AZ cycle (2 xCLKs)

CTEN

AZSWREQ

AZCMP

SARazr

xCLK

A
Z

C
T

State
Machine

www.ti.com A-POOL Analog Components and Paths

7.3.6 Comparator in Compensated Mode

The A-POOL comparator may be operated in compensated mode by setting CTEN = 0 and AZCMP = 1.
In this mode, the comparator changes its operation mode cyclicly between auto-zero phase, recovery
phase, and compare phase as shown in Figure 7-3. Inserting cyclic auto-zero phases between compare
phases eliminates the errors from the internal offset voltage of the comparator. The output signal of the
comparator is valid only during the compare phase (50% of the time). The overall response of the
comparator appears to be slower in this mode (based on frequency and phase of xCLK to the observed
signal). An auto-zero cycle can be requested by software by setting AZSWREQ = 1, and the successive
approximation register (SAR) also requests an AZ cycle.

Figure 7-3. Comparator in Compensated Mode

7.3.7 DAC and Output Buffer

The DAC converts the eight bits from the conversion register directly to an analog voltage ranging from
1 mV for value 0 up to 256 mV for value 255 (in eight bit unsigned integer representation). The output
buffer provides enough strength to drive high impedance loads. This output is available internally and
externally when ODEN = 1.The DAC output buffer may shows a small voltage offset that can be
compensated (as shown in the application examples). High accuracy on AOUT is reached when the
output voltage is above 20 mV.

161SLAU321–September 2010 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

NSELx

+

-

CxIFG logic

CxOUT

Reference
256mV

REFON
CMPON

MDB and buffer register

CONVON
APVDIV Register

Vcc

4

8

0000

ADC - DAC - SAR - REG

Up- Dn Counter

Run/
Stop

00

2

set

clr
TA0EN

TA0.0

CBSTP

0

1

OSWP

0

1
Aout

OSEL

CLKSELA0
A1

A3
A2

VREF

SMCLK

SLOPE

ODEN

D/A-8

DBON

TBSTP

TA0.1

TA1EN

TA1.0

De-
Glitching

DFSETx

SBSTP

VREFEN

SLOPE

EOCIFG logic

sEOC

0001
0010
0011
0100
0101
0110
0111
1000

PSELx

4

0000
0001
0010
0011
0100
0101
0110
0111

Pre-Scaler

by 1/2/4/8/16/32

CLKDIVx

SAREN

xCLK

xCLK

from AZ-logic

A
Z

E
N

C
T

Start Stop Logic

Clock
Logic

MCLK
VLOCLK

01
10
11

1001

!

SVMIFG logic

R

R

6R

Vcc

A-POOL Digital Components and Paths www.ti.com

7.4 A-POOL Digital Components and Paths

The digital components of A-POOL and their paths are shown in Figure 7-4.

Figure 7-4. A-POOL Digital Components (With Analog Components in Gray)

7.4.1 Deglitching filter

The deglitching filter on the comparator output reduces unstable conditions that are introduced from input
voltages that contain harmonics and other distortions. Four settings allow stable switching responses.

Table 7-1. Deglitching Filter

DFSETx Behavior

00 No deglitching, the comparator output is feedthrough.

01 Two out of two consecutive samples, based on xCLK, must be high to generate a high output.

10 Majority vote of two out of three consecutive sample, based on xCLK, must be high to generate a high output.

11 Majority vote on three of five consecutive samples, based on xCLK, must be high to generate a high output.

162 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

DACVREF OUT

DAC-ADC-REG

DAC-ADC-BUF

TA0.1

ATBU

EOCBU

EOC

access via registers
APINT and APFRACT

access via registers
APINTB and APFRACTB

analog output

www.ti.com A-POOL Digital Components and Paths

7.4.2 Clock Logic and Prescaler

xCLK, the operation clock for the conversion counter, SAR logic, and deglitching filter, is provided by the
clock logic. The CLKSEL bits determine if VLOCLK, MCLK, or SMCLK is selected to feed the prescaler.
CLKDIVx determines the division rate from the selected clock to xCLK.

The operation clock for A-POOL is enabled as soon it is required for internal operation; otherwise, it
remains off to conserve power.

Table 7-2. Clock enable for A-POOL in Various Operation Cases

RUNSTOP CTEN AZCMP AZSWREQ A-POOL Clock Mode

1 x x x Enabled Any conversion forced/automatic

x x 1 x Enabled Any auto-zero operation

x x x 1 Enabled During software auto-zero operation

7.4.3 Conversion Register and Conversion Buffer Register

Conversion Register and conversion buffer register are real 8-bit registers that are accessed via the
registers APINT/APFRACT and APINTB/APFRACTB. These registers were introduced to allow both
number representations that are commonly used in digital control and signal processing and to allow
interim results to be calculated by the CPU with 16-bit dynamics, while only the eight most "important" bits
are used for conversions.

Setting ATBU = 1 enables an automatic update of the DAC register on a TA0.1 pulse. This is required in
signal-processing algorithms and some control applications to avoid spectral distortions in the DAC path.
Setting EOCBU updates the ADC buffer with the last ADC conversion value. This is helpful when
multi-channel ADC conversions are done.

Figure 7-5. Conversion Register and Conversion Buffer

163SLAU321–September 2010 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

A-POOL Digital Components and Paths www.ti.com

7.4.4 Fractional and Integer Numbers

The register set of A-POOL features a register pair for integer numbers and fractional numbers. Unsigned
integer numbers can be read from and written to the APINT / APINTB registers, signed fractional numbers
of format Q7 and Q15 can be read from and written to the APFRACT / APFRACTB registers. The true
data width of A-POOL is 8 bit, but word-wide integer and fractional numbers may still be used for digital
control applications. The bit assignment of the APINT / APINTB and APFRACT / APFRACTB registers is
done automatically by accessing the appropriate registers shown in Table 7-3.

Table 7-3. Fractional and Integer Values used with A-POOL

Number Range Number Range Used A-POOL InternalNumber Type Use Register (Decimal) (Hex) Resolution

APINT_L ,8-bit integer 0 to 255 00h to FFh 8 bits in APINT_LAPINTB_L

APINT,16-bit integer 0 to 255 0000h to 00FFh 8 bits in APINT_LAPINTB

APFRACT_H,Q7 fractional -128 to 127 80h to 7Fh 8 bits in APFRACT_HAPFRACTB_H

APFRACT,Q15 fractional -32768 to 32767 8000h to 7F00h 8 bits in APFRACT_HAPFRACTB

Table 7-4. Integer, Q7, Q15 and Corresponding Internal Voltages

8/16-Bit Integer Q15 Fractional Internal Equivalent VoltageQ7 Fractional RepresentationRepresentation Representation Based on VREF = 256 mV

00h 80h 8000h to 80FFh 1 mV

⋮ ⋮ ⋮ ⋮
7Fh FFh FF00h to FFFFh 128 mV

80h 00h 0000h to 00FFh 129 mV

⋮ ⋮ ⋮ ⋮
FFh 7Fh 7F00h to 7FFFh 256 mV

7.4.5 Numeric Saturation and End of Conversion Indication

A-POOL uses an 8-bit-wide up/down counter as ramp generator. Access to this counter is through the
APINT / APINTB and APFRACT / APFRACTB registers. The values 0 and 255 represent the
end-of-conversion range. The up/down counter suppresses a wraparound when SBSTP is set. The
end-of-conversion flag, EOCIFG, is set independent from the value of SBSTP.

Table 7-5. Saturation Schemes for Up and Down Ramps (1)

SLOPE = 0, SBSTP = 0 SLOPE = 0, SBSTP = 1 SLOPE = 1, SBSTP = 0 SLOPE = 1, SBSTP = 1
Conditions

Counter Value Counter Value Counter Value Counter ValueEOCs EOCs EOCs EOCs
Ind. Ind. Ind. Ind.Clock DEC HEX DEC HEX DEC HEX DEC HEX

Q… … … … … … … … … … … … …

QN 253 FDh 0 253 FDh 0 2 02h 0 2 02h 0

QN+1 254 FEh 0 254 FEh 0 1 01h 0 1 01h 0

QN+2 255 FFh 1 255 FFh 1 0 00h 1 0 00h 1

QN+3 0 00h 0 255 FFh 0 255 FFh 0 0 00h 0

QN+4 1 01h 0 255 FFh 0 254 FEh 0 0 00h 0

QN+5 2 02h 0 255 FFh 0 253 FDh 0 0 00h 0
(1) EOCs = end of conversion due to saturation

164 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com Simple Application Examples With A-POOL-main

7.4.6 Interrupt Logic

A-POOL can set up to four different interrupt flags for various purposes. Table 7-6 summarizes types and
sources for the interrupt flags.

Table 7-6. Interrupt Logic Behavior

Trigger Event CxIFG SVMIFG EOCIFG REFOKIFG

SynchronousADC-DAC counting to end of range – – –interrupt

SynchronousSAR state machine end-state – – –interrupt

Synchronous AsynchronousRegular crossover (no ramp, no SAR) – –interrupt interrupt

SynchronousVREF reaching correct voltage after turning on – – – interrupt

An internal state machine prevents unintentional interrupt generation during SAR conversions, auto-zero
compensations and ramp based operations.

7.5 Simple Application Examples With A-POOL-main

The following examples show some methods for building complex functions from the available elementary
functions. In most cases, more than two different programming styles for event detection can be applied.
Here, wait periods are implemented as LPM0 phases that are terminated by an interrupt event. This
method results in simple example code compared to concurrent CPU operation while interrupt-controlled
data acquisition is done in the background, and it avoids power-consuming event polling. In general, all
programming styles can be applied.

7.5.1 DAC Operation for Classical Digital Control Purposes

A DAC operation for classical digital control purposes (P-I-D and combos) is a simple write to the APINT
register or APFRACT register while REFON, OSEL, DBEN, and ODEN bits are set to 1. A corresponding
analog voltage with a range of 1 mV to 256 mV is driven on AOUT. Instead of using the internal reference
voltage, an external reference voltage may be applied to VREF (set REFON = 0). A compensation of the
offset voltages of the DAC output buffer is not required, as most digital control loop algorithms accept
those offsets as actuator deviation or part of the disturbance signal. For digital control loops, a moderate
resolution and monotonic behavior are more important.

7.5.2 ADC Conversions Without Error Compensation

An ADC conversion for digital control purposes (P-I-D and combos) is a single ramp conversion using the
ADC-DAC-REG with the DAC as a ramp generator. In the example below, the counter is cleared by
software, conversion is triggered by software, and the comparator stops the counter as soon the ramp
voltage crosses the selected input voltage.

A compensation of the offset voltages of the DAC output buffer is not required, as most digital control
loops algorithms accept those offsets as sensor deviation or part of the disturbance signal. For digital
control loops, a moderate resolution and monotonic behavior are more important.

165SLAU321–September 2010 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

time

U (from DAC)RAMP

U (from input)MEAS

counter stopped at

time of crossover

0 1 41

start of conversion end of conversion

Simple Application Examples With A-POOL-main www.ti.com

Figure 7-6. Simple ADC Conversion Principle

Example 7-1. Simple ADC Conversion

...
;A-POOL Interrupt handler for simple ADC conversions
APHNDL: MOV.W #0,&APIV ;clear all pending interrupts

BIC.W #CPUOFF,0(SP) ;exit LPM0 and return
RETI

...

.

...
;A-POOL simple SW triggered ADC conversion function for 8 bit integer
;on channel A0 with int. Vref, .5V range, low power, event driven
SADC8: MOV.B #1,&APIE ;enable end of conversion interrupt

MOV.W #21E0h,&APCNF ;enable required anal. elements
BIS.B #A0DIV,&APVDIV ;set the voltage divider to 500 mV
MOV.W #0,&APINT ;clear ADC-DAC-REG
MOV.W #5504h,&APCTL ;set channels and start conversion
BIS.W #CPUOFF,SR ;enter LPM0 and wait
MOV.W &APINT,R12 ;handover int. value in R12
RET ;return to calling function

7.5.3 ADC Conversions With Overdrive Compensation

The counter that generates the ramp voltage is not stopped immediately on the crossover point with the
input voltage due to overdrive. Some "input difference voltage" is required for some time to cause a
comparator reaction. In the example below, this "overdrive" is building up gradually after the crossover
point, as the input signal can be seen constant compared to the ramp voltage. The product of "overdrive"
and time would normally be a "pulse"; in the case of nonlinear behavior, it has the characteristics of an
"inertia". In the up-ramp case (see Figure 7-7), this inertia causes a delayed end of conversion, resulting a
value that is higher than the actual voltage. In the down-ramp case (see Figure 7-8), this inertia causes a
delayed end of conversion, resulting a value that is lower than the actual value. Adding both values
together provides a 9-bit conversion value that is overdrive compensated.

166 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

time

U (from DAC)RAMP

U (from input)MEAS

time of true

crossover

time of sensed
crossover

0 1 45

start of conversion end of conversion

true value

is “41”

voltage
inertia

time

U (from DAC8)RAMP

U (from input)MEAS

time of true

crossover
time of sensed

crossover

255 37

start of conversion end of conversion

true value

is “41”

voltage

inertia

time

U (from input)MEAS

time of true

crossover

0 1 45

start of
conversion

end of
first

conversion

true value

is “41”

voltage
inertiae

end of second
conversion

start of
second
converstion

37

U (from DAC)RAMP

www.ti.com Simple Application Examples With A-POOL-main

Figure 7-7. Overdrive Compensation Up-Ramp

Figure 7-8. Overdrive Compensation Down-Ramp

Figure 7-9. Overdrive Compensation by Up/Down-Ramp Concatenation

167SLAU321–September 2010 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

VREF_I

Reference Source

+

-

+

-

-

+

dynamic model of comparator

VEC

V IN
position “A”

position “B”
R1

R2

DAC
logic

ADC
control

causing the
“V-inertia”+

-

DAC Buffer

Simple Application Examples With A-POOL-main www.ti.com

Example 7-2. ADC Conversion With Overdrive Compensation

.

...
;A-POOL Interrupt handler for simple ADC conversions
APHNDL: MOV.W #0,&APIV ;clear all pending interrupts

BIC.W #CPUOFF,0(SP) ;exit LPM0 and return
RETI

...

.

...
;A-POOL SW triggered overdrive comp. ADC conversion for 9 bit integer
;.. on channel A0 with int. Vref, .5V range, low power, event driven
ICADC9: MOV.B #1,&APIE ;enable end of conversion interrupt

MOV.W #21E0h,&APCNF ;enable required anal. elements
BIS.B #A0DIV,&APVDIV ;set the voltage divider to 500 mV
MOV.W #0,&APINT ;clear ADC-DAC-REG
MOV.W #5504h,&APCTL ;set channels and start conversion
BIS.W #CPUOFF,SR ;enter LPM0 and wait
MOV.W &APINT,R12 ;handover int. value in R12
BIS.W #RUNSTOP+SLOPE,&APCTL ;set down and start conversion
BIS.W #CPUOFF,SR ;enter LPM0 and wait
ADD.W &APINT,R12 ;compose 9 bit result in R12
RET ;return to calling function

7.5.4 ADC Conversions With Offset Compensation

The offset voltage of the comparator is added to the divided input voltage when an ADC conversion is
done with the switches in position "A"; The offset voltage of the comparator is subtracted from the divided
input voltage when an ADC conversion is done with the switches in position "B". Adding both results
together gives a 9-bit conversion value that is offset compensated.

Figure 7-10. Comparator Offset

168 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

time

U (from input)MEAS

time of true
crossover

0 1 45

s. of1st

e. 1st

true value
is “41”

voltage

inertiae

e. of 2nd
s. of2nd

37

U

(from DAC)
RAMP

42 34

s. of 3rd

e. of 3rd
s. of 4th

e. of 4th

make space
for offset

due to offset when
swapping inputs

forward measured reverse measured

www.ti.com Simple Application Examples With A-POOL-main

Example 7-3. ADC Conversion With Offset Compensation

.

...
;A-POOL Interrupt handler for simple ADC conversions
APHNDL: MOV.W #0,&APIV ;clear all pending interrupts

BIC.W #CPUOFF,0(SP) ;exit LPM0 and return
RETI

...

.

...
;A-POOL SW triggered offset comp. ADC conversion for 9 bit integer
;.. on channel A0 with int. Vref, .5V range, low power, event driven
OCADC9: MOV.B #1,&APIE ;enable end of conversion interrupt

MOV.W #21E0h,&APCNF ;enable required anal. elements
BIS.B #A0DIV,&APVDIV ;set the voltage divider to 500 mV
MOV.W #0,&APINT ;clear ADC-DAC-REG
MOV.W #5504h,&APCTL ;set channels and start conversion
BIS.W #CPUOFF,SR ;enter LPM0 and wait
MOV.W &APINT,R12 ;handover int. value in R12
MOV.W #0,&APINT ;clear ADC-DAC-REG
MOV.W #0556h,&APCTL ;cross channels and start conversion
BIS.W #CPUOFF,SR ;enter LPM0 and wait
ADD.W &APINT,R12 ;compose 9 bit result in R12
RET ;return to calling function

7.5.5 Evaluation of DAC Buffer Offset

The DAC output buffer shows a small offset voltage VEO that can be compensated again when compared
against the comparator's offset voltage VEC.

7.5.6 ADC Conversions for Measuring

For measuring purposes, compensation of all error sources might be required. Inertia compensation and
offset compensation can be done as separate measurements, and all results are then added to get a
10-bit value (then averaged to 8-bit resolution). In the example below, concatenated conversions are done
to save time and energy. VEO that has been evaluated before (typically 5 to 10 counts) is used to correct
the values after measurement.

Figure 7-11. ADC Conversion With Overall Compensation

169SLAU321–September 2010 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Simple Application Examples With A-POOL-main www.ti.com

Example 7-4. ADC Conversion With Overall Compensation

.

...
;A-POOL Interrupt handler for simple ADC conversions
APHNDL: MOV.W #0,&APIV ;clear all pending interrupts

BIC.W #CPUOFF,0(SP) ;exit LPM0 and return
RETI

...

.

...
;A-POOL SW triggered overall comp. ADC conversion for 10 bit integer
;.. on channel A0 with int. Vref, .5V range, low power, event driven
IOCADC10: MOV.B #1,&APIE ;enable end of conversion interrupt

MOV.W #21E0h,&APCNF ;enable required anal. elements
BIS.B #A0DIV,&APVDIV ;set the voltage divider to 500 mV
MOV.W #0,&APINT ;clear ADC-DAC-REG
MOV.W #5504h,&APCTL ;set channels and start conversion
BIS.W #CPUOFF,SR ;enter LPM0 and wait
MOV.W &APINT,R12 ;compose final value in R12
BIS.W #RUNSTOP+SLOPE,&APCTL ;set down & start conversion
BIS.W #CPUOFF,SR ;enter LPM0 and wait
ADD.W &APINT,R12 ;compose final value in R12
CMP.W #15,&APINT ;check if range save for offset space
JL IOCADCa ;no space (lower 15 mV are not comp.)
SUB.W #15,&APINT ;make space for offset

IOCADCa: MOV.W #0556h,&APCTL ;set channels and start conversion
BIS.W #CPUOFF,SR ;enter LPM0 and wait
ADD.W &APINT,R12 ;compose final value in R12
BIS.W #RUNSTOP+SLOPE,&APCTL ;set down and start conversion
BIS.W #CPUOFF,SR ;enter LPM0 and wait
ADD.W &APINT,R12 ;compose final value in R12
SUB.W &VEO,R12 ;subtract pre-eval VEO
RET ;return to calling function

7.5.7 Windowed ADC Conversions

Input voltages close to the upper range end on an up-ramp measurement are slow as usually the ramp
voltage starts at zero. If the expected input voltage range can be estimated, then the ADC-DAC-REG is
initialized with the lower range value. This speeds up the conversion.

170 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

time

U (from input)MEAS

time of true

crossover

time of sensed
crossover

30 45

start of conversion end of conversion

voltage
inertia

time

time of true

crossover

time of sensed
crossover

30 255

start of conversion end of conversion due to overflow

voltage

inertia

(theoretical)

Out of range

www.ti.com Simple Application Examples With A-POOL-main

Figure 7-12. Windowed ADC Conversion

Regular ADC conversions terminate when the comparator detects the crossover of ramp voltage and input
voltage. Input voltages close to the upper or lower range end might not terminate properly. Using the
saturation logic as second termination mechanism resolves those situations.

Figure 7-13. ADC Conversions Range Terminated

171SLAU321–September 2010 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

TA0.0

TA0.1

TA0.2

APINT

Ax /RampIN

AOUT

EOC

Int PGM

Main PGM

0

A

34 27 25

B

125 0 29 25

C A’

APINTB 27 25 29

used as

“ADC”

used as

“DAC”

used as

“SVM”

used as

“ADC”

again

used as

“DAC”

again

32

27
25

27

Simple Application Examples With A-POOL-main www.ti.com

7.5.8 Full Analog Signal Chain Setup With Interleaved SVM Operations

A-POOL is flexible enough to build up a full signal chain with ADC, DAC, and observing the supply voltage
in background while the main program runs the user application. The following example shows one
possible solution.

Figure 7-14. Full Signal-Chain Timing Diagram

172 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

TA0.0

A0 /RampIN

88

A1 /RampIN

A2 /RampIN

EOC

APINT 0

APINTB xx 98 90

96

214

124

216 126

0126

Int PGM

Main PGM

A B C A’

www.ti.com Simple Application Examples With A-POOL-main

The tasks of the various interrupt service routines for example in Figure 7-14:

Task A
• Pick up the ADC conversion value from APINT; the value is 34 instead of the true 32 due to offset.
• Put the old DAC value location in APINT
• Set ODEN (turn on AOUT)
• Put the new DAC value in APINTB
• Copy new DAC value into old DAC value location

Task B
• Prepare multiplexer for SVM task, Clear SVMIFG
• Clear ODEN (make AOUT high impedance; VOUT is kept by external capacitor)
• Set SVM level and SVMIE

Task C
• Clear SVMIE
• Prepare multiplexer for ADC measurement
• Clear APINT

7.5.9 Multiple ADC Channels

A-POOL is able to make measurements on multiple analog inputs. In Figure 7-15 the buffered conversion
value is picked up from APINTB (when EOCBU = 1).

Figure 7-15. Multichannel ADC Conversion

173SLAU321–September 2010 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Simple Application Examples With A-POOL-main www.ti.com

The tasks of the various interrupt service routines for example in Figure 7-15:

Task A
• Pick up the ADC conversion value for "channel 0" from APINTB; the value is 98 instead of the true 96

due to offset.
• Change multiplexers to "channel 1"

Task B
• Pick up the ADC conversion value for "channel 1" from APINTB; the value is 216 instead of the true

214 due to offset.
• Change multiplexers to "channel 2"
• Turn on CBSTP to stop counter on next comparator match

Task C
• Pick up the ADC conversion value for "channel 2" from APINTB; the value is 126 instead of the true

124 due to offset.
• Change multiplexers to "channel 0"
• Turn off CBSTP to enable multi channels again

174 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com A-POOL Control Registers

7.6 A-POOL Control Registers

The control registers of A-POOL are listed in Table 7-8. The base address for the A-POOL registers is
listed in Table 7-7.

Table 7-7. A-POOL Base Address

Module Base address

A-POOL 001A0h

Table 7-8. A-POOL Control Registers

Register AddressRegister Short Form Register Type Initial StateAccess Offset

APCNF word 00h 2000h

A-POOL configuration register APCNF_L read/write byte 00h 00h

APCNF_H byte 01h 20h

APCTL word 02h F0F0h

A-POOL control register APCTL_L read/write byte 02h F0h

APCTL_H byte 03h F0h

APOMR word 04h 0000h

A-POOL operation mode register APOMR_L read/write byte 04h 00h

APOMR_H byte 05h 00h

APVDIV word 06h 0000h

A-POOL voltage divider register APDIV_L read/write byte 06h 00h

APDIV_H byte 07h 00h

APTRIM word 08h xx00h

A-POOL trimming register APTRIM_L read/write byte 08h 00h

APTRIM_H byte 09h xxh

APINT word 10h 0000h

A-POOL integer conversion register APINT_L read/write byte 10h 00h

APINT_H byte 11h 00h

APINTB word 12h 0000h

A-POOL integer conversion buffer APINTB_L read/write byte 12h 00h

APINTB_H byte 13h 00h

APFRACT word 14h 8000h

A-POOL fractional conversion register APFRACT_L read/write byte 14h 00h

APFRACT_H byte 15h 80h

APFRACTB word 16h 8000h

A-POOL fractional conversion buffer APFRACTB_L read/write byte 16h 00h

APFRACTB_H byte 17h 80h

APIFG word 1Ah 0000h

A-POOL interrupt flag register APIFG_L read/write byte 1Ah 00h

APIFG_H byte 1Bh 00h

APIE word 1Ch 0000h

A-POOL interrupt enable register APIE_L read/write byte 1Ch 00h

APIE_H byte 1Dh 00h

APIV word 1Eh 0000h

A-POOL interrupt vector register APIV_L read/write byte 1Eh 00h

APIV_H byte 1Fh 00h

Interrupt flag 1 IFG1 read/write word/byte

Interrupt enable 1 IE1 read/write word/byte

175SLAU321–September 2010 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

A-POOL Control Registers www.ti.com

APCNF, A-POOL Configuration Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved VREFEN REFON A3PSEL ATBU EOCBU CLKSELx

r0 rw-0 rw-1 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

CONVON DBON CMPON Reserved DFSETx TA1EN TA0EN

rw-0 rw-0 rw-0 r0 rw-0 rw-0 rw-0 rw-0

Reserved Bit 15 Reserved. Reads back as 0.

VREFEN Bit 14 Reference voltage pin enable

0 VREF terminal disabled

1 VREF terminal enabled

REFON Bit 13 Internal voltage reference enable

0 Internal reference is off

1 Internal reference is on

A3PSEL Bit 12 This bit determines which pin analog input A3 is accessed with.

0 A3 is taken from the pin that is able to drive AOUT

1

ATBU Bit 11 Automatic update of conversion register from conversion buffer on TA0.1 event enable bit

0 Disabled

1 Enabled

EOCBU Bit 10 Enable bit for loading conversion buffer from conversion register on “end of conversion” (EOC)

0 Disabled

1 Enabled

CLKSELx Bits 9-8 Conversion clock (A-POOL master clock) select

00 VLOCLK

01 MCLK

10 SMCLK

11 Reserved, defaults to VLOCLK

CONVON Bit 7 Enable for converter’s resistor ladder

0 Resistor ladder is off

1 Resistor ladder is on

DBON Bit 6 DAC buffer enable signal

0 DAC buffer is off

1 DAC buffer is on

CMPON Bit 5 Comparator enable

0 Comparator off

1 Comparator on

Reserved Bit 4 Reserved. Reads back as 0.

DFSETx Bits 3-2 Deglitching filter setting

00 No filtering (straight signal from comparator)

01 Two of two

10 Two of three

11 Three of five

TA1EN Bit 1 Timer_A1 trigger enable

0 Disabled

1 Enabled

TA0EN Bit 0 Timer_A0 trigger enable

0 Disabled

1 Enabled

176 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com A-POOL Control Registers

APCTL, A-POOL Control Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

PSELx TBSTP CBSTP SBSTP RUNSTOP

rw-1 rw-1 rw-1 rw-1 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

NSELx SLOPE OSEL OSWP ODEN

rw-1 rw-1 rw-1 rw-1 rw-0 rw-0 rw-0 rw-0

PSELx Bits 15-12 Reference input select. These control bits select the source for the noninverting input of the comparator

0000 Analog input A0 is selected

0001 Analog input A1 is selected

0010 Analog input A2 is selected

0011 Analog input A3 is selected

0100 Temperature sensor is selected

0101 DAC buffer output is selected

0110 Supply voltage divider (2 / 1.8-V range)

0111 Voltage reference is selected

1000 224-mV reference tap is selected

1001 Supply voltage divider for (1 / 0.9-V range)

⋮ Reserved; defaults to ground

1111 No input signal is selected (multiplexer open)

TBSTP Bit 11 Timer based conversion stop enable for Timer_A0

0 Disabled

1 Enabled

CBSTP Bit 10 Comparator based conversion stop enable

0 Disabled

1 Enabled

SBSTP Bit 9 Saturation based conversion stop enable

0 Disabled

1 Enabled

RUNSTOP Bit 8 Converter run/stop. This bit can be changed to force the desired state and can be read to check its state.

0 Stopped

1 Running

NSELx Bits 7-4 Analog input select. These control bits select the source for the inverting input of the comparator

0000 Analog input A0 is selected

0001 Analog input A1 is selected

0010 Analog input A2 is selected

0011 Analog input A3 is selected

0100 Temperature sensor is selected

0101 DAC buffer output is selected

0110 Supply voltage divider is selected

0111 Voltage reference is selected

⋮ Reserved; defaults to ground

1111 No input signal is selected (multiplexer open)

SLOPE Bit 3 Slop select of converter

0 Rising slope (counting up)

1 Falling slope (counting down)

177SLAU321–September 2010 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

A-POOL Control Registers www.ti.com

(continued)

OSEL Bit 2 Output buffer select

0 Analog input MUX is selected to drive AOUT

1 DAC is selected to drive AOUT

OSWP Bit 1 Output swap

0 Straight comparator output is used

1 Inverted comparator output is used

ODEN Bit 0 Output driver enable

0 AOUT is disabled

1 AOUT is enabled

APVDIV, A-POOL Voltage Divider Control Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved BUSY COMPOUT

r0 r0 r0 r0 r0 r0 r r

7 6 5 4 3 2 1 0

VCCDIVEN TMPSEN A3DIVx A2DIVx A1DIV A0DIV

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Reserved Bits 15-10 Reserved. Reads back 0.

BUSY Bit 9 Busy flag indicates that internal state machine is performing a conversion such as SAR or Up/Down ramp.
The Busy flag is cleared when its operation has stopped and is ready for new operations.

COMPOUT Bit 8 Reads back the state of the comparator after the deglitching filter

VCCDIVEN Bit 7 VCC voltage divider enable

0 VCC voltage divider off

1 VCC voltage divider on

TMPSEN Bit 6 Temperature sensor enable

0 Temperature sensor off

1 Temperature sensor on

A3DIVx Bits 5-4 Analog channel 3 voltage divider control

00 250-mV input voltage range

01 1-V input voltage range

10 2-V input voltage range

11 Reserved

A2DIVx Bits 3-2 Analog channel 2 voltage divider control

00 250-mV input voltage range

01 1-V input voltage range

10 2-V input voltage range

11 Reserved

A1DIV Bit 1 Analog channel 1 voltage divider control

0 250-mV input voltage range

1 500-mV input voltage range

A0DIV Bit 0 Analog channel 0 voltage divider control

0 250-mV input voltage range

1 500-mV input voltage range

178 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com A-POOL Control Registers

APTRIM, A-POOL Trimming Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

REFTRIM_PTATx REFTRIM_GAINx Reserved

r r r r r0 r0 r0 r0

rw-[1] rw-[0] rw-[0] rw-[0]

7 6 5 4 3 2 1 0

Reserved REFTSEL

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-[0]

Condition when REFTSEL = 1

REFTRIM_PTATx Bits 15-12 Reference trimming bits for fine calibrating the reference voltage source; PTAT part

If REFTSEL = 0, read reflects the calibration value of the fuse element, write has no effect

If REFTSEL = 1, read returns the value of the calibration register, write values with bit 9 set to one will
cause a write into the calibration register.

REFTRIM_GAINx Bits 11-9 Reference trimming bits for fine calibrating the reference voltage source; gain part

If REFTSEL = 0, read reflects the calibration value of the fuse element, write has no effect

If REFTSEL = 1, read returns the value of the calibration register, write values with bit 9 set to one will
cause a write into the calibration register.

Reserved Bits 8-1 Reserved. Reads back 0.

REFTSEL Bit 0 Selects between the register bank used for the reference trimming

0 Fuse elements are selected (write has no effect)

1 Trimming register is selected

179SLAU321–September 2010 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

A-POOL Control Registers www.ti.com

APOMR, A-POOL Operation Mode Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved SVMINH AZSWREQ AZCMP CTEN

r0 r0 r0 r0 rw-[0] rw-[0] rw-[0] rw-[0]

7 6 5 4 3 2 1 0

Reserved SAREN CLKDIVx

r0 r0 r0 r0 rw-[0] rw-[0] rw-[0] rw-[0]

Reserved Bits 15-12 Reserved. Reads back as 0.

SVMINH Bit 11 This bit suppresses the generation of an SVM interrupt event. This is recommended to be use before
swapping the input/output channels of A-POOL to avoid generating erroneous SVM interrupts.

AZSWREQ Bit 10 Software request for auto-zero phase

AZCMP Bit 9 Set comparator to clocked zero compensated long term comparison

CTEN Bit 8 Continuous time mode of comparator

CTEN AZCMP AZSWREQ Mode of Comparator

0 0 0 Auto-zero mode for requesting units (e.g., SAR)

0 X 1 Comparator forced to AZ phase

0 1 0 Comparator put in long-term clocked AZ comparison

1 X X Continuous time mode for all operations

Reserved Bits 7-4 Reserved. Reads back as 0.

SAREN Bit 3 SAR conversion enable (instead of ramp generation)

0 Disabled

1 Enabled

CLKDIVx Bit 2-0 Prescaler control for ADC/DAC, digital filter, AZ comparator modes

000 Division ratio = 1

001 Division ratio = 2

010 Division ratio = 4

011 Division ratio = 8

100 Division ratio = 16

101 Division ratio = 32

⋮ Reserved; defaults to Division ratio = 1

APINT, A-POOL Integer Conversion Value Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

INTVAL

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Reserved Bits 15-8 Reserved. Reads back as 0.

INTVAL Bits 7-0 Conversion value in unsigned integer format. The value ranges from 0h to FFh when read or written as byte
and from 0h to FF00h when read or written as word

180 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com A-POOL Control Registers

APINTB, A-POOL Integer Conversion Value Buffer

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

INTVAL

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Reserved Bits 15-8 Reserved. Reads back as 0.

INTVAL Bits 7-0 Buffer value in unsigned integer format. The value ranges from 0h to FFh when read or written as byte and
from 0h to FF00h when read or written as word

APFRACT, A-POOL Fractional Conversion Value Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

FRACTVAL

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

FRACTVAL Bits 15-8 Conversion value in signed fractional format. The value ranges from 80h to 7Fh when read or written as byte
and from 8000h to 7F00h when read or written as word

Reserved Bits 7-0 Reserved. Reads back as 0.

APFRACTB, A-POOL Fractional Conversion Value Buffer

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

FRACTVAL

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

FRACTVAL Bits 15-8 Buffer value in signed fractional format. The value ranges from 80h to 7Fh when read or written as byte and
from 8000h to 7F00h when read or written as word

Reserved Bits 7-0 Reserved. Reads back as 0.

181SLAU321–September 2010 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

A-POOL Control Registers www.ti.com

APIFG, A-Pool Interrupt Flag Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved REFOKIFG CRIFG CFIFG EOCIFG

r0 r0 r0 r0 rw-0 rw-0 rw-0 rw-0

Reserved Bits 15-4 Reserved. Reads back as 0.

REFOKIFG Bit 3 Reference voltage ready interrupt flag

0 No interrupt pending

1 Interrupt pending

CRIFG Bit 2 Comparator rising edge interrupt flag

0 No interrupt pending

1 Interrupt pending

CFIFG Bit 1 Comparator falling edge interrupt flag

0 No interrupt pending

1 Interrupt pending

EOCIFG Bit 0 End of conversion interrupt flag

0 No interrupt pending

1 Interrupt pending

APIE, A-Pool Interrupt Enable Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved REFOKIE CRIE CFIE EOCIE

r0 r0 r0 r0 rw-0 rw-0 rw-0 rw-0

Reserved Bits 15-4 Reserved. Reads back as 0.

REFOKIE Bit 3 Reference voltage ready interrupt enable

0 Interrupt disabled

1 Interrupt enabled

CRIE Bit 2 Comparator rising edge interrupt enable

0 Interrupt disabled

1 Interrupt enabled

CFIE Bit 1 Comparator falling edge interrupt enable

0 Interrupt disabled

1 Interrupt enabled

EOCIE Bit 0 End of conversion interrupt enable

0 Interrupt disabled

1 Interrupt enabled

182 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

www.ti.com A-POOL Control Registers

APIV, A-Pool Interrupt Vector Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 APIVx 0

r0 r0 r0 r0 r-0 r-0 r-0 r0

APIVx Bits 3-1 Analog Pool Interrupt vector value. It generates a value that can be used as address offset for fast interrupt
service routine handling. Writing to this register clears all pending interrupt flags. Reading this register clears
the highest pending interrupt flag (displaying this register with the debugger does not affect its content).

APIV Contents Interrupt Source Interrupt Flag Interrupt Priority

00h No interrupt pending

02h End of conversion (EOC) interrupt EOCIFG Highest

04h Comparator falling edge interrupt CFIFG ⋮
06h Comparator rising edge interrupt CRIFG ⋮
08h Reference OK interrupt REFOKIFG Lowest

IFG1, Interrupt Flag Register 1

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

SVMIFG

rw-0

SVMIFG Bit 8 SVM interrupt flag. This bit signals that the A-POOL comparator signaled an SVM event either low voltage or
high voltage depending on setup.

0 No interrupt pending

1 Interrupt pending

IE1, Interrupt Enable Register 1

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

SVMIE

rw-0

SVMIE Bit 8 SVM interrupt enable flag

0 Interrupts disabled

1 Interrupts enabled

183SLAU321–September 2010 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

184 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Chapter 8
SLAU321–September 2010

MSP430L092 Loader Code (Quick Start)

The MSP430L092 device is a development and prototyping and small series family member of the
MSP430x09x device family. It contains a special loader code stored in its internal ROM memory. This
chapter describes how the MSP430L092 loader code is used to build an autonomous microcontroller
solution. The loader approach is chosen as nonvolatile memory is not available for native ultra-low supply
voltages. For detailed information on the loader code, see the MSP430L092 Loader Code User's Guide
(SLAU324).

Topic ... Page

8.1 Loader Code Introduction ... 186
8.2 Target Hardware .. 191

185SLAU321–September 2010 MSP430L092 Loader Code (Quick Start)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SLAU324
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

‘L
0

9
2

‘L
0
9
2

S
P

I

+

‘L
0
9
2

S
P

I

+

‘L
0
9
2

S
P

I

+

‘C
0

9
2

‘C
0

9
1

8-inch active JTAG cable

Loader Code Introduction www.ti.com

8.1 Loader Code Introduction

The loader code in the MSP430L092 is TI-provided ROM firmware that provides a series of services. It
enables customers to build autonomous applications without the need for a custom ROM mask. Such an
application consists of an MSP430 device containing the loader (for example, MSP430L092) and a SPI
memory device (for example, '95512 or '25AA40). These and similar memory devices are available from
various manufacturers.

The major use cases for an application with a loader device and external SPI memory for native 0.9-V
supply voltage are late development, prototyping, and small series production. Table 8-1 and Figure 8-1
list various debugging scenarios possible for ultra-low supply voltage. A loader approach is the only choice
for an autonomous application with MSP430L092, as no nonvolatile memories are available on the market
for native ultra-low supply voltages.

Table 8-1. Debugging Scenarios With MSP430x09x Devices

Use Case Early Development Late Development Prototyping Small Series Mass Production

No. of Units up to 10 up to 100 up to 1000 up to 100000 100000+

Device MSP430L092 MSP430L092 MSP430L092 MSP430L092 MSP430C091/C092

Cost High Medium Medium Medium Low

External Memory / External Memory / External Memory / External Memory /Code in ... IDE / RAM RAM RAM RAM ROM / RAM

Galv. Sep. No Yes Yes Yes Yes

up to 1984B up to 1984B up to 1984B up to 1984B up to 1984BCode Size (typical) (typical) (typical) (typical) (typical)

up to 1024/2048BRAM Size up to 64B (typical) up to 64B (typical) up to 64B (typical) up to 64B (typical) (typical)

Depends onOverlays Supported by 'L092 Supported Supported Supported customer code

Figure 8-1. Debugging Scenarios With MSP430x09x Devices

The user can determine the type of SPI memory device used together with an MSP430 device with loader
code. SPI-EEPROMs, SPI-Flash, SPI-SRAM, SPI-FRAM, and SPI-byte alterable flash devices with supply
voltages range from 1.8 V to 6 V and various memory sizes have been seen on the market.

8.1.1 Typical Two-Chip Application

An application with the MSP430L092 device can be as simple as shown in Figure 8-2. The loader code
initializes the MSP430 device and generates an external clock on port P1.2 that allows an external boost
converter generating the necessary supply voltage for the SPI device containing the user program. After
approximately 500 µs, the loader starts to load the user code into the 'L092 RAM memory. After a
successful load procedure, the user code is started. During the code loading process, the LED used to
stabilize the voltage for the SPI device lights up briefly. The LED may be used later for regular signaling
purposes; the SPI device is then kept inactive.

186 MSP430L092 Loader Code (Quick Start) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

SCLK

SO

P1.2

TDI/P2.2

TMS/P2.1

TDO/P2.3

0.9-V supply

SPI-Flash/
EEPROM

MSP430L092

NPN

SI

TMS

R1

R2 R3

R4

R5

L

Q

D

C2

C1

LED

www.ti.com Loader Code Introduction

Figure 8-2. Component Optimized Application Circuit for 0.9-V Supply

8.1.2 Code Generation, Conventions, and Restrictions

The application code is generated with the standard tools for MSP430. The user application may (but is
not required to) use other services provided by the loader API. If the API's services are used, then special
conventions must be followed; otherwise, the user code can be written without any restrictions.

8.1.3 Start-Up Behavior and Timing

Immediately after startup, devices with the loader code behave like devices with any other user code. After
VCC ramp-up or reset release, control is given to the start-up code (SUC). This code performs initialization
and verifies device integrity. It then passes control to the code in ROM by branching to the location the
ROM-Code start vector is pointing at, in this case, the loader code. The loader performs its initialization
and turns on a 250-kHz PWM signal on port P1.2. Approximately 500 µs later, the user application code
residing in the external SPI memory is loaded into the internal MSP430 RAM. When stored in the external
SPI memory, the application code is embedded inside a data container that is protected with checksums.
During the loading process, the checksum is verified. If the checksum is correct, the loader code passes
control to the application code loaded in RAM.

187SLAU321–September 2010 MSP430L092 Loader Code (Quick Start)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Code
execution

In
it

P
o
rt

s
Start up

code(SUC)
L092 Loader Customer Application

T
u
rn

o
n

B
o
o
s
t

L
o
a
d

C
o
d
e

500 µs~1.2ms

SPI activity
SW-SPI

P2.x

P1.2

S
ta

rt
in

g

A
p
p
lic

a
ti
o
n

V ,CC

RST

Time

f = 250 kHz

2.2ms +

239 µs/Byte of Code

Loader Code Introduction www.ti.com

Figure 8-3. Timing of Successful Load Operation

NOTE: The ROM-code start vector is located at 0xF840 for the MSP430x09x devices, and it is a
reduced length 16-bit address pointer (in this example, it points to the start of the loader).

8.1.4 Failsafe Mechanism

If no SPI device is connected, or the SPI power is not generated, or an error during user code load is
detected, a visible error signature is generated. The voltage stabilization LED blinks three times with a
frequency of approximately 1 Hz. The user's application code is not executed, and the device enters LPM4
state. This prevents the device from executing erroneous code.

8.1.5 Data Structure of the SPI Memory

The application code is kept in external SPI memory when using the loader approach. One-bit wide SPI
devices with 16-bit and 24-bit address range are supported. At location 0x0, a format indication is
expected for both address types. The loader code automatically adapts its SPI address width to the
identified SPI memory device size by checking for the format indicator at memory location at address 0x0
and 0x1. The first boot data/program container is expected at address 0x2. Other data/program containers
may be stored anywhere in the SPI memory. Loading data/program containers from SPI addresses below
0x800 automatically causes an LED turn off operation and a password check with stop for debugging
purposes. Data/program containers loaded from SPI addresses ≥ 0x800 do not cause an automated
LED-off operation; this area is typically used for overlay programming.

188 MSP430L092 Loader Code (Quick Start) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

0x0 0x55

0xAA

0xFFFF

0xFFFFFF Maximum address range
for a 16MB SPI device

Maximum address range
for a 64kB SPI device

0x7FF Last address range

for auto LED off

First
Boot
Data

Container

0x2

First boot
start location

www.ti.com Loader Code Introduction

Figure 8-4. Data Structures in SPI Memory

8.1.6 Data/Program Containers

A data or program container is a structure stored in SPI memory that contains data or program (code)
elements as payload (see Figure 8-5).

The header of the data container consists of the 16-bit length field, a 16-bit destination address where the
code is supposed to be loaded to, and a 16-bit start address field that is invoked after code load.

The length field represents the size of the payload in bytes. The payload itself is always of even length.
Zero padding at the end of payload is used if the length field contains an odd value. The theoretical
maximum block length is 65536 bytes.

The load address points to the MSP430 memory location the payload is loaded to (when not overridden).
This is between 0x0 and 0xFFFF.

The start address points to the start of code when loaded into MSP430 memory in the case of the first
bootable data/program container for proper operation. For all the other containers loaded later, it may
point outside the loaded destination address.

The trailer of the container provides two copies of the checksum that is built over header and payload. The
checksum is calculated using a word-wide XOR operation initialized with zero.

189SLAU321–September 2010 MSP430L092 Loader Code (Quick Start)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

*+ 0x0 Length (LoByte)

Length (HiByte)

*+ 0x2 LoadAddr (LoByte)

LoadAddr (LoByte)

*+ 0x4 StartAddr (LoByte)

StartAddr (HiByte)

1st CodeWord (Lo)

1st CodeWord (Hi)

*+ 0x6

Checksum (LoByte)

Checksum (HiByte)

Checksum (LoByte)

Checksum (HiByte)

nth CodeWord (Hi)

nth CodeWord (Lo)

*+2n+ 0x6

*+2n+ 0x8

Header

Payload

Trailer

Int_x_Vec
Int_x_Vec

Int_x_Vec
Int_x_Vec0xFFE0

0xFFFC

“Interrupt Vectors” “SW-ISR -stubs”

dummy Int _x

service routine

Int_x_Vec
Int_x_Vec

Int_x_Vec
mov &1C60 h,PC 0x1C60

Int_x_Vec
Int_x_Vec

Int_x_Vec
Int_x_Vec

“Secondary Interrupt Vectors”

0x1C7C Int_x

service routine
Int x

service routine
Int

service routine
Int_x

service routine

“User’s ISRs”

Part of Loader in ROM Part of Application in RAM

Loader Code Introduction www.ti.com

Figure 8-5. Data/Program Container

8.1.7 Interrupt Handling

The loader should allow an application program to use all interrupt resources of a device. A hardware
interrupt causes the interrupt service routine to be called from the location that the corresponding interrupt
vector is pointing at. In the case of the loader, a simple instruction (SW-stub) is placed there to forward the
control to the interrupt service routine that the secondary interrupt vector is pointing at. The secondary
interrupt vector is a software element in RAM that points to the user's interrupt service routine (see
Figure 8-6). Such SW-stubs and secondary interrupt vectors are implemented for all interrupt sources. The
secondary interrupt vectors are initialized to point to a dummy interrupt handler. This ensures that all
interrupts, even unexpected ones, are terminated before the user code takes control. The dummy interrupt
handler counts the number of unexpected interrupts.

Slight differences are to be expected between the 'L092 behavior and the 'C091/'C092 behavior.

• The interrupt response of the 'L092 takes four cycles longer due to the deviation by the SW-stub.
• Unexpected interrupts are always terminated on the 'L092. If the user code does not manage all

interrupts, the 'L092 loader terminates them. The same user code on the 'C091/C092, however, is
defenseless against unexpected interrupts.

NOTE: It is strongly recommended to terminate all interrupt vectors.

Figure 8-6. Secondary Interrupt Vectors

The secondary interrupt vectors are listed in Table 8-2. The secondary interrupt vectors provide a vector
field, similar to the INTVECS section, allowing a dynamic lookup of interrupt handlers used on devices
with loader code.

190 MSP430L092 Loader Code (Quick Start) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

SCLK

SO

P1.2

TDI/P2.2

TMS/P2.1

TDO/P2.3

0.9-V to 1.65-V supply

SPI-Flash/
EEPROM

MSP430L092

SI

TCK/P2.0

C1

CS

Adaptation
Network

(level shifter, etc.)

SPI-Device
Voltage Supply

(boost
converter, etc.)

C2

optional
ULV-JTAG
interface

HOLD RST/NMI

www.ti.com Target Hardware

Table 8-2. Secondary Interrupt Vectors

AddressRegister Short Form Register Type Register Access Initial State(in 'L092)

Interrupt 0xF Vector INT0FIV2 read/write word 1C60h F8xx (user-defined)

Interrupt … INT… read/write word … …

Interrupt 0x3 Vector INT03IV2 read/write word 1C78h F8xx (user-defined)

User NMI Vector UNMIV2 read/write word 1C7Ah F8xx (user-defined)

System NMI Vector SNMIV2 read/write word 1C7Ch F8xx (user-defined)

Reset Vector RSTIV2 read/write word 1C7Eh F8xx (user-defined)

8.2 Target Hardware

Devices with the loader, like the MSP430L092, require target hardware to operate—Figure 8-2 shown in
the introduction is such a target hardware optimized for a particular device. A more generic block diagram
for such target hardware is shown in Figure 8-7. It is the user's choice to select one of the proposed
SPI-device voltage supply booster circuits and adapter networks, or develop custom circuits. It is also the
user's choice to select the type of SPI memory device used.

Figure 8-7. Generic Block Diagram of Target Hardware

8.2.1 Selection of the SPI Devices Supported by the Loader

Most SPI memory devices share a common command set. Only a common subset of commands is used
by the loader software (see Table 8-3). Special device-dependent commands are not used.

Table 8-3. SPI Commands Used by Loader

SPI Command Code EEPROMS Flash FRAM

Read Status Register 0x05 Used Used Used

Write Status Register 0x01 Used Used Used

Write Enable 0x06 Used Used Used

Read Memory 0x03 Used Used Used

Write Memory 0x02 Used Used Used

Bulk Erase 0xC7 Ignored Used Ignored

Read Stream 0x03, ... Used Used Used

191SLAU321–September 2010 MSP430L092 Loader Code (Quick Start)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

Q D1
C2

LED

C1 L

P1.2

0.9-V supply

SPI supply

R1

R2

Yellow on Coilcraft
0805PS-333KL

33 µH/160 (1.17=>3.19)

Q

D1

C2
LED

C1 L

P1.2

0.9-V supply

SPI supply

R1

R2

Orange on Murata
LQH2MCN330K02

33 µH/160 (1.17=>1.89)

Q D1
C2

LED
C1

L

P1.2

0.9-V supply

SPI supply

R1

R2

Red on Murata
LQH2MCN330K02

33 µH/160 (1.17=>2.79)

Q

C1 L

P1.2

0.9-V supply

R1

R2

C2

LED

D1

D2

C3
SPI supply

Green on EPCOS
SIMID 1210-100

33uH/105 (1.17=>3.80)

Q
C2

LED

C1
L

P1.2

0.9-V supply

SPI supply

R1

R2

Orange on Murata
LQH2MCN330K02

33 µH/160 (1.17=>1.89)

LED
Q

D2

C3LED

C1

L

P1.2

0.9-V supply

C2

SPI supply
D1

R1

R2

Blue on EPCOS
SIMID 1210-T

33 µH/70 (1.17=>5.98)

Target Hardware www.ti.com

8.2.2 Booster Converters

The circuits in Figure 8 to Figure 13 represent a variety of booster circuits that have been verified and can
be used to generate SPI-device supply voltages from 1.9 V to 6 V.

Figure 8. Booster Converter Type A Figure 9. Booster Converter Type B

Figure 10. Booster Converter Type C Figure 11. Booster Converter Type D

Figure 12. Booster Converter Type E Figure 13. Booster Converter Type F

Table 8-4. Values of Components

Component Value Component Value

R1 1k D1 1N4148

R2 47k D2 1N4148

C1 330 nF L 33 µH / 160 mA

C2 330 nF Q BC807 / BC817

C3 10 nF

192 MSP430L092 Loader Code (Quick Start) SLAU321–September 2010
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

SI TMS/P2.1

SO TDO/P2.3

SCLK TDI/P2.2

CS TCK/P2.0

Rf

Re

SI TMS/P2.1

SO TDO/P2.3

SCLK TDI/P2.2

CS

Rb

Ra

V
SPI

Rc Rd

SI TMS/P2.1

SO TDO/P2.3

SCLK TDI/P2.2

CS TCK/P2.0

Rb

Ra

V
SPI

Rc Rd Re

SI
TMS/P2.1

SO TDI/P2.3

SCLK
TDI/P2.2

CS
TCK/P2.0

Rb

Ra

VSPI

Rg

Rh

3x SN65LVDS2

www.ti.com Target Hardware

8.2.3 Adaptation Networks

The circuits shown in Figure 14 through Figure 17 in represent a variety of adaptation networks circuits
suitable for level adaptation for an SPI device being supplied from 1.8 V to 6 V.

Figure 14. Adaptation Network Type A Figure 15. Adaptation Network Type B

Figure 16. Adaptation Network Type C Figure 17. Adaptation Network Type D

193SLAU321–September 2010 MSP430L092 Loader Code (Quick Start)
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU321

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Communications and www.ti.com/communications
Telecom

DSP dsp.ti.com Computers and www.ti.com/computers
Peripherals

Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps

Interface interface.ti.com Energy www.ti.com/energy

Logic logic.ti.com Industrial www.ti.com/industrial

Power Mgmt power.ti.com Medical www.ti.com/medical

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
Defense

RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video

Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/communications
http://dsp.ti.com
http://www.ti.com/computers
http://www.ti.com/clocks
http://www.ti.com/consumer-apps
http://interface.ti.com
http://www.ti.com/energy
http://logic.ti.com
http://www.ti.com/industrial
http://power.ti.com
http://www.ti.com/medical
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/space-avionics-defense
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless-apps

	Table of Contents
	Preface
	1 System Resets, Interrupts, and Operating Modes, Compact System Control Module (CSYS)
	1.1 Compact System Control Module Introduction
	1.2 Principle of Operation
	1.2.1 Device Descriptor Table
	1.2.2 Start-Up Code (SUC)
	1.2.3 Boot Loader Code
	1.2.4 JTAG Mailbox (JMB) System

	1.3 Memory Map – Uses and Abilities
	1.3.1 Vacant Memory Space
	1.3.2 Start-Up Code (SUC)
	1.3.3 SYS Interrupt Vector Generators
	1.3.3.1 

	1.4 Interrupts
	1.4.1 (Non)-Maskable Interrupts (NMI)
	1.4.2 SNMI Timing
	1.4.3 Maskable Interrupts
	1.4.3.1 Interrupt Processing
	1.4.3.2 Interrupt Acceptance
	1.4.3.3 Return From Interrupt
	1.4.3.4 Interrupt Nesting
	1.4.3.5 Interrupt Nesting of NMIs

	1.5 Operating Modes
	1.5.1 Entering and Exiting Low-Power Modes

	1.6 Principles for Low-Power Applications
	1.7 Connection of Unused Pins
	1.8 Reset and Subtypes
	1.9 RST/NMI/SVMOUT Logic
	1.10 Interrupt Vectors
	1.11 Special Function Registers
	1.12 CSYS Registers
	1.13 CSYS PMM Register Replica

	2 Compact Clock System (CCS)
	2.1 Compact Clock System (CCS) Introduction
	2.2 CCS Module Operation
	2.2.1 Operation From Low-Power Modes Requested by Peripheral Modules
	2.2.2 Internal Low-Frequency Oscillator
	2.2.3 Internal Trimmable High-Frequency Oscillator
	2.2.4 External Clock Source
	2.2.5 Compact Clock System Module Fail-Safe Operation

	2.3 CCS Module Registers

	3 CPU
	3.1 CPU Introduction
	3.2 CPU Registers
	3.2.1 Program Counter (PC)
	3.2.2 Stack Pointer (SP)
	3.2.3 Status Register (SR)
	3.2.4 Constant Generator Registers CG1 and CG2
	3.2.4.1 Constant Generator - Expanded Instruction Set

	3.2.5 General-Purpose Registers R4 to R15

	3.3 Addressing Modes
	3.3.1 Register Mode
	3.3.2 Indexed Mode
	3.3.3 Symbolic Mode
	3.3.4 Absolute Mode
	3.3.5 Indirect Register Mode
	3.3.6 Indirect Autoincrement Mode
	3.3.7 Immediate Mode

	3.4 Instruction Set
	3.4.1 Double-Operand (Format I) Instructions
	3.4.2 Single-Operand (Format II) Instructions
	3.4.3 Jumps
	3.4.4 Instruction Set
	3.4.5 Instruction Cycles and Lengths
	3.4.5.1 Interrupt and Reset Cycles
	3.4.5.2 Format-II (Single Operand) Instruction Cycles and Lengths
	3.4.5.3 Format-III (Jump) Instruction Cycles and Lengths
	3.4.5.4 Format-I (Double Operand) Instruction Cycles and Lengths

	3.4.6 Instruction Set Description

	4 Versatile I/O Port
	4.1 Versatile I/O Ports (VersaPorts) and Digital I/O Ports
	4.2 Versatile I/O Port Introduction
	4.3 Versatile I/O Port Operation
	4.3.1 Input Register PxIN
	4.3.2 Output Registers PxOUT
	4.3.3 Direction Registers PxDIR
	4.3.4 Pullup/Pulldown Resistor Enable Registers PxREN
	4.3.5 Function Select Registers PxSELxx
	4.3.6 Versatile I/O Port Interrupts
	4.3.6.1 P1IV Software Example
	4.3.6.2 Interrupt Edge Select Registers PxIES
	4.3.6.3 Interrupt Enable PxIE

	4.3.7 Configuring Unused Port Pins

	4.4 Versatile I/O Port Registers

	5 Watchdog Timer (WDT_A)
	5.1 WDT_A Introduction
	5.2 WDT_A Operation
	5.2.1 Watchdog Timer Counter (WDTCNT)
	5.2.2 Watchdog Mode
	5.2.3 Interval Timer Mode
	5.2.4 Watchdog Timer Interrupts
	5.2.5 Clock Fail-Safe Feature
	5.2.6 Operation in Low-Power Modes
	5.2.7 Software Examples

	5.3 WDT_A Registers

	6 Timer_A
	6.1 Timer_A Introduction
	6.2 Timer_A Operation
	6.2.1 16-Bit Timer Counter
	6.2.1.1 Clock Source Select and Divider

	6.2.2 Starting the Timer
	6.2.3 Timer Mode Control
	6.2.3.1 Up Mode
	6.2.3.1.1 Changing Period Register TAxCCR0

	6.2.3.2 Continuous Mode
	6.2.3.3 Use of Continuous Mode
	6.2.3.4 Up/Down Mode
	6.2.3.4.1 Changing Period Register TAxCCR0

	6.2.3.5 Use of Up/Down Mode

	6.2.4 Capture/Compare Blocks
	6.2.4.1 Capture Mode
	6.2.4.1.1 Capture Initiated by Software

	6.2.4.2 Compare Mode

	6.2.5 Output Unit
	6.2.5.1 Output Modes
	6.2.5.1.1 Output Example—Timer in Up Mode
	6.2.5.1.2 Output Example – Timer in Continuous Mode
	6.2.5.1.3 Output Example – Timer in Up/Down Mode

	6.2.6 Timer_A Interrupts
	6.2.6.1 TAxCCR0 Interrupt
	6.2.6.2 TAxIV, Interrupt Vector Generator
	6.2.6.2.1 TAxIV Software Example

	6.3 Timer_A Registers

	7 ADC, DAC, Comparator, SVM, ASVM, Analog Functions Pool Module (A-POOL)
	7.1 Analog-Functions Pool Module Introduction
	7.2 Principle of Operation
	7.2.1 Analog Elementary Functions
	7.2.2 Digital Elementary Functions

	7.3 A-POOL Analog Components and Paths
	7.3.1 Reference Voltage Source
	7.3.2 Internal vs External Reference Voltage Source
	7.3.3 Temperature Sensor
	7.3.4 Input Voltage Dividers
	7.3.5 Comparator in Non-Compensated Mode
	7.3.6 Comparator in Compensated Mode
	7.3.7 DAC and Output Buffer

	7.4 A-POOL Digital Components and Paths
	7.4.1 Deglitching filter
	7.4.2 Clock Logic and Prescaler
	7.4.3 Conversion Register and Conversion Buffer Register
	7.4.4 Fractional and Integer Numbers
	7.4.5 Numeric Saturation and End of Conversion Indication
	7.4.6 Interrupt Logic

	7.5 Simple Application Examples With A-POOL-main
	7.5.1 DAC Operation for Classical Digital Control Purposes
	7.5.2 ADC Conversions Without Error Compensation
	7.5.3 ADC Conversions With Overdrive Compensation
	7.5.4 ADC Conversions With Offset Compensation
	7.5.5 Evaluation of DAC Buffer Offset
	7.5.6 ADC Conversions for Measuring
	7.5.7 Windowed ADC Conversions
	7.5.8 Full Analog Signal Chain Setup With Interleaved SVM Operations
	7.5.9 Multiple ADC Channels

	7.6 A-POOL Control Registers

	8 MSP430L092 Loader Code (Quick Start)
	8.1 Loader Code Introduction
	8.1.1 Typical Two-Chip Application
	8.1.2 Code Generation, Conventions, and Restrictions
	8.1.3 Start-Up Behavior and Timing
	8.1.4 Failsafe Mechanism
	8.1.5 Data Structure of the SPI Memory
	8.1.6 Data/Program Containers
	8.1.7 Interrupt Handling

	8.2 Target Hardware
	8.2.1 Selection of the SPI Devices Supported by the Loader
	8.2.2 Booster Converters
	8.2.3 Adaptation Networks

