This document outlines the basic steps and functions that are required to ensure the proper operation and quick setup of the TRF37x73 and TRF37x75 EVM. This document also includes a schematic diagram, a bill of materials (BOM), printed-circuit board (PCB) layouts, board loss plots, and test block diagrams. Throughout this document, the abbreviations EVM, TRF37x73/75 EVM, and the term evaluation module are synonymous with the TRF37x73 and TRF37x75 EVM, unless otherwise noted.

Contents

1 Contents ... 2
2 EVM Overview .. 2
 2.1 Schematic and BOM .. 2
 2.2 TRF37x73/75 EVM Bill of Material 3
 2.3 General Usage Information 4
3 EVM Layout ... 4
 3.1 Description: Stack up and Material 4
 3.2 PCB Layers .. 4
4 EVM Board Loss ... 6
5 Test Block Diagrams ... 7
 5.1 Noise Figure .. 7
 5.2 Gain and P1dB .. 7
 5.3 OIP3 ... 8

List of Figures

1 TRF37x73/75 EVM Schematic .. 2
2 Top Layer ... 4
3 Layers 2 and 3 .. 5
4 Bottom Layer (Through Top Side) 5
5 S11, S22 (Open), U1 Uninstalled 6
6 S11, S22 (Open), U1 and L1 Uninstalled, Copper Tape Replaced C1 and C2 6

List of Tables

1 TRF37x73/75 EVM BOM ... 3
The TRF37x73/75 EVM consists of the following components:

- TRF37x73/75 EVM board

2 EVM Overview

This section includes the schematic diagram, a bill of materials (BOM), and general usage information.

2.1 Schematic and BOM

The TRF37x73/75 EVM for RF gain blocks comes in a 2 × 2 WSON package. The device type is visually identified in component U1 by the 0402 selection resistors TRF37A73, TRF37B73, TRF37C73, TRF37A75, TRF37B75, and TRF37C75.

The TRF37x73 are a family of 3.3-V, RF gain blocks that have 3 gain variants (A73 = 12 dB, B73 = 15 dB, and C73 = 18 dB). The TRF37x75 are a family of 5-V, RF gain blocks that have 3 gain variants (A75 = 12 dB, B75 = 15 dB, and C75 = 18 dB).

The TRF37x73/75 EVM schematic is shown in Figure 1.

Figure 1. TRF37x73/75 EVM Schematic
2.2 TRF37x73/75 EVM Bill of Material

Table 1. TRF37x73/75 EVM BOM

<table>
<thead>
<tr>
<th>Component</th>
<th>Description (Footprint)</th>
<th>Value</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2, C6</td>
<td>AC coupling capacitor (0402)</td>
<td>1000pF</td>
<td>Murata</td>
<td>GRM1555C1H102JA01D</td>
</tr>
<tr>
<td>C3</td>
<td>Power Supply Decoupling (0402)</td>
<td>10pF</td>
<td>Murata</td>
<td>GRM1555C1H100JZ01D</td>
</tr>
<tr>
<td>C4</td>
<td>Power Supply Decoupling (0603)</td>
<td>0.01µF</td>
<td>Kemet</td>
<td>C0603C103K1RACTU</td>
</tr>
<tr>
<td>C5</td>
<td>Power Supply Decoupling (Tantalum)</td>
<td>10µF</td>
<td>Kemet</td>
<td>T494A106M016AS</td>
</tr>
<tr>
<td>J1, J2</td>
<td>AC signal SMA connector</td>
<td></td>
<td>Emerson Connectivity (Johnson)</td>
<td>142-0701-851</td>
</tr>
<tr>
<td>J3</td>
<td>Terminals for VCC (Clip)</td>
<td>Red</td>
<td>Keystone</td>
<td>5005</td>
</tr>
<tr>
<td>J4</td>
<td>Terminal for GND (Clip)</td>
<td>Black</td>
<td>Keystone</td>
<td>5006</td>
</tr>
<tr>
<td>JP1</td>
<td>Terminals for PWDN</td>
<td></td>
<td></td>
<td>1.3 10 mil header</td>
</tr>
<tr>
<td>L1</td>
<td>DC biasing inductor (0603)</td>
<td>100nH</td>
<td>CoilCraft</td>
<td>-6-3HP-F10XJLU</td>
</tr>
<tr>
<td>R1</td>
<td>DC Biasing resistor (0603)</td>
<td>0 ohm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRF37A75-Specific BOM

<table>
<thead>
<tr>
<th>Component</th>
<th>Description (Footprint)</th>
<th>Value</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>DC biasing resistor (0603)</td>
<td>1.8 ohm</td>
<td>Panasonic</td>
<td>ERG-3GEYJ1R8V</td>
</tr>
<tr>
<td>U1</td>
<td>TRF37A75</td>
<td>5V, 12dB gain</td>
<td>TI</td>
<td>TRF37A75</td>
</tr>
<tr>
<td>TRF37A75</td>
<td>0402 BOM Identification resistor</td>
<td>0 ohm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRF37B75-Specific BOM

<table>
<thead>
<tr>
<th>Component</th>
<th>Description (Footprint)</th>
<th>Value</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>DC biasing resistor (0603)</td>
<td>3.9 ohm</td>
<td>Panasonic</td>
<td>ERG-3GEYJ3R9V</td>
</tr>
<tr>
<td>U1</td>
<td>TRF37B75</td>
<td>5V, 15dB gain</td>
<td>TI</td>
<td>TRF37B75</td>
</tr>
<tr>
<td>TRF37B75</td>
<td>0402 BOM Identification resistor</td>
<td>0 ohm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRF37C75-Specific BOM

<table>
<thead>
<tr>
<th>Component</th>
<th>Description (Footprint)</th>
<th>Value</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>DC biasing resistor (0603)</td>
<td>6.8 ohm</td>
<td>Panasonic</td>
<td>ERG-3GEYJ6R8V</td>
</tr>
<tr>
<td>U1</td>
<td>TRF37C75</td>
<td>5V, 18dB gain</td>
<td>TI</td>
<td>TRF37C75</td>
</tr>
<tr>
<td>TRF37C75</td>
<td>0402 BOM Identification resistor</td>
<td>0 ohm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRF37A73-Specific BOM

<table>
<thead>
<tr>
<th>Component</th>
<th>Description (Footprint)</th>
<th>Value</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>DC biasing resistor (0603)</td>
<td>0 ohm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>TRF37A73</td>
<td>3.3V, 12dB gain</td>
<td>TI</td>
<td>TRF37A73</td>
</tr>
<tr>
<td>TRF37A73</td>
<td>0402 BOM Identification resistor</td>
<td>0 ohm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRF37B73-Specific BOM

<table>
<thead>
<tr>
<th>Component</th>
<th>Description (Footprint)</th>
<th>Value</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>DC biasing resistor (0603)</td>
<td>0 ohm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>TRF37B73</td>
<td>3.3V, 15dB gain</td>
<td>TI</td>
<td>TRF37B73</td>
</tr>
<tr>
<td>TRF37B73</td>
<td>0402 BOM Identification resistor</td>
<td>0 ohm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRF37C73-Specific BOM

<table>
<thead>
<tr>
<th>Component</th>
<th>Description (Footprint)</th>
<th>Value</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>DC biasing resistor (0603)</td>
<td>0 ohm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>TRF37C73</td>
<td>3.3V, 18dB gain</td>
<td>TI</td>
<td>TRF37C73</td>
</tr>
<tr>
<td>TRF37C73</td>
<td>0402 BOM Identification resistor</td>
<td>0 ohm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.3 General Usage Information

This section provides general usage information for the EVM.

1. Recommended power up sequence:
 - (a) Connect GND to J4 (black – GND)
 - (b) Connect Vcc to J3 (red – VCC)
 - (c) Connect RF input signal to J1 (RFIN)
 - (d) Connect measurement instrument to J2 (RFOUT)
 - (e) Ensure the device is not in power-down mode by shorting JP1 terminals 1 and 2 or simply remove JP1 to take advantage of the TRF37x73/75’s internal pull-down resistor.

2. Power supply options:
 - (a) For TRF37x73 devices, set VCC to 3.3 V
 - (b) For TRF37x75 devices, set VCC to 5.0 V

3. PWDN option:
 - (a) Short terminals 2 and 3 on JP1 to put the TRF37x73/75 in its power down state.

4. Tuning options:
 - (a) Solder mask has been removed along the RF signal paths and VCC path allowing an easy method to slide surface mount components along these traces for optimal tuning.

3 EVM Layout

3.1 Description: Stack up and Material

The TRF37x73/75 EVM is a 62-mil, 4-layer board whose material type is Isola® 370HR. The top layer routes the power, ground, and signals to and from the device. The signal impedance is targeted at 49.9 Ω. The bottom 3 layers are ground layers.

3.2 PCB Layers

Figure 2 through Figure 4 illustrate the PCB layers for this EVM.

![Figure 2. Top Layer](image-url)
Figure 3. Layers 2 and 3

Figure 4. Bottom Layer (Through Top Side)
4 EVM Board Loss

Performance plots of the TRF37x73/75 EVM board are illustrated in Figure 5 and Figure 6, with the following modifications to the BOM:

- U1 gain block uninstalled
- C1 and C2 removed, terminals shorted with strip of copper whose width equaled the trace width.

Figure 5 and Figure 6 show the S11 and S22 log magnitude responses to a –10-dBm input signal. These measurements were taken with an Agilent E5071B vector network analyzer calibrated from 1 MHz to 6 GHz to the end of the coaxial cables. The coaxial cables were connected directly to J1 and J2 on the EVM board. Port 1 refers to J1 in the schematic and Port 2 refers to J2 in the schematic.

Figure 5. S11, S22 (Open), U1 Uninstalled

Figure 6. S11, S22 (Open), U1 and L1 Uninstalled, Copper Tape Replaced C1 and C2
5 Test Block Diagrams

This section includes recommendations, comments, and test block diagrams for noise figure, gain and P1dB, and OIP3.

5.1 Noise Figure

Recommendations and comments:
1. Use the traditional Y-factor method
2. Take into account losses of coax to the EVM board
3. Take into account losses of traces on the board up to the input pin of the device under test (DUT)

5.2 Gain and P1dB

Recommendations and comments:
1. Take into account losses of coax and attenuators to and from the EVM board
2. Take into account losses of traces on the board up to the I/O pins of the DUT
3. Power meters are typically a few tenths of dB more accurate than a signal generator's level controls and spectrum analyzer measurement capability. For precise measurements, use a power meter to measure the output of the signal generator and output of the TRF37x73/75 EVM.
5.3 **OIP3**

Recommendations and comments:

1. This setup can also be used for gain and P1dB, if desired
2. For wideband measurements, the 30-dB gain stage and 10-dB attenuators are used to improve the input IP3 level that is created from the interaction of the 2 signal generators via the isolation of the combiner. For narrow band measurements, it maybe possible to create a setup with enough isolation using an isolator and/or combiner. In this case the 10-dB pads could be reduced or removed.
3. Power meter A is used to ensure the amplitude of the two tones at the input of the TRF37x73/75 EVM are within a certain tolerance. The gain stages will have unique gain characteristics and their gain can drift over time
4. Power meter B can be used for measuring the amplitude of individual tones for more accurate measurements.
5. Keep spectrum analyzer RBW and VBW settings identical for main tone and IM3 products
6. Take into account losses of coax and attenuators to and from the EVM board
7. Take into account losses of traces on the board up to the I/O pins of the DUT
ADDITIONAL TERMS AND CONDITIONS, WARNINGS, RESTRICTIONS, AND DISCLAIMERS FOR EVALUATION MODULES

Texas Instruments Incorporated (TI) markets, sells, and loans all evaluation boards, kits, and/or modules (EVMs) pursuant to, and user expressly acknowledges, represents, and agrees, and takes sole responsibility and risk with respect to, the following:

1. User agrees and acknowledges that EVMs are intended to be handled and used for feasibility evaluation only in laboratory and/or development environments. Notwithstanding the foregoing, in certain instances, TI makes certain EVMs available to users that do not handle and use EVMs solely for feasibility evaluation only in laboratory and/or development environments, but may use EVMs in a hobbyist environment. All EVMs made available to hobbyist users are FCC certified, as applicable. Hobbyist users acknowledge, agree, and shall comply with all applicable terms, conditions, warnings, and restrictions in this document and are subject to the disclaimer and indemnity provisions included in this document.

2. Unless otherwise indicated, EVMs are not finished products and not intended for consumer use. EVMs are intended solely for use by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

3. User agrees that EVMs shall not be used as, or incorporated into, all or any part of a finished product.

4. User agrees and acknowledges that certain EVMs may not be designed or manufactured by TI.

5. User must read the user's guide and all other documentation accompanying EVMs, including without limitation any warning or restriction notices, prior to handling and/or using EVMs. Such notices contain important safety information related to, for example, temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

6. User assumes all responsibility, obligation, and any corresponding liability for proper and safe handling and use of EVMs.

7. Should any EVM not meet the specifications indicated in the user's guide or other documentation accompanying such EVM, the EVM may be returned to TI within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY TI TO USER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. TI SHALL NOT BE LIABLE TO USER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RELATED TO THE HANDLING OR USE OF ANY EVM.

8. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which EVMs might be or are used. TI currently deals with a variety of customers, and therefore TI’s arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services with respect to the handling or use of EVMs.

9. User assumes sole responsibility to determine whether EVMs may be subject to any applicable federal, state, or local laws and regulatory requirements (including but not limited to U.S. Food and Drug Administration regulations, if applicable) related to its handling and use of EVMs and, if applicable, compliance in all respects with such laws and regulations.

10. User has sole responsibility to ensure the safety of any activities to be conducted by it and its employees, affiliates, contractors or designees, with respect to handling and using EVMs. Further, user is responsible to ensure that any interfaces (electronic and/or mechanical) between EVMs and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.

11. User shall employ reasonable safeguards to ensure that user's use of EVMs will not result in any property damage, injury or death, even if EVMs should fail to perform as described or expected.

12. User shall be solely responsible for proper disposal and recycling of EVMs consistent with all applicable federal, state, and local requirements.

Certain Instructions. User shall operate EVMs within TI’s recommended specifications and environmental considerations per the user’s guide, accompanying documentation, and any other applicable requirements. Exceeding the specified ratings (including but not limited to input and output voltage, current, power, and environmental ranges) for EVMs may cause property damage, personal injury or death. If there are questions concerning these ratings, user should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the applicable EVM user's guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using EVMs’ schematics located in the applicable EVM user's guide. When placing measurement probes near EVMs during normal operation, please be aware that EVMs may become very warm. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use EVMs.

Agreement to Defend, Indemnify and Hold Harmless. User agrees to defend, indemnify, and hold TI, its directors, officers, employees, agents, representatives, affiliates, licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of, or in connection with, any handling and/or use of EVMs. User’s indemnity shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if EVMs fail to perform as described or expected.

Safety-Critical or Life-Critical Applications. If user intends to use EVMs in evaluations of safety critical applications (such as life support), and a failure of a TI product considered for purchase by user for use in user’s product would reasonably be expected to cause severe personal injury or death such as devices which are classified as FDA Class III or similar classification, then user must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.
RADIO FREQUENCY REGULATORY COMPLIANCE INFORMATION FOR EVALUATION MODULES

Texas Instruments Incorporated (TI) evaluation boards, kits, and/or modules (EVMs) and/or accompanying hardware that is marketed, sold, or loaned to users may or may not be subject to radio frequency regulations in specific countries.

General Statement for EVMs Not Including a Radio

For EVMs not including a radio and not subject to the U.S. Federal Communications Commission (FCC) or Industry Canada (IC) regulations, TI intends EVMs to be used only for engineering development, demonstration, or evaluation purposes. EVMs are not finished products typically fit for general consumer use. EVMs may nonetheless generate, use, or radiate radio frequency energy, but have not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or the ICES-003 rules. Operation of such EVMs may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: For EVMs including a radio, the radio included in such EVMs is intended for development and/or professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability in such EVMs and their development application(s) must comply with local laws governing radio spectrum allocation and power limits for such EVMs. It is the user's sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by TI unless user has obtained appropriate experimental and/or development licenses from local regulatory authorities, which is the sole responsibility of the user, including its acceptable authorization.

U.S. Federal Communications Commission Compliance

For EVMs Annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications could void the user’s authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at its own expense.

FCC Interference Statement for Class B EVM devices

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Industry Canada Compliance (English)

For EVMs Annotated as IC – INDUSTRY CANADA Compliant:

This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

Concerning EVMs Including Radio Transmitters

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concerning EVMs Including Detachable Antennas

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.
Canada Industry Canada Compliance (French)

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada

Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l'utilisateur pour actionner l'équipement.

Concernant les EVMs avec appareils radio

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

Important Notice for Users of EVMs Considered “Radio Frequency Products” in Japan

EVMs entering Japan are NOT certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If user uses EVMs in Japan, user is required by Radio Law of Japan to follow the instructions below with respect to EVMs:

1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan,

2. Use EVMs only after user obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or

3. Use of EVMs only after user obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless user gives the same notice above to the transferee. Please note that if user does not follow the instructions above, user will be subject to penalties of Radio Law of Japan.

http://www.tij.co.jp

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】本開発キットは技術基準適合証明を受けておりません。本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。

2. 実験局の免許を取得後ご使用いただく。

3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします

上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル
http://www.tij.co.jp

Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products
Audio www.ti.com/audio
Amplifiers amplifier.ti.com
Data Converters dataconverter.ti.com
DLP® Products www.dlp.com
DSP dsp.ti.com
Clocks and Timers www.ti.com/clocks
Interface interface.ti.com
Logic logic.ti.com
Power Mgmt power.ti.com
Microcontrollers microcontroller.ti.com
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap
Wireless Connectivity www.ti.com/wirelessconnectivity

Applications
Automotive and Transportation www.ti.com/automotive
Communications and Telecom www.ti.com/communications
Computers and Peripherals www.ti.com/computers
Consumer Electronics www.ti.com/consumer-apps
Energy and Lighting www.ti.com/energy
Industrial www.ti.com/industrial
Medical www.ti.com/medical
Security www.ti.com/security
Space, Avionics and Defense www.ti.com/space-avionics-defense
Video and Imaging www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated