This document is a user’s guide for the ADC3xxxEVM and ADC3xJxxEVM. The EVMs provide a platform for evaluating the ADC3xxx and ADC3xJxx. The ADC3xxx is a dual-channel or quad-channel, 12-bit or 14-bit, serial LVDS interface analog-to-digital converter (ADC). The ADC3xxx comes with sampling speed grades of 25 MSPS, 50 MSPS, 80 MSPS, and 125 MSPS. The ADC3xJxx is a dual-channel or quad-channel, 12-bit or 14-bit, JESD204B-compliant interface ADC. The ADC3xJxx comes with sampling speed grades of 50 MSPS, 80 MSPS, 125 MSPS, and 160 MSPS. This family of converters requires only a single 1.8-V supply, provides flexible input clock dividers, and provides internal features for improved 1/f (ADC32xx, ADC34xx) and SFDR performance. Throughout this document, the abbreviations EVM and ADC3xxxx, and the term evaluation module are synonymous with the ADC3xxx EVM and ADC3xJxx EVM, unless otherwise noted.

Contents

1 Introduction ... 3
 1.1 EVM Block Diagram .. 4
 1.2 EVM Power Supply .. 6
 1.3 EVM Connectors and Jumpers .. 8
 1.4 EVM ADC Input Circuit Configurations ... 12
 1.5 EVM DC-Coupling Configuration ... 12
2 Software Control .. 15
 2.1 Installation Instructions .. 15
 2.2 Software Operation ... 15
3 Basic Test Procedure .. 24
 3.1 Test Block Diagram with ADC32xx and ADC34xx ... 24
 3.2 Test Set-up Connection ... 25
 3.3 ADC32/34xx and TSW1400 Setup Guide ... 25
 3.4 Test Block Diagram with ADC32Jxx and ADC34Jxx ... 27
 3.5 Test Set-up Connection (Onboard LMK04828 Clock) .. 28
 3.6 ADC32J/34Jxx and TSW14J56 Setup Guide .. 29

List of Figures

1 Simplified ADC344x EVM Block Diagram .. 4
2 Simplified ADC34J4x EVM Block Diagram .. 5
3 Simplified EVM Power Supply .. 6
4 ADC34Jxx EVM Connector and Jumper Locations ... 8
5 ADC34xx EVM Connector and Jumper Locations ... 9
6 ADC3xxxx ADC Input Circuit Options ... 12
7 ADC34xx Clock Input Circuit .. 12
8 ADC32xxVM Input Coupling Configuration Resistors .. 13
9 ADC3xJxx Input Coupling Configuration Resistors .. 14
10 Common Tab .. 16
11 ADC32xx Tab ... 17
12 ADC34xx Tab ... 19
13 ADC32Jxx Tab ... 21
14 ADC34Jxx Tab ... 23
15 ADC32xx/ADC34xx and TSW1400 Test Setup Block Diagram 24
16 Select ADC32xx or 34xx in the HSDC Pro GUI Program

17 ADC3xxx Operating in 14-Bit Mode at 125 MSPS With a 10-MHz Input Signal

18 ADC32Jxx/ADC34Jxx and TSW14J56 Test Setup Block Diagram

19 Select ADC32Jxx or 34Jxx in the HSDC Pro GUI Program

20 ADC32Jxx Operating in 14-Bit Mode at 160 MSPS With a 10-MHz Input Signal

List of Tables

1ADC3xxx Family of Devices and EVMs

2Power Supply Options

3ADC3xxxx EVM Connectors

4ADC3xxxx EVM Jumper Options

5ADC3xxxx EVM LED Indicators

6ADC32xxEVM AC-DC Coupling Resistor Swap

7ADC3xJxxEVM AC-DC Coupling Resistor Swap

Trademarks

All trademarks are the property of their respective owners.
1 Introduction

The family of parts and 32 associated EVMs are categorized in Table 1.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Number of Channels</th>
<th>ADC Device</th>
<th>Number of Bits</th>
<th>Maximum MSPS</th>
<th>EVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>sLVDS Dual</td>
<td>12</td>
<td>ADC3221</td>
<td>12</td>
<td>25</td>
<td>ADC3221EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC3222</td>
<td>12</td>
<td>50</td>
<td>ADC3222EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC3223</td>
<td>12</td>
<td>80</td>
<td>ADC3223EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC3224</td>
<td>12</td>
<td>125</td>
<td>ADC3224EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC3241</td>
<td>14</td>
<td>25</td>
<td>ADC3241EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC3242</td>
<td>14</td>
<td>50</td>
<td>ADC3242EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC3243</td>
<td>14</td>
<td>80</td>
<td>ADC3243EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC3244</td>
<td>14</td>
<td>125</td>
<td>ADC3244EVM</td>
</tr>
<tr>
<td>sLVDS Quad</td>
<td>12</td>
<td>ADC3421</td>
<td>12</td>
<td>25</td>
<td>ADC3421EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC3422</td>
<td>12</td>
<td>50</td>
<td>ADC3422EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC3423</td>
<td>12</td>
<td>80</td>
<td>ADC3423EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC3424</td>
<td>12</td>
<td>125</td>
<td>ADC3424EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC3441</td>
<td>14</td>
<td>25</td>
<td>ADC3441EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC3442</td>
<td>14</td>
<td>50</td>
<td>ADC3442EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC3443</td>
<td>14</td>
<td>80</td>
<td>ADC3443EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC3444</td>
<td>14</td>
<td>125</td>
<td>ADC3444EVM</td>
</tr>
<tr>
<td>JESD204B Dual</td>
<td>12</td>
<td>ADC32J22</td>
<td>12</td>
<td>50</td>
<td>ADC32J22EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC32J23</td>
<td>12</td>
<td>80</td>
<td>ADC32J23EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC32J24</td>
<td>12</td>
<td>125</td>
<td>ADC32J24EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC32J25</td>
<td>12</td>
<td>160</td>
<td>ADC32J25EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC32J42</td>
<td>14</td>
<td>50</td>
<td>ADC32J42EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC32J43</td>
<td>14</td>
<td>80</td>
<td>ADC32J43EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC32J44</td>
<td>14</td>
<td>125</td>
<td>ADC32J44EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC32J45</td>
<td>14</td>
<td>160</td>
<td>ADC32J45EVM</td>
</tr>
<tr>
<td>JESD204B Quad</td>
<td>12</td>
<td>ADC34J22</td>
<td>12</td>
<td>50</td>
<td>ADC34J22EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC34J23</td>
<td>12</td>
<td>80</td>
<td>ADC34J23EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC34J24</td>
<td>12</td>
<td>125</td>
<td>ADC34J24EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC34J25</td>
<td>12</td>
<td>160</td>
<td>ADC34J25EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC34J42</td>
<td>14</td>
<td>50</td>
<td>ADC34J42EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC34J43</td>
<td>14</td>
<td>80</td>
<td>ADC34J43EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC34J44</td>
<td>14</td>
<td>125</td>
<td>ADC34J44EVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC34J45</td>
<td>14</td>
<td>160</td>
<td>ADC34J45EVM</td>
</tr>
</tbody>
</table>

There are three package sizes and pinouts for all of these parts. The sLVDS dual devices use a 7-mm × 7-mm, 48-pin QFN package. The sLVDS quad devices use an 8-mm × 8-mm, 56-pin QFN package. The dual and quad JESD204B device share the same package using a 7-mm × 7-mm, 48-pin QFN package.

The dual ADCs comprise two buffered inputs, two ADC cores, and a common input clock circuit. The quad ADCs comprise four buffered inputs, four ADC cores, and a common input clock circuit. The sLVDS versions have a 2-wire interface per ADC (two pairs of p/n signals)—for the dual, this means two sets of 2-wire interfaces (four p/n pairs), the quad has four sets of 2-wire interfaces (eight p/n pairs). Each of these 2-wire interfaces can be operated in 1-wire mode (14x serialization), or 2-wire mode (7x serialization). For the 12-bit devices, this equates to 12x and 6x serialization. The JESD204B versions have one lane per ADC core. For the dual, this means there are two lanes per device, and four lanes per device for the quad. See the respective device data sheet for more information on sLVDS serialization and JESD204B lane configurations.
1.1 EVM Block Diagram

Figure 1 and Figure 2 show simplified block diagrams of the default configuration of the EVM. The two or four analog inputs are supplied to the EVM through a single-ended SMA connection, then transformer coupled to turn the single-ended signal into a balanced differential signal, and then input to the ADC32xxx or ADC34xxx. A dual transformer input circuit is used for better phase and amplitude balance of the input signal than is typically produced by a single transformer input circuit.

Figure 1. Simplified ADC344x EVM Block Diagram
The clock input is supplied by way of a single-ended signal to an SMA connector, and transformer coupled to produce a differential clock signal for the ADC32/34xx EVM. For the ADC32J/34Jxx EVM, the clock input can be generated onboard using the LMK04828.

Power to the ADC3xxx EVM is typically supplied from a 5-V bench supply using the onboard barrel connector and the provided cable, or from an appropriate 5-V, 3-A minimum power brick. All necessary voltages for the ADC EVM are derived from the 5-V input connection.
1.2 **EVM Power Supply**

Figure 3 illustrates the power supply options available on the ADC3xxx EVM. Jumpers are used to choose the power-supply options, with the default jumper positions indicated by the darker portion of the jumper that represents the presence of the jumper. See Table 2 for jumper and feedback resistor configuration.

ADC32/34xx EVM

- **5V PWR IN**
- **GND**
- **TPS2400**
- **Overvoltage Protection Circuit**
- **TPS62080**
- **DC/DC Converter**
- **TPS7A4700**
- **1.8V To ADC**
- **Low Noise LDO**
- **4V to Amp**
- **ADC32/34Jxx EVM**

- **5V PWR IN**
- **GND**
- **TPS2400**
- **Overvoltage Protection Circuit**
- **TPS62080**
- **DC/DC Converter**
- **TPS7A4700**
- **1.8V To ADC**
- **Low Noise LDO**
- **4V to Amp**

Figure 3. Simplified EVM Power Supply
Table 2. Power Supply Options

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC32xx</td>
<td>Default connection for LDO 1.8-V supply, switch both to 2-3 to use the switcher U4, install R79 for 1.8-V switcher output</td>
</tr>
<tr>
<td>ADC34xx</td>
<td>Default connection for LDO 1.8-V supply, switch both to 2-3 to use the switcher U4, install R79 for 1.8-V switcher output</td>
</tr>
<tr>
<td>ADC342J/34Jxx</td>
<td>Default connection for LDO 1.8-V supply, switch both to 2-3 to use the switcher U8, install R152 for 1.8-V switcher output</td>
</tr>
<tr>
<td>JP12: 1-2, JP13: 1-2</td>
<td>Default connection for LDO 3.3 V for LMK04828 power and onboard SPI/CPLD, switch both to 2-3 to use U11 switcher output, install R163 for 3.3-V switcher output</td>
</tr>
</tbody>
</table>

The default power path has an efficient, dual-output, DC/DC switching power supply to first step down the input supplies from 5 V to 4 V, and 2.8 V for the subsequent low-noise LDOs. The 4 V is used by an LDO to derive 3.3 V for the LMK04828 clock circuits on the ADC3xJxx EVMs. The 2.8 V is used by an LDO to derive a 1.8-V supply for the ADC and USB circuits.

The low-noise LDOs can be bypassed to allow the DC/DC power supply to directly provide the ADC power. Note that the feedback resistors of the DC/DC converter must be adjusted accordingly. See the respective ADC EVM user's guide schematic for details.
1.3 **EVM Connectors and Jumpers**

Figure 4 and Figure 5 show the locations of the connectors, jumpers, pushbutton switches, and LEDs.

![Figure 4. ADC34Jxx EVM Connector and Jumper Locations](image-url)
Figure 5. ADC34xx EVM Connector and Jumper Locations

The EVM has a barrel connector for 5-V power. The SMA connectors connect the ADC input and ADC clock input to the ADC. Typically, the ADC inputs are transformer-coupled to accept single-ended connections. The input circuit can be configured to connect to two SMA connectors for differential signaling, if desired. Table 3 lists the connector information for the ADC3xxxx.
Table 3. ADC3xxxx EVM Connectors

<table>
<thead>
<tr>
<th>Device</th>
<th>Connector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC32xx</td>
<td>J1</td>
<td>AINP – positive input for A, Ch1 single ended input</td>
</tr>
<tr>
<td>ADC32xx</td>
<td>J2</td>
<td>AINM – negative input for A, DNI</td>
</tr>
<tr>
<td>ADC32xx</td>
<td>J3</td>
<td>BINM – negative input for B, DNI</td>
</tr>
<tr>
<td>ADC32xx</td>
<td>J4</td>
<td>BINP – positive input for B, Ch2 single ended input</td>
</tr>
<tr>
<td>ADC32xx</td>
<td>J9</td>
<td>CLK_INP – positive CLK input, single ended clock input</td>
</tr>
<tr>
<td>ADC32xx</td>
<td>J10</td>
<td>CLK_INM – negative CLK input, DNI</td>
</tr>
<tr>
<td>ADC32xx</td>
<td>J11</td>
<td>SYSREF_INP – positive input for SYSREF frame clock, single ended input</td>
</tr>
<tr>
<td>ADC32xx</td>
<td>J12</td>
<td>SYSREF_INM – negative SYSREF input, DNI</td>
</tr>
<tr>
<td>ADC32xx</td>
<td>J13A, B</td>
<td>HSMC data connector to TSW1400 evaluation platform</td>
</tr>
<tr>
<td>ADC32xx</td>
<td>J14</td>
<td>Mini USB connector for SPI control</td>
</tr>
<tr>
<td>ADC32xx</td>
<td>J15</td>
<td>Power connector for 5-V adapter</td>
</tr>
<tr>
<td>ADC34xx</td>
<td>J1</td>
<td>AINP – positive input for A, Ch1 single ended input</td>
</tr>
<tr>
<td>ADC34xx</td>
<td>J2</td>
<td>AINM – negative input for A, DNI</td>
</tr>
<tr>
<td>ADC34xx</td>
<td>J3</td>
<td>BINM – negative input for B, DNI</td>
</tr>
<tr>
<td>ADC34xx</td>
<td>J4</td>
<td>BINP – positive input for B, Ch2 single ended input</td>
</tr>
<tr>
<td>ADC34xx</td>
<td>J5</td>
<td>CINP – positive input for C, Ch3 single ended input</td>
</tr>
<tr>
<td>ADC34xx</td>
<td>J6</td>
<td>CINM – negative input for C, DNI</td>
</tr>
<tr>
<td>ADC34xx</td>
<td>J7</td>
<td>DINM – negative input for D, DNI</td>
</tr>
<tr>
<td>ADC34xx</td>
<td>J8</td>
<td>DINP – positive input for D, Ch4 single ended input</td>
</tr>
<tr>
<td>ADC34xx</td>
<td>J9</td>
<td>CLK_INP – positive CLK input, single ended clock input</td>
</tr>
<tr>
<td>ADC34xx</td>
<td>J10</td>
<td>CLK_INM – negative CLK input, DNI</td>
</tr>
<tr>
<td>ADC34xx</td>
<td>J11</td>
<td>SYSREF_INP – positive input for SYSREF frame clock, single ended input</td>
</tr>
<tr>
<td>ADC34xx</td>
<td>J12</td>
<td>SYSREF_INM – negative SYSREF input, DNI</td>
</tr>
<tr>
<td>ADC34xx</td>
<td>J13A, B</td>
<td>HSMC data connector to TSW1400 evaluation platform</td>
</tr>
<tr>
<td>ADC34xx</td>
<td>J14</td>
<td>Mini USB connector for SPI control</td>
</tr>
<tr>
<td>ADC34xx</td>
<td>J15</td>
<td>Power connector for 5-V adapter</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J1</td>
<td>AIN_CH-AP – positive input for CHA, single ended input (DNI for ADC32Jxx)</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J2</td>
<td>AIN_CH-AM – negative input, (DNI for ADC32Jxx and ADC34Jxx)</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J3</td>
<td>BIN_CH-BP – positive input for CHB (CHA input for ADC32Jxx), single ended input</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J4</td>
<td>BIN_CH-BM – negative input for CHB (CHA input for ADC32Jxx and ADC34Jxx)</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J5</td>
<td>CIN_CH-CP – positive input for CHC (CHB input for ADC32Jxx), single ended input</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J6</td>
<td>CIN_CH-CM – negative input for CHC (CHB input for ADC32Jxx and ADC34Jxx)</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J7</td>
<td>DIN_CH-CP – positive input for CHD, single ended input (DNI for ADC32Jxx)</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J8</td>
<td>DIN_CH-DM – negative input, (DNI for ADC32Jxx and ADC34Jxx)</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J9</td>
<td>EXT_ADC_CLK – external ADC clock connection for ADC, if needed</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J23</td>
<td>EXT SYSREF+ - external SYSREF connection for ADC, if needed (positive input)</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J24</td>
<td>EXT SYSREF- - external SYSREF connection for ADC, if needed (negative input)</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J10</td>
<td>LMK_CLKIN – external input clock for LMK use, if needed (for clock distribution mode)</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J13</td>
<td>DCLKOUT6P – LMK output test point, positive</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J14</td>
<td>DCLKOUT6N – LMK output test point, negative</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J15</td>
<td>DCLKOUT7P – LMK output test point, positive</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J16</td>
<td>DCLKOUT7N – LMK output test point, positive</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J20</td>
<td>5-V input power jack</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J18</td>
<td>Mini USB connector for SPI GUI control</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>J19</td>
<td>CPLD JTAG port</td>
</tr>
</tbody>
</table>
The onboard jumper options allow configuration of onboard power supplies and ADC options. Many of the jumper selections that involve dc inputs or static control signals are by way of push-on square post jumpers. The jumper options listed in Table 4 show the default settings of the jumpers for the EVM as normally shipped.

Table 4. ADC3xxxx EVM Jumper Options

<table>
<thead>
<tr>
<th>Device</th>
<th>Jumper</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC32xx/ADC34xx</td>
<td>JP1</td>
<td>3 pin Jumper – 2-3 Default connection, 1-2 to enable PwDn function</td>
</tr>
<tr>
<td></td>
<td>JP2, J3, JP4,JP5</td>
<td>2 pin Jumper - SPI access points, if needed – default should be installed</td>
</tr>
<tr>
<td></td>
<td>JP6, JP7</td>
<td>3 pin, default 1-2 to use 1.8V LDO. Use pins 2-3 to bypass 1.8-V LDO</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>JP1</td>
<td>3 pin Jumper – 2-3 Default connection, 1-2 to enable PwDn function</td>
</tr>
<tr>
<td></td>
<td>JP2, J3, JP4,JP5</td>
<td>2 pin Jumper - SPI access points, if needed – default should be installed</td>
</tr>
<tr>
<td></td>
<td>JP6</td>
<td>2 pin, default is connected for powering onboard VCXO</td>
</tr>
<tr>
<td></td>
<td>SJP1</td>
<td>3 pin, DNI, optional for VCXO that require enable on pin 2</td>
</tr>
<tr>
<td></td>
<td>JP8</td>
<td>3 pin, default 2-3 for USB SPI selection through CPLD, 1-2 used for FMC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>connector based SPI port</td>
</tr>
<tr>
<td></td>
<td>JP9, JP10</td>
<td>3 pin, default 1-2 to use 1.8V LDO. Use pins 2-3 to bypass LDO</td>
</tr>
<tr>
<td></td>
<td>JP12, JP13</td>
<td>3 pin, default 1-2 to use 3.3V LDO. Use pins 2-3 to bypass LDO</td>
</tr>
</tbody>
</table>

There is a pushbutton on the ADC3xxxx EVM – SW1. At power up, the ADC can either accept a hardware reset by pressing SW1 or toggling the software reset switch on the ADC3xxxx EVM GUI. The default reset configuration of the ADC is given in its respective data sheet.

LED D1 on the ADC32/34xxx is lit to show the presence of the 5-V supply voltage to the EVM. On the ADC32J/34Jxx EVMs, LED D8 is used to show the presence of the 5-V supply voltage to the EVM. Table 5 lists the description of each LED indicator.

Table 5. ADC3xxxx EVM LED Indicators

<table>
<thead>
<tr>
<th>Device</th>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC32xx/ADC34xx</td>
<td>D1</td>
<td>5-V power indicator</td>
</tr>
<tr>
<td>ADC32J/34Jxx</td>
<td>D1, D2</td>
<td>Status LED from CLKin SEL0/1 on LMK</td>
</tr>
<tr>
<td></td>
<td>D3, D4</td>
<td>Status LED used to indicate LMK Lock or PLL Lock</td>
</tr>
<tr>
<td></td>
<td>D5</td>
<td>Status LED for JESD SYNC</td>
</tr>
<tr>
<td></td>
<td>D6, D7</td>
<td>Spare LED indicators for FMC connector</td>
</tr>
<tr>
<td></td>
<td>D8</td>
<td>5-V power indicator</td>
</tr>
</tbody>
</table>
1.4 **EVM ADC Input Circuit Configurations**

Figure 6 shows the ADC3xxxx ADC input circuit. The default setup has a dual 1:1 impedance ratio transformer input circuit to achieve better phase and amplitude balance of the input signal than is typically be produced by a single transformer input circuit.

The default input termination is 50 Ω, which is formed by two 25-Ω resistors connected to the ADC VCM node. By default, the input circuit is set for operation within the 1st two Nyquist zones. For higher frequency inputs, use the high-frequency input circuit shown in Figure 6.

![Diagram of ADC input circuit](image1)

Default – Low Input Frequency

High Input Frequency

![Diagram of high input frequency circuit](image2)

Figure 6. ADC3xxxx ADC Input Circuit Options

Figure 7 shows the ADC3xxxx clock input circuit. The clock signal goes through 1:4 impedance ratio transformer to increase the clock amplitude by two (that is, 1:4 impedance ratio equals to 1:2 voltage ratio). The two 100-Ω resistors impedance transform back to the primary side as 50-Ω load impedance for the signal source generator. For ADC evaluation, set the signal generator output to approximately +10 dBm.

![Diagram of clock input circuit](image3)

Figure 7. ADC34xx Clock Input Circuit

1.5 **EVM DC-Coupling Configuration**

The ADC3xxxx EVM family has three different hardware configurations: dual-channel serial LVDS, quad-channel serial LVDS, and quad-channel JESD204B compliant. The following instructions are a guideline to enable dc-coupling on the revision B EVM hardware, but can be used as a guide for other EVM revisions.
1.5.1 ADC32xxEVM

The ADC32xx-EVM boards can be operated in either ac-coupling or dc-coupling mode. To operate the board in dc-coupling mode, a few modifications must be made. On the back side of the EVM, the unpopulated pads must be populated with the devices listed on the AMPLIFIER schematic diagram (page 4) of the ADC32XXXEVM-SCH_X.pdf located in the ADC32xx schematic design zip file. This schematic details the components needed for dc-coupling using the THS4541RGT and all required circuitry.

After the amplifier components are installed on the bottom of the ADC32xx-EVM, the resistors on the top of the board must be altered to change the output from ac-coupled to dc-coupled. Figure 8 shows the three shared pad footprints per channel that must be modified. See Table 6 and the ADC32xx design files to change the appropriate resistors.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Install</th>
<th>Uninstall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-Coupled</td>
<td>R3, R4, R14R18, R142, R139</td>
<td>R135, R7, R120, R121R138, R20, R144, R141</td>
</tr>
<tr>
<td>DC-Coupled</td>
<td>R135, R7, R120, R121R138, R20, R144, R141</td>
<td>R3, R4, R14R18, R142, R139</td>
</tr>
</tbody>
</table>

Figure 8. ADC32xxVM Input Coupling Configuration Resistors
1.5.2 ADC3xJxxEVM

The ADC34JxxEVM boards come with the THS4541RGT amplifiers installed. To operate the EVM in dc-coupled mode, only the topside resistors must be changed. The output channels for dc-coupled signals are B and C, and the resistors are located near the baluns of the channel, as shown in Figure 9. See Table 7 and the ADC34JxxEVM design files to change the appropriate resistors.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Install</th>
<th>Uninstall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-Coupled</td>
<td>R217, R258, R226, R219, R233, R234</td>
<td>R137, R216, R225, R227, R228, R218, R232, R235</td>
</tr>
<tr>
<td>DC-Coupled</td>
<td>R137, R216, R225, R227, R228, R218, R232, R235</td>
<td>R217, R258, R226, R219, R233, R234</td>
</tr>
</tbody>
</table>

Figure 9. ADC3xJxx Input Coupling Configuration Resistors
2 Software Control

2.1 Installation Instructions

1. Open the folder named ADC3xxxx_Installer_vxpx (xpx represents the latest version)
2. Run Setup.exe
3. Follow the on-screen instructions
4. Once installed, launch by clicking on the ADC3xxxx_GUI_vxpx program in Start → All Programs → Texas Instruments ADCs
5. When plugging in the USB cable for the first time, you are prompted by the Found-New-Hardware-Wizard to install the USB drivers.
 a. When a pop-up screen opens, select Continue Downloading.
 b. Follow the on-screen instructions to install the USB drivers
 c. If needed, access the drivers directly in the install directory

2.2 Software Operation

The software allows programming control of the ADC3xxxx device. The front panel provides a tab for full programming of the register map of the ADC3xxxx and an advanced tab that allows for custom register accesses. The GUI tabs provide a convenient and simplified interface to the most used registers of each device.

2.2.1 ADC3xxxx Control Options

The ADC3xxxx family shares some common registers. These common registers are organized within the Common tab. Other specific device registers are in specific device tabs for the ADC3xxxx family and the LMK04828 for the JESD204B devices. For a more detailed description of each register, see the respective device data sheet.
2.2.1.1 **Common Register Tab**

Figure 10 illustrates the following parts of the common tab.

- **Software Reset** – Resets the registers to default configuration – similar to pressing SW1, self clearing
- **Global Power Down** – power down the entire chip, default 0
- **ADC Standby** – All ADCs enter standby mode, default 0
- **Configure PwDn pin function** – either global power down or ADC standby mode
- **Data Format** – 0 – 2s Complement, 1 - Offset Binary, default 0
- **Disable SYSREF BUF** – Disable SYSREF Buffer, default 0
- **Clk Diver** – Internal clock divider to allow harmonic clocking, a higher frequency clock can be provided to the ADC and then divided down to the desired sample rate.

Figure 10. Common Tab
2.2.1.2 ADC32xx Tab

Figure 11 illustrates the following parts of the ADC32xx tab.

- Disable Dither CHA – disables the dither circuit, if asserted, dither is on by default
- Disable Dither CHB – disables the dither circuit, if asserted, dither is on by default
- CHA PwDn – power down CHA
- CHB PwDn – power down CHB
- CHA Gain Enable – enable the digital gain block for CHA
- CHB Gain Enable – enable the digital gain block for CHB
- Gain CHA – digital gain setting from 0 dB to 6 dB
- Gain CHB – digital gain setting from 0 dB to 6 dB
- Enable Test Pattern – enable the use of test patterns instead of sample data
- Align Test Data – align all test data on the outputs
- Test Pattern CHA – different available test patterns
- Test Pattern CHB – different available test patterns
- Custom Pattern – 14-bit custom bit pattern used when Custom Pattern is selected
- Disable Chopper CHA – disable the chopper function which shifts 1/f noise to Fs/2, by default it is on
- Disable Chopper CHB – disable the chopper function which shifts 1/f noise to Fs/2, by default it is on
- Low Freq Mode – enable for sampling frequencies lower than 35 MHz
- OVR on LSB – over range indication on LSB, by default it is normal LSB function
- LVDS Swing – control the LVDS swing on the LVDS signals

![Figure 11. ADC32xx Tab](image)
2.2.1.3 **ADC34xx Tab**

- Disable Dither CHA – disables the dither circuit, if asserted, dither is on by default
- Disable Dither CHB – disables the dither circuit, if asserted, dither is on by default
- Disable Dither CHC – disables the dither circuit, if asserted, dither is on by default
- Disable Dither CHD – disables the dither circuit, if asserted, dither is on by default
- CHA PwDn – power down CHA
- CHB PwDn – power down CHB
- CHC PwDn – power down CHC
- CHD PwDn – power down CHD
- CHA Gain Enable – enable the digital gain block for CHA
- CHB Gain Enable – enable the digital gain block for CHB
- CHC Gain Enable – enable the digital gain block for CHC
- CHD Gain Enable – enable the digital gain block for CHD
- Gain CHA – digital gain setting from 0 dB to 6 dB
- Gain CHB – digital gain setting from 0 dB to 6 dB
- Gain CHC – digital gain setting from 0 dB to 6 dB
- Gain CHD – digital gain setting from 0 dB to 6 dB
- Enable Test Pattern – enable the use of test patterns instead of sample data
- Align Test Data – align all test data on the outputs
- Test Pattern CHA – different available test patterns
- Test Pattern CHB – different available test patterns
- Test Pattern CHC – different available test patterns
- Test Pattern CHD – different available test patterns
- Custom Pattern – 14-bit custom bit pattern used when *Custom Pattern* is selected
- Disable Chopper CHA – disable the chopper function which shifts 1/f nose to Fs/2, default is on
- Disable Chopper CHB – disable the chopper function which shifts 1/f nose to Fs/2, default is on
- Disable Chopper CHC – disable the chopper function which shifts 1/f nose to Fs/2, default is on
- Disable Chopper CHD – disable the chopper function which shifts 1/f nose to Fs/2, default is on
- Low Freq Mode – enable for sampling frequencies lower than 35 MHz
- OVR on LSB – over range indication on LSB, by default it is normal LSB function
- LVDS Swing – control the LVDS swing on the LVDS signals
Figure 12. ADC34xx Tab
2.2.1.4 **ADC32Jxx Tab**

- Disable Dither CHA – disables the dither circuit if asserted, dither is on by default
- Disable Dither CHB – disables the dither circuit if asserted, dither is on by default
- CHA PwDn – power down CHA
- CHB PwDn – power down CHB
- CHA Gain Enable – enable the digital gain block for CHA
- CHB Gain Enable – enable the digital gain block for CHB
- Gain CHA – digital gain setting from 0 dB to 6 dB
- Gain CHB – digital gain setting from 0 dB to 6 dB
- Enable Test Pattern – enable the use of test patterns instead of sample data
- Align Test Data – align all test data on the outputs
- Test Pattern CHA – different available test patterns
- Test Pattern CHB – different available test patterns
- Custom Pattern – 14-bit custom bit pattern to be used when Custom Pattern is selected
- SerDes Test Pattern – available test patterns at the SerDes block
- Idle Sync Pattern – pattern used for SYNC request (K28.5 default)
- Test Mode Enable – option to enable long test pattern as per clause 5.1.6.3
- Flip ADC Data – normal operation is LSB first, enable for MSB first
- Insert Lane Alignment Chars – option to insert lane alignment chars as per clause 5.3.3.4
- TX Link Config – option to disable ILA when SYNC is de-asserted
- Ctrl K – default is 9 (20x mode), enable to use 0x31 for control
- Ctrl F – default is 2 (20x mode), enable to use 0x30 for control
- Scramble EN – optional scrambler
- Subclass – select subclass, default subclass 2
- Generate SYNC Request – generate Sync request
- JESD Buffer Output Current – change output buffer current, default 16 mA
- Link Layer RPAT – change running disparity in RPAT pattern test mode
- Link Layer Test Mode – generate test pattern per clause 5.3.3.8.2
- Pulse Detect Modes – select different Pulse Detection for SYSREF and SYNC
- Force LMF count – force LMF count
- LMF Count INIT – LMF count INIT
- Release ILA SEQ – delay generation of ILA sequence by 0, 1, 2, 3 MF after CGS
Figure 13. ADC32Jxx Tab
2.2.1.5 ADC34Jxx Tab

- Disable Dither CHA – disables the dither circuit if asserted, dither is on by default
- Disable Dither CHB – disables the dither circuit if asserted, dither is on by default
- Disable Dither CHC – disables the dither circuit if asserted, dither is on by default
- Disable Dither CHD – disables the dither circuit if asserted, dither is on by default
- CHA PwDn – power down CHA
- CHB PwDn – power down CHB
- CHC PwDn – power down CHC
- CHD PwDn – power down CHD
- CHA Gain Enable – enable the digital gain block for CHA
- CHB Gain Enable – enable the digital gain block for CHB
- CHC Gain Enable – enable the digital gain block for CHC
- CHD Gain Enable – enable the digital gain block for CHD
- Gain CHA – digital gain setting from 0 dB to 6 dB
- Gain CHB – digital gain setting from 0 dB to 6 dB
- Gain CHC – digital gain setting from 0 dB to 6 dB
- Gain CHD – digital gain setting from 0 dB to 6 dB
- Enable Test Pattern – enable the use of test patterns instead of sample data
- Align Test Data – align all test data on the outputs
- Test Pattern CHA – different available test patterns
- Test Pattern CHB – different available test patterns
- Test Pattern CHC – different available test patterns
- Test Pattern CHD – different available test patterns
- Custom Pattern – 14-bit custom bit pattern to be used when Custom Pattern is selected
- SerDes Test Pattern – available test patterns at the SerDes block
- Idle Sync Pattern – pattern used for SYNC request (K28.5 default)
- Test Mode Enable – option to enable long test pattern as per clause 5.1.6.3
- Flip ADC Data – normal operation is LSB first, enable for MSB first
- Insert Lane Alignment Chars – option to insert lane alignment chars as per clause 5.3.3.4
- TX Link Config – option to disable ILA when SYNC is de-asserted
- Ctrl K – default is 9 (20x mode), enable to use 0x31 for control
- Ctrl F – default is 2 (20x mode), enable to use 0x30 for control
- Scramble EN – optional scrambler
- Subclass – select subclass, default subclass 2
- Generate SYNC Request – generate Sync request
- JESD Buffer Output Current – change output buffer current, default 16 mA
- Link Layer RPAT – change running disparity in RPAT pattern test mode
- Link Layer Test Mode – generate test pattern per clause 5.3.3.8.2
- Pulse Detect Modes – select different pulse detection for SYSREF and SYNC
- Force LMF count – force LMF count
- LMF Count INIT – LMF count INIT
- Release ILA SEQ – delay generation of ILA sequence by 0, 1, 2, 3 MF after CGS
2.2.1.6 LMK04828

The registers for the LMK04828 are best described in the LMK04828 data sheet, and are not covered in this user guide.

2.2.2 Low Level Register Control

- **Send All**: Sends the register configuration to all devices
- **Read All**: Reads register configuration from ADS58H40 device (not implemented in revision 1.x)
- **Save Regs**: Saves the register configuration for all devices
- **Load Regs**: Load a register file for all devices. Sample configuration files for common frequency plans are located in the install directory.
 - Select the **Load Regs** button
 - Double click on the *data* folder
 - Double click on the desired register file
 - Click on **Send All** to ensure all the values are loaded properly

2.2.3 Misc Settings

- **Reconnect FTDI**: Toggle this button if the USB port is not responding. This generates a new USB handle address

 NOTE: Reset the board after every power cycle and then click the **reconnect FTDI** button on the GUI.

- **File→Exit**: Stops the program
3 Basic Test Procedure

This section outlines the basic test procedure for testing the EVM. There are 2 test platforms which can be used: (1) TSW1400 with ADC32xx and ADC34xx and (2) TSW14J56 or TSW14J50 with ADC32Jxx and ADC34Jxx.

3.1 Test Block Diagram with ADC32xx and ADC34xx

Figure 15 shows the test set-up for evaluation of the ADC3xxxx EVM with the TSW1400 Capture Card. As seen in this figure, the evaluation setup involves a clock from a high-quality signal generator and a sine wave for the analog input from a high-quality signal generator. High order, narrow bandpass filters are usually required on clock and input frequencies to remove phase noise and harmonic content from the input sine waves. If the two signal generators are not synchronized by an external reference signal to make the clock and input frequency coherent, then the resulting fast Fourier transform (FFT) will first need to have a windowing function such as Blackman-Harris/Hamming/Hanning applied to the data.

Figure 15. ADC32xx/ADC34xx and TSW1400 Test Setup Block Diagram
3.2 Test Set-up Connection

1. Connect the ADC32xx/ADC34xx EVM J13 connector to the TSW1400 EVM J3 connector
2. Connect 5 V to the TSW1400 J12 supply input connector and 5 V to the ADC32xx/34xx EVM J15 supply input connector
3. Provide a sample clock at the ADC32xx/34xx EVM J9 SMA connector
4. Provide a sine wave for the ADC32xx EVM J1 or J4 analog input and J1, J4, J5, or J8 of the ADC34xx EVM
5. Connect a USB cable from the TSW1400 to the programming computer
6. For basic testing, the USB/SPI connection is not needed on the ADC32/34xx. Press SW1 to perform a hardware reset. This will work with the default settings.
7. Verify the following jumper connections on the ADC32/34xx EVM:
 - JP1 – 2,3 default condition PDN is low
 - JP6 – 1,2 default condition to select LDO power supply
 - JP7 – 1,2 default condition to select LDO power supply

3.3 ADC32/34xx and TSW1400 Setup Guide

See the TSW1400 user’s guide for more detailed explanations of the TSW1400 set-up and operation. This document assumes the High-Speed Data Converter (HSDC) Pro software and the TSW1400 hardware are installed and functioning properly. The ADC32/34xx EVM requires High-Speed Data Converter Pro software version 2.6 or higher with TSW1400 hardware of Rev D (or higher).

Single tone FFT test

1. Start the HSDC Pro GUI program. When the program starts, select the ADC tab and then select ADC324x_2W_14bit.ini or ADC344x_2W_14bit.ini device in the Select ADC drop down menu.

 ![Figure 16. Select ADC32xx or 34xx in the HSDC Pro GUI Program](image)

2. When prompted with Load ADC Firmware?, select YES
3. Select Single Tone FFT Test under Test Selection
4. Select number of sample points (and resulting number of FFT bins) to be used. The example shown in Figure 17 has 65536 samples.
5. Enter the ADC32/34xx Sampling rate. The example shown in Figure 17 has the sample rate set at 125 MSPS (filtered clock input around 10 dBm).

6. Enter the input frequency desired. If the clock and input frequency signal generators are synchronized, then make sure the checkbox for coherent frequency is checked and set the input frequency signal generator to the input frequency displayed. The example shown in Figure 17 has the input frequency set at 10MHz (9.98878479MHz if coherent). Filtered signal input around 10 dBm – adjust to achieve –1 dBFs on the HSDC Pro FFT.

7. Select channel 1, 2, 3, or 4 depending on the channel to which the signal generator is connected.

8. Press the Capture button on the HSDC Pro GUI

9. Observe an FFT result similar to that of Figure 17.

Figure 17. ADC3xxx Operating in 14-Bit Mode at 125 MSPS With a 10-MHz Input Signal

If the basic capture at this point is correct, then the front panel options of the SPI GUI and the front panel options of the TSW1400 GUI may be varied as desired to test out different device options.
3.4 Test Block Diagram with ADC32Jxx and ADC34Jxx

The test set-up for evaluation of the ADC32J/34Jxx EVM with the TSW14J56 or TSW14J50 Capture Card is shown in Figure 18. As seen in this figure, the evaluation setup involves a clock from a high quality on board clock chip LMK04828 and a sine wave for the analog input from a high-quality signal generator. High order, narrow bandpass filters are usually required to remove phase noise and harmonic content from the input sine waves. Since the on board clock and input sinewave are not coherent then the resulting FFT will need to have a windowing function such as Blackman-Harris/Hamming/Hanning applied to the data.

Figure 18. ADC32Jxx/ADC34Jxx and TSW14J56 Test Setup Block Diagram
3.5 **Test Set-up Connection (Onboard LMK04828 Clock)**

1. Connect J17 connector of ADC32Jxx/ADC34Jxx EVM to J4 connector of TSW14J56 EVM (or TSW14J50 if desired)
2. Connect 5V to the J11 supply input connector of the TSW14J56 and 5V to the J20 supply input connector of the ADC32Jxx/34Jxx EVM
3. Connect a USB cable from the ADC32J/34Jxx EVM to the PC for SPI programming. The ADC32J/34Jxx EVMs require some programming for the on board clock requirements of the JESD204B interface.
4. Provide a sine wave for the analog input at J3 or J6 of ADC32Jxx EVM and J1, J3, J5, or J7 of the ADC34Jxx EVM.
5. Connect USB cable from the TSW14J56 to the programming computer
6. Verify the following jumper connections on the ADC32J/34Jxx EVM
 - JP1 – 1,2 default condition PDN is low
 - JP6 – Closed – power for the onboard clock
 - JP8 – 2,3 – default condition to select USB port for SPI communication
 - JP9 – 1,2 – default condition select LDO power
 - JP10 – 1,2 – default condition select LDO power
 - JP12 – 1,2 – default condition select LDO power
 - JP13 – 1,2 – default condition select LDO power
3.6 ADC32J/34Jxx and TSW14J56 Setup Guide

See the TSW14J56 user’s guide for more detailed explanations of the TSW14J56 set-up and operation. This document assumes the HSDC Pro software and the TSW14J56 hardware are installed and functioning properly. The ADC32/34xx EVM requires HSDC Pro software version 2.6 or higher with TSW14J56 hardware of Rev D (or higher).

Single Tone FFT Test

1. The evaluation of the ADC32J/34Jxx EVM requires programming the LMK04828 clock source with the correct PLL settings to provide a 160 MSPS clock.
 • Connect a USB cable from the ADC32J/34Jxx EVM to the PC.
 • Open the ADC3000 GUI, and connect to the ADC32Jxx or ADC34Jxx EVM.
 • Go to the Low Level tab and click Load Config.
 • Browse and find the ADC3xJxx_160MSPS_Operation_LMK_Setting.cfg.
 • Check that the PLL2 LED D4 is lit – this indicates that the PLL is programmed properly and the correct clocks are being generated.

2. Start the HSDC Pro GUI program. When the program starts, select the ADC tab and then select ADC32Jxx_LMF_222 or ADC34Jxx_LMF_442 device in the Select ADC drop-down menu.

3. When prompted by Load ADC Firmware?, select YES.
4. Select Single Tone FFT Test under Test Selection.
5. Select the number of sample points (and resulting number of FFT bins) to be used. The example shown in Figure 20 has 65536 samples.
6. Enter the ADC32J/34Jxx sampling rate. The example shown in Figure 18 has the sample rate set at 160 MSPS.
7. Enter the input frequency desired. The example shown in Figure 18Figure 20 has the filtered input frequency set at 10 MHz and around 10 dBm. Adjust to achieve –1 dBFs on the HSDC Pro FFT plot.
8. Select channel 1, 2, 3, or 4 depending on the channel connected to the signal generator.
9. Press the Capture button on the HSDC Pro GUI.
10. Observe an FFT result similar to that shown in Figure 18.
If the basic capture at this point is correct, then the front panel options of the ADC3xxx SPI GUI and the front panel options of the High Speed Data Converter Pro GUI may be varied as desired to test out different device SPI options.
Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

<table>
<thead>
<tr>
<th>Changes from C Revision (January 2016) to D Revision</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Added ADC34Jxx devices to Table 3</td>
<td>10</td>
</tr>
<tr>
<td>• Added jumpers to Table 4</td>
<td>11</td>
</tr>
<tr>
<td>• Deleted jumper JP11 from Table 4</td>
<td>11</td>
</tr>
<tr>
<td>• Added new EVM DC Coupling Configuration section</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Changes from B Revision (January 2016) to C Revision</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Deleted references to future EVM releases from the ADC3xxx Family of Parts and EVMs table.</td>
<td>3</td>
</tr>
<tr>
<td>• Added reference to TSW14J50 in the Basic Test Procedure section.</td>
<td>24</td>
</tr>
<tr>
<td>• Added reference to TSW14J50 in the Test Block Diagram with ADC32Jxx and ADC34Jxx section.</td>
<td>27</td>
</tr>
<tr>
<td>• Added reference to TSW14J50 in the Test Set-up Connection (Onboard LMK04828 Clock) section.</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Changes from A Revision (September 2014) to B Revision</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Changed the power supply reference to include options for using a 5-V brick or the provided power supply cable with barrel connector</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Changes from Original (June 2014) to A Revision</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Deleted future release note from ADC3224EVM, ADC3424EVM, ADC34J25EVM, and ADC34J44EVM in Table 1.</td>
<td>3</td>
</tr>
<tr>
<td>• Added ADC32J22EVM, ADC32J42EVM, ADC34J22EVM, ADC34J42EVM to ADC3xxx Family of Parts and EVMs table.</td>
<td>3</td>
</tr>
<tr>
<td>• Deleted last sentence in paragraph following Power Supply Options table.</td>
<td>7</td>
</tr>
<tr>
<td>• Deleted last sentence in the first paragraph on the page.</td>
<td>11</td>
</tr>
<tr>
<td>• Deleted entire paragraph preceding ADC3xxx EVM Jumper Options table.</td>
<td>11</td>
</tr>
<tr>
<td>• Deleted several rows from ADC3xxx EVM Jumper Options table.</td>
<td>11</td>
</tr>
</tbody>
</table>
STANDARD TERMS FOR EVALUATION MODULES

1. Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an “EVM” or “EVMs”) to the User (“User”) in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.

1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM (“Software”) shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software.

1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.

2 Limited Warranty and Related Remedies/Disclaimers:

2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.

2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.

2.3 TI’s sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

1. this device may not cause interference, and
2. this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

3.3 Japan

3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lds/tsja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。
http://www.tij.co.jp/lds/tsja/general/eStore/notice_01.page

3.3.2 Notice for Users of EVMs Considered “Radio Frequency Products” in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.
【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けていないものがあります。 技術適合証明を受けていないものご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後にご使用いただく。
3. 技術基準適合証明を取得後にご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル

3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/laddr/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http://www.tij.co.jp/laddr/ti_ja/general/eStore/notice_02.page

European Union

3.4 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):
This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

4 EVM Use Restrictions and Warnings:

4.1 EVMs are not for use in functional safety and/or safety critical evaluations, including but not limited to evaluations of life support applications.

4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.

4.3 Safety-Related Warnings and Restrictions:

4.3.1 User shall operate the EVM within TI’s recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.

4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.

4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User’s handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.

5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.
6. **Disclaimers:**

 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.

 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHTS OF TI, ITS SUPPLIERS/LICENSES OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.

7. **USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS.** USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.

8. **Limitations on Damages and Liability:**

 8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.

 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMNITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.

9. **Return Policy:** Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.

10. **Governing Law:** These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI’) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated