Design Summary for MicroSiP™-enabled TPS8267xSiP

Introduction
As the marketplace continues to demand size reductions in portable electronic products, the need for smaller packaging and smaller subsystem packaging becomes paramount. In addition, size reductions can no longer focus only on package surface area, meaning length and width, but also must decrease the package thickness and weight. To address these rapidly evolving customer requirements, TI has introduced MicroSiP™, the latest innovation in System-in-Package (SiP) technology integrating IC and passive components in a single device featuring an embedded PicoStar™. The small MicroSiP footprint provides a stand-alone power supply platform driving an unprecedented power to package density of 90mA/mm². MicroSiP (package designator SIP) is offered today in a 8-pin format for the TPS8267x.

Packaging Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>8-ball</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball Pitch</td>
<td>0.8/1.0mm**</td>
</tr>
<tr>
<td>Ball Diameter</td>
<td>0.30mm</td>
</tr>
<tr>
<td>Package Length</td>
<td>~2.30mm</td>
</tr>
<tr>
<td>Package Width</td>
<td>~2.90mm</td>
</tr>
<tr>
<td>Package Height</td>
<td>1.0mm max</td>
</tr>
<tr>
<td>Bump Matrix</td>
<td>3x3</td>
</tr>
<tr>
<td>Bump Metallurgy</td>
<td>SAC305</td>
</tr>
<tr>
<td>Moisture Level</td>
<td>Level 2 at 260°C</td>
</tr>
</tbody>
</table>

** Bump pitch is 1.0mm in x direction, 0.8mm in y direction.
Board Layout
When designing the pad size for the MicroSiP™ solder bumps, it is recommended that the layout use a non-solder mask defined (NSMD) land. With this method, the solder mask opening is made larger than the desired land area, and the opening size is defined by the copper pad width. Table below shows the appropriate diameters for the 8-pin MicroSiP™ layout.

<table>
<thead>
<tr>
<th>Land Pattern Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solder Pad Definitions</td>
</tr>
<tr>
<td>Non-solder mask undefined (NSMD)</td>
</tr>
</tbody>
</table>

- Circuit traces from NSMD defined PWB lands should be 75µm to 100µm wide in the exposed area inside the solder mask opening. Wider trace widths reduce device stand off and impact reliability
- Best reliability results are achieved when the PWB laminate glass transition temperature is above the operating range of the intended application
- Recommend solder paste is Type 3 or Type 4
- For a PWB using a Ni/Au surface finish, the gold thickness should be less 0.5mm to avoid a reduction in thermal fatigue performance
- Solder mask thickness should be less than 20µm on top of the copper circuit pattern
- Best solder stencil performance is achieved using laser cut stencils with electro polishing. Use of chemically etched stencils give inferior solder paste volume control
Packaging Information

No underfill or adhesive was either used or required for these packages. Preconditioning: 3 pass reflow + 24hr/125°C bake 0.7mm thick FR4 epoxy main board.

MicroSiP™ Surface Mount

Surface mounting of MicroSiP packages is broadly similar to BGA package assembly. TI recommends the use of Pb-free solder paste applied via a 0.1mm thick stencil (critical stencil dimensions shown in board layout subsection). The paste acts: to aid wetting of the SiP bump to the board land, to hold the SiP in place during reflow, and to contribute metal volume of the resultant solder joint. Standard JEDEC reflow profiles for near-eutectic SnAgCu solder alloys are suggested (max 260°C). Board-SiP solder joint height is 120µm.

Board-Level Reliability Data

8-pin MicroSiP™

<table>
<thead>
<tr>
<th>Test Parameters</th>
<th>Results (t_first fail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drop</td>
<td>1500G/1.0ms pulse</td>
</tr>
<tr>
<td>Temp Cycle</td>
<td>-40/125°C, 2 cycles/hr</td>
</tr>
</tbody>
</table>

No underfill or adhesive was either used or required for these packages. Preconditioning: 3 pass reflow + 24hr/125°C bake 0.7mm thick FR4 epoxy main board.
Electrical Characterization

A - Efficiency vs Load Current

Plot of efficiency as a function of current for
A) $V_o=1.8\,\text{V}$ and B) $V_o=1.2\,\text{V}$

B - Efficiency vs Load Current

Pin Description

Thermal Evaluation

Thermal Image of MicroSiP™ when IC is dissipating 0.45W. Ambient temperature is 22°C, max junction temperature is 72°C. For thermal modeling, a value of $\Theta_{JA}=125°C/W$ provides an excellent initial estimate of thermal performance.

Close-up of MicroSiP™ mounted to the TI EVM
Package Label

Typical view of the SiP marking in the top of the package. Marking includes both lot trace coding and pin 1 indicator.

Code:
- CC - Device Code
- YML - Date Code
- LSB - Lot/Site/Board Trace Code

MicroSiP labeling is shown in the top view image. Marking includes both lot trace coding and pin 1 indicator.

FAQ

Q: **What is a MicroSiP™?**
A: MicroSiP™ is a miniaturized System-in-Package (SiP) that integrates Silicon integrated circuits (IC’s) with passive components in a BGA-format. Typically, the passives are arranged on the top, BGA balls are arrayed on the bottom and the integrated circuit PicoStar™ package is embedded in the laminate substrate. The MicroSiP can be either square or rectangular.

Q: **How is a MicroSiP™ different from a wafer-chip-scale-package (WCSP)?**
A: The MicroSiP package includes IC and passives while the WCSP is only an IC. For example, the TPS8267x packaged in MicroSiP integrates a DC-DC converter with inductor and input-output caps to provide a stand-alone power supply.

Q: **What is a PicoStar™?**
A: PicoStar™ is a die-sized package designed to be embedded in HDI laminate substrates.

Q: **Is this a lead-free (Pb-free) package?**
A: Yes, MicroSiP packages comply with lead-free environmental policies. The BGA bumps and the passive joints both are SAC305 (3%Ag, 0.5%Cu, balance Sn).

Q: **What land pad size should I design on my board for these packages?**
A: TI recommends that the board land closely match the land size on the SiP—300um diameter, non-solder mask defined. MicroSiP mounted to a 0.7mm thick PCB with OSP pads easily withstands 1000 cycles from -40 to 125°C (15 minute dwells).

Q: **Are there any special MicroSiP™ placement requirements?**
A: Movement of the MicroSiP from T&R to placement on the PCB can be treated as a similar sized BGA. The MicroSiP should be picked from the inductor top surface employing a ~1mm diameter nozzle/rubber tip (contact area between 0.5-1.0mm²).

Q: **Can I mount MicroSiP™ to the bottom of the PCB board?**
A: Yes you can. Ideally, the first and second reflow profiles are identical. The reflow profile should follow JEDEC standards for SMT of near-eutectic SnAgCu solder.

Q: **Can the MicroSiP™ withstand multiple reflows?**
A: Yes. Board level reliability testing was performed after 3 pass reflow (1 pass for assembly, then 2 additional passes). In general, assembly of the MicroSiP package can be treated exactly like a BGA.

Q: **What alignment accuracy is possible?**
A: TI recommends printing a lead-free solder paste as described in the board layout subsection before placement of the MicroSiP. Alignment accuracy depends on board pad tolerance and MicroSiP placement accuracy. MicroSiP packages self-align during reflow—final alignment accuracy is very likely better than placement accuracy.

Q: **How do board assembly yields of MicroSiP™ compare to a similar BGA?**
A: For a BGA of similar size and pitch, the assembly yield is identical to the MicroSiP package.
Rework
It is strongly recommended that the PCB with mounted SMT devices be baked prior to any rework so that absorbed moisture is removed (See J-STD-033 for more details). The rework process should be characterized such that the temperature of the MicroSiP™ package and surrounding PCB area are controlled. Either an attached thermocouple or an infrared camera works well to determine a repeatable heating profile.

Component removal process example:
- Align nozzle over part to be removed
- Maintain nozzle 1.27mm over the package
- Preheat board to 90°C, nozzle warming at 20% airflow/125°C
- Soak stage at 20% airflow/370°C/90 seconds
- Ramp stage at 25% airflow/370°C/65 seconds
- Enable vacuum, lower nozzle, remove inductor from MicroSiP
- Discard Inductor
- Reposition nozzle, reheat at 25% airflow/370°C/20 seconds
- Enable vacuum, lower nozzle, remove MicroSiP from PCB
- Cool down stage at 40% airflow/25°C/50 seconds
- Turn off vacuum and remove part MicroSiP from nozzle
- Avoid handling damage of the removed unit
- Do not reuse/repair the removed unit

Component replacement process example:
- Apply solder paste to board using a micro-stencil
- Align MicroSiP over board land pads
- Place MicroSiP on board. Care should be taken to prevent overtravel during placement which may damage the package or vacuum tip
- Raise nozzle 1.27mm
- Preheat board to 90°C, nozzle warming at 20% airflow/125°C
- Soak stage at 20% airflow/225°C/90 seconds
- Ramp stage at 25% airflow/335°C/30 seconds
- Reflow stage at 25% airflow/370°C/65 seconds
- Cool down stage at 40% airflow/25°C/50 seconds

Air-Vac Engineering:
Air-Vac Engineering (www.air-vac-eng.com) has established heating profiles and tooling recommendations for their Hot Gas (convection) rework equipment, DRS-24NC.

Nozzle NMX188DVG
- 0.18” Exhaust opening
- VTMX020-35 Vacuum Tip

Comparable hot gas (convection heating) rework equipment from other vendors can also be used successfully.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning such use. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td>Wireless</td>
</tr>
<tr>
<td>RF/IF and ZigBee® Solutions</td>
<td>e2e.ti.com</td>
</tr>
</tbody>
</table>

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2011, Texas Instruments Incorporated