

TPS659037 User's Guide to Power AM574x, AM572x, and AM571x

This User's Guide can be used as a guide for integrating the TPS659037 power-management integrated circuit (PMIC) into a system using AM574x, AM572x, or AM571x.

Contents

1		uction	
2	Device	e Versions	2
3	Platfo	rm Connection	4
4	BOOT	OTP Configuration	7
5	Static	Platform Settings	7
	5.1	System Voltage Monitoring	7
	5.2	SMPS	8
	5.3	LDO	9
	5.4	Interrupts	9
	5.5	GPIO	10
	5.6	MISC	
	5.7	SWOFF_HWRST	12
	5.8	Shutdown_ColdReset	
6	Seque	ence Platform Settings	14
	6.1	OFF2ACT Sequences	14
	6.2	ACT2OFF Sequences	
	6.3	ACT2SLP and SLP2ACT Sequences	17
7	Warm	Reset Sequences	18
		List of Figures	
1	Proce	ssor Connection With TPS6590378ZWSR	4
2	Proce	ssor Connection With TPS6590379ZWSR	5
3	Reset	Connections With POWERHOLD Configuration	6
4	Reset	Connections With PWRON Configuration	7
5	PMIC	Comparators	8
6	State	Transitions	8
7	Reset	Levels versus Registers	12
8		ACT Sequence of TPS6590378ZWSR	

8OFF2ACT Sequence of TPS6590378ZWSR149OFF2ACT Sequence of TPS6590379ZWSR1510Power Down Sequence of TPS6590378ZWSR1611Power Down Sequence of TPS6590379ZWSR1712Warm Reset Sequence of TPS6590378ZWSR1813Warm Reset Sequence of TPS6590379ZWSR19

List of Tables

1	TPS659037 OTP Settings Differentiation	2
2	Differences from Older OTP Versions	3
3	LDO3 and LDO4 Mapping to PHY Domains	6

1

Introduction

4	System Voltage Monitoring OTP Settings
5	SMPS OTP Settings
6	LDO OTP Settings
7	INT1 OTP Settings
8	INT2 OTP Settings
9	INT3 OTP Settings 10
10	INT4 OTP Settings 10
11	GPIO OTP Settings 10
12	MISC1 OTP Settings 1
13	MISC2 OTP Settings 1
14	SWOFF_HWRST OTP Settings 12
15	Shutdown_ColdReset OTP Settings 13

Trademarks

All trademarks are the property of their respective owners.

1 Introduction

This user's guide can be used as a guide for connectivity between the TPS659037 PMIC and a processor. This guide describes the platform connections as well as the power-up, power-down, and sleep entry and exit sequences along with the OTP configurations. For more information on creating a board-compatible power solution for the AM572x and AM571x family of devices, refer to the AM574x/AM572x/AM571x Compatibility Guide. This user's guide does not provide details about the power resources, external components, or the functionality of the device. For such information, refer to the TPS659037 Power Management Unit (PMU) for Processor data sheet.

In the event of any inconsistency between the official specification and any user's guide, application report, or other referenced material, the data sheet specification will be the definitive source.

2 Device Versions

2

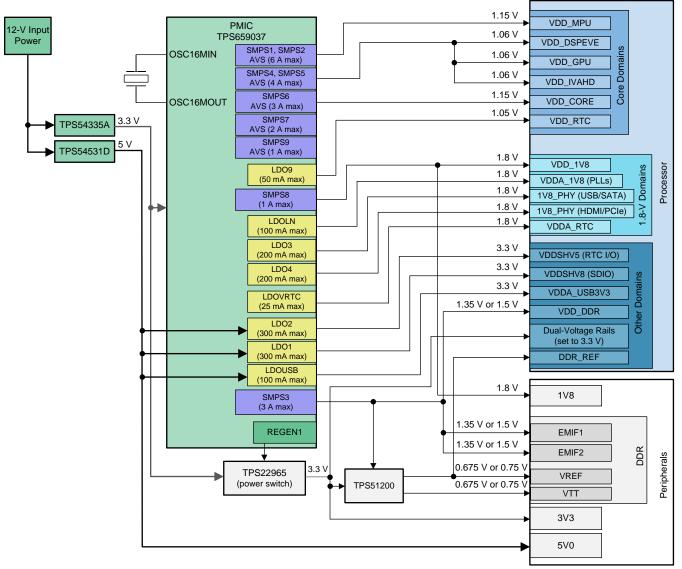
Two different versions of the TPS659037 device are available and the OTP settings for each version are described in this document. Both versions of the device can be used to power the AM574x, AM572x, or AM571x processor. The OTP version can be read from the SW_REVISION register. In this user's guide, each device version is distinguished either by the part number or the SW_REVISION value which are both listed in Table 1.

The TPS65916 device is available as an optimized solution for AM571x as described in the *TPS65916 User's Guide to Power AM571x*. The TPS659037 device should be used for AM571x when PCB compatibility between an AM572x and AM571x board is required. If PCB compatibility is not required, use the TPS65916 device for AM571x because it is a smaller, lower-power PMIC optimized for AM571x.

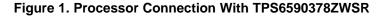
PROCESSOR	PART NUMBER	REFERENCE BOARD	CONTENT OF SW_REVISION REGISTER
AM574x, AM572x, AM571x	TPS6590378ZWSR	AM572x Evaluation Module	0x96
AM574x, AM572x, AM571x	TPS6590379ZWSR	AM572x Industrial Development Kit	0x97
AM571x	TPS659162RGZR	N/A	See User's Guide

Table 2 lists the older OTP versions and the differences compared to the newer OTP versions. The older versions are not recommended for new designs (NRND). The newer versions should be used instead because they meet the latest specifications of the processor, and are pin-to-pin replacements for the older versions with no schematic or layout change required.

Table 2. Differences from Older OTP Versions

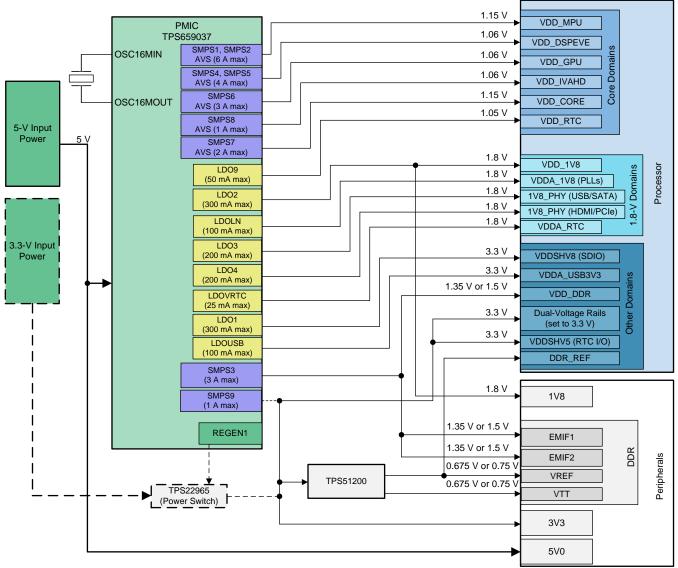

OLDER OTP VERSION	NEWER OTP VERSION	CHANGES IMPLEMENTED IN NEWER VERSION
TPS6590374ZWSR	TPS6590378ZWSR	 SMPS12 voltage increased from 1.10 V to 1.15 V SMPS6 voltage increased from 1.06 V to 1.15 V GPIO_2 was added to the sequences at the same time as SMPS3 SMPS3 moved from slot 3 to slot 2 in power-down sequence The delay between slot 2 and slot 3 in power-down sequence was increased from 500 µs to 1000 µs
TPS6590376ZWSR	TPS6590378ZWSR	 GPIO_2 was added to the sequences at the same time as SMPS3 SMPS3 moved from slot 3 to slot 2 in power-down sequence The delay between slot 2 and slot 3 in power-down sequence was increased from 500 μs to 1000 μs
TPS6590375ZWSR	TPS6590379ZWSR	 SMPS12 voltage increased from 1.10 V to 1.15 V SMPS6 voltage increased from 1.06 V to 1.15 V GPIO_2 was added to the sequences at the same time as SMPS3 SMPS3 moved from slot 3 to slot 2 in power-down sequence The delay between slot 2 and slot 3 in power-down sequence was increased from 500 μs to 1000 μs
TPS6590377ZWSR	TPS6590379ZWSR	 GPIO_2 was added to the sequences at the same time as SMPS3 SMPS3 moved from slot 3 to slot 2 in power-down sequence The delay between slot 2 and slot 3 in power-down sequence was increased from 500 μs to 1000 μs

3



3 Platform Connection

Figure 1 shows the detailed connections between the processor and TPS6590378ZWSR. This configuration combines DSPEVE, GPU, and IVAHD domains of the processor to one PMIC supply SMPS45. The configuration allows selecting between 1.35-V output on SMPS3 supporting DDR3L and 1.5-V output supporting DDR3. In this configuration, CLK32KGO is not used. If VIO_IN of the PMIC should be 3.3-V, it can be supplied by the switched 3.3-V rail enabled by REGEN1. If VIO_IN of the PMIC should be 1.8 V, it can be supplied by SMPS8.


Copyright © 2017, Texas Instruments Incorporated

TPS659037 User's Guide to Power AM574x, AM572x, and AM571x

Figure 2 shows the detailed connections between the processor and the TPS6590379ZWSR. This configuration uses an independent supply for each of the core rails. It also uses LDO2 for the 1.8-V I/O supply and SMPS9 for the 3.3-V I/O supply. The configuration allows selecting between 1.35-V output on SMPS3 supporting DDR3L and 1.5-V output supporting DDR3. In this configuration, CLK32KGO is not used.

TPS6590379ZWSR allows two options to power VIO of the PMIC and processor at 3.3V, as shown by the dotted lines. If less than 1-A of current is required, SMPS9 can be used to power VIO. If more than 1-A of current is required, REGEN1 can be used to enable a load switch which will sequence an external 3.3V supply. In the case that VIO_IN of the PMIC should be 1.8V, it can be supplied by LDO2.

Copyright © 2017, Texas Instruments Incorporated

Figure 2. Processor Connection With TPS6590379ZWSR

In both configurations, LDO3 and LDO4 are used to supply the PHY domains. Table 3 describes how the PHY domains should be split between the two LDOs.

VDDA_HDMI

VDDA_USB3

VDDA PCIE

VDDA_PCIE0

www.ti.com

6

LDO4 (300 mA)

Table 3. LDO3 and LDO4 Mapping to PHY Domains						
TPS659037 LDO	PROCESSOR BALL	VOLTAGE RAIL (AM574x and AM572x)	VOLTAGE RAIL (AM571x)			
	AA13	VDDA_USB1	VDDA_USB1			
LDO3 (300 mA)	AB12	VDDA_USB2	VDDA_USB2			
LDO3 (300 IIIA)	W12	VDDA_USB3	VDDA_CSI2			
	V13	VDDA_SATA	VDDA_SATA			

VDDA_HDMI

VDDA_PCIE

VDDA PCIE0

VDDA_PCIE1

Figure 3 and Figure 4 show the reset connections required between the TPS659037 and the processor. All of the OTP configurations have the same reset connections to the processor, along with one of the two options for enabling the power supply; either POWERHOLD or PWRON. Enabling either of these signals turns on the TPS659037 device and starts the startup sequence for the processor. Figure 3 shows the POWERHOLD configuration for the TPS659037 and the processor. GPIO_7 is configured as POWERHOLD in the OTP memory. To turn on the TPS659037, GPIO_7 must be set to a high logic level. The PWRON signal can be left floating.

Y17

W14

AA17

AA16

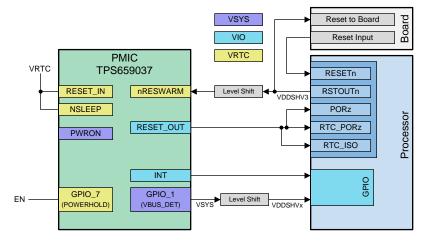


Figure 3. Reset Connections With POWERHOLD Configuration

Figure 4 shows the PWRON configuration for the TPS659037 and the processor. This configuration is used when a push button enables the system. As shown, PWRON is connected to a switch that pulls PWRON to a low logic level when the switch is pressed on. For the processor to do a warm reset correctly, this setup also requires that POWERHOLD be at a high logic level during a warm reset so that the power supply does not reset. One solution for this scenario is that GPIO_7 is tied to GPIO_5 and pulled up to VDDS1V8 from the processor. When the TPS659037 is enabled by the button, GPIO_5 should be set to a high logic level and then set as an output.

Figure 4. Reset Connections With PWRON Configuration

4 BOOT OTP Configuration

All TPS659037 resource settings are stored in the form of registers. Therefore, all platform-related settings are linked to an action altering these registers. This action can be a static update (register initialization value) or a dynamic update of the register (either from the user or from a power sequence).

Resources and platform settings are stored in nonvolatile memory (OTP). These settings are defined as follows:

- **Static platform settings** These settings define, for example, SMPS or LDO default voltages, and GPIO functionality. Most static platform settings can be overwritten by a power sequence or by the user.
- Sequence platform settings These settings define the TPS659037 power sequences between state transitions, such as the OFF2ACT sequence when transitioning from OFF state to ACTIVE state. The power sequence is composed of several register accesses that define which resources (and the corresponding registers) must be updated during the respective state transition. The state of these resources can be overwritten by the user when the power sequence completes execution.

5 Static Platform Settings

Each device has predefined values stored in OTP which control the default configuration of the device. The tables in this section list the OTP-programmed values for each device, distinguished by the SW_REVISION.

5.1 System Voltage Monitoring

REGISTER	BIT	DESCRIPTION	0x96 VALUE	0x97 VALUE	UNIT
VSYS_MON	VSYS_HI	System voltage rising-edge threshold	3.	1	V
VSYS_LO	VSYS_LO	System voltage falling-edge threshold	2.7	75	V

Table 4. System Voltage Monitoring OTP Settings

The power state-machine of the TPS659037 device is controlled by comparators monitoring the voltage on the VCC_SENSE and VCCx pins. For electrical parameters refer to the data sheet.

VSYS_LO — When the voltage on the VCC1 pin rises above VSYS_LO, the device enters from the BACKUP to the OFF state. When the device is in the ACTIVE, SLEEP, or OFF state and the voltage on the VCC1 pin decreases below VSYS_LO, the device enters BACKUP mode. The VSYS_LO level is OTP programmable.

Static Platform Settings

www.ti.com

VSYS_HI — During power up, the VSYS_HI OTP value is used as a threshold for the VSYS_MON comparator which is gating the PMIC startup (as a threshold for transition from the OFF to ACTIVE state). The VSYS_MON comparator monitors the VCC_SENSE pin. After power up, the user can use software to configure the comparator threshold in the VSYS_MON register.

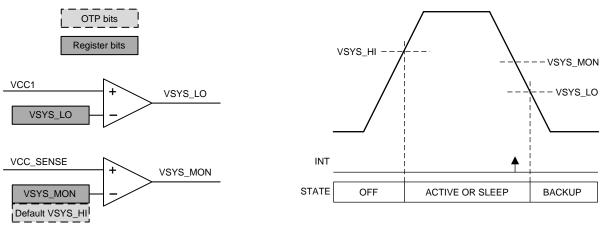


Figure 5. PMIC Comparators

Figure 6. State Transitions

NOTE: The maximum input voltage of the VCC_SENSE and VCC_SENSE2 pins depend on the OTP setting of PMU_CONFIG [HIGH_VCC_SENSE] as listed in the *Recommended Operating Conditions* table of the TPS659037 data sheet. This configuration is set as HIGH_VCC_SENSE = 0 with the VCC_SENSE and VCC_SENSE2 pins are connected to VCC1.

For the recommended operating conditions of the electrical parameters, refer to the *TPS659037 Power Management Unit (PMU) for Processor* data sheet.

5.2 SMPS

8

This section describes the default voltage for each SMPS. Each device has two default voltages for SMPS3 based on the connection of the BOOT0 pin. If the BOOT0 pin is connected to 0 V, then SMPS3 defaults to 1.35 V. If the BOOT0 pin is connected to 1.8 V, then SMPS3 outputs 1.5 V.

By default, SMPS7 and SMPS9 remain off in OTP 0x96. SMPS7 and SMPS9 can be enabled after startup through I²C by setting the appropriate SMPSx_CTRL and SMPSx_VOLTAGE registers.

BIT	DESCRIPTION ⁽¹⁾	0x96 VALUE		0x97 VALUE		
ы	DESCRIPTION	BOOT0 = 0	BOOT0 = 1	BOOT0 = 0	BOOT0 = 1	UNIT
SMPS12_VOLTAGE	Default output voltage for the regulator		1	.15		V
SMPS3_VOLTAGE Default output voltage for the regulate		1.35	1.5	1.35	1.5	V
SMPS45_VOLTAGE	Default output voltage for the regulator		1	.06		V
SMPS6_VOLTAGE	Default output voltage for the regulator	1	.15	1	.06	V
SMPS7_VOLTAGE	Default output voltage for the regulator	0		.15	V	
SMPS8_VOLTAGE Default output voltage for the regulator		1.8 1.06		.06	V	
SMPS9_VOLTAGE	Default output voltage for the regulator		0	:	3.3	V
SMPS12_SMPS123_EN	SMPS3 configuration	SMPS3 single phase				

Table	5.	SMPS	OTP	Settings
-------	----	------	-----	----------

⁽¹⁾ The regulator output voltage cannot be modified while active from one (0.7 to 1.65 V) voltage range to the other (1 to 3.3 V) voltage range or the other way around. The regulator must be turned off to do so.

Static Platform Settings

5.3 LDO

This section describes the default output voltage for each LDO.

		0		
BIT	DESCRIPTION	0x96 VALUE	0x97 VALUE	UNIT
LDO1_VOLTAGE	Default output voltage for the regulator	3.	3	V
LDO2_VOLTAGE	Default output voltage for the regulator	3.3	1.8	V
LDO3_VOLTAGE	Default output voltage for the regulator	1.	8	V
LDO4_VOLTAGE	Default output voltage for the regulator	1.	8	V
LDO9_VOLTAGE	Default output voltage for the regulator	1.0	05	V
LDOLN_VOLTAGE	Default output voltage for the regulator	1.	.8	V
LDOUSB_VOLTAGE	Default output voltage for the regulator	3.	.3	V

Table 6. LDO OTP Settings

NOTE: LDO1 and LDO2 share a single input LDO12_IN and must by supplied by the same voltage. Refer to the input voltage parameter in the data sheet.

5.4 Interrupts

The interrupts are split into four register groups (INT1, INT2, INT3, and INT4). All interrupts are logically combined on a single output line, INT (default active-low). This line is used as an external interrupt line to warn the host processor of any interrupt event that has occurred within the device. The OTP settings in this section show whether each interrupt is enabled or disabled by default.

		C C				
REGISTER	BIT	DESCRIPTION	0x96 VALUE	0x97 VALUE		
	VSYS_MON	Enable and disable interrupt from the VSYS_MON comparator	1: Interrupt generation disabled			
	PWRDOWN	Enable and disable interrupt from the PWRDOWN pin	0: Interrup	t generated		
	PWRON	Enable and disable interrupt from PWRON pin. A PWRON event is always an ON request.	1: Interrupt generation disabled			
INT1_MASK	LONG_PRESS_KEY	Enable and disable interrupt from long key press on the PWRON pin	1: Interrupt generation disabled			
	RPWRON	Enable and disable interrupt from RPWRON pin. A RPWRON event is always an ON request.	0: Interrup	t generated		
	HOTDIE	Enable and disable interrupt from device hot-die detection. The interrupt can be used as a pre- warning for processor to limit the PMIC load, before increasing die temperature forces shutdown.	0: Interrupt generated			

Table 7. INT1 OTP Settings

Table 8. INT2 OTP Settings

REGISTER	BIT	DESCRIPTION	0x96 VALUE	0x97 VALUE
INT2_MASK	SHORT	Triggered from internal event of SMPS or LDO outputs failing. If an interrupt is enabled, it is an ON request.	0: Interrup	t generated
	WDT	Enable and disable interrupt from watchdog expiration	0: Interrup	t generated
	RTC_TIMER	Enable and disable RTC timer interrupt. Timer period preprogrammed. If an interrupt is enabled, it is an ON request.	1: Interrupt gen	eration disabled
	RTC_ALARM	Enable and disable RTC alarm interrupt. The alarm is preprogrammed for certain date or time. If an interrupt is enabled, it is an ON request.	ne. 0: Interrupt generated	
	RESET_IN	Enable and disable interrupt from the RESET_IN pin	0: Interrup	t generated

Static Platform Settings

Table 9. INT3 OTP Settings

REGISTER	BIT	DESCRIPTION	0x96 VALUE	0x97 VALUE
INT3_MASK	GPADC_EOC_SW	GPADC result ready from software-initiated conversion	1: Interrupt generation disabled	
	GPADC_AUTO_1	GPADC automatic conversion result 1 above or below the reference threshold	0: Interrupt generated	
	GPADC_AUTO_0	GPADC automatic conversion result 0 above or below the reference threshold	0: Interrup	t generated

Table 10. INT4 OTP Settings

REGISTER	BIT	DESCRIPTION	0x96 VALUE	0x97 VALUE
INT4_MASK	GPIO_7	Enable and disable interrupt from the GPIO7 pin rising or falling edge	1: Interrupt gene	eration disabled
	GPIO_6	Enable and disable interrupt from the GPIO6 pin rising or falling edge	1: Interrupt gene	eration disabled
	GPIO_5	Enable and disable interrupt from the GPIO5 pin rising or falling edge	1: Interrupt gene	eration disabled
	GPIO_4	Enable and disable interrupt from the GPIO4 pin rising or falling edge	1: Interrupt gene	eration disabled
	GPIO_3	Enable and disable interrupt from the GPIO3 pin rising or falling edge	1: Interrupt gene	eration disabled
	GPIO_2	Enable and disable interrupt from the GPIO2 pin rising or falling edge	1: Interrupt gene	eration disabled
	GPIO_1	Enable and disable interrupt from the GPIO1 pin rising or falling edge	1: Interrupt gene	eration disabled
	GPIO_0	Enable and disable interrupt from the GPIO0 pin rising or falling edge	1: Interrupt gene	eration disabled

5.5 GPIO

TPS659037 integrates eight configurable general-purpose I/Os (GPIOs) that are multiplexed with alternative features. This section describes the default configuration of each GPIO, as well as the configuration of internal pullup or pulldown resistors on the GPIOs.

Table 11. GPIO OTP Settings

REGISTER	BIT	DESCRIPTION	0x96 VALUE	0x97 VALUE
	GPIO_7	Select pin function	10: POW	ERHOLD
PRIMARY SECONDARY PAD2	GPIO_6	Select pin function	1: SYSEN2	
FRIMART_SECONDART_FAD2	GPIO_5	Select pin function	00: GPIO_5	
	GPIO_4	Select pin function	1: SY	SEN1
PRIMARY SECONDARY PAD1	GPIO_2	Select pin function	1: RE	GEN2
	GPIO_1	Select pin function	00: G	PIO_1
PU_PD_GPIO_CTRL2	GPIO_7_PD	Enable and disable pulldown for GPIO_7. Applies if GPIO mode is selected	0: Pulldown not enabled	
	GPIO_3_PD	Enable and disable pulldown for GPIO_3. Applies if GPIO mode is selected	1: Pulldown enabled	
	GPIO_2_PU	Enable and disable pullup for GPIO_2. Applies if GPIO mode is selected	0: Pullup not enabled	
PU PD GPIO CTRL1	GPIO_2_PD	Enable and disable pulldown for GPIO_2. Applies if GPIO mode is selected	1: Pulldown enabled	
	GPIO_1_PU	Enable and disable pullup for GPIO_1. Applies if GPIO mode is selected	0: Pullup not enabled	
	GPIO_1_PD	Enable and disable pulldown for GPIO_1. Applies if GPIO mode is selected	1: Pulldow	n enabled
	GPIO_0_PD	Enable and disable pulldown for GPIO_0. Applies if GPIO mode is selected	0: Pulldown	not enabled

5.6 MISC

This section describes miscellaneous device configuration settings including pulldowns, polarity of signals, communication settings, and other functionality.

REGISTER	BIT	DESCRIPTION	0x96 VALUE	0x97 VALUE
PRIMARY_SECONDARY_PA	RESET_IN_PD	Enable and disable internal pulldown for the RESET_IN pin	1: Pulldown enabled	
D2	PWRDOWN_PD	Enable and disable internal pulldown for the PWRDOWN pin	1: Pulldown enabled	
	PWRGOOD_USB_ PSELPOLARITY_	Select polarity, applies to PWRGOOD and USB_PSEL selection	0: Active high	
POLARITY_CTRL	PWRDOWN_POLARITY	Select PWRDOWN pin polarity: 0: Device is switched off when PWRDOWN is high. 1: Device is switched off when PWRDOWN is low.	0: Active high	
	RESET_IN_POLARITY	Select RESET_IN pin polarity: 0: Device is switched off when RESET_IN is low. 1: Device is switched off when RESET_IN is high.	0: Active low	
	GPIO_3_POLARITY	Select polarity for GPIO3 pin:	0: Active high	

Table 12. MISC1 OTP Settings

Table 13. MISC2 OTP Settings

REGISTER	BIT	DESCRIPTION	0x96 VALUE	0x97 VALUE
LONG_PRESS_KEY	PWRON_DEBOUNCE	Debounce time selection for PWRON pin	00: 15 ms	
	I2C_SPI	Selection of control interface, I ² C, or SPI	0:	I ² C
	ID_12C2	I2C_2 address for page access versus initial address (0H12)	0: Addres	ss is 0x12
I2C_SPI	ID_12C1	I2C_1 address for I ² C register access	I2C_1[1] I2C_1[2]	= 1: 0x58 = 1: 0x59 = 1: 0x5A = 1: 0x5B
	HIGH_VCC_SENSE	Enable internal buffers on VCC_SENSE to allow voltage sensing above 5.25 V	0: High VCC sense not enabled	
	GATE_RESET_OUT	Gating of RESET_OUT until crystal oscillator is stable.	0: Not gated	
PMU_CONFIG	AUTODEVON	Automatically set DEV_ON bit after startup sequence completes	0: AUTODEVON disabled	
	SWOFF_DLY	Delay before switch-off to allow host processor to save context. Device is maintained as ACTIVE until delay expiration then switches off.	00: No delay	
SPARE	REGEN2_OD	Configures REGEN2 to be open drain or push-pull.	0: Push-pull mode	
	REGEN1_OD	Configures REGEN1 to be open drain or push-pull.	0: Push-pull mode	
	OSC16M_CFG ⁽¹⁾	Configures the 16-Mhz oscillator to be enabled or disabled.	0: 16-MHz oscillator enabled	

⁽¹⁾ The 16-MHz oscillator is enabled in both devices, and therefore a 16.384-MHz crystal must be populated between OSC16MIN and OSC16MOUT.

Static Platform Settings

5.7 SWOFF_HWRST

This section describes whether each reset type is configured to generate a HWRST or SWORST.

- Hardware reset (HWRST) A hardware reset occurs when any OFF request is configured to generate a hardware reset. This reset triggers a transition to the OFF state from either the ACTIVE or SLEEP state (execute either the ACT2OFF or SLP2OFF sequence).
- Switch-off reset (SWORST) A switch-off reset occurs when any OFF request is configured to not generate a hardware reset. This reset acts as the HWRST, except only the SWO registers are reset. The device enters the OFF state, from either ACTIVE or SLEEP, and therefore executes the ACT2OFF or SLP2OFF sequence.

The power resource control registers for SMPS and LDO voltage levels and operating mode control are in SWORST domain. Additionally some registers control the 32-kHz, REGENx and SYSENx, watchdog, external charger control, and VSYS_MON comparator. This list is indicative only.

POR reset		
	HWRST reset	
		SWORST reset
POR Registers	HW Registers	SWO Registers

Figure 7. Reset Levels versus Registers

Table 14. SWOFF_HWRST OTP Settings

REGISTER	BIT	DESCRIPTION	0x96 VALUE	0x97 VALUE
	PWRON_LPK	Define if PWRON long key press is causing HWRST or SWORST	1: HW	RST
	PWRDOWN	Define if PWRDOWN pin is causing HWRST or SWORST	0: SWORST	
	WTD	Define if watchdog expiration is causing HWRST or SWORST	1: HWRST	
SWOFF_HWRST	TSHUT	Define if thermal shutdown is causing HWRST or SWORST	1: HWRST	
	RESET_IN	Define if RESET_IN pin is causing HWRST or SWORST	1: HWRST	
	SW_RST	Define if register bit is causing HWRST or SWORST	1: HWRST	
	VSYS_LO	Define if VSYS_LO is causing HWRST or SWORST	1: HWRST	
	GPADC_SHUTDOWN	Define if GPADC event is causing HWRST or SWORST	0: SWORST	

5.8 Shutdown_ColdReset

These OTP settings show whether each OFF request is configured to generate a shutdown request (SD) or cold reset request (CR).

Static Platform Settings

- When configured to generate an SD, the embedded power controller (EPC) executes a transition to the OFF state (SLP2OFF or ACT2OFF power sequence) and remains in the OFF state.
- When configured to generate a CR, the EPC executes a transition to the OFF state (SLP2OFF or ACT2OFF power sequence) and restarts, transitioning to the ACTIVE state (OFF2ACT power sequence) if none of the ON request gating conditions are present.

REGISTER	BIT	DESCRIPTION	0x96 VALUE	0x97 VALUE
	PWRON_LPK	Define if PWRON long key press causes shutdown or cold reset	0: Shu	itdown
	PWRDOWN	Define if PWRDOWN pin causes shutdown or cold reset	1: Cold reset 1: Cold reset	
	WTD	Define if watchdog timer expiration causes shutdown or cold reset		
SWOFF_COLDRST	TSHUT	Define if thermal shutdown causes shutdown or cold reset	0: Shutdown	
	RESET_IN	Define if RESET_IN pin causes shutdown or cold reset	1: Cold reset	
	SW_RST	Define if SW_RST register bit causes shutdown or cold reset	1: Col	d reset
	VSYS_LO	Define if VSYS_LO causes shutdown or cold reset	0: Shutdown	
	GPADC_SHUTDOWN	Define if GPADC shutdown causes shutdown or cold reset	0: Shutdown	

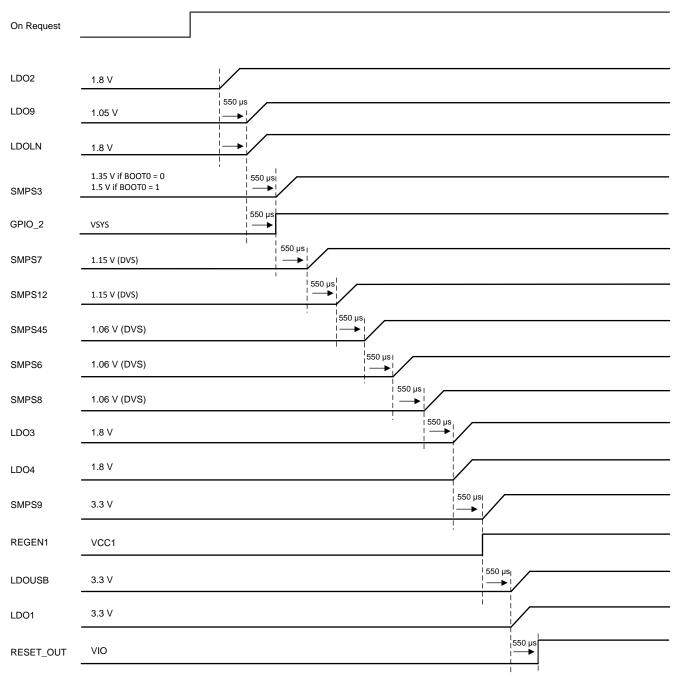
Table 15. Shutdown_ColdReset OTP Settings

6 Sequence Platform Settings

A power sequence is an automatic preprogrammed sequence handled by the TPS659037 device to configure the device resources: SMPSs, LDOs, part of GPIOs, and REGEN signals into ON, OFF, or SLEEP state. Outputs that are not included in these diagrams remain off by default.

6.1 OFF2ACT Sequences

When an ON request occurs in the OFF state, the device is switched on and each resource is enabled based on the programmed OFF2ACT sequence.


Figure 8 shows the OFF2ACT sequence of the TPS6590378ZWSR.

On Request	
SMPS8	1.8 V
LDO9	1.05 V
LDOLN	1.8 V
SMPS3	1.35 V if BOOT0 = 0 550 µs 1.5 V if BOOT0 = 1
GPIO_2	vsys —
SMPS6	1.15 V (DVS)
SMPS12	1.15 V (DVS)
SMPS45	1.06 V (DVS)
LDO3	1.8 V
LDO4	1.8 V
LDO2	<u>3.3 V</u>
REGEN1	VCC1 550 µs
LDOUSB	3.3 V
LDO1	3.3 V
RESET_OUT	VIO

Figure 8. OFF2ACT Sequence of TPS6590378ZWSR

Figure 9 shows the OFF2ACT sequence of TPS6590379ZWSR.

Sequence Platform Settings

www.ti.com

6.2 ACT2OFF Sequences

When an OFF request occurs during the ACTIVE state, each resource is disabled based on the programmed ACT2OFF sequence. Figure 10 shows the ACT2OFF sequence of TPS6590378ZWSR.

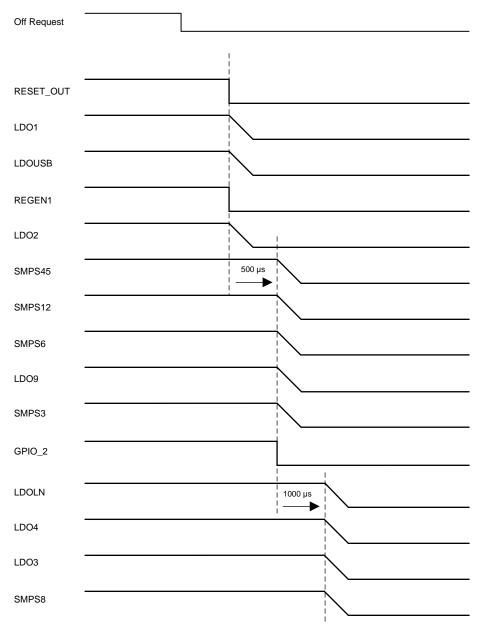
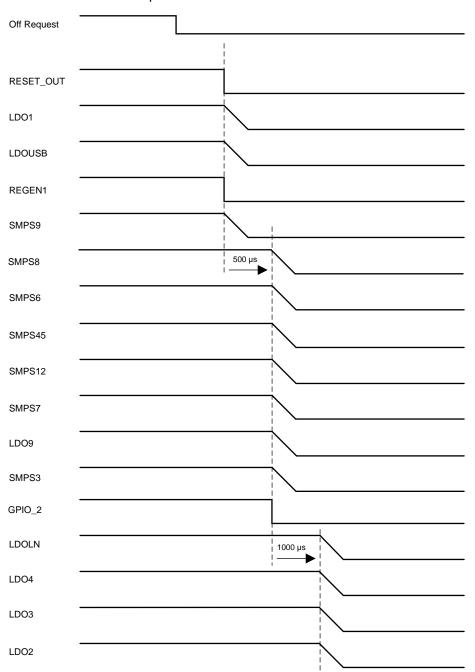
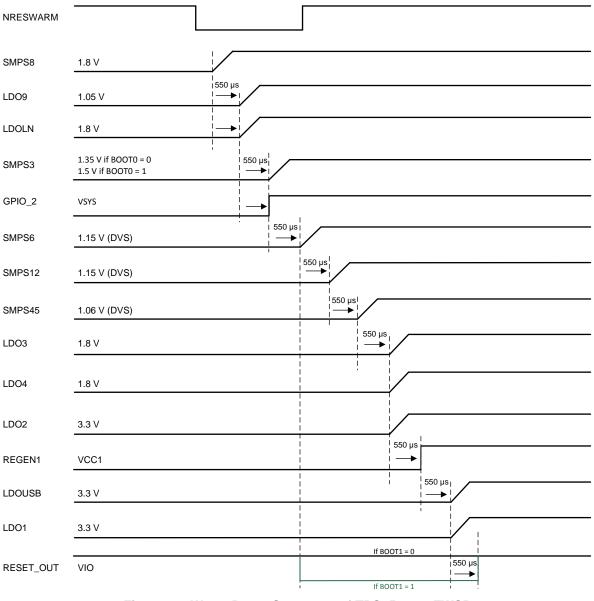



Figure 10. Power Down Sequence of TPS6590378ZWSR

Figure 11 shows the ACT2OFF sequence of TPS6590379ZWSR.

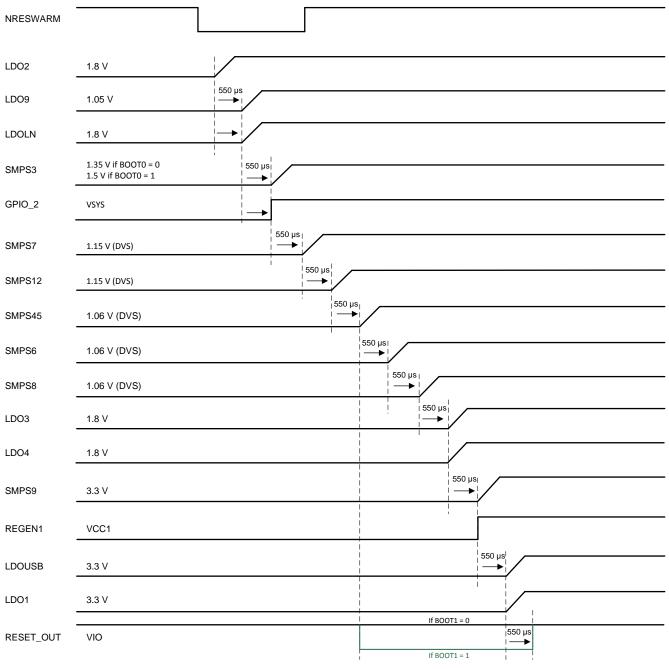
6.3 ACT2SLP and SLP2ACT Sequences

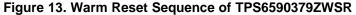

The AM572x processor does not support RTC mode. Therefore the sleep sequences for TPS6590378 and TPS6590379 are not supported. By default, no resources are assigned to NSLEEP and therefore toggling NSLEEP will have no effect. If resources are assigned to NSLEEP and NSLEEP is unmasked, all assigned resources will be enabled or disabled simultaneously.

7 Warm Reset Sequences

A warm reset is triggered by the NRESWARM pin. During a warm reset, the OFF2ACT sequence is executed regardless of the actual state (ACTIVE, SLEEP) and the device returns to or remains in the ACTIVE state. Resources that are part of power-up sequence go to ACTIVE mode and the output voltage level is reloaded from OTP or kept in the previous value depending on the WR_S bit in the SMPSx_CTRL register or the LDOx_CTRL register. Resources that are not part of the OFF2ACT sequence are not impacted by a warm reset and maintain the previous state. Additionally, if BOOT1 = 1, then RESET_OUT is asserted low during the warm reset sequence. If BOOT1 = 0, RESET_OUT is not asserted low.

If BOOT1 = 1 is used, then the PMIC must be enabled by the POWERHOLD (GPIO_7) pin. If the PMIC will be enabled by the PWRON pin and kept on using the DEV_ON bit, then BOOT1 = 0 must be used. If POWERHOLD is set to GND while BOOT1 = 1, the PMIC will shut off during the warm reset sequence.


Figure 12 shows the warm reset sequence of TPS6590378ZWSR in the case that all resources are turned off. If any resource is on when NRESWARM is asserted, the resource remains on.



Warm Reset Sequences

Figure 13 shows the warm reset sequence of TPS6590379ZWSR in the case that all resources are turned off. If any resource is on when NRESWARM is asserted, the resource remains on.

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from E Revision (August 2017) to F Revision

Added AM574x processor to user guide 1 Changed GPIO_2 default setting to REGEN2 10

Changes from D Revision (May 2016) to E Revision

Revision History

Updated the document to describe TPS6590378 (0x96) instead of TPS6590376 (0x8A), and TPS6590379 (0x97) instead

Changes from C Revision (November 2015) to D Revision Page

Changes from B Revision (September 2015) to C Revision

Updated the document to describe TPS6590376 (0x8A) instead of TPS6590374 (0x80), and TPS6590377 (0x8B) instead of TPS6590375 (0x81) 2

Changes from A Revision (May 2015) to B Revision

Updated the document to describe TPS6590374 (0x80) instead of TPS6590373 (0x7F), and TPS6590375 (0x81) instead

Changes from Original (March 2015) to A Revision

Page

Page

RUMENTS

Page

Page

Page

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated