This user’s guide describes the operation of the DRV632 evaluation module. This document also provides measurement data and design information including a schematic, bill of materials, and printed-circuit board (PCB) layout drawings.

Contents

1 Overview ... 2
2 Quick Setup ... 4
3 On/Off Sequence ... 5
4 Component Selection .. 5
5 Layout Recommendations ... 7
6 Related Documentation from Texas Instruments 7
7 Design Documentation ... 8

List of Figures

1 DRV632EVM Top View .. 2
2 DRV632EVM Bottom View .. 2
3 DRV632EVM Functional Block Diagram 3
4 Power-Up/-Down Sequence .. 5
5 Second-Order, Active Low-Pass Filter 6
6 Differential Input, Second-Order Active Low-Pass Filter 6
7 DRV632EVM Schematic ... 8
8 DRV632EVM PCB Component Placement 10
9 DRV632EVM PCB Top Layer 10
10 DRV632EVM PCB Bottom Layer 11

List of Tables

1 Key Parameters ... 3
2 Recommended Supply Voltage 4
3 DRV632EVM Filter Specifications 6
4 Related Documentation ... 7
5 Bill of Materials .. 9
The DRV632EVM customer evaluation module (EVM) demonstrates the capabilities and operation of the DRV632 integrated circuit from Texas Instruments.

The DRV632 is a 2-V\textsubscript{RMS}, pop-free, stereo line driver designed to allow removal of the output dc-blocking capacitors in audio applications to reduce component count and overall cost. The device is ideal for single-supply electronics where size and cost are critical design parameters.

Designed using TI’s patented DirectPath™ technology, the DRV632 is able to drive 2 V\textsubscript{RMS} into a 10-kΩ load with 3.3-V supply voltage. The device has differential inputs and uses external gain-setting resistors that support a gain range of ±1 V/V to ±10 V/V, and line outputs that have ±8 kV IEC electrostatic discharge (ESD) protection. The DRV632 also has built-in shutdown control for pop-free, on/off control.

Using the DRV632 in audio product applications can reduce component counts considerably, compared to traditional methods of generating a 2-V\textsubscript{RMS} output. The DRV632 does not require a power supply greater than 3.3 V to generate its 5.6-V\textsubscript{PP} output, nor does it require a split-rail power supply. The DRV632 integrates its own charge pump to generate a negative supply rail that provides a clean, pop-free, ground-biased 2-V\textsubscript{RMS} output. The DRV632 is available in a 14-pin TSSOP package.
This EVM is configured with two RCA phono input connectors for analog input; the output signal is available on two RCA phono connectors. The power supply is connected via a two-pin, 2.54-mm header.

This evaluation board is designed for testing applications such as set-top boxes, LCD/PDP TVs, Blu-ray Disc™ DVD players, DVD mini-component systems, home theater-in-a-box (HTIB) systems, or soundcards.

This document presents EVM specifications, audio performance measurements graphs, and design documentation that includes complete circuit descriptions, schematic diagrams, a parts list, and PCB layout design. Gerber (layout) files are available from the TI Web site at www.ti.com.

Throughout this document, the abbreviation EVM and the term evaluation module are synonymous with the DRV632EVM.

1.1 **DRV632EVM Features**

The DRV632EVM has these features:
- Two-channel evaluation module (double-sided, plated-through PCB layout)
- 2-V\textsubscript{RMS} line output
- No output capacitor required
- Shutdown button

Figure 3 illustrates the functional diagram for the EVM. Table 1 summarizes the key parameters.

![Figure 3. DRV632EVM Functional Block Diagram](image)

<table>
<thead>
<tr>
<th>Key Parameters</th>
<th>Specification/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>3.3 V</td>
</tr>
<tr>
<td>Number of Channels</td>
<td>Two</td>
</tr>
<tr>
<td>Load Impedance</td>
<td>600 Ω (min)</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>2 V\textsubscript{RMS}</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>> 90 dB</td>
</tr>
</tbody>
</table>
2 Quick Setup

This section describes the DRV632EVM board with regard to the power supply and system interfaces. It provides information about handling and unpacking the DRV632EVM, absolute operating conditions, and a description of the factory default switch and jumper configurations.

The following subsections provide a step-by-step guide to configuring the DRV632EVM for device evaluation.

2.1 Electrostatic Discharge Notice

CAUTION

Many of the components on the DRV632EVM are susceptible to damage by electrostatic discharge (ESD). Customers are advised to observe proper ESD handling precautions when unpacking and handling the EVM, including the use of a grounded wrist strap at an approved ESD workstation.

Failure to observe proper ESD handling procedures may result in damage to EVM components.

2.2 Unpacking the EVM

On opening the DRV632EVM package, ensure that the following items are included:

- One DRV632EVM evaluation board, including:
 - One DRV632PW device

If either item is missing, contact the Texas Instruments Product Information Center nearest you to inquire about a replacement.

2.3 Power-Supply Setup

A single power supply is required to power up the EVM. The power supply is connected to the EVM board using a two-pin, 2,54-mm header (J1). Table 2 lists the recommended supply voltage.

<table>
<thead>
<tr>
<th>Description</th>
<th>Voltage Limitations</th>
<th>Current Requirement</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>3.3 V</td>
<td>0.10 A</td>
<td>—</td>
</tr>
</tbody>
</table>

CAUTION

Applying voltages above the limitations given in Table 2 may cause permanent damage to your hardware.
3 On/Off Sequence

For minimum click and pop interference during device power on and power off, the DRV632 Mute pin (pin 5) must be held low, primarily because of precharging of the ac-coupled input capacitors. The preferred power-up/-down sequence is shown in Figure 4.

![Power-Up/-Down Sequence](Figure 4. Power-Up/-Down Sequence)

4 Component Selection

4.1 Charge Pump

The charge pump flying capacitor, C17, serves to transfer charge during the generation of the negative supply voltage. The PVSS capacitor must be at least equal to the charge pump capacitor in order to allow a maximum charge transfer. Low equivalent series resistance (ESR) capacitors are an ideal selection, with a typical value of 1 μF. Capacitor values less than 1 μF can be used, but the maximum output can be reduced. It is therefore recommended to validate the design with thorough testing.

4.2 Power-Supply Decoupling Capacitors

The DRV632 is a DirectPath™ line driver amplifier that requires adequate power-supply decoupling to ensure that noise and total harmonic distortion (THD) are low. A good low ESR ceramic capacitor, C15 (1 μF typical), placed as close as possible to the device VDD leads is the best option. Placing this decoupling capacitor close to the DRV632 device is important for amplifier performance. For filtering lower-frequency noise signals, a 10-μF or greater capacitor placed near the audio amplifier may also help, but is not required in most applications because of the high PSRR of the DRV632.

The charge pump circuit does apply ripple current on the VDD line, and an LC or RC filter may be needed if noise-sensitive audio devices share the VDD supply.

4.3 Using the DRV632 as a Second-Order, Low-Pass Filter in Single-Ended Input Mode

Several audio digital-to-audio converters (DAC) used in typical consumer applications require an external low-pass filter to remove out-of-band noise. This function is also possible with the DRV632; the EVM is configured as a 30-kHz, second-order active Butterworth filter to accomplish this filtering using an MFB (multiple feedback) topology. Furthermore, the DRV632 requires an ac-coupling capacitor to remove dc content from the source.

The active low-pass filter component values can be calculated with the help of the TI FilterPro active filter design program available at http://focus.ti.com/docs/toolsw/folders/print/filterpro.html on the TI Web site. Figure 5 illustrates the circuit design for this configuration.
Table 3. DRV632EVM Filter Specifications

<table>
<thead>
<tr>
<th>Gain</th>
<th>High Pass</th>
<th>Low Pass</th>
<th>C1</th>
<th>Single Ended C2</th>
<th>Differential C2</th>
<th>C3</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1 V/V</td>
<td>16 Hz</td>
<td>40 kHz</td>
<td>100 pF</td>
<td>680 pF</td>
<td>270 pF</td>
<td>1 μF</td>
<td>10 kΩ</td>
<td>10 kΩ</td>
<td>24 kΩ</td>
</tr>
<tr>
<td>−1.5 V/V</td>
<td>19 Hz</td>
<td>40 kHz</td>
<td>68 pF</td>
<td>680 pF</td>
<td>270 pF</td>
<td>1 μF</td>
<td>8.2 kΩ</td>
<td>12 kΩ</td>
<td>30 kΩ</td>
</tr>
<tr>
<td>−2 V/V</td>
<td>11 Hz</td>
<td>30 kHz</td>
<td>47 pF</td>
<td>470 pF</td>
<td>180 pF</td>
<td>1 μF</td>
<td>15 kΩ</td>
<td>30 kΩ</td>
<td>43 kΩ</td>
</tr>
<tr>
<td>−3.33 V/V</td>
<td>12 Hz</td>
<td>30 kHz</td>
<td>33 pF</td>
<td>470 pF</td>
<td>180 pF</td>
<td>1 μF</td>
<td>13 kΩ</td>
<td>43 kΩ</td>
<td>43 kΩ</td>
</tr>
<tr>
<td>−10 V/V</td>
<td>15 Hz</td>
<td>30 kHz</td>
<td>22 pF</td>
<td>1 nF</td>
<td>330 pF</td>
<td>2.2 μF</td>
<td>4.7 kΩ</td>
<td>47 kΩ</td>
<td>27 kΩ</td>
</tr>
</tbody>
</table>

The resistor values must be low value to achieve low noise, but must be of high enough value to obtain a small size ac-coupling capacitor. With the proposed values of 15 kΩ, 30 kΩ, and 43 kΩ, a dynamic range (DYR) of 102 dB can be achieved with a small 2.2-μF input ac-coupling capacitor.

The MFB filter structure demands an operational amplifier that is unity-gain stable at high frequencies; this requirement can be relaxed by adding the Cₓ capacitor value to be equal to C1. The DRV632 is unity-gain stable, but stray capacitance and inductance from the PCB layout can affect the phase margin. Therefore, TI recommends adding Cₓ.

4.4 Using the DRV632 as a Differential Input, Second-Order Low-Pass Filter

The single-ended input, second-order filter described in Section 4.3 can easily be extended to have a differential input, as shown in Figure 6.
C₂ can be split into separate capacitors to ground with the double value; this technique increases the common-mode filtering. Another capacitor, Cₓ, set equal to C₁ can continue to be used from the negative input to ground to limit the high-frequency gain to 2.

As with the single-ended input, the differential input filter component values can be calculated with the help of the TI FilterPro active filter design program available on the TI Web site.

5 Layout Recommendations

5.1 GND Connections

The GND pins of the DRV632 must be routed separately back to the decoupling capacitor in order to facilitate proper device operation. If the GND pins are connected directly to each other, the device functions without risk of failure, but noise and THD performance can be reduced.

On the DRV632EVM, a star ground routing pattern is used; the star point is located directly below the DRV632 device itself.

6 Related Documentation from Texas Instruments

The following related documents are available through the Texas Instruments Web site at http://www.ti.com. These documents have detailed descriptions of the integrated circuits used in the design of the DRV632EVM.

<table>
<thead>
<tr>
<th>Table 4. Related Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
</tr>
<tr>
<td>DRV632</td>
</tr>
</tbody>
</table>
7 Design Documentation

7.1 Schematics

Figure 7. DRV632EVM Schematic
The bill of materials (BOM) for the DRV632EVM is listed in Table 5.

<table>
<thead>
<tr>
<th>Qty</th>
<th>Part Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Mfr Part No</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C19, C20</td>
<td>CAP SMD0603 CERM 1000PF 50V 5% COG ROHS</td>
<td>TDK</td>
<td>C1608C0G1H102J</td>
</tr>
<tr>
<td>4</td>
<td>C9–C12</td>
<td>CAP SMD0603 CERM 47PF 50V 5% COG ROHS</td>
<td>MURATA</td>
<td>GRM1885C1H470JA01D</td>
</tr>
<tr>
<td>1</td>
<td>C13</td>
<td>CAP SMD0603 CERM 100PF 50V 5% COG ROHS</td>
<td>MURATA</td>
<td>GRM1885C1H101JA01D</td>
</tr>
<tr>
<td>2</td>
<td>C7, C8</td>
<td>CAP SMD0805 CERM 180PF 50V 5% NPO ROHS</td>
<td>YAGEO</td>
<td>CC0805JRP09BN181</td>
</tr>
<tr>
<td>1</td>
<td>C2</td>
<td>CAP SMD0603 CERM 0.1UF 10V 5% X7R ROHS</td>
<td>KEMET</td>
<td>C0603C104K8RACTU</td>
</tr>
<tr>
<td>3</td>
<td>C15, C17, C18</td>
<td>CAP ALUM-ELECT SMD-VSA 10UF 16V 20% ROHS</td>
<td>TDK</td>
<td>C1608X7R1C105K</td>
</tr>
<tr>
<td>4</td>
<td>C3,C4,C5,C6</td>
<td>CAP ALUM-ELECT SMD-VSA 2.2µF 50V 20% ROHS</td>
<td>PANASONIC</td>
<td>EEE-1HS2R2SR</td>
</tr>
<tr>
<td>1</td>
<td>C1</td>
<td>CAP SMD0805 CERM 10UF 6.3V X7R 10% ROHS</td>
<td>AVX</td>
<td>08056C106KAT2A</td>
</tr>
<tr>
<td>2</td>
<td>R22, R23</td>
<td>RESISTOR SMD0603 33Ω 1% 1/10W ROHS</td>
<td>PANASONIC</td>
<td>ERJ-3EKF33R0V</td>
</tr>
<tr>
<td>1</td>
<td>R21</td>
<td>RESISTOR SMD0603 10K 5% 1/10W ROHS</td>
<td>PANASONIC</td>
<td>ERJ-3GEYJ103V</td>
</tr>
<tr>
<td>4</td>
<td>R6, R7, R9, R11</td>
<td>RESISTOR SMD0603 15.0KΩ 1% 1/10W ROHS</td>
<td>STACKPOLE ELECTRONICS</td>
<td>RMCF0603FT15K0</td>
</tr>
<tr>
<td>4</td>
<td>R16–R19</td>
<td>RESISTOR SMD0603 20.0KΩ 1% THICK FILM 1/16W ROHS</td>
<td>YAGEO</td>
<td>RC0603FR-0743KL</td>
</tr>
<tr>
<td>4</td>
<td>R8, R10, R15, R20</td>
<td>RESISTOR SMD0603 THICK FILM 30.0K 1% 1/10W ROHS</td>
<td>YAGEO</td>
<td>RC0603FR-0730KL</td>
</tr>
<tr>
<td>4</td>
<td>R2–R5</td>
<td>RESISTOR SMD0603 100KΩ 5% 1/10W ROHS</td>
<td>STACKPOLE ELECTRONICS</td>
<td>RMCF0603JT100K</td>
</tr>
<tr>
<td>4</td>
<td>J1, JP1–JP3</td>
<td>HEADER THRU MALE 2 PIN 100LS GOLD ROHS</td>
<td>SULLINS</td>
<td>PBC02SAAN</td>
</tr>
<tr>
<td>2</td>
<td>LIN, LOUT</td>
<td>JACK, RCA 3-PIN PCB-RA BLACK ROHS</td>
<td>SWITCHCRAFT</td>
<td>PJRAN11XU01X</td>
</tr>
<tr>
<td>2</td>
<td>RIN,ROUT</td>
<td>JACK, RCA 3-PIN PCB-RA RED ROHS</td>
<td>SWITCHCRAFT</td>
<td>PJRAN11XU03X</td>
</tr>
<tr>
<td>1</td>
<td>UVP</td>
<td>PC TESTPOINT, RED, ROHS</td>
<td>KEYSTONE ELECTRONICS</td>
<td>5000</td>
</tr>
<tr>
<td>1</td>
<td>MUTE</td>
<td>PC TESTPOINT, ORANGE, ROHS</td>
<td>KEYSTONE ELECTRONICS</td>
<td>5003</td>
</tr>
<tr>
<td>1</td>
<td>S1</td>
<td>SWITCH, MOM, 160G SMT 4X3MM ROHS</td>
<td>E-SWITCH</td>
<td>TL1015AF160G</td>
</tr>
<tr>
<td>3</td>
<td>JP1–JP3</td>
<td>SHUNT, BLACK AU FLASH 0.100LS</td>
<td>SULLINS</td>
<td>SPC02SYAN</td>
</tr>
<tr>
<td>4</td>
<td>N/A</td>
<td>4-40 SCREW, STEEL 0.250 IN</td>
<td>BUILDING FASTENERS</td>
<td>PMS 440 0025 PH</td>
</tr>
<tr>
<td>4</td>
<td>N/A</td>
<td>STANDOFF .4-40 0.5IN 3/16IN DIA ALUM RND F-F</td>
<td>KEYSTONE ELECTRONICS</td>
<td>2027</td>
</tr>
</tbody>
</table>
7.3 PCB Layers

Gerber files are available for download at the DRV632EVM product folder page on the TI Web site. Component placement and board layout are illustrated in Figure 8, Figure 9, and Figure 10, respectively.

NOTE: Board layouts are not to scale. These figures are intended to show how the board is laid out; they are not intended to be used for manufacturing DRV632EVM PCBs.

![Figure 8. DRV632EVM PCB Component Placement](image1)

![Figure 9. DRV632EVM PCB Top Layer](image2)
Figure 10. DRV632EVM PCB Bottom Layer
Evaluation Board/Kit Important Notice

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User’s Guide and, specifically, the Warnings and Restrictions notice in the User’s Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI’s environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM Warnings and Restrictions

It is important to operate this EVM within the input voltage range of 0 V to 3 V and the output voltage range of 0 V to 3.3 V. Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power. Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 60°C. The EVM is designed to operate properly with certain components above 40°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are not authorized for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are not designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
- **Amplifiers**: amplifier.ti.com
- **Data Converters**: dataconverter.ti.com
- **DLP® Products**: www.dlp.com
- **DSP**: dsp.ti.com
- **Clocks and Timers**: www.ti.com/clocks
- **Logic**: logic.ti.com
- **Power Mgmt**: power.ti.com
- **Microcontrollers**: microcontroller.ti.com
- **RFID**: www.ti-rfid.com
- **RF/IF and ZigBee® Solutions**: www.ti.com/lprf

Applications
- **Audio**: www.ti.com/audio
- **Automotive**: www.ti.com/automotive
- **Communications and Telecom**: www.ti.com/communications
- **Computers and Peripherals**: www.ti.com/computers
- **Consumer Electronics**: www.ti.com/consumer-apps
- **Energy**: www.ti.com/energy
- **Industrial**: www.ti.com/industrial
- **Medical**: www.ti.com/medical
- **Security**: www.ti.com/security
- **Space, Avionics & Defense**: www.ti.com/space-avionics-defense
- **Video and Imaging**: www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2010, Texas Instruments Incorporated