ABSTRACT

Wearable devices require advanced power management to achieve long battery run times with always-on functionality. Additionally, the devices need to use small rechargeable batteries and enable small footprint designs. This application note shows the implementation of a scalable power management solution for wearables that can be tailored for activity monitors, watches, and more. The design provides a wireless charging input, highly configurable battery management solution with Li-Ion battery charger and low quiescent current (Iq) DC/DC buck, boost converter for PMOLED display, boost converter for Heart Rate Monitor (HRM), and low Iq DC/DC buck.

Figure 1. PCB Top Assembly

(1) All trademarks are the property of their respective owners.
Figure 2. Block Diagram of Wearable Power Management
Contents

1 Wearable Power Design ... 4
2 PMOLED Display Power Design .. 7
3 Heart Rate Monitor or e-Ink Power Design 8
4 Layout Guidelines for Wearable Design 9
5 References .. 14

Appendix A Experimental Results .. 15

List of Figures

1 PCB Top Assembly .. 1
2 Block Diagram of Wearable Power Management 2
3 Schematic of Wireless Charging Receiver Using the bq51003 4
4 Schematic of Battery Charger, MCU, Radio, and Sensor Power 5
5 Schematic of Second Buck for MCU, Radio or Sensor Power 6
6 Schematic of Boost for PMOLED Display Power 7
7 Schematic of Boost for Heart Rate Monitor Power 8
8 bq25120 Capacitors Placement .. 9
9 TPS62743 Layout .. 10
10 Capacitor Grounding TPS61046 .. 11
11 TPS61240 Layout .. 12
12 PMID Plane in Bottom Layer .. 13
13 TIDA-00334 Board ... 15
14 Wireless Power Efficiency .. 15
15 BQ25120 Buck Efficiency ... 16
16 BQ25120 Buck Load Regulation .. 16
17 TPS62743 Buck Efficiency ... 17
18 TPS62743 Buck Load Regulation .. 17
19 TPS61046 Boost Efficiency .. 17
20 TPS61046 Boost Load Regulation .. 17
21 TPS61240 Boost Efficiency .. 17
22 TPS61240 Boost Load Regulation .. 17
23 Image 1 .. 18
24 Image 2 .. 19
25 Image 3 .. 19
26 Image 4 .. 20
27 Image 5 .. 20
28 Image 6 .. 21
29 Image 7 .. 22
30 Image 8 .. 23
31 Image 9 .. 23

List of Tables

1 Wearable Power Requirements ... 4
2 Board Outputs and Loads .. 18
3 Board Outputs and Loads .. 22
1 Wearable Power Design

Table 1. Wearable Power Requirements

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage (VIN)</td>
<td>5 V USB input or Qi Wireless Transmitter</td>
</tr>
<tr>
<td>Input Current</td>
<td>Up to 500 mA</td>
</tr>
<tr>
<td>Output Voltage for Li-Ion Battery</td>
<td>3.6 V to 4.65 V</td>
</tr>
<tr>
<td>Fast Charge Current For Li-Ion Battery</td>
<td>5 mA to 300 mA</td>
</tr>
<tr>
<td>Termination Current for Li-Ion Battery</td>
<td>500 µA to 37 mA</td>
</tr>
<tr>
<td>Output Voltage for MCU (SYS rail)</td>
<td>1.8 V nominal (Adjustable from 1.1 V to 3.3 V)</td>
</tr>
<tr>
<td>Output Current for MCU (SYS rail)</td>
<td>Up to 300 mA</td>
</tr>
<tr>
<td>Output Voltage for Second Buck Rail</td>
<td>1.8 V</td>
</tr>
<tr>
<td>Output Current for Second Buck Rail</td>
<td>Up to 300 mA</td>
</tr>
<tr>
<td>Output Voltage for PMOLED Display</td>
<td>12 V</td>
</tr>
<tr>
<td>Output Current for PMOLED Display</td>
<td>Up to 100 mA</td>
</tr>
<tr>
<td>Output Voltage for Heart Rate Monitor</td>
<td>5 V</td>
</tr>
<tr>
<td>Output Current for Heart Rate Monitor</td>
<td>Up to 300 mA</td>
</tr>
<tr>
<td>Output Voltage for Sensors or Radio (LDO)</td>
<td>0.8 V to 3.3 V</td>
</tr>
<tr>
<td>Output Current for Sensors or Radio (LDO)</td>
<td>Up to 100 mA</td>
</tr>
</tbody>
</table>

1.1 Wireless Charging Input

A large number of low-power wearable devices such as smart watches, fitness wrist bands and headphones are adopting wireless charging. The BQ51003 is an advanced, integrated receiver tailored for wearable applications. A standard Qi-compliant design will deliver 5W with a 50-mm coil. Figure 3 is modified from a Qi-compliant design with a smaller 30-mm coil and adjustable 500 mW to 1500 mW capabilities. When used with a Qi-compliant wireless transmitter, the RX_OUT supplies the input to a Li-Ion charger, in this case the bq25120. This better matches the wearable form factor and battery requirements, and is optimized for the device to stay cooler during power transfer.

Figure 3. Schematic of Wireless Charging Receiver Using the bq51003
1.2 Battery Charger, MCU, Radio, and Sensor Power

The BQ25120 is a highly integrated battery charge management solution that integrates the most common functions for wearable devices: Linear charger, buck output, load switch or LDO, manual reset with timer, and battery voltage monitor. The integrated buck converter is a high efficiency, low IQ switcher using DCS control that extends light load efficiency down to 10 µA load currents. The low quiescent current during operation and shutdown enables maximum battery life. The BQ25120 has an I²C interface that allows configuration of key parameters including charge current, termination threshold, battery regulation voltage, DC/DC buck output voltage, load switch or LDO voltage, pushbutton timers and reset parameters, input current limit, battery undervoltage threshold, safety timer limit, battery monitor reads, and fault conditions. The design procedure for the BQ25120 can be found in the datasheet.

Figure 4. Schematic of Battery Charger, MCU, Radio, and Sensor Power
1.3 Second Buck Output for MCU, Radio or Sensor

While the bq25120 integrates a single, ultra-low power step-down converter for one rail, some systems, such as an MCU, radio or sensor, need a second high-efficiency rail with a different voltage. For these sub-systems, a discrete ultra-low power step-down converter with similar performance to the bq25120 converter is required. PMP11311 includes a TPS62743 which contains a user-selectable choice of 8 different output voltages from 1.2 V to 3.3 V.

If the more common 1.2-V or 1.8-V rail is needed, then the pin-to-pin compatible TPS62746 may be used instead to obtain the extra feature of an input voltage switch (VIN switch). The VIN switch allows a no-leakage measurement of the battery voltage by the host MCU. More details about the TPS62743 and TPS62746 and their implementation are found in the data sheets in the references. Either device requires a total solution size of less than 10 mm².

Figure 5. Schematic of Second Buck for MCU, Radio or Sensor Power
2 PMOLED Display Power Design

- A PMOLED display is often used in the wearable device because of its low power consumption and low cost. The TPS61046 is a perfect boost converter to power the PMOLED display because of its features as following:
 - True Disconnection between Input and Output during Shutdown.
 - Small package size of 0.80-mm × 1.20-mm WCSP
 - Output Voltage Up to 28 V capability and Output Over-Voltage Protection.
 - Output Short Circuit Protection

At fixed 12 V output voltage condition, the device only needs three external components, as in Figure 6. More details about TPS61046 pin function, characteristics and external component selection can be found its datasheet. The method of using the device to power a PMOLED display and the performance waveforms can be found in another reference design “PMP9775”.

Figure 6. Schematic of Boost for PMOLED Display Power
3 Heart Rate Monitor or e-Ink Power Design

The TPS61240 is a high efficiency boost converter optimized for lithium-ion battery input and fixed 5-V output application. It features 3.5 MHz switching frequency and only needs three small surface-mount external components as shown in Figure 7 with solution size smaller than 13 mm². The 5-V output can be used to power the heart rate monitor module or e-Ink display in a wearable device.

The function, characteristics and external component selection are found in the datasheet.

Figure 7. Schematic of Boost for Heart Rate Monitor Power
4 Layout Guidelines for Wearable Design

Size is key in a wearable design and it must be taken into account when the different components are placed. In order to follow the power flow the layout is started from the wireless receiver to the battery charger and finishing on the buck and boost for the different power rails provided.

4.1 Wireless Receiver (bq51003)

- In-via pads are required in this device. Via interconnect on GND is critical for thermal performance.
- Place the AC capacitors (C6, C7, C8) close to the coil connection keeping the trace thick to lower its resistance.
- Output and RECT capacitors should be placed close to the OUT and RECT pins in the IC.
- BOOT, COMM and CLAP capacitors should be placed close to the pins. If vias are required, it is recommended to shield the traces from sensing traces to avoid interferences.
- Preferably provide a ground copper area underneath the sensing traces, REC, ILIM, FOD to shield them from the power and noisy traces.

4.2 Linear Charger (bq25120)

- Input capacitor (C21) must be placed close to the IC input pin. It is recommended to place the BAT capacitor close to the pin. Therefore, in this design the input trace coming from the output of the wireless receiver is connected through a via in an inner layer in order to reduce the size of the solution.
- The inductor should be placed close to the SW pin to reduce the size of the switching node.
- The output capacitors for the power rails (SYS, PMID, LS/LDO) need to be placed close to the pins.
4.3 **Buck Converter (TPS62743/6)**

- The input capacitor must be placed close to the Vin pin of the IC.
- The switching node should be as short as possible.
- Connect the output cap with a trace –no via- away from the SW node and noisy signals.

Figure 9. TPS62743 Layout
4.4 **Boost Converters (TPS61046 and TPS61240)**

- The switching node should be as short as possible.
- It is recommended to place the input capacitor close not only to the VIN and GND pins.
- The output capacitor must be placed close to the IC and it is recommended to be close to the ground pin. If possible, the ground for the input and output capacitor should be on the same plane. In the TPS61046 it was not possible to follow this rule due to the placement for reduced size. Therefore, a solid ground with vias was provided on the next layer making sure the connection is adequate.

![Figure 10. Capacitor Grounding TPS61046](image-url)
Figure 11. TPS61240 Layout
4.5 **General Considerations**

- PMID powers the buck converter and the two boost converters. Due to the size restrictions a solid plane is provided in the bottom layer to connect the different devices through bigger vias.
- The ground return for the capacitor should be connected through one via in small signal capacitors and two vias in power capacitors.

![Figure 12. PMID Plane in Bottom Layer](image-url)
5 References

- bq25120 700-nA Low IQ Highly Integrated Battery Charge Management Solution (SLUSBZ9)
- bq51003 Highly Integrated Wireless Receiver Qi (WPC v1.1) Compliant Power Supply (SLUSBC8)
- Adapting Qi-compliant wireless-power solutions to low-power wearable products (SLYT570)
- TPS62743 Tiny Ultra Low Quiescent Current Buck Converter (SLVSCQ0)
- TPS62746 High Efficiency Buck Converter with Ultra-low Quiescent Current and VIN Switch (SLVSD28)
- Accurately measuring efficiency of ultralow-IQ devices (SLYT558)
- High-efficiency, low-ripple DCS-Control offers seamless PWM/pwr-save transitions (SLYT531)
- TPS61046 28-V Output Voltage Boost Converter in WCSP Package (SLVSCQ7)
- TPS6124x 90% Efficient Boost Converter with 800mA Switch (SLVS806)
- PMP9775
A.1 Experimental Results

Efficiency of Wireless Input Stage. The figure shows the efficiency across the power range with the bq51003. This is the total DC/DC system efficiency including the transmitter, coils and receiver. Testing was done with the TIDA-00334 Small Form Factor Transmitter reference design (5-V input) and the TDK WR222230-26M8-G coil. The TIDA-00334 reference design is pictured below with the results.

Figure 13. TIDA-00334 Board

Figure 14. Wireless Power Efficiency
Figure 15 and Figure 16 show the efficiency and load regulation of the bq25120 1.8V buck output with a 3.8V VBAT input. For full performance data of the BQ25120, see the datasheet.
Figure 17 and Figure 18 show the efficiency and load regulation of the TPS62743 1.8 V Buck Output from a 3.8V VBAT input. The input to the TPS62743 is connected to PMID, so the efficiency includes the drop through the bq25120 battery discharge FET. For full performance data of the TPS62743, see the datasheet.

Figure 19 and Figure 20 show the efficiency and load regulation of the TPS61046 12 V Boost Output from a 3.8V VBAT input. The input to the TPS61046 is connected to PMID, so the efficiency includes the drop through the bq25120 battery discharge FET. For full performance data of the TPS61046, see the datasheet.

Figure 21 and Figure 22 show the efficiency and load regulation of the TPS61240 5 V Boost Output from a 3.8V VBAT input. The input to the TPS61240 is connected to PMID, so the efficiency includes the drop through the bq25120 battery discharge FET. For full performance data of the TPS61240, see the datasheet.
Experimental Results

The following thermal images are of the board with various outputs and loads applied.

Table 2. Board Outputs and Loads

<table>
<thead>
<tr>
<th>Image</th>
<th>BQ25120 SYS</th>
<th>BQ25120 LS/LDO</th>
<th>TPS61046 BOOST 12V</th>
<th>TPS61240 BOOST 5V</th>
<th>TPS62743 V_BUCK</th>
<th>CURRENT FROM VBAT (A)</th>
<th>(1) BOARD MAX TEMP °C</th>
<th>(2) BQ25120 MAX TEMP °C</th>
<th>AMBIENT TEMP °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image 1</td>
<td>200 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0.011117</td>
<td>27.08</td>
<td>25.28</td>
<td>22.5</td>
</tr>
<tr>
<td>Image 2</td>
<td>200 mA</td>
<td>100 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0.20982</td>
<td>28.08</td>
<td>26.58</td>
<td>22.5</td>
</tr>
<tr>
<td>Image 3</td>
<td>200 mA</td>
<td>100 mA</td>
<td>100 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0.67541</td>
<td>57.72</td>
<td>37.95</td>
<td>22.5</td>
</tr>
<tr>
<td>Image 4</td>
<td>200 mA</td>
<td>100 mA</td>
<td>100 mA</td>
<td>200 mA</td>
<td>0 mA</td>
<td>1.0723</td>
<td>69.2</td>
<td>53.51</td>
<td>22.5</td>
</tr>
<tr>
<td>Image 5</td>
<td>200 mA</td>
<td>100 mA</td>
<td>100 mA</td>
<td>200 mA</td>
<td>200 mA</td>
<td>1.19482</td>
<td>80.79</td>
<td>64.66</td>
<td>22.5</td>
</tr>
<tr>
<td>Image 6</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0.000041</td>
<td>24.47</td>
<td>23.29</td>
<td>22.5</td>
</tr>
</tbody>
</table>

Figure 23. Image 1
Figure 24. Image 2

Figure 25. Image 3
Figure 26. Image 4

Figure 27. Image 5
Figure 28. Image 6
Table 3. Board Outputs and Loads

<table>
<thead>
<tr>
<th></th>
<th>BQ51003</th>
<th>BQ25120 SYS</th>
<th>BQ25120 LS/LDO</th>
<th>TPS61046 BOOST 12 V</th>
<th>TPS61240 BOOST 5 V</th>
<th>TPS62743 V_BUCK</th>
<th>(1) BQ25120 MAX TEMP °C</th>
<th>(2) BQ51003 MAX TEMP °C</th>
<th>AMBIENT TEMP °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image 7</td>
<td>On</td>
<td>100 mA Fast Charge</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>31.7</td>
<td>32.18</td>
<td>22.5</td>
</tr>
<tr>
<td>Image 8</td>
<td>On</td>
<td>200 mA Fast Charge</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>39.66</td>
<td>34.31</td>
<td>22.5</td>
</tr>
<tr>
<td>Image 9</td>
<td>On</td>
<td>300 mA Fast Charge</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>35.13</td>
<td>38.52</td>
<td>22.5</td>
</tr>
</tbody>
</table>

Figure 29. Image 7
Figure 30. Image 8

Figure 31. Image 9
Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

<table>
<thead>
<tr>
<th>Changes from Original (December 2015) to A Revision</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Changed values for C6, C7, and C8 in Figure 3</td>
<td>4</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI') technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include: without limitation, TI's standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated