Using the TPS23851 Reference Design

Reference Design

Literature Number: SLUU451
September 2010
TPS23851 Board Layout Guidelines

This manual provides best practices for the board layout of the TPS23851 PSE power controller.

1 Overview

The TPS23851 is a quad-power controller engineered to insert power onto Ethernet cable according to IEEE Std 802.3at-2009 for power sourcing equipment (PSE). The PSE controller can detect powered devices (PDs) that have a valid signature, determine the power requirements of the devices according to the classification, and apply power to the devices, limited per 802.3at standards. Based on an industry standard register set, the PSE controller is software compatible with other PSE controllers for basic functionality.

Beyond the industry standard operation, the TPS23851 operates with enhanced features. Port current trip point can be set to all classification thresholds of 802.3at and can be programmed up to 816 mA in excess of 802.3at. The TPS23851 supports AC and DC disconnection with a precision on-chip, 110-Hz oscillator for AC waveform generation. The PSE also contains four 14-bit A/D converters that constantly monitor voltage and current on each port. This information is available on the I2C bus for power management.

The basic general configuration of the device and a typical port component population is shown below in Figure 1.

![Figure 1. TPS23851 Board Layout](image-url)
1.1 Typical Application Schematic

Figure 2 below shows a typical application schematic for the TPS23851. This schematic highlights the typical component support for the chip and one of the four ports of the device.

NOTE: The above schematic uses the TSSOP-36 package pinout. Pin numbers must be adjusted when the SSOP-36 package type is used.

Figure 2. TPS23851 Typical Application
2 Component Function, Selection and Placement

2.1 Supply Decoupling

Both the VDD and VEE pins of the device should be decoupled as shown. The decoupling caps (C1.4 and C1.5) should be as close to the corresponding VDD and VEE pins (TSSOP-38 VDD=17, VEE=29,30; SSOP-36 VDD=16, VEE=28) as possible. Power supply slew rate at power on and off should be kept below 1V/μS. Usually this is not an issue due to the magnitude of capacitance on these lines, however, in some cases where a small dedicated switching regulator is used for VDD that may not be the case. R1.6 is recommended to create an RC filter on the VDD pin to prevent an issue due to dv/dt and to remove the high level of hash/noise typically found on this rail.

2.2 Current Sensing

The parallel combination of R1.1 and R1.2 form the main 0.5-Ω current sense resistor of this device.

CAUTION

The layout of this component is very critical and the quality of that layout will determine the overall performance of the PSE controller. A poor layout will result in channel-to-channel crosstalk, erratic DC disconnect performance, errors in classification level reporting and errors in port current measurement.

A proper, high-performance layout relies on grouping the current sense resistors of all 4 ports in a cluster, close to the TPS23851 such that the -48-V return of these resistors forms a star connection. At the central point of that star, is the one and only connection point for the VEE pin of the TPS23851. The VEE power feed also branches off from that same star point to the supply. The four SENx pins should terminate right at the top side of each 0.5-Ω resistor with a separate path from that same end to the source of the corresponding power FET.

The figure below shows the Kelvin connection for the SENx trace to the sense resistors.
Two parallel resistors are used to get better tolerance due to statistical averaging and better heat spreading on the board. 1% or better tolerance resistors should always be used here.

The figure below shows how each cluster of eight sense resistors made of four parallel pairs are connected to a STAR VEE source on a multi-TPS23851 PSE board. (blue layer)

Figure 5. Four Parallel Pairs Made With Eight Sense Resistors

2.3 Port Components

C1.1 and D1.1 are port related components to protect against external voltage surges, reduce EMI and absorb ESD strikes to the port. It is preferable to locate these components closer to the corresponding port and port magnetics.

2.4 AC Disconnect Components

D1.2, R1.5, C1.2 and D1.3 are used for the AC disconnect function. When AC disconnect is enabled a 110-Hz sinewave is present on the DET pins and coupled to the port thru these components. The AC current flowing out of the DET pin is monitored by the TPS23851 and when it drops below a threshold due to a high-impedance load condition, the port is shutdown. Component value selection should not deviate from that shown as it will alter the AC disconnect threshold. C1.2 is a high-voltage ceramic cap (100 V or better) to minimize capacitance change due to voltage coefficient. D1.2, R1.5, and C1.2 should be clustered together whereas D1.3 should be located in the high current path and close to the drain of Q1.1
2.5 Power MOSFET

Careful thermal design should be considered for power MOSFET Q1.1. The power drain tab of this SOT223 should be soldered directly to a copper heat spreader under the device. The area of that heat spreader should be maximized. The spreader should be augmented with additional connections to thermal heat spreaders in the core of the circuit board or on the backside. The combined area of the heat spreaders should be at least 0.5 inches, but this is very dependent on the thermal characteristics of the specific application. Traces in the high current paths of the drain and source nodes should be at least 15-mils wide, leading to the magnetics and port RJ45 connectors.

Resistor R1.7 should be located as close as possible to the GATE node of this MOSFET whereas R1.4 should be located close to the corresponding OUT pin of the TPS23851.

The figure below shows the copper heat sink tabs for MOSFETs on the top and bottom side of a PSE board with heat spreaders on the internal layers. You will also note heat spreaders under the TPS23851 as well. The layer stack up goes from left to right as Top Layer, Internal1 Layer, Internal2 Layer, Internal3 Layer and Bottom Layer.

Figure 6. Top Layer

Figure 7. Internal 1 Layer
2.6 **TPS23851**

The TPS23851 power controller is not a power device, but will still dissipate approximately 350 mW due to quiescent current. For both this reason and supply decoupling integrity, the TPS23851 should have surface copper plane under and around the device, tied to VEE.

2.7 **Miscellaneous**

R1.7 is recommended to satisfy creepage and clearance recommendations at the SENSE4 pin (TSSOP-38 pin 23, SSOP-36 pin 22) only.
3 Example Board Layout

A typical board layout is shown below. This example is for a 24-port solution using six TPS23851 devices. Power FETs are distributed on the front and backside of the board. Top and Bottom and three inner signal copper layers are used. Port protection components are located along the bottom close to the connections to the external ports/magnetics. The input power and signal connections are along the top just above the TPS23851’s. The power MOSFETs and sense resistors are closer to the middle.
Figure 13. Top and Internal 2 Layers

Figure 14. Top and Internal 3 Layers
Figure 15. Top and Internal 4 Layers

Figure 16. Top and Bottom Layers
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>DSP</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>Interface</td>
<td>Energy</td>
</tr>
<tr>
<td>Logic</td>
<td>Industrial</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Medical</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Space, Avionics & Defense</td>
</tr>
<tr>
<td>RF/IF and ZigBee® Solutions</td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated